
Functional Graphs and Their Applications in
Generic Attacks on Iterated Hash Constructions

Zhenzhen Bao1, Jian Guo1 and Lei Wang2,3

1 School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
2 Shanghai Jiao Tong University, Shanghai, China

3 Westone Cryptologic Research Center, Beijing, China
baozhenzhen10@gmail.com,guojian@ntu.edu.sg,wanglei_hb@sjtu.edu.cn

Abstract. We provide a survey about generic attacks on cryptographic hash construc-
tions including hash-based message authentication codes and hash combiners.
We look into attacks involving iteratively evaluating identical mappings many times.
The functional graph of a random mapping also involves iteratively evaluating the
mapping. These attacks essentially exploit properties of the functional graph. We
map the utilization space of those properties from numerous proposed known attacks,
draw a comparison among classes of attacks about their advantages and limitations.
We provide a systematic exposition of concepts of cycles, deep-iterate images, collisions
and their roles in cryptanalysis of iterated hash constructions. We identify the inherent
relationship between these concepts, such that case-by-case theories about them can be
unified into one knowledge system, that is, theories on the functional graph of random
mappings. We show that the properties of the cycle search algorithm, the chain
evaluation algorithm and the collision search algorithm can be described based on
statistic results on the functional graph. Thereby, we can provide different viewpoints
to support previous beliefs on individual knowledge.
In that, we invite more sophisticated analysis of the functional graph of random
mappings and more future exploitations of its properties in cryptanalysis.
Keywords: Functional graph · Hash-based MAC · Hash combiner · Cycle · Deep-
iterate image · Collision · State recovery attack · Forgery attack · (Second) Preimage
attack

1 Introduction
Cryptographers build cryptographic functions using an iterated construction (which is
the de-facto standard) to simplify the security proof of the new designs when developing
them in theory and to ease the implementation of the designs when using them in practice.
Iterated constructions are expected to provide a simple and secure way to process data of
various length, e.g., iterated cryptographic hash functions. Iterated cryptographic hash
functions map messages of arbitrary length to digests of fixed length. To achieve this, they
iterate on fixed length input compression functions. Usually, those compression functions
iterated on within each construction are identical (or equivalent up to the addition of
constants).

To make security proof possible and to meet the security expectation on the iterated
hash construction, the compression function iterated on should behave like an ideal
primitive — usually a random mapping from a finite set into itself. Structures of a random
mapping can be visualized by the corresponding functional graph. The functional graph of
a random mapping is defined by the successive iteration of this mapping. An interesting
primary application of functional graphs in cryptography is the cycling experiments on

mailto:baozhenzhen10@gmail.com, guojian@ntu.edu.sg, wanglei_hb@sjtu.edu.cn


2 Functional Graphs and Their Applications in Cryptanalysis

standard block cipher DES and the discovery of functional graph representing an iteration
structure of DES [KRS88]. Apparent structures of the functional graph of a random
mapping might reveal intermediate information of the processing procedure under the
mapping. Characteristics and special parts of the functional graph of an underlying function
might be exploited to attack the entire iterated construction. Instances of these kinds
will be exhibited in this paper. Specifically, we will show how some statistical properties
of the functional graph are utilized in generic attacks against various cryptographic
hash constructions built on a classical iterated construction — the Merkle-Damgård
construction [Mer89, Dam89].

The Merkle-Damgård construction (MD) iteratively applies the same compression
function to process different message blocks evenly split from the given padded message.
It is broadly adopted by hash function designs such as MD5 and SHA-1 which are
widely used to construct more advanced hash constructions, such as hash-based message
authentication codes (MACs) and hash combiners. The hash-based MACs use keys
to provide authentication for data. The hash combiners combine two or more hash
functions to provide more security or to be robust so they will remain secure as long as
at least one hash function is secure. Various generic attacks have revealed weaknesses in
the Merkle-Damgård construction, including the multi-collision attack [Jou04], second-
preimage attacks [Dea99, KS05, ABD+16] and the herding attack [KK06]. These attacks
commonly exploit the iterative property of the construction which allows inner collisions
to propagate to the output. They encourage more generic attacks on hash designs built
on MD construction including hash-based MACs and hash combiners. These generic
attacks profoundly exploit the iterative property and are efficient by taking advantage of
observations on the functional graph of the underlying mapping.

We note that large body of the knowledge on the statistical properties of the random
functional graph can be cited from [FO89], derived using approaches in an independent
research area — analytic combinatorics. Actually, random mapping is not an exclusive for
the design of cryptographic hash function, it is a fundamental model for many aspects of
cryptology. More than that, it has also been intensely studied and widely applied in various
independent parallel lines of research, such as random number generation, computational
number theory, and the analysis of algorithms. New knowledge on characteristics of random
mapping from one research line has a potential influence on the others. The influence
might become significant until several decades later. This paper shows one instance of such
influence. Explicitly, we show how old knowledge from research on random graphs and trees
[RS67, Pro74, Mut88, FO89, FS09] became the theoretical basis of recent generic attacks on
hash constructions [PSW12, LPW13, PW14, GPSW14, DL14, DL17, Din16, BWGG17].
In the former line, researchers usually use profound and solid mathematical methods
including combinatorial mathematics, complex analysis, and probability and statistics. In
the latter line, researchers usually use delicate and smart cryptanalysis techniques which
might be based on reasonable heuristic assumptions, intuitive probabilistic arguments and
experimental verifications. Our motivation in this paper is to show the potential for the
latter to be supported further by the former and the potential of further more fruitful
cryptanalysis results. And we call for more joint effort between the two research areas to
build a complete knowledge system.

1.1 Our Contributions
We provide a survey about generic attacks on cryptographic hash constructions. Specific
hash constructions concerned include hash-based MACs and hash combiners with Merkle-
Damgård underlying hash functions. The survey covers a toolbox used in generic attacks.
For hash-based MACs, the survey covers various generic attacks, including distinguishing,
state recovery attacks and forgery attacks. For hash combiners, the survey covers generic
preimage and second-preimage attacks on various hash combiners. We try to provide a



Zhenzhen Bao, Jian Guo and Lei Wang 3

uniform description of these attacks, and try to provide brief complexity analysis which
shows the inherent limitations or advantages over related attacks (refer to Fig.1 for a list
of the main surveyed papers and their technical relations).

We look into attacks involving iteratively evaluating a mapping many times. The
functional graph of a random mapping also involves iteratively evaluating the mapping.
These attacks are typical applications of the functional graph. With their invention, more
and more properties of functional graph are exploited and better trade-offs of the attack
complexity are obtained. We map the utilization space of those properties from these
numerous proposed attacks, draw a comparison among classes of attacks of their advantages
and limitations, and discuss the fundamental reasons for the advantages and limitations.

We provide a systematic exposition of concepts — cycles, deep-iterate images, collisions
and their roles in cryptanalysis on iterated hash constructions. We identify the inherent
relationship between these concepts, such that case-by-case theories about them can be
unified into one knowledge system, that is, theories on the functional graph of random
mappings. We show that the presented attacks commonly exploit properties of some
probabilistic algorithms restoring part of the functional graph, that is the cycle search
algorithm, the chain evaluation algorithm and the collision search algorithm. Outputs
of these algorithms are essentially special nodes in the functional graph which can be
analysis using statistical results on parameters of functional graph. Thereby, we can
provide different viewpoints to support previous beliefs on individual knowledge.

In that, we invite more sophisticated analysis of properties of the functional graph
of random mappings, which might stimulate insightful analysis of generic properties of
the iterated construction, and which might lead potential future exploitations of these
properties in cryptanalysis.

cycles of HMACs
⇓

cycles of the compression function and
entropy loss of collisions

largest cycle
⇓

heights

unclear heights, separate filters
⇓

clear heights, related filters

largest cycle
⇓

short cycle

entropy loss of
same offset collisions

⇓
free offset collisions

collision filter
⇓

diamond filterheights (distances to α-nodes)
⇓

distances to other special nodes
(deep images and collisions)

[PSW12]

[LPW13]

[PW14]

[GPSW14]

[DL14, DL17]

(a) On Hash-based MACs

deep images
⇓

multi-cycles

[Din16]

[BWGG17]

(b) On Hash
combiners

Figure 1: Main surveyed papers about generic attacks related to the functional graph



4 Functional Graphs and Their Applications in Cryptanalysis

1.2 Notations and Roadmap in the Rest of Paper
Notations. We summarize below the notation that is shared across various attacks.

H, H1,H2 : Hash functions (the underlying hash functions in the MAC
algorithms or hash combiners)

IV , IV1, IV2: Initialization vectors of H, H1 and H2, respectively
h, h1, h2 : Compression functions of H, H1 and H2, respectively

h∗, h∗
1, h∗

2 : Compression functions iterated over several blocks (in particular,
H(M) = h∗(IV, M), and Hi(M) = h∗

i (IVi, M) for i =∈ {1, 2})
V : Targeted image
m : Message block
C|i : The first i blocks of a challenge message C

[m]q : Message fragment formed by concatenating q message blocks m,
with [m] = [m]1

M‖q : Message fragment with q message blocks
M̂ : Message fragment
M = m1‖ . . . ‖mL : Target message or computed preimage ( of L message blocks)
M ′ : Computed second preimage
M : A set of messages

MMC/EM/SEM/DS/IS :
The set of messages in a standard multi-collision or an expandable
message or a simultaneous expandable message or a diamond
structure or an interchange structure

a0, . . . , aL : Sequence of internal states computed during the invocation of h1
on M , a0 = IV1

b0, . . . , bL : Sequence of internal states computed during the invocation of h2
on M , b0 = IV2

x, y : Computed internal states
L : Length of M (measured in the number of blocks)

L′ : Length of M ′ (measured in the number of blocks, in most attacks,
L′ = L)

l :

In Sect. 4, we assign l to be the bit-size of the internal state of the
hash function (following conventions of previous literatures);
In Sect. 5, we reassign l to represent the binary logarithm of the
length of the message M , i.e., suppose the message is of L = 2l

blocks (also following conventions of related literature).

n :
Bit-size of the output of a hash function; In Sect. 2.4 and Sect. 5,
we suppose the compression function h has an n-bit internal state
(narrow-pipe hash functions)

b : Bit-size of a message block

N : In Sect. 3, we suppose those considered random mappings are from
a finite N -set domain to a finite N -set range (N = 2n).

FGf : The functional graph of a random mapping f

x
m−→ x′

x
M̂−→ x′ :

We say that m (resp. M̂) maps state x to state x′ if x′ = h(x, m)
(resp. x′ = h∗(x, M̂)) and denote this by x

m−→ x′ (resp. x
M̂−→ x′,

the compression function h is clear from the context).



Zhenzhen Bao, Jian Guo and Lei Wang 5

h[m] : An n-bit random mapping obtained by feeding an arbitrary fixed
message block m into a compression function h with n-bit state.

Õ :
Soft-O, is used as a variant of big O notation that ignores
logarithmic factors. Thus, f(n) ∈ Õ(g(n)) is shorthand for
∃k : f(n) ∈ O(g(n) logk g(n)).

Roadmap. Section 2 provides basics conceptions, security requirements and attack tech-
niques (a toolbox) related to the hash functions, the hash-based MACs, and the hash
combiners. Section 3 introduces and summarizes important properties of a central subject

— the functional graph. These properties are heavily utilized by the following attacks.
Sections 4 and 5 then separately present various attacks against hash-based MACs and
hash combiners. These considered attacks are all typical applications of the properties
of functional graph. We show how more and more properties of the functional graph are
discovered and cleverly exploited by the series of attacks. These attacks share common
structures and techniques, so we try to highlight the changes from one to another, thereby
shows the limitations or advantages of each attack over the related attacks. Finally, Section
6 provides a systematic exposition of concepts exploited in various attacks, identifies their
inherent relationship with the properties of functional graph, discusses and compares
different attacks by plotting trade-off curves between their complexities and the message
length, and raises some open problems.

2 Preliminaries
2.1 Hash Functions and Iterative Constructions
A cryptographic hash function H : {0, 1}∗ → {0, 1}n maps messages of arbitrary length to
short digests of fixed length n-bit, e.g. 256, 384 or 512 bits. Such functions are widely used
in various cryptosystems to provide integrity, authentication, and randomness. Applications
include software integrity verifications, digital signatures, password storage, proof-of-work
systems, secure keys generations, etc. Different applications might require different attack
resistances, three main security requirements on cryptographic hash functions are:
• Collision resistance: It should be computationally hard to find two distinct mes-

sages M and M ′ such that H(M) = H(M ′).
• Preimage resistance: Given a target V , it should be computationally hard to find

a message M such that H(M) = V .
• Second preimage resistance: Given a message M , it should be computationally

hard to find a distinct message M ′ 6= M such that H(M) = H(M ′).
A secure hash function with n-bit output is expected to offer n/2-bit security for collision
resistance and n-bit for (second) preimage resistance, which are respectively limited by
the ability of the generic birthday attack and the brute-force attack.

Merkle-Damgård Construction (MD) [Dam89, Mer89]. Most hash functions used in
practice are of an iterated construction. To be able to process messages of various length,
the iterated construction uses a small compression function with fixed-size input. The
input is composed of an n-bit part and a b-bit part, the former is an internal state x,
and the latter is a message block m. A standard iterated construction is the Merkle-
Damgård construction. For a given message M , MD first appends some padding bits
and the message length |M | to M so that the total length is divisible by b. It then splits



6 Functional Graphs and Their Applications in Cryptanalysis

the padded message into a sequence of message blocks m1‖m2‖ . . . ‖mL. Note that, the
last block mL is encoded with the message length |M |, that is called length padding or
Merkle-Damgård strengthening. After that, it feeds the message blocks one after another
to the compression function and updates the internal state x iteratively which is initialized
by a public initialization vector IV . After processing the last message block, it updates
the internal state under a finalization transformation and outputs the state as the digest
of the message (see Fig. 2, because the finalization transformation does not affect those
generic attacks, we omit it hereafter).

IV hx0

n
/

m1

/ b

hx1

n
/

m2

/ b

· · ·· · ·
n
/

· · ·

hxL−2

n
/

mL−1

/ b

hxL−1

n
/

mL

/ b

H(M)
xL

n
/

Figure 2: Narrow-pipe Merkle-Damgård hash function

There are narrow-pipe iterative hash functions, i.e., the size of the internal state is the
same as the size of the output. There are also wide-pipe iterative hash functions, i.e., the
size of the internal state is larger than the size of the output.

2.2 Hash-based MACs
The cryptographic hash function is one of the common primitive used to construct Mes-
sage Authentication Codes (MACs) which are expected to provide integrity and au-
thentication. In this usage scenario of the hash function, a secret key K is required
as input besides the message M . Again, output T = MAC(K, M) is a fixed-length tag
used to authenticate the message. The receiving party should use the same key K to
verify it, which determines the symmetric attribute of such MACs. The key K is usu-
ally used at both the beginning and the end of the updating procedure of the internal
state inside a hash-based MAC, this is mostly necessary for narrow-pipe-based designs.
Two classical hash-based MACs are NMAC and HMAC [BCK96]. Besides, there are
also envelope-MAC [Tsu92, KR95], i.e., H(K‖pad‖M‖K ′) and H(K‖pad‖M‖K), and
sandwich-MAC [Yas07], i.e., H(K‖pad‖M‖pad′‖K). Here we make an explicit convention
about the size of security parameters for the hash-based MACs, so that we can describe
typical instances of them and define various security requirements on them with respect to
these parameters later: k-bit key, b-bit message blocks, l-bit internal states, n-bit tag.

NMAC [BCK96]. NMAC calls an underlying hash function twice and requires to regard
the initialization vector IV of the underlying hash function as a secret input parameter
instead of a fixed public value. It requires two keys Kin and Kout. In the first call, it
first replaces the public IV with Kin, then computes the digest of the message M under
the underlying hash function, and finally gets the intermediate result T = HKin(M). In
the second call, it first replaces the public IV with Kout, then computes the digest of
the first intermediate result T , and finally gets the output HKout

(HKin
(M)). Essentially,

NMAC sequentially calls a keyed hash function twice with two different keys being the
initialization vector and outputs the digest of the first digest. NMAC is formally defined
as:

NMAC(Kout, Kin, M) = HKout
(HKin

(M)).

HMAC [BCK96]. Similar to NMAC, HMAC also sequentially calls an underlying hash
function twice. Unlike NMAC, HMAC does not require the underlying hash function
to be keyed. It concatenates the padded key K ⊕ ipad with message M and updates



Zhenzhen Bao, Jian Guo and Lei Wang 7

the internal state which is initialized by the original fixed public IV of the underlying
hash function. After the first call, it gets an intermediate result T = H(K ⊕ ipad‖M).
Then, it concatenates the padded key K ⊕ opad with the generated intermediate result
T and goes through the underlying hash function updating the internal state which is
also initialized by the original fixed public IV . Essentially, HMAC can be viewed as a
single-key version of NMAC. It uses a single k-bit key K to derive two different l-bit keys,
that is: Kin = h(IV, K ⊕ ipad) and Kout = h(IV, K ⊕ opad), where ipad and opad are
two b-bit constants. And then, it does exactly the same as NMAC. HMAC is formally
defined as:

HMAC(K, M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)).

IV h
l
/

K ⊕ ipad

/ b

hx0

l
/

m1

/ b

hx1

l
/

m2

/ b

Kin

=

· · ·· · ·
l
/

· · ·

hxL−2

l
/

mL

/ b

g
xL−1

l
/

IV h
l
/

K ⊕ opad

/ b

h
l

Kout

=

/

/

n

/

b

pad

gl
/ HMACK(M)

T

n
/

Figure 3: HMAC with a Merkle-Damgård hash function

HMAC/NMAC has been proven to be variable-length input pseudo-random functions
(VI-PRF) assuming the underlying compression function is itself a fixed-length input
pseudo-random function (FI-PRF).

Compared with NMAC, HMAC has an interesting property for practical utilization,
that is, it can use arbitrary key size and can be instantiated with an unkeyed hash function
(like MD5, SHA-1, etc). Thus, it has been standardized (by NIST, ANSI, IETF, and ISO)
and widely deployed, in particular for banking processes and Internet security protocols (e.g.
SSL, TLS, SSH, IPSec) and has APIs in public libraries and modules of various program
languages (e.g., Python hashlib, Crypto++ Library, Java Cryptography Extension).

Security Requirements. MAC algorithms are usually expected to meet the following
security requirements:
• Key recovery resistance: It should be impossible to recover the secret key faster

than by exhaustive search. That is, key recovery should cost no less than 2k

computations for a perfectly secure k-bit key MAC.
• State recovery resistance: It should be impossible to recover the intermediate

state faster than by exhaustive search. That is, state recovery should cost no less
than min(2k, 2l) computations for a perfectly secure k-bit key and l-bit state MAC.

• Forgery resistance: It should be computationally impossible for an adversary to
forge a valid tag of M without knowing the secret key and without having queried
M , when the message M is

– Existential forgery: chosen by the adversary before or after interacting with
the oracle.

– Selective forgery: chosen and first committed on by the adversary before
interacting with the oracle.

– Universal forgery: given to the adversary as a challenge.

That is, forgery attack should cost no less than min(2k, 2n) computations for a
perfectly secure k-bit key and n-bit output MAC. However, for NMAC and HMAC



8 Functional Graphs and Their Applications in Cryptanalysis

whose underlying hash functions are iterated, there is a generic existential forgery
attack (named extension attack) requiring 2l/2 computations [PvO95]: the adversary
first asks birthday bound number of queries to obtain an internal collision between
two messages (M, M ′), then he appends an arbitrary extra block m to both of the
colliding messages. Thereby, he obtains another pair of messages (M‖m, M ′‖m)
which lead to colliding MAC outputs. By querying for M‖m, the attacker can simply
forge a valid tag for M ′‖m.

Besides, cryptanalysists also concern security notions based on indistinguishable prop-
erty of hash-based MACs, that is, distinguishing-R and distinguishing-H [KBPH06b,
KBPH06a]. Note that, the notion of distinguishing-R is identical to the notion of PRF-
security. The notion of distinguishing-H is useful when we want to check which crypto-
graphic hash function is embedded in the MAC oracle.
• Distinguishing-R: It should be impossible to distinguish MAC (e.g., HMAC/NMAC)

from a random function. Explicitly, the goal of the adversary is to distinguish
between two cases: let Fn be the set of all n-bit output functions and denote FK

the oracle on which the adversary A can make queries. In the first case, the oracle is
instantiated with MACK (with K being a randomly chosen k-bit key), i.e. FK = MACK ;
In the second case, the oracle is instantiated by randomly choosing a function from
Fn, i.e. FK = RK . The adversary’s advantage is defined as

Adv(A) = |Pr [A(MACK) = 1]− Pr [A(RK) = 1]| .

The expected security of HMAC/NMAC against distinguishing-R attacks is 2l/2

computations, essentially because of the collision-based forgery attack.
• Distinguishing-H: It should be impossible to distinguish the hash-based MAC

construction MAC instantiated with existing hash functions (e.g., HMAC-SHA1)
from the same construction MAC built with a random function (e.g., HMAC-PRF).
Explicitly, the adversary is given access to an oracle MACK , the goal of the adversary
is to distinguish between two cases: In the first case, the oracle is instantiated with a
known dedicated compression function h, e.g. HMACh

K ; In the second case, the oracle
is instantiated with a randomly chosen function r from Fb+l

l which is the set of all
(b + l)-bit to l-bit output functions, e.g. HMACr

K . The adversary’s advantage is defined
as

Adv(A) =
∣∣Pr

[
A(MACh

K) = 1
]
− Pr [A(MACr

K) = 1]
∣∣ .

The expected security of HMAC/NMAC against distinguishing-H attacks is 2l

computations.
There are also related key attacks against hash-based MACs.
• Related key attacks: In this model, the adversary has the power to force the user

of a MAC algorithm to use two keys with a specific relation (e.g., with a particular
XOR difference as in [PSW12]).

Security proofs of hash-based MACs are usually up to the birthday bound. These
bounds are known to be tight for some security notions, such as the above mentioned
existential forgery resistance and distinguishing-R resistance, because of the internal-
collision-based attacks. However, for other types of security notions, there remain gaps
between the provable lower bound and the known upper bound.

2.3 Hash Combiners
Among various approaches to designing a hash function, one approach to achieve more
tolerant and more compatible hash constructions is to use the so-called hash combiner.
That is, combining two (or more) existing hash functions in such a way that the resulting



Zhenzhen Bao, Jian Guo and Lei Wang 9

function could provide security amplification, i.e., it is more secure than its underlying
hash functions; Or, it could provide security robustness, i.e., it is secure as long as any one
of its underlying hash functions is secure. Hash combiners are deployed in widely used
Internet security protocols, e.g., SSLv3 (MD5‖SHA1) [FKK11], TLS 1.0/1.1 (MD5⊕ SHA1)
[AD99, DR06], or cryptosystems. They acted to gain confidence on the security of the
design although they had not received a thorough analysis.

Two classical hash combiners are the concatenation combiner (H1(IV1, M)‖H2(IV2, M))
and the XOR combiner (H1(IV1, M)⊕H2(IV2, M)). Assume we already have two unrelated
n-bit hash functions H1 and H2, and we want to get one hash function which could provide
security amplification or security robustness by combining them. The concatenation
combiner simply feeds the same sequence of message blocks into the two hash functions,
computes the two n-bit digests in parallel and outputs their concatenation which is of 2n
bits (see Fig. 4 L.H.S). The concatenation combiner is expected to behave like an ideal
2n-bit hash function — though it is usually considered in settings where this is far from
being true, e.g., with MD-hashes, as shown in Sect. 5. It is robust with respect to collision
resistance since any collision on the combiner can be traced back to collisions on both
underlying functions. Its disadvantage is its poor suitability for practical applications where
the length of the output is a crucial parameter, because it increases the length of the output
of the hash function from n to 2n bits. Similar to the concatenation combiner, the XOR
combiner also computes two n-bit digests of the same message under the two hash functions
in parallel, but it outputs their XOR-sum which remains to be n-bit (see Fig. 4 R.H.S).
The XOR combiner is expected to behave like an ideal n-bit hash function. The XOR
combiner is robust with respect to PRF and MAC in the black-box reduction model [Leh10].
However, it is not robust with respect to collision resistance, e.g., H2(M) = H1(M)⊕const.
There are impossibility results about efficiently combining collision-resistant hash functions
according to research ([BB06, Pie07, Pie08]). It was shown that the output of a (black-
box) collision-resistant combiner could not be shorter than the concatenation of both
outputs. Advanced security amplification combiners and robust multi-property combiners
for hash functions have been constructed [FL07, FL08, FLP08, FLP14]. More generally1,
cryptographers have also studied cascade constructions of two (or more) hash functions,
that is to compute H1 and H2 in sequential order. Well-known examples are Hash Twice:
H2(H1(IV, M), M) and Zipper Hash [Lis06]: H2(H1(IV, M),←−M), where ←−M is the reversed
(block) order of the original message M (see Fig. 5). We can also regard these cascade
constructions of hash functions as hash combiners. It turns out that techniques and toolbox
used in generic attacks against cascade combiners have large overlaps with that used in
attacks on parallel combiners (and those used in generic attacks against hash-based MACs),
particular for the applications of the functional graph.

IV1

IV2

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL ‖

Concatenation (2n-bit)

H1(M)

H2(M)

H(M)

h1xL−1

h2yL−1

mL ⊕

XOR (n-bit)

H1(M)

H2(M)

H(M)

Figure 4: The concatenation combiner and the XOR combiner

1Here we need to generalize the syntax of hash functions such that the initial value is also regarded as
an input parameter.



10 Functional Graphs and Their Applications in Cryptanalysis

IV1

H(M)

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL

y L
=

x
L

Figure 5: The Zipper hash

2.4 A Toolbox for Generic Attacks on Hash Constructions
In this section, we exhibit innovation tools widely used in generic attacks on narrow-pipe
iterated hash constructions.

2.4.1 Multi-Collision (MC [Jou04] ) and Attacks on Concatenation Combiner

In a seminal paper published in 2004 [Jou04], Joux proposes a highly influential tool
known as multi-collision. This tool is applicable for narrow-pipe iterated hash functions.
By iteratively generating t collisions with the n-bit state compression function, one can
get 2t messages all of which maps a starting state x0 to a common state xt (see Fig. 6).
Interestingly, the complexity is of t · 2n/2 compression function computations which is not
much greater than that of finding a single collision. Besides, the whole set of 2t messages
can be described by only 2t message blocks: MMC = (m1, m′

1)× (m2, m′
2)× · · · × (mt, m′

t).
To enumerate messages in this structure, one enumerates an integer from 0 to 2t − 1 and
observes its binary representation. For 1 ≤ i ≤ t, if the i-th bit is ‘0’, then select mi to be
the i-th message block, otherwise select m′

i.

x0

m1

m′
1

m2

m′
2

xt

mt

m′
t

≡ x0 xt

t

Figure 6: Multi-collision and its condensed representation in R.H.S. [JN15]

With multi-collision at hand, one can directly launch a collision attack with n · 2n/2

computations and a preimage attack with n · 2n computations against concatenation
combiner. That is done by building a multi-collision for one of the iterated underlying
hash functions, then exploit messages in the multi-collision to deploy a birthday attack for
the other underlying hash function (see Fig.7a and 7b). Note that, these attacks works as
long as one of the underlying function is narrow-pipe iterated hash, and they show that in
this case, the collision resistance and preimage resistance of the concatenation combiner is
not much greater than that of a single hash function.

H1

H2

IV1
xn

2

|MMC| = 2
n
2

IV2

y1n
2

y2
n
2

n
2

MMC collision

- Step 1

- Step 2

- Step 3

(a) Collision attack

H1

H2

IV1
xn

|MMC| = 2n

x1
n+1

x2n

n+1

V1

m

IV2

y1n

y2
n

n

MMC

y1n+1

y2
n

n+1

V2
m

- Step 1

- Step 2

- Step 3

- Step 4

(b) Preimage attack
Figure 7: Attacks against concatenation combiner using multi-collision



Zhenzhen Bao, Jian Guo and Lei Wang 11

2.4.2 Expandable Message (EM [KS05] ) and the Long Message Second-Preimage
Attack on MD Hash

For iterated hash functions without Damgård-Merkle strengthening, there is a generic
way known two decades ago to violate the second-preimage resistance: Given a target
message M = m1‖ . . . ‖mL of L blocks, the attacker first computes the sequence of internal
states IV = a0, a1, . . . , aL in processing M . He then starts from IV and evaluates the
compression function with arbitrary message blocks until he finds a collision h(IV, m′) = ap

for some message block m′ and index p ∈ {1, . . . , L}. He finally appends the message suffix
mp+1‖ · · · ‖mL to m′ to form a second preimage. The expected number of computations is
2n/L, because each attempt on m′ succeeds with probability L/2n. For MD hash functions,
this attack is foiled by the length padding in the last block.

In [Dea99], Dean discovers that one can bypass this defense and carry out a second
preimage on MD hash using fixed points in the compression function. Evaluating the
compression function on the fixed point various times results in unchanged state and
messages of various lengths, which helps correct the length of the crafted message. See
Fig.9a for an illustration of Dean’s attack which combines the fixed points with the above
long message second-preimage attack. The required assumption of Dean’s attack is that
it is easy to find fixed points in the compression function. However, if the compression
functions is not of Davies-Meyer construction, finding fixed points is usually difficult,
especially when we assume they are random mappings.

Kelsey and Schneier invent another kind of multi-collision known as the expandable
message [KS05]. Similar to building a Joux’s multi-collision, by iteratively generating t
collisions, but with message fragments of carefully chosen length, one can get 2t colliding
messages whose lengths cover the whole range of [t, t + 2t− 1] (see Fig. 8). The complexity
is of 2t + t · 2n/2 computations, which is also not much greater than that of finding a single
collision. And similar to Joux’s multi-collision, the whole set of 2t messages can be described
by only 2t message blocks: MEM = (m1, [0]20‖m′

1)× (m2, [0]21‖m′
2)×· · ·× (mt, [0]2t−1‖m′

t).
To choose a message of length s ∈ [t, t + 2t − 1], one observes the binary representation
of s′ = s − t. For 1 ≤ i ≤ t, if the i-th bit is ‘0’, then select mi to be the i-th message
fragment, otherwise select [0]2i‖m′

i. This expandable message makes the above long
message second-preimage attack work as well on narrow-pipe MD hash without assumption
on the weakness of the compression function (see Fig. 9b).

x0

m1

[0]2
0‖m′

1

m2

[0]2
1‖m′

2

xt

mt

[0]2
t−1‖m′

t

≡ x0 xt

t

Figure 8: Expandable message and its condensed representation in R.H.S. [JN15]

IV a1

m1

a2

m2

ap

mp mp+1

aL
H(M)

mL

IV

x1

xi

xj

x2n/2

m̂

m̄1

m̄i

m̄j

m̄2n/2

{(xk, m̄k) | xk = h(xk, m̄k), k ∈ {1, . . . , 2n/2}}

m′
- Step 1

- Step 2

- Step 3

- Step 4

(a) Using Fixed Points [Dea99]

IV

IV

a1

m1

a2

m2

ap

mp

x

m′

M‖p−1

MEM

mp+1

aL
H(M)

mL

- Step 1

- Step 2

- Step 3

(b) Using Kelsey and Schneier’s EM [KS05]
Figure 9: The long message second-preimage attack on MD hash functions



12 Functional Graphs and Their Applications in Cryptanalysis

2.4.3 Diamond Structure (DS [KK06]) and the Second-Preimage Attack on Hash-
Twice [ABDK09]

Kelsey and Kohno invent the diamond structure to devise herding attacks against hash
functions. In a herding attack, the adversary privately constructs a structure of many
collisions on the hash function. He first commits to the digest value of a message in
public, and later “herd” any given prefix of a message to that committed digest value by
choosing an appropriate suffix from the precomputed structure. This structure of collisions
is named a diamond. Similar to multi-collisions and the expandable message, diamond is
also a kind of multi-collision built by launching several collision attacks. The difference is
that, instead of mapping a single starting state to a final state, a 2t-diamond maps a set
of 2t starting states (denoted by {x1, x2, . . . , x2t}) to a common final state (denoted by
x�). Specifically, it contains a complete binary tree of depth t in which those 2t starting
states are leaves, and the common final state is the root (see Fig. 10a). For any starting
state xi, we can directly pick a message from the diamond MDS mapping the state to the
final state x�, i.e., for any xi, there exists an Mi ∈MDS such that xi

Mi−−→ x�. Building a
2t-diamond structure using Kelsey and Kohno’s primary approach [KK06] was proved to
require

√
t · 2

(n+t)
2 messages and n ·

√
t · 2

(n+t)
2 computations [BSU12]. In [KK13], authors

propose a new and also more intricate method with message complexity being O(2n+t).
Although the diamond structure is originally used in the herding attacks on hash

functions [KK06], it is actually a quite general tool. In [ABF+08, ABDK09], Andreeva et
al. exploit the diamond structure to develop a generic second-preimage attacks, combining
with the techniques in the generic second-preimage attack in [Dea99, KS05]. The general
idea of their second-preimage attack on Hash-Twice is to use a long standard multi-collision
in the first pass to build a diamond structure in the second pass. And use the diamond
structure to connect some internal state computed for crafted messages to one of the
internal states computed for the target message (see Fig. 10b). The complexity of the
resulted attack is about 2(n+t)/2 + 2n−l + 2n−t, where 2t is the width of the diamond
structure and 2l is the length of the target message (in block).

x1

x2

x3

x4

x5

x6

x7

x8

x10

x11

x12

x13

x20

x21

x�

m
00

m01

m
02

m03

m
04

m05

m
06

m07

m
10

m11

m
12

m13

m
20

m
21

(a) A 23-diamond

a0 = IV

b0 = aL

a1

m1

b1

m1

ap−1

bp−1

ap

mp

bp

mp

aL−1

bL−1

aL

mL

H(M) = bL

mL

IV
x̂

MEM

x̄

MMC1 MMC2

ȳ

MDS
m̄

x̄L

m̄ mq+1‖ . . . ‖mL

ȳ0 = x̄L ŷ

MEM

y̌

MMC1 MMC2

p− (n− t)− t · n
2
− 1 n− t t · n

2 1 L− p

- Step 1 - Step 2 - Step 3 - Step 4 - Step 5 - Step 6

(b) Second-preimage attack on Hash-Twice using diamond structure
Figure 10: Diamond structure and the second-preimage attack on Hash-Twice

With multi-collisions, the expandable message and the diamond structure at hand,
our community refit these tools to more advanced ones (such as the following interchange
structure, the simultaneous expandable message, and the diamond filter) that can assist
evaluating the vulnerability of enhanced hash constructions.



Zhenzhen Bao, Jian Guo and Lei Wang 13

2.4.4 Interchange Structure (IS [LW15]) and the Preimage Attack on XOR combiner

To devise a preimage attack faster than 2n on the XOR combiner (H1(IV1, M)⊕H2(IV2, M)),
Leurent and Wang invent an advanced tool named interchange structure. This structure
breaks the pairwise dependency between the internal states of the two underlying hash
computations H1 and H2. The internal states of H1 and H2 are dependent because the
computations share the same input message. By building an interchange structure, one
creates a set of messages MIS and two sets of states A and B, such that for any pair of
states (Ai, Bj | Ai ∈ A, Bj ∈ B), one can directly pick a message M from MIS such that
Ai = H1(IV1, M) and Bi = H2(IV2, M). The interchange structure might be reminiscent
of a complete bipartite graph (biclique) in the mathematical field of graph theory. The
effect brought by the interchange structure is indeed like a biclique, that is, each state in
A is related by a unique message to each state in B, thus any state in A and any state in
B can be made a pair. However, it is constructed and pictured quite differently from a
biclique. Details are as follows.

We refer to an interchange structure with 2t states for each hash function as a 2t-
interchange structure. To build a 2t-interchange structure, one need to cascade 22t − 1
building modules named switches (a slightly optimized version requires (2t − 1)2 switches).
Each switch contains one pair of message fragment (M̂, M̂ ′), and three pairs of states,
two (denote as (ai, a′

i) and (aj , a′
j)) in the computation chain of one hash function (say

H1), and one (denote as (bk, b′
k)) in the computation chain of the other hash function (say

H2). The effect of a switch is that h∗
1(ai, M̂) = a′

i and h∗
1(ai, M̂ ′) = h∗

1(aj , M̂) = a′
j and

at the same time h∗
2(bk, M̂) = h∗

2(bk, M̂ ′) = b′
k, i.e., a state in one computation chain of a

hash function can make pair with two states in two computation chains of another hash
function. Such a switch can be built using multi-collisions and the birthday attack (see
Fig. 11a). By carefully selecting computation chains to make combinations, the cascading
of about 22t such switches will form the above mentioned desired MIS, A and B. The
total complexities to build a 2t-interchange structure is of Õ(22t+n/2) computations.

In the preimage attack on the XOR combiner, the interchange structure enables a
follow-up meet-in-the-middle procedure to find a preimage for a given target image V with
optimal complexity Õ(25n/6) (see Fig. 11b, and refer to [LW15] for more details).

H2

H1

bk

ai

aj

b′k
MMC

MMC

MMC
a′j

a′i

M̂

M̂ ′

M̂

(a) Building a switch

H1

H2

IV1

IV2

A0

B0

A1

B1

A2

B2

A3

B3

a0 a′0M̂

a1 a′1M̂

M̂ ′

b2 b′2M̂

M̂ ′

⊕
= V

(b) Interchange structure and preimage attack on XOR combiner
Figure 11: Interchange structure and the preimage attack on XOR combiner

2.4.5 Simultaneous Expandable Message (SEM [Din16])

Based on multi-collision and the expandable message, authors of [JN15, Din16] develop a
way to construct a multi-collision structure that is expandable with respect to two hash
functions H1 and H2, named as simultaneous expandable message. The construction of a



14 Functional Graphs and Their Applications in Cryptanalysis

simultaneous expandable message in [Din16] consists of creating a sequence of basic building
modules. Each building module contains two pairs of states (x, y) and (x′, y′), and one pair
of messages (ms, ml), such that h∗

1(x, ms) = h∗
1(x, ml) = x′ and h∗

2(y, ms) = h∗
2(y, ml) = y′,

where ms is a short message of fixed length C and ml is a long message of length i > C.
The length C of the short message ms is set as a constant C ≈ n/2 + log(n) due to the
birthday paradox, so that one can successfully construct a building module; The length i
of the long message ml is carefully selected, so that the connection of the building modules
could form a set of messages of length covering a whole appropriate range. We denote a
building module in which the long message is of length i by M‖i. To build M‖i, one can
use a procedure similar to the collision attack on concatenation combiner shown in Fig. 7a.
The difference is that, the first pair of message blocks in the 2C -multi-collision is replaced
by a pair of message fragments in which one is of single block and the other is of i−C + 1
blocks as shown in Fig. 12a.

Given a positive parameter t, by consecutively creating C − 1 + t building modules, one
can build the set of multi-collisions whose length covers the whole range of [C(C − 1) +
tC, C2 − 1 + C(2t + t− 1)], i.e., form a whole simultaneous expandable message. The first
C − 1 building modulesM‖i are built with parameter i ∈ {C + 1, C + 2, . . . , C + C − 1} so
that they form an expandable message of length covering the range [C(C−1), C2−1]; The
other t building modules M‖i are built with parameter i = C(2j−1 + 1) for j ∈ {1, . . . , t}
which resembles the standard expandable message but with C-block as the unit of length
instead of with 1-block (see Fig. 12b). Given a length κ, to pick a message of length κ, we
first compute κ′ ∈ [C(C − 1), C2 − 1] such that κ′ ≡ κ mod C to define the first C − 1
message fragment choices (select at most one longer message fragment from the first C − 1
building modules), and then compute s = (κ− κ′)/C to define the last t message fragment
choices (select as in a standard expandable message using the binary representation of s
from the last t building modules). This is like using “C” digits 0 ∼ C − 1 instead of using
the decimal digits 0 ∼ 9 to represent numbers.

The full construction requires about n · 2t + n2 · 2n/2 computations and (n + t) · 2n/2

message blocks to build a simultaneous expandable message to extend up to length n·2t+n2.

x0

y0

H1

H2

sp
m1

xp

[0]i−C m′
1

x1

m1

[0]i−C
m′

1

y1

1 C − 1

(i − C) + 1 C − 1

(a) A building module

x0

y0

sp1
m1

xp1

~0

m′
1

x1

m1

~0
m′

1

y1

1 C − 1

1 + 1 C − 1

sp2
m2

xp2

~0

m′
2

x2

m2

~0
m′

2

y2

1 C − 1

2 + 1 C − 1

C − 1

[C(C − 1), C2 − 1]

spC−1+t
mC−1+t

xpC−1+t~0
m′

C−1+t

xC−1+t

mC−1+t

~0
m′

C−1+t

yC−1+t

1 C − 1

C2t−1 + 1 C − 1

t

C[t, 2t + t − 1]

[C(C − 1) + tC,C2 − 1 + (2t + t − 1)C]-expandable message

(b) The full construction
Figure 12: Simultaneous expandable message for parallel combiners

In [BWGG17], authors fine-tune the simultaneous expandable message to adapt to
Zipper hash. The constructed simultaneous expandable message is placed in the middle of
the two passes of the combiner. That is, at the end of the first hash and at the beginning
of the second hash. Different from the original parallel construction, this modified one is
constructed in a sequential order, because one has to finish the entire building process in
the first pass before starting the collision finding process in the second pass (see Fig. 13).



Zhenzhen Bao, Jian Guo and Lei Wang 15

Complexity for building simultaneous expandable message for Zipper hash equals to that
for parallel combiners.

x′
0 = x̄

ỹ = y′
0

sp1

C − 1 1

C − 1 1 + i

x′
1

m1

xp1

~0

m′
1

y′
1

m1

m′
1

~0

sp2

C − 1 1

C − 1 2 + i

x′
2

m2

xp2

~0

m′
2

y′
2

m2

m′
2

~0

C − 1

[C(C − 1), C2 − 1]

spC−1+t

C − 1 1

C − 1 C2t−1 + 1

x′
C−1+t

mC−1+t

xpC−1+t~0
m′

C−1+t

y′
C−1+t

mC−1+t

m′
C−1+t

~0

t

C[t, 2t + t − 1]

[C(C − 1) + tC,C2 − 1 + (2t + t − 1)C]-expandable message

Figure 13: Simultaneous expandable message for cascade combiners

As shown in Sect. 5, simultaneous expandable message is applied to launch preimage
and second-preimage attack on various hash combiners [JN15, Din16, BWGG17].

2.4.6 Filters

In recent generic attacks on hash-based MACs, the attacker usually tries to recover some
internal state computed by the oracle on his queries. To do that, he usually first computes
a set of states by himself. He then manages to make a match between these known states
computed by himself and those unknown states obtained from the oracle. A filter usually
plays a role in recognizing a match when the attacker does not control a secret suffix (e.g.,
as in HMAC). Specifically, suppose we have a known state a, and we know that the pair
of message blocks (m, m′) leads the mapping on a to a collision, i.e., h(a, m) = h(a, m′).
Suppose u is the unknown state computed by the MAC oracle on a message prefix M̂ .
To test whether u equals a, we simply query the MAC oracle with two crafted messages
M = M̂‖m and M ′ = M̂‖m′ and observe the outputs (the computation of the MAC oracle
will involve h(u, m) and h(u, m′)). If the two outputs collide, then this unknown state
u equals a with a high probability (compared with the probability 2−n if u 6= a, where
n < l and n is the bit-size of the output, l is the bit-size of the internal state). This pair
of message blocks (m, m′) is called a collision filter for state a, introduced in [PSW12].
One can build a collision filter by birthday attack with 2l/2 computations.

In some attacks, to find a match, one has to build filters for a large number of states.
Separately constructing filters for each state would be costly. To solve this problem, [DL14]
presents a diamond filter. To build filters for 2t states {x1, . . . , x2t}, one first herds these
states to a single state x� by building a diamond (recall Sect. 2.4.3). Then, one builds
a collision filter (m, m′) for this single state x�, i.e. find a pair of message blocks such
that h(x�, m) = h(x�, m′). After that, for any state xi ∈ {x1, . . . , x2t}, one can directly
get a collision filter. That is done by concatenating the message fragment M̂i mapping
xi to x� in the diamond with each message block in the collision filter (m, m′) for x�, i.e.
(M̂i‖m, M̂i‖m′). The complexity for building a diamond filter for 2t states is dominated by
the complexity of building the diamond, which is about 2(l+t)/2. The average complexity
for building a filter for a state decreases to 2(l−t)/2.

It is also possible to build on-line filters for unknown state by querying the MAC oracle
many times and observe collisions on the outputs [DL14]. When building off-line filter (for
the known state computed off-line), matching between the known state and the unknown
state is done on-line (i.e., by querying the MAC oracle as shown above). While, when



16 Functional Graphs and Their Applications in Cryptanalysis

building on-line filter (for the unknown state by querying the MAC oracle), matching
between the unknown state and the known state is done off-line (i.e., by evaluating the
compression function with the known state and the filter without querying). Thus, building
on-line filters cost more than building off-line filters, but matching using on-line filters is
more efficient than matching using off-line filters.

3 Functional Graph of Random Mappings
In this section, we introduce and summarize important properties of the central subject —
the functional graph (FG) of a random mapping, whose properties are profoundly exploited
by the series of attacks presented in the following sections.

Denote FN the set of all mappings from a finite N -set into itself. Let f be an arbitrary
mapping in FN . The functional graph of f (denoted by FGf ) is a directed graph whose
nodes are the elements 0, . . . , N − 1 and whose edges are the ordered pairs 〈x, f(x)〉, for
all x ∈ {0, . . . , N − 1}. It is constructed by successively iterating on f . Starting the
development by taking an arbitrary node x0 as input and taking the output as the input
of next iteration on f , that is, x1 = f(x0), x2 = f(x1), . . . , before N iterations, a value xj

will equal to one of x0, x1, . . . , xj−1 (because f is a mapping), suppose the one is xi. We
say xi is an α-node through which the path x0 → x1 → · · · → xi−1 → xi enters a cycle
xi → xi+1 → · · · → xj−1 → xi. If we consider all possible starting nodes, paths exhibit
confluence and form into trees; trees grafted on cycles form components; a collection of
components forms a functional graph [FO89]. In the functional graph, we call those nodes
that belong to a cycle the cyclic nodes; those nodes without predecessors (preimages, i.e.
f−1(x) = ∅) the terminal nodes; those nodes with at least one predecessor (preimage) the
image nodes. Seen from an arbitrary node x0, we call the length of the path (measured by
the number of edges) starting from x0 and before entering a cycle the tail length of x0 and
denote this by λ(x0); we call the length of the cycle connected with x0 (measured by the
number of edges or nodes) the cycle length of x0 and denote this by µ(x0); we call the
length of the non repeating trajectory of the node x0 the rho-length of x0 and denote this
by ρ(x0) = λ(x0) + µ(x0). Fig.14 is an illustration of the functional graph of a chopped
AES-128 (obtained by fixing an arbitrary key and 122 bits of the input and taking 6 bits
as output, in this case N = 26 = 64).

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10
x11

x12

x13

x14

x0

# Components = 3
{ }: 13 cyclic nodes
{ }: 20 terminal nodes
{ , }: 44 image nodes
Max. cycle length µmax = 8
Max. tail length λmax = 11
Max. rho-length ρmax = 19

Seen from node x0:
x0 x1 x6 x7

tail length of x0 is λ(x0) = 7
x7x7

x8 x11

x14

cycle length of x0 is µ(x0) = 8

rho-length of x0 is ρ(x0) = λ(x0) + µ(x0) = 15

Figure 14: An illustration of the functional graph of chopped AES-128

The structure of the functional graph of random mappings has been studied for a long
time. Lots of parameters have accurate asymptotic evaluation, which are summarized
in the following subsections. A remarkable method achieving these results is analytic
combinatorics (the use of the symbolic method, generating functions and singularity



Zhenzhen Bao, Jian Guo and Lei Wang 17

analysis) [FO89, FS09]. These results on statistical properties of the random functional
graph can provide various knowledge about the iteration of a random mapping, e.g., the
expected number of iterations before one encounters a collision starting from a random
node; a quantitative evaluation on the lost entropy of the output when iterating a random
function many times (discussed in detail in Sect. 6). These results have stimulated fruitful
results on cryptanalysis of iterated hash constructions, as shown in the following sections.

3.1 Known Results on Parameters of Functional Graph [FO89]
Definition 1 (k-th iterate image node). A k-th iterate image node in the functional graph
of a random mapping f ∈ FN is an image of the k-th iterate fk of f . We sometimes
simply call it a k-th iterate, and say k is its depth.

Theorem 1 (Direct Parameters [FO89]). The expected number of components, number of
cyclic nodes, number of terminal nodes, number of image nodes, and number of k-th iterate
image nodes in a random mapping of size N have the asymptotic forms, as N →∞, 2

1. # Components 1
2 log N = 0.5 · n

2. # Cyclic nodes
√

πN/2 ≈ 1.2 · 2n/2

3. # Terminal nodes e−1N ≈ 0.37 · 2n

4. # Image nodes (1− e−1)N ≈ 0.62 · 2n

5. # k-th iterate image nodes (1 − τk)N ,
where the τk satisfies the recurrence
τ0 = 0, τk+1 = e−1+τk .

Note that, the conclusion on the expected number of k-th iterate image nodes implies
an important observation on the entropy loss in the output of the iteration of a random
mapping, as discussed in detail in Sect. 6.1.2. It essentially facilitates several interesting
attacks, e.g., the chain-based attacks on the hash-based MACs in Sect. 4.3 and the
deep-iterates-based attacks on hash combiners in Sect. 5.1.

Theorem 2 (Cumulative Parameter Estimates [FO89]). Seen from a random node (any
node in the associated functional graph is taken equally likely) in a random mapping of FN ,
the expected tail length, cycle length, rho-length, tree size, component size, and predecessors
size have the following asymptotic forms, where the tail length, cycle length and rho-length
of a node x are defined at the beginning of Sect. 3; the tree size parameter of node x means
the size of the maximal tree (rooted on a cycle) containing x; the component size means
the size of the connected component that contains x; the predecessors size of x is the size
of the tree rooted at x or equivalently the number of iterated preimages of x:
1. Tail length (λ)

√
πN/8 ≈ 0.62 · 2n/2

2. Cycle length (µ)
√

πN/8 ≈ 0.62 · 2n/2

3. Rho-length (ρ)
√

πN/2 ≈ 1.2 · 2n/2

4. Tree size N/3 ≈ 0.34 · 2n

5. Component size 2N/3 ≈ 0.67 · 2n

6. Predecessors size
√

πN/8 ≈ 0.62 · 2n/2

Theorem 3 (Probability Distributions: r-configurations [FO89]). For any fixed integer r,
the parameters number of r-nodes, number of predecessor trees of size r, number of cycles
trees of size r and number of components of size r, have the following asymptotic mean
values, where an r-node is a node of in-degree r; a cycle tree is a tree rooted on a cycle; a
predecessor tree is an arbitrary tree in the functional graph:
1. r-nodes: N · e−1/r!
2. r-predecessor trees: N · tre−1/r!
3. r-cycle trees:

√
πN/2 · tre−1/r!

4. r-cycles: 1/r

5. r-components: cre−r/r!
where tr is the number of trees having r nodes, tr = rr−1, and cr = r![zr]c(z) is the

number of connected mappings of size r, c(z) is the generating function of the connected
mappings and [zr]c(z) denotes the coefficient of zr in the expansion of c(z).

2As pointed out by Ernst Schulte-Geers from the German BSI, there is a typo on p.337 in [FO89]:
in the first equation in Eq.(24), 1

1−t(u,z) must be replaced by 1
1−z·exp(t(u,z)) . Thus, the order (N) in

asymptotic forms (3.) and (4.) are still correct but there are deviates of order
√

N from the exact count.



18 Functional Graphs and Their Applications in Cryptanalysis

Theorem 4 (Extremal Parameters: Longest Paths [FO89]). The expectation of the
maximum cycle length (µmax), maximum tail length (λmax) and maximum rho-length
(ρmax) in the functional graph of random mappings of FN respectively satisfies:
1. E{µmax | FN} = 0.78248 · 2n/2.

2. E{λmax | FN} = 1.73746 · 2n/2.

3. E{ρmax | FN} = 2.41490 · 2n/2.

Theorem 5 (Extremal Parameters: Largest Configurations [FO89]). Assuming the smooth-
ness condition3, the expected value of the size of the largest tree and the size of the largest
connected component in a random mapping of FN , are asymptotically:
1. Largest tree: 0.48 · 2n. 2. Largest component: 0.75782 · 2n.

Results from these theorems indicate that, in a random mapping, most of the nodes
tend to be grouped together in a single giant component. This component might therefore
be expected to have very tall trees and a large cycle. With these knowledge, one can
ensure that by running the cycle search algorithm several times, the cycle length of the
giant component in the functional graph could be detected (as discussed in Sect. 6.1.1).
There are various applications of this observation, e.g., those cycle-based attacks on hash-
based MACs in Sect.4.1, and those multi-cycles-based (second) preimage attacks on hash
combiners in Sect.5.2.

3.2 Height Distribution and the λ-th Stratum
The tail length λ(x) of a node x is also called the height (or altitude) of the node. Recall
that it is the length of the unique path connecting the node with a cycle node. The set
of all nodes with height λ is usually called the λ-th stratum of the random graph. Let
Wλ be the number of nodes with height λ, i.e., the size of λ-th stratum of the functional
graph of random mapping. Proskurin [Pro74] provided the distribution of Wλ of a random
mapping, and Mutafchiev [Mut88] provided an explicit estimation of the mean value of
Wλ as follows.

Theorem 6 ([Mut88], Lemma 2). Let µ(N, λ) be the mean value of Wλ over all functional
graph of random mappings. Then

µ(N, λ) =
√

πN/2 · (1 + o(1)) if N →∞ and λ = o(N1/2)

Corollary 1 ([PW14], Corollary 1). Let W ′
λ be the number of nodes in the λ-th stratum

in the giant component of random functional graph. Let µ′(N, λ) be the mean value of W ′
λ

over all functional graph of random mappings. Then

µ′(N, λ) = 0.64
√

πN/2 =
√

πN/2−
√

(πN · 0.2418)/2 if N →∞ and λ = o(N1/2)

Corollary 2 ([PW14], Corollary 2). Let W ′
λ and µ′(N, λ) be the same as defined in

Corollary 1. Let δ(n) be any function such that δ(n)→∞ as n→∞. Then there exists a
positive value n0 s.t.

µ′(N, λ) = 0.64 · 2n/2 if n→∞ and 0 ≤ λ ≤ 2n/2/δ(n)) for ∀ n > n0.

Conjecture 1 ([PW14], Conjecture 1). With s ≤ 2n/6, there is only a negligible probability
that a collision exists among the heights of s random values in a functional graph of an
n-bit random mapping.

3Let ξmax be one of the parameters of random mappings, largest tree size or largest component size.
We shall say that the parameter is smooth if the following condition is satisfied: There exists δ such that
δ = limn→∞

1
n

E{ξmax | FN }. The reason why introduce it here is to bypass some intrinsic difficulty in
the singular behaviour of truncated Taylor series, which involved in the generating function equations
associated to the largest tree and the largest connected component.



Zhenzhen Bao, Jian Guo and Lei Wang 19

Algorithm 1 is used in various attacks, which expands 2t nodes in the functional graph
of a random mapping f and records their heights for a given parameter t.

Conjecture 2 ([GPSW14], Conjecture 1). If in total 2t distinct nodes, where n/2 ≤ t ≤ n
holds, are collected following Algorithm 1, then for any integer λ satisfying 1 ≤ λ ≤ 2n/2/n,
there are Θ(2t−n/2) nodes collected with the height value λ.

Algorithm 1 Generating 2t nodes and record their heights in FGf

1: procedure Gen(t)
2: G ← ∅ . a data structure like a graph storing nodes in FGf (each node contains

information including its value, height, predecessors and successor), G is a partial FG.
3: while |G| < 2t do
4: C ← ∅, y.value←$ {0, 1, . . . , 2n − 1} \ G, y.height← 0
5: while true do
6: if y.value ∈ G or y.value ∈ C then
7: if y.value ∈ G then
8: Get the height value of y from G, denote it by λ. For each predecessor of y

in C, update its height to be λ + d, where d is its distance from y.
9: else . y.value ∈ C, the chain connected to a cycle

10: Denote by yi the node colliding with y in C, set height of all nodes from yi

to y as 0. For each predecessor of yi, update its height to be d, where d is its distance from yi.
11: end if
12: G ←merge C, go to line 3
13: else C ←insert y, y ← f(y)
14: end if
15: end while
16: end while
17: return G
18: end procedure

Based on these corollaries and conjectures on height distribution of nodes in the
functional graph of a random mapping, generic universal forgery attacks on iterative
hash-base MACs are proposed in [PW14, GPSW14], as described in Sect. 4.2.

3.3 Turn the Compression Function Into Random Mapping on Itself
When feeding an arbitrary fixed message block m (of b-bit width) into the compression
function h, we turn the compression function which takes n + b-bit input into an n to
n-bit random mapping. We denote this n-bit random mapping by h[m] and denote the
functional graph of h[m] by FGh[m] .

4 Attacks on Hash-based MAC Based on Functional Graph
In this section, we look into generic attacks on hash-based MACs which involve iteratively
evaluating a mapping many times, i.e., which relate to properties of the functional graph
of random mappings (refer to Fig. 1a for a list of main surveyed papers and their technical
relations). Here, we recall the explicit convention about the size of security parameters for
MACs: b-bit message blocks, l-bit internal states, n-bit tag.

4.1 Cycle-based Attacks
In [PSW12], Peyrin, Sasaki and Wang create distinguishing attacks, inner state recovery
attacks and forgery attacks against HMAC in the related-key setting. These attacks



20 Functional Graphs and Their Applications in Cryptanalysis

are mainly based on an observation that is the cycle structure of HMAC is the same
when instantiated with a key K or with a related key K ′ = K ⊕ ipad ⊕ opad. More
generally speaking, functional graphs of the two mappings HMACK = fKout

◦ fKin
and

HMACK′ = fKin ◦ fKout have a common structure. This property should not exist for a
randomly chosen function embedded with K and K ′, thus can be used as a distinguisher.

Distinguishing-R [PSW12]. Details about the distinguishing-R attack are as follows: Let
FK and FK′ be the two oracles instantiated with two related keys K ′ = K ⊕ ipad⊕ opad.
They are either HMACK = fKout

◦ fKin
and HMACK′ = fKin

◦ fKout
or RK and RK′ . To

distinguish the two cases, the adversary first queries a birthday bound number of adaptive
chosen messages to the two oracles, so that he can respectively detect the cycle length L
of FK and L′ of FK′ . Specifically, queries are chosen as follows: He first chooses a random
n-bit message MA (resp. MB) and initializes the queries qA

0 = MA (resp. qB
0 = MB).

After getting the answer of the previous one, he continues by querying the answer received
from the last query to the oracle, i.e. qA

i = FK(qA
i−1) (resp. qB

i = FK′(qB
i−1)) for i > 0,

and repeats this for 2n/2 + 2n/2−1 iterations. When the oracles are instantiated with
HMACK = fKout ◦ fKin and HMACK′ = fKin ◦ fKout , then the first half part of the hash
computation (inner hashing) on the queries of the adversary together with the second half
part of the hash computation (outer hashing) form random walks, denoted by walkA (resp.
walkB), along the chain of alternating computations of fKin

and fKout
(resp. fKout

and
fKin

) as depicted in Fig.15. Thus, if the computation chains loop, the cycle length of the
two walks should be equal. Note that, there are efficient algorithms to detect the cycle
length [Jou09, Chapter 7] (also refer to Sect. 6.1.1). Accordingly, the adversary outputs 1
if he successfully detects the cycle lengths and the two cycle lengths are equal, and outputs
0 otherwise.

walkA

walkB

ZA

ZB

fKin fKout HMACK HMACK′

Figure 15: The cycle built with access to HMACK and HMACK′ [PSW12]

The computational complexity of this distinguishing-R attack is 2n/2+1 which is less
than that of the trivial generic attack based on internal collision, which is 2l/2, as long
as the length of the tag is less than the size of the internal state n < l, i.e. wide-pipe
underlying hash function. Besides, this distinguishing-R attack can be further extended
into an internal state recovery attack, forgery attacks and distinguishing-H attacks with
similar requirement of queries and 2n/2+2 + 2l−n+1 computations [PSW12].

Distinguishing-H [LPW13]. In [LPW13], instead of studying the cycle structure of an
entire HMAC, Leurent, Peyrin and Wang study the cycle structure of the internal com-
pression function h with a fixed message block (see Sect. 3.3). In that, the proposed attack
works in the single-key model instead of in the related-key model. By off-line identifying
the property of a dedicated underlying compression function h, one can distinguish whether
an HMAC oracle is embedded with the known dedicated compression function h or with a
randomly chosen function r without knowing the secret key, which is exactly the setting of
the distinguishing-H attack.

Attacks in [LPW13] are based on the following observations: It is easy to detect the
cycle length of the giant component in the functional graph of h[0] (denote by FGh[0] ,



Zhenzhen Bao, Jian Guo and Lei Wang 21

where [0] is an instance of the fixed message block which can take an arbitrary value, see
Sect. 3.3 and Sect. 6.1.1, ). Suppose the cycle length is µ, then the node x located in the
cycle must satisfy x = hµ

[0](x). That is, if x = h(m) and x is a cyclic node and µ is the
cycle length of FGh[0] , then hµ+1(m‖[0]µ) = h(m). In addition, it is possible to detect
such a cycle on-line if the oracle is embedded with the known h. Specifically, to detect
such a cycle, we craft two related but distinct messages which satisfy that such a cycle
happens with high probability in both of the computations of the two messages, and if that
happens, then the outputs of these two messages collide. Thus, we observe the outputs
of the oracle on these two carefully crafted messages to determine whether the oracle
is indeed embedded with h. The distinguishing-H attack based on these observations is
sketched as follows (see Fig.16):
• Off-line: Detect the cycle length µ of the giant component in FGh[0] by running the

cycle search algorithm several times (explained in Sect. 6.1.1).
• On-line: Randomly select an initial message block m, query the oracle with two

long messages M1 = m‖[0]2l/2‖[1]‖[0]2l/2+µ and M2 = m‖[0]2l/2+µ‖[1]‖[0]2l/2 . 4

• Output: If the tags of the two messages collide, output 1. Otherwise, output 0.

αf

αo

[1] block

padded

block

αf offline α node αo online α node

offline cycle online M1

online M2

online twice M1

online twice M2

Figure 16: Distinguishing-H attack based on cycle structure [LPW13]

The complexity of this attack is O(2l/2) off-line computations and two on-line queries of
about 3 · 2l/2 message blocks. The adversary’s advantage is 0.14. Reasons are as follows: If
the HMAC oracle is embedded with the real compression function h, the collision between
the tags of M1 and M2 happens when: 1) message block m sets the on-line computations
in the giant component of FGh[0] (the probability is 0.75782 because the giant component
is expected to occupy 0.75782 percent of the whole nodes) and the first message fragment
[0]2l/2 sets the follow-up computations in the cycle (the probability is 1/2 because the
the tail length is expected to be less than 2l/2), 2) message block [1] and the second
message fragment [0]2l/2 fulfills the same corresponding conditions as in 1). Thus, the
collision probability is (0.75782 · 1/2)2 ≈ 0.14; If the HMAC oracle is embedded with a
random function, the collision happens when the last 2l/2 [0] message blocks leads the
two computations to an internal collision (the probability is 2l/2 · 2−l = 2−l/2). Overall,
Adv(A) = |0.14− 2−l/2| ≈ 0.14.

Cycle-based State Recovery Attack [LPW13]. By extending previous cycle-based
distinguishing-H attack, it is also possible to launch an internal state recovery attack. The
node through which the computation chain enters the first cycle is the targeted recovered
state (see αo in Fig.16). This α-node has a good probability (denote by pα which is about

4In the formerly published version of this paper [BGW18], we accidental writing [0]2l/2 as [0]l/2.



22 Functional Graphs and Their Applications in Cryptanalysis

0.48/0.75782 ≈ 0.63) to be the root of the largest tree in the giant component of the
functional graph. Such root can be computed off-line using several runs of the cycle search
algorithm (see Sect. 6.1.1). Besides those techniques used in the previous distinguishing-H
attack, an additional technique required is the binary search. Binary search can sped-up
locating the α-node. The goal is searching from an integer range [0, 2l/2] for the minimum
number of blocks [0] in M1 and M2 before the two computation chains simultaneously
entering the first cycle. The binary search goes as follows ([LPW13, PW14]):

1. Initialize two integer variables X1 and X2 to the value 0 and 2l/2 respectively.
2. Set X ′ = (X1 + X2)/2. Query to the MAC oracle with at most β log(l) distinct

message pairs M ′
1 = m‖[0]X′‖[i]‖[0]2l/2+µ and M ′

2 = m‖[0]X′+µ‖[i]‖[0]2l/2 , where [i]
can take arbitrary value different from [0]. If at least one received tag pair collides,
set X2 = X ′. Otherwise, set X1 = X ′.

3. If X1 + 1 = X2, output X2 as the minimum block index of α-node. Otherwise, go
back to the previous step.

The value of β in Step 2 is set to be 4.5 to ensure the average success probability of this
binary search is pbs = (1− 1/l)l/2 ≥ e−1/2 as explained in [LPW13].

Launching the above binary search after several runs of a procedure like the previous
cycle-based distinguish-H attack (run several times to ensure the on-line computations is
in the cycle in the giant component of FGh[0]), this performs a state recovery attack. This
cycle-based internal state recovery attack has complexity about 13.5 · l · log(l) · 2l/2 and
has success probability about pα · pbs ≈ 0.38 with long messages queries, where pα ≈ 0.63
is the probability of αo being the root of the largest tree in the giant component and
pbs ≥ e−1/2 ≈ 0.6 is the success probability of the binary search.

Note that, the following presented height-based universal forgery attacks use this cycle-
based internal state recovery attack as a sub-procedure. Actually, in this state recovery
attack, the minimum number of blocks [0] before a computation chain entering the first
cycle, i.e., the minimum block index of αo from x, is equivalent to the height of x in FGh[0] .
This binary search procedure is actually finding the height of x. This binary search is also
used in [DL14, DL17] for launching collision-based state recovery attacks (refer Sect. 4.3).
The difference is that, here we use the binary search to get the height of a node, and there
we use the binary search to get the offset of a collision. They are essentially identical.
Nevertheless, α-nodes are collisions located on cycles.

Short Cycle-based State Recovery Attack [DL17]. To make a trade-off between the
message length and the attack complexity, instead of using the largest cycle in the giant
component in the functional graph, one can use shorter cycles as proposed in [DL17]. For
messages of length 2s for s ≤ l/2, the complexity of the short cycle-based state recovery
attack is 22l−3s.

Besides the state recovery attack, the cycle-based distinguishing-H attack was also
directly extended into a selective forgery attack in [GPSW14]. The key is that by query-
ing the MAC oracle with a message M ′ = m2l/2+µ‖m′‖m2l/2 and getting (M ′, T ), the
adversary can output a valid forgery (M, T ) where M is the committed message and
M = m2l/2‖m′‖m2l/2+µ and µ is the cycle length in the giant component of FGh[m] . The
overall complexity and the adversary’s advantage is the same as that of the distinguishing-H
attack.

4.2 Height-based Attacks
For the universal forgery, suppose the challenge message given to the adversary is M =
m1‖m2‖ · · · ‖mL. Almost all known generic universal forgery attacks first split M into two



Zhenzhen Bao, Jian Guo and Lei Wang 23

parts M1‖M2: M1 = m1‖m2‖ · · · ‖m2s , M2 = m2s+1‖m2s+2‖ · · · ‖mL. And then carry out
the following two phases:
• Phase 1 [State recovery attack]: Recover one of the internal states xi in X =
{x1, x2, · · · , x2s}, where X is the ordered set of unknown states during the processing
of M1 under the inner hash function.

• Phase 2 [Second-preimage attack]: Based on the knowledge of the recovered
internal state, launch a classical second-preimage-like attack to find a different
message suffix M ′ colliding with M2 under the inner hash function . Query the MAC
oracle with M1‖M ′ and get the tag T , then output T as the tag of M .

Phase 2 of all known universal forgery attacks are the same (using the long message
second-preimage attack on narrow-pipe MD hash functions in [KS05]. Thus, all presented
universal forgery attacks are only applicable for narrow-pipe MD hash-based MACs) and
the attack complexity of Phase 2 is relatively less than the complexity of Phase 1. Thus,
improvements focus on Phase 1.

Note that, Phase 1 is much harder than an internal state recovery attack in which
the message is completely chosen by the adversary. In the aforementioned internal state
recovery attack, the recovered state is the collision node through which the chain enters
a cycle. The cycle length of the functional graph is a key property exploited. The cycle
length is essentially an attribute of an entire functional graph and thus can characterize
a particular random mapping. However, it can not character any particular node in the
functional graph. Thus, it can be exploited in the distinguishing attack, the internal
state recovery attack, and the existential forgery attack, in all of which the adversary can
choose the message, but hardly be exploited in the universal forgery attack in which the
message is given to the adversary as a challenge. To carry out a universal forgery attack,
the adversary has to exploit much more powerful properties. Unlike the cycle length, the
height of a node contains more information about individual node. Theorem 6 shows that
the numbers of nodes in low strata and the number of cyclic nodes of a random functional
graph are identically distributed as n→∞. That finally implies Conjecture 1 which shows
that if one collects relatively small number of nodes in a functional graph, one will find the
heights of those nodes are distinct with high probability. Suppose a particular unknown
state of the hash computation is known to be a tail node in a functional graph, and one
knows its height. Then, one can greatly narrow the search space of nodes computed off-line
to find a match so that one can recover the unknown state efficiently. By exploiting the
height property, [PW14] presents the first generic universal forgery attack on iterative
hash-based MACs, which was further updated in [GPSW14].

Universal Forgery Attack — The First [PW14]. The attack in [PW14] exploits the
heights of those internal states in X = {x1, x2, . . . , x2s} in a particular functional graph
(size of X is 2s). Those heights make it efficient when matching between elements of X
and elements of an off-line precomputed set Y = {y1, y2, . . . , y2l−s} (size of Y is 2l−s, thus
Y has an overlap with X with good probability according to the birthday paradox). The
height is a characteristic to classify elements of Y into subsets. Thus, matching between
X and Y can be speed up by first matching height and then matching between subsets
characterized by height. Note that, from Conjecture 1, elements of set X have distinct
heights. Additionally, these subsets of Y are all disjoint. Thus, the total number of pairs
of elements of X and elements of Y that need to be matched is at most 2l−s, namely the
size of Y , instead of the straightforward 2s · 2l−s = 2l. This is exactly where the advantage
comes from.

The procedure of the height-based universal forgery attack is sketched as follows (Steps
1–4 compose Phase 1 depicted in Fig. 17, Steps 5–6 compose Phase 2):
• Step 1 (on-line). For each unknown internal states x1, x2, . . . , x2s in X, use the

cycle-based internal state recovery attack in Sect. 4.1 as sub-procedure to recover



24 Functional Graphs and Their Applications in Cryptanalysis

their height in FGh[0] . Denote by λ(xi) the height of node xi.
• Step 2 (on-line). Generate filters for each xi in X. That is, finding a pair of one-

block messages (m, m′) such that m1‖ . . . ‖mi‖m and m1‖ . . . ‖mi‖m′ leads collision
on outputs of the MAC. That is done using birthday attack.

• Step 3 (off-line). Develop 2l−s nodes and record their height in FGh[0] using
Algorithm 1. Store them in a set Y sorted according to the height values.
• Step 4 (off-line). For each xi in set X, try to recover it by matching it with

elements of Y . The matching is divided into two steps. In the first step, match
according to the height λ(xi) to get a subset Yλ(xi) of Y in which all elements have
the same height as xi. In the second step, matching elements of Yλ(xi) using the
filter pair (m, m′) of xi. Find out the element yi such that h(yi, m) = h(yi, m′). As
long as we find one match yt, output the value of yt as the value of internal state xt.

• Step 5 (off-line). Based on the knowledge of the recovered internal state xi,
compute the value of x2s under the inner hash function. Find a second preimage M ′

for the processing of M2 using classical second-preimage attack [KS05] (regarding
x2s as the IV ). The length of M2 is L− 2s blocks.

• Step 6 (on-line). Forge a valid tag for the challenge M by querying message
M1‖M ′ to the MAC oracle, and receive its tag T . Output (M, T ).

x1

x2

x2s−1

x2s

αf

αo

[1] block

padded

block

αf

αo

[1] block

padded

block

αf

αo

[1] block

padded

block

αf

αo

[1] block

padded

block

λ(x1)

λ(x2)

λ(x2s−1)

λ(x2s )
X = {2s internal states}

xi
filter pair for xi

Online structure

Offline structure

Y = { 2l−s nodes in FGh[0]
}

Only match elements in X and elements in Y at same height (same color impling same height).

Figure 17: Phase 1 of height based universal forgery attack

Complexity of each steps in this height-based universal forgery attack is:

Step 1: O(l · log(l) · 2s+l/2) Step 2: 22s+l/2 Step 3: 2l−s

Step 4: 2l−s Step 5: 2l/(L− 2s) Step 6: L

The optimal complexity of this attack for challenges of different length are:
• If 0 ≤ L ≤ 2l/6, Steps 3–5 are dominated. We set 2l−s = 2l/(L− 2s)⇒ 2s = L− 2s

to get an optimal complexity of O(2l/L) computations.
• If 2l/6 < L ≤ 25l/6, Step 2 is dominated. We set s = l/6 to get an optimal complexity

of O(25l/6) computations.



Zhenzhen Bao, Jian Guo and Lei Wang 25

• If L > 25l/6, Step 6 is dominated. We set s = l/6 to get an optimal complexity of L
computations.

Universal Forgery Attack — The Updated [GPSW14]. In the previous presented
universal forgery attack, distribution of height values of elements of the off-line precomputed
set Y is unclear, because nodes in Y are collected using Algorithm 1 instead of randomly
selected. According to observation and experimental verification, [GPSW14] provides
a reasonable conjecture which identifies the distribution of height values in Y (refer to
Sect. 3.2 Conjecture 2). More explicitly, among those 2t nodes collected using Algorithm 1,
there are Θ(2t−l/2) nodes with height λ for all λ ≤ 2l/2/l. Under this heuristic assumption,
the universal forgery attack can be updated as follows (describe only the differences in the
sequel):
• Step 2 (on-line). Different from the original Step 2 in which one generates filters

for each internal states separately, in the updated attack, one only generates a filter
(m, m′) for the last internal state x2s in X. Then, using (m, m′) one directly build a
filter (mi+1‖ · · · ‖m2s‖m, mi+1‖ · · · ‖m2s‖m′) for other internal state xi.

• Step 3 (off-line). Different from the original Step 3, one only stores the nodes with
height value λ satisfying λ ≤ 2l/2/l. Moreover, according to Conjecture 2, we now
know that for each such height λ such that λ ≤ 2l/2/l holds, there are 2l/2−s nodes
in Y that have height λ.

Note that, although it is Steps 2 and 3 that are updated, major complexity updates happen
to Steps 2 and 4, both of which turn to be 2s+l/2. New balances between different steps
are achieved for messages of different lengths.
• If 0 ≤ L ≤ 2l/4, Steps 3 and 5 are dominated. We set 2l−s = 2l/(L−2s)⇒ 2s = L−2s

to get an optimal complexity of O(2l/L) computations.
• If 2l/4 < L ≤ 23l/4, Steps 1–5 are dominated. We set s = l/4 to get an optimal

complexity of O(23l/4) computations.
• If L > 23l/4, Step 6 is dominated. We set s = l/4 to get an optimal complexity of

O(L) computations.

4.3 Attacks Based on Entropy Loss of Chain Evaluation and Collision
Search

Cycle-based (height-based) attacks have a disadvantage, that is, queries to the MAC oracle
are of very long length. However, in practice, many widely deployed hash functions have a
limit on the maximal message length (e.g. SHA-1 and SHA-2). Thus, these cycle-based and
height-based attacks actually bring no harm to many concrete HMACs instantiated with
those length-limited hash functions. Motivated by that, Leurent, Wang and Dinur devised
several chain-based and collision-based short message attacks in [LPW13, DL14, DL17].

4.3.1 Collision Search Algorithm

As shown in Algorithm 2, the collision search algorithm evaluates chains up to a fixed
maximum length (e.g. 2s) starting from randomly selected nodes. More specifically, starting
from node x0, the algorithm constructs chains iteratively using equation xi = f(xi−1)
until i = 2s. These chains are essentially branches in functional graph of f . Collisions are
distinguished as different types. One type is the so-called same-offset collision (generated
using procedure SameOffsetCollision in Algorithm 2), another is called the free-offset
collision (generated using procedure FreeOffsetCollision in Algorithm 2). For the
same-offset collisions, their distance from the two starting nodes are exactly the same.
Namely, for the two colliding chains ~x and ~y, their colliding point satisfies xi = yj and



26 Functional Graphs and Their Applications in Cryptanalysis

i = j. While, for free-offset collisions on two chains ~x and ~y, their colliding point satisfies
xi = yj for any i, j. Essentially, cycles also imply a type of collision. They are collisions
on a single chain.

Algorithm 2 Collision finding with chains of length 2s [LPW13]

1: procedure SameOffsetCollision(s)
2: T ← ∅, x

$←− {0, . . . , 2l − 1}
3: loop . g2s = f2s ◦ · · · ◦ f1
4: x← x + 1, y ← g2s (x)
5: if T [y] = ∅ then T [y]← x
6: else
7: x′ ← T [y], i← 1
8: repeat
9: x← fi(x), x′ ← fi(x′),

10: i← i + 1
11: until x = x′

12: return x
13: end if
14: end loop

15: end procedure
16: procedure FreeOffsetCollision(s)
17: T ← ∅, x

$←− {0, . . . , 2l − 1}
18: loop
19: y0 ← x, x← x + 1, i← 0
20: repeat
21: if yi ∈ T then return yi

22: else
23: T ←insert yi, yi+1 ← f(yi)
24: end if
25: i← i + 1
26: until i = 2s

27: end loop
28: end procedure

Based on formal evaluation on the entropy loss in the output of classical collision search
algorithm on random functions, Leurent and Wang in [LPW13] and Dinur and Leurent
in [DL14, DL17] propose more efficient attacks for short messages.

Same-offset collision search. For the same-offset collision, the numbers of iterations
before the colliding point on the two colliding chains are equal. When the message length
is appended to messages, only such same-offset internal collisions between equal-length
queries to the MAC oracle are detectable. Thus, in known collision-based attacks, collisions
detected on-line are always same-offset collisions. Additionally, even if the underlying
compression functions are different within each computation chain, the same-offset collision
between chains still propagates to the end. Thus, collisions detected in attacks on MACs
using different compression functions (e.g. the HAIFA construction [BD07]) are also
same-offset collisions. While, in this paper, we mainly focus on computations on identical
mapping and see relationship between its property and the properties of its functional
graph.

When computing 2t chains of length 2s, the expected number of same-offset collisions
is about 22t+s−l. The total number of distinct nodes on those chains should be a constant
fraction of the total developed nodes, that is Θ(2s+t). When the iteration function are
all the same, the condition reduces to 2s · 2t · 2s ≤ 2l ⇒ 2s + t ≤ l. When the iteration
functions are distinct, in order to collect the 22t+s−l same-offset collisions, we require
that a constant fraction of the chains do not collide with any other chain, implying that
2t + s− l < t⇒ s + t ≤ l.

To collect 2c same-offset collisions using chains of length 2s, the time complexity is
determined by parameter l, c and s, i.e., 2l/2+s/2+c/2. The required number of chains is
2l/2−s/2+c/2 which is also determined by parameters l, s and c. Thus, if one wants to get
more collisions with a limited computational complexity, he has to use shorter chains and
large number of chains.

Free-offset collision search. Collecting free-offset collisions is much more efficient than
collecting same-offset collisions. However, that procedure is applicable only for off-line
computation and for identical underlying compression functions.



Zhenzhen Bao, Jian Guo and Lei Wang 27

When computing 2t chains of length 2s and 2s · 2t+s ≤ 2l, the expected number of
free-offset collisions is about 22(t+s)−l. To collect 2c free-offset collisions using chains of
length 2s, the time complexity is determined by parameter l, c, i.e., 2l/2+c/2, which is a
constant for different s. The required number of chains is 2l/2+c/2−s which is determined
by parameters l, s and c.

Properties of the chain evaluation and the collision searching algorithms [LPW13,
DL14, DL17]

Lemma 1 ([DL17], Lemma 1). Let s ≤ l/2 be a non-negative integer. Let f1, f2, . . . , f2s

be a fixed sequence of random functions over the set of 2l elements, and g2s
∆= f2s ◦

f2s−1 ◦ · · · ◦ f2 ◦ f1 (with the fi being either all identical, or independently distributed).
Then, the images of two arbitrary inputs to g2s collide with probability of about 2s−l, i.e.,
Prx,y[g2s(x) = g2s(y)] = Θ(2s−l).

Lemma 2 ([DL17], Lemma 2). Let s ≤ l/2 be a non-negative integer. Let f be a random
function over the set of 2l elements. Then, for some α > 1 the probability that the image
size is more than 2α · 2l/i is at most 1/α, i.e., with high probability the image size of the
function f i is O(2l/i).

Lemma 3 ([DL17], Lemma 3). Let x̂ and ŷ be two random collisions (same-offset or
free-offset) found by a collision search algorithm using 2t chains of length 2s, with a fixed
l-bit random function f such that 2s + t ≤ l. Then Pr[x̂ = ŷ] = Θ(22s−l).

In [DL17], authors also provide similar lemmas on the same-offset collision search with
fixed sequence of independently distributed random functions (applicable for attacks on
the HAIFA construction). While, this paper mainly targets on presenting the relationship
between properties of the collision search and the functional graph formed by iterating on
a single function. Thus, we refer [DL17] to interested readers for detailed descriptions on
the collision search with fixed sequence of independently distributed random functions.

4.3.2 State Recovery Attacks — With Short Messages [LPW13, DL14, DL17]

State recovery attack based on reduction of image-set size [DL17]. Based on the
entropy loss in the output of the chain evaluation algorithm indicated by Lemmas 1 and 2,
one can launch a state recovery attack on hash-based MACs (applicable for both MD and
HAIFA hash constructions, see Fig.18).
• Step 1 (off-line). Compute a set X of 2t off-line images by developing 2t chains of

length 2s using the compression function with fixed message C.
• Step 2 (on-line). Collect a set Y of 2u unknown states (obtained after Mi) by

querying the oracle with 2u messages Mi = [i]‖C. Build on-line diamond filter for
states in Y .

• Step 3 (off-line). Match between set X of 2t off-line states and set Y of 2u on-line
states using the on-line filters.

According to Lemmas 1 and 2, a pair of states in X and Y collides with probability
2s−l. There are in total 2t+u pairs of states. Thus, to find at least one match for the
attack to succeed, parameters t, u and s must satisfy t + u ≥ l − s. Thus, we first set
t = l − s− u. Complexity of each step is:

Step 1: 2t+s = 2l−u Step 2: 2u+s + u · 2s+u/2+l/2 Step 3: 2t+u · u = 2l−s · u

Note that u < l/2, thus u + s < s + u/2 + l/2. We balance the complexity of Steps 1 and 2
by setting l−u = s + u/2 + l/2, which gives u = l/3− 2s/3. The sum of dominating terms
is then 22l/3+2s/3 + 2l−s. To summarize, the attack complexity is Õ(2l−s) for s ≤ l/5, and
is optimally 4l/5 achieved by setting 2l/3 + 2s/3 = l − s, i.e. s = l/5.



28 Functional Graphs and Their Applications in Cryptanalysis

$
2t

2s

Offline structure

C {2t known images}

Ik

[i]

2u

1 2s

Online structure

C {2u unkown images}

We detect (off-line) a match between 2t off-line known states ( ) with 2u

on-line unknown states ( ) using the diamond filter built on-line.

Figure 18: Image-set size reduction-based state recovery for hash-base MAC [DL17]

State recovery attack based on free-offset collisions [DL14, DL17]. Based on the
entropy loss in the output of collision search algorithms indicated by Lemma 3, one can
launch more efficient state recovery attacks on MD hash-based MACs than the previous
one (see Fig.19).
• Step 1 (off-line). Collect 2c off-line free-offset collisions by developing 2l−2s chains

of length 2s. Build an off-line diamond filter for those collisions.
• Step 2 (on-line). Find 1 on-line same-offset collision by querying the oracle with

2t messages Mi = [i]‖[0]2s . Locate the unknown collision point using a binary search.
• Step 3 (on-line). Match the unknown on-line same-offset collision with the set of

2c off-line free-offset collisions using the off-line diamond filter.16 Itai Dinur, Gaëtan Leurent

2s

2`−2s

{2c collisions}

$

[0]∗

Offline structure

Ik
2s1

2t

[i] {1 collision}[0]∗

Online structure

We generate collisions offline using free-offset collision search, build a diamond filter
for the collision points ( ), and recover the state of an online collision.

Complexity analysis. In Step 1, we use free-offset collision search with 2`−2s

starting points and chains of length 2s, and thus according to Section 3.1, we
find 2`−2s collisions (i.e. c = ` − 2s). Furthermore, according to Lemma 3,
ŷ ∈ X̂ with high probability, in which case the attack succeeds.

In Step 3, we use same-offset collision search with 2t starting points and
chains of length 2s, and thus according to Section 3.1, we find 22t+s−` collisions.
As we require one collision, we have t = (` − s)/2. We now compute the
complexity of each step of the attack:

Step 1: 2`−s Step 2: 2`/2+c/2 = 2`−s

Step 3: 2t+s = 2(`+s)/2 Step 4: s · 2s

Step 5: 2c+s = 2`−s

With s ≤ `/3, we have (`+ s)/2 ≤ 2/3 · ` ≤ `− s, and the complexity of the
attack is O(2`−s).

6.2 Tradeoff based on cycles

We now generalize the cycle-based state-recovery attack of [19] which exploits
the main cycle of approximate length 2`/2 in the graph of the random mapping
in order to construct two colliding messages of the same length (thus having
equal tags, which can be detected at the output). The attack of [19] uses
messages of length 2`/2 and has a complexity of 2`/2.

Our attack uses the same idea of [19], but searches for (potentially) shorter
cycles using (potentially) shorter messages of length 2s for s ≤ `/2. The
complexity of the attack 22`−3s.

Attack 3: Cycle-based tradeoff for HMAC with Merkle-Damg̊ard

Complexity O(22`−3s), with s ≤ `/2 (min: 2`/2)

1. (offline) Search for a cycle in the functional graph of f = h[0], using the
algorithm of Section 3.1 with chains of length 2s. Denote the length of
the cycle by L, and its entry point by x̂. Build a collision filter for x̂.

2. (online) For different values of the message block [b], query the MAC
oracle with two messages M = [b] ‖ [0]2

s ‖ [1] ‖ [0]2
s+L and M ′ =

We generate collisions off-line using free-offset col-

lision search, build a diamond filter for the colli-

sion points ( ), and recover the state of an online

collision ( ) by matching (on-line) using the filter.

Ik2c

2s

Matching (online)

Figure 19: State recovery attack based on free-offset collisions and using off-line diamond
filters on hash-base MAC [DL17]

According to the analysis on the free-offset collision search algorithm, the number of
free-offset collisions detected off-line is 2c ≈ 2l−2s. Thus, from Lemma 3, the set of off-line
collisions contains the collision found on-line with high probability. To find one same-offset
collision on-line, we set 2t + s− l = 0⇒ t = (l − s)/2. The complexity of each step is:

Step 1: 2l−s + 2(c+l)/2 ≈ 2l−s Step 2: 2t+s + s · 2s = 2(l+s)/2 + s · 2s

Step 3: 2c+s = 2l−s

Note that, there is a restriction on parameters t and s, that is t + 2s < l due to the
assumption required to analyze the collision search algorithm. Thus, this complexity
analysis is valid only for (l − s)/2 + 2s < l, i.e., s ≤ l/3.



Zhenzhen Bao, Jian Guo and Lei Wang 29

The inherent lower bound on the complexity of this attack is max{2l/2+s/2, 2l−s},
which creates the two lines forming the curve for Attack 4 in Fig.26a, where 2l/2+s/2 is the
complexity of finding a single same-offset collision, and 2l−s is the complexity of matching
(on-line) between off-line free-offset collisions and on-line same-offset collisions. By setting
s = l/3, the two terms can get a balance, which gives an optimal complexity 22l/3. To
summarize, the total complexity of this attack is O(2l−s) if s ≤ l/3.

Note that, for smaller message (using queries of length 2s ≤ 2l/8), one can optimize
this free-offset collision-based state recovery attack by collecting more on-line same-offset
collisions, building on-line diamond filter for their endpoints, and matching them off-line
(refer to Sect. 2.4.6 with free-offset collisions found off-line. Then, the attack complexity
turns to be Õ(2l−2s) if s ≤ l/8, and is optimally Õ(3l/4) obtained by setting s = l/8.

4.3.3 Universal Forgery Attacks With Short Messages [DL14, DL17]

Dinur and Leurent further provide two methods to improve the first phase of previous
universal forgery attacks with short messages.

Previous height-based attacks exploit the observation that height provides a way to
classify nodes into mutually disjoint subsets. Thus, a two-phase matching process is more
efficient than directly matching. Actually, distances from any special node can also provide
a measure to divide the matching into two-phase process which is more efficient than
directly matching those off-line states and those on-line states. In previous height-based
attacks, the α-node in the functional graph plays a role as an “origin” of a coordinate
system. This “origin” is detectable both on-line and off-line. Distances from this α-node
(height) for on-line nodes and off-line nodes are also detectable. By detecting distance
of a node from this “origin”, one can get direct information of this node. Actually, one
can use other kinds of special nodes as “origin” of a coordinate system. In this case,
the original coordinate system are now divided into several subsystems (without overlap
because f , h[m] is a mapping). To get information of a node, we first determine their
“origin” and then find more information on it by exploiting its distance from the “origin”
in the subsystem. That is actually how the following two improved universal forgery attack
processed. An advantage when using other kinds of special nodes is that one can launch
attacks with short message.

The first improved attack bases on the reduction of the image-set size as shown in
Lemma 2. The second improved attack bases on the previous mentioned collision-based
state recovery attack in Sect. 4.3.2 (which bases on the entropy loss in the output of
collisions search algorithms as indicated in Lemma 3 in which the message is completely
chosen by the adversary).

Universal forgery attack based on the reduction of the image-set size. Denote the
challenge message by C. Details about the state recovery phase in the first improved
universal forgery attack are as follows (see Fig.20) 5:
• Step 1 (on-line). Generate a set X of unknown final states of 2s chains of 22s

length by querying the oracle with messages Mi = C|i‖[0]2s−i. Build an on-line
diamond filter for X.

• Step 2 (off-line). Compute a set Y of 22s-iterates nodes (namely images of h22s

[0] )
by running Algorithm 1 with parameter l − s and with the following modification:
record the iteration times of h[0] to get each node instead of recording their heights.

• Step 3 (off-line). Match each node y ∈ Y with the 2s states in X using the on-line
diamond filter built for X.

5Note that, in the original description of this attack in [DL17], notation on the set of on-line states and
notation on the set of off-line states is respectively Y and X, which is not consistent with the provided
figure.



30 Functional Graphs and Their Applications in Cryptanalysis

• Step 4 (off-line). For each match between an off-line node y ∈ Y and an on-line
state x ∈ X obtained using Mi, launch the second matching phase to match the
unknown state after processing C|i, i.e. a predecessor which is 22s − i away from x,
with all predecessors which are 22s − i away from y. This matching is performed
using a binary search matching algorithm operated on a tree rooted at y in the
functional graph (refer to [DL17] for details). Initial inputs to the binary search
matching algorithm includes the message Mi, the tree rooted at y and distance
22s − i. With high probability, the returned matched state y′ equals the internal
state after processing C|i.

Improved Generic Attacks Against Hash-based MACs and HAIFA 25

1. (online) Query the oracle with 2s messages Mi = C|i ‖ [0]2
2s−i. Denote

the set of (unknown) final states of the chains by Y . Build an online
diamond filter for all states in Y .

2. (offline) Compute a structure of chains containing a total of 2`−s points.
Each chain is extended until it cycles or collides with a previous chain.
Consider the set X of the 22s-iterates of f (namely images of f2

2s

in the structure). According to Lemma 2, this set contains (no more
than) about 2`−2s distinct points. Build an online diamond filter for
X.

3. (offline) Match all the points x ∈ X with the 2s points in Y .
4. (offline) For each match between x ∈ X and an online state in Y

(obtained using Mi), use an additional matching algorithm to test
the actual message C|i: call the binary search matching algorithm
(Algorithm 1) with:

• input message Mi = C|i ‖ [0]2
2s−i;

• the tree rooted at x (obtained by disconnecting the edge between x
and f(x) from the graph and considering all the points that merge
into x);

• and distance 22s − i.
If the algorithm returns a match y′, then with high probability the
state obtained after processing C|i is equal to y′.

Ik
2s 22s−2s

2s
C

Online structure Offline structure

22s22s

{2`−s points}
{2`−2simages ( )}

We efficiently detect a match between the challenge points ( ) and the offline structure,
by first matching X ( ) and Y ( ).

Algorithm 1: Binary search matching
Inputs: distance d, message M of length d′ > d whose last d blocks are
zero, tree of chains computed with the zero block that merge into the
root x
Output: node y in the tree with distance d to x that is equal to the state
reached after evaluating M|d′−d (NULL if y does not exist)

1. Denote by Size(u) the number of nodes in the tree whose root is u.
Traverse the tree rooted at x (backwards) for at most d steps until a
leaf or a collision is encountered:

Figure 20: Phase 1 of the universal forgery based on the reduction of image-set size [DL17]

This attack will succeed with high probability. Reasons are as follows: The MAC oracle
computes 2s internal states on prefix of the challenge C. These 2s on-line states must be
predecessors of states in X in FGh[0] . There are 2l−s distinct nodes in FGh[0] developed
off-line in Step 2. According to the birthday paradox, between these on-line states and
these off-line nodes, there is an intersection point with high probability. As long as there
exists an intersection point, the attack will always find it using the two follow-up matching
steps 3 and 4.

The analysis of the computational complexity of this attack is as follows: In Step 1,
generating X requires 23s computations and building the on-line diamond filter requires
22s+s/2+l/2 computations. In Step 2, it requires 2l−s computations to develop 2l−s off-line
nodes. There are (no more than) about 2l−2s distinct nodes in Y according to Lemma 2.
The complexity of matching an element of Y with 2s states in X can be estimated as s · 2s.
Thus, the complexity of matching 2l−2s elements of Y with 2s elements of X in Step 3 can
be approximated by 2l−2s · s ·2s = s ·2l−s. In Step 4, the binary search matching algorithm
recursively calls itself with a tree parameter cut by at least half in every recursive call.
Thus, for a single call in Step 4, there are at most l− s recursive calls of the binary search
matching considering the initial tree has at most 2l−s nodes. Within each recursive call,
it traverses at most d ≤ 22s nodes, builds and tests a small constant number of collision
filters. The complexity of those procedures within each recursive call are then respectively
estimated as d < 2l/2, 2l/2 and 22s < 2l/2. Considering there are at most 2s matches
in Step 3, the number of initial calls in Step 4 is at most 2s. In conclusion, the time
complexity of Step 4 is at most 2s · (l−s) ·2l/2 ≈ (l−s) ·2l/2+s. To sum up, the complexity
of each step in this attack is approximately:

Step 1: 2l/2+5s/2 Step 2: 2l−s Step 3: s · 2l−s Step 4: (l − s) · 2l/2+s

The total complexity of this attack is Õ(2l−s) if s ≤ l/7 in which case l/2 + 5s/2 ≤ 6l/7 ≤
l−s (the second phase of the universal forgery attack has similar complexity). The optimal
complexity is 26l/7 obtained by setting s = l/7 with queries of length 22s = 22l/7.



Zhenzhen Bao, Jian Guo and Lei Wang 31

Universal forgery attack based on the collision-based state recovery attack and the
reduction of the image-set size. The first improved attack recovers the final states
of on-line chains by building on-line diamond filters for them. The complexity analysis
shows that when the length of queries exceeds 22l/7, generating those on-line final states
and building on-line filters for them will be the most expensive step. To improve the
complexity when queries can be relatively longer, instead of building filters, the second
improved attack recovers the final states of on-line chains by directly matching the tags
with tags of carefully selected messages. Collisions among tags imply collisions among
those final states. Those carefully selected messages are crafted based on the result of
launching a collision-based state recovery attack shown in Sect. 4.3.2. Thus, the internal
states for those carefully selected messages are known. Therefore, those colliding final
states of on-line chains are also known. The state recovery phase of the second improved
collision-based attack is as follows, again let C be the challenge message:
• Step 1 (on-line). Get a set S of 2s tags by querying the oracle with messages

Mi = C|i‖[0]2s+1−i.
• Step 2 (on-line). Get a set T of 2v tags by querying the oracle with messages

Wj = W‖[j]‖02s−1. In each Wj , W is a message of length 2s whose last computed
state is recovered by executing the free-offset collision-based state recovery attack in
Sect. 4.3.2 with messages of length min(2s, 2l/3).

• Step 3 (on-line). Generate a set X of states reached after some Mi’s by matching
tags in S with tags in T . Suppose we get 2c collisions between the tags. For each
collision of tags between Mi and Wj , the state reached after Mi is known because
the state reached after Wj is already known in Step 2.

• Step 4 (off-line). Generate a set Y of 2s-iterates nodes (namely images of h2s

[0])
by running Algorithm 1 with parameter l − c and with the following modification:
record the iteration times of h[0] to get each node instead of recording their heights.

• Step 5 (off-line). Match each node y ∈ Y with the 2c recovered states in X directly.
• Step 6 (on-line). For each match between an off-line node y ∈ Y and an on-line

state x ∈ X obtained using Mi, launch the second matching phase that is almost
identical to Step 4 in the first improved attack. The only difference lies in one of
the initial input parameters to the binary search matching algorithm, that is the
distance is 2s+1 − i (instead of 22s − i).

28 Itai Dinur, Gaëtan Leurent

state reached after Mi is known, because the state reached after W is
already known. We denote the set of those states as X.

4. (offline) Compute a structure of chains containing a total of 2`−c points.
Each chain is extended until it cycles or collides with a previous chain.

5. (online) For each offline point in the structure y which matches a point
in X (corresponding to Mi), call the binary search matching algorithm
(Algorithm 1) with inputs:
• message Mi;
• the tree rooted at y (obtained by disconnecting the edge between y

and f(y) from the graph and considering all the points that merge
into y);

• and distance 2s+1 − i.
If the algorithm returns a match y′, then with high probability the
state obtained after processing C|i is equal to y′.

Ik
2s 2s

2s
C

[0]∗

Ik

2v

2s 1 2s−1

W

[i] [0]∗

Online structure

{2c collisions}

Offline structure

2s2s

{2`−c points}
{2`−simages ( )}

We match the known points in X ( ) and Y ( ) in order to detect a match between
the challenge points ( ) and the offline structure.

a In case s > `/3, we first recover the last computed state of a message of size 2`/3,
and then complement it arbitrarily to a length of 2s.

Analysis. In Step 3 of the attack, we find 2c collisions between pairs of chains,
where the prefix of one chain in each pair is some challenge prefix C|i. Thus,
the 2c collisions cover 2c such challenge prefixes, and moreover, the offline
structure computed in Step 4 contains 2`−c points. Thus, according to the
birthday paradox, with high probability the offline structure covers one of the
states obtained after the computation of such a prefix C|i. Since iterate 2s+1− i
of C|i is also covered by the offline structure,6 then the state corresponding to
C|i will be recovered in Step 5.

In order to calculate the value of c, note that the online structure computed
in Step 1 contains 2s chains, each of length at least 2s, and thus another
arbitrary chain of length 2s collides with one of the chains in this structure
at the same offset with probability of about 22s−` (see Lemma 1). Since the

6 This occurs with high probability, and can be shown by analyzing the cycle structure of
the graph as in the previous attack.

Figure 21: Phase 1 of the universal forgery attack using collisions [DL17]

The attack will succeed with high probability. Reasons are similar to that of the previous
attack: There are 2c internal states computed on-line on the prefix of the challenge C.
They must be predecessors of states in X in FGh[0] . There are 2l−c distinct nodes in



32 Functional Graphs and Their Applications in Cryptanalysis

FGh[0] developed off-line in Step 4. The intersection point between the on-line states and
the off-line nodes can be found using the follow-up matching steps.

The expected number of states in X is 2c = 22s+v−l (recovered using Steps 1 - 3).
Reasons are based on the reduction of the image-set size of h2s

[0] and the assumption on
independence between all evaluated on-line chains (there are 2s+v pairs of tags and each
pair colliding with probability 2s−l from Lemma 1). The computational complexity of
each step in this attack is approximately:

Step 1: 22s Step 2: max(2l−s, 22l/3) + 2v+s

Step 3: max(2s, 2v) Step 4: 2l−c = 22l−2s−v

Step 5: 2l−s · 2c = 2v+s Step 6: (l − c) · 2l/2+c = (2l − 2s− v) · 22s+v−l/2

Set v + s = 2l − 2s− v ⇒ v = l − 3s/2 to balance Steps 2, 4 and 5. The total complexity
of this attack is Õ(2l−s/2) for any s ≤ 2l/5. The optimal complexity is 24l/5 obtained by
setting s = 2l/5, and with queries of length 2s = 22l/5.

5 Attacks on Hash Combiners Based on Functional Graph
In this section, we survey generic attacks against various hash combiners (refer to Fig. 1b
for a list of main surveyed papers and their technical relations). Like in Sect. 4, we look
into attacks involving iteratively evaluating a mapping many times, i.e., attacks exploiting
properties of the functional graph of random mappings. And we mainly focus on attacks
against combiners of two narrow-pipe MD hash functions (in each of the hash functions,
both of the internal states and the output are n-bit). Note that, we reassign l (which
formerly represented the width of internal states in Sect. 4) to represent the size of message,
i.e. suppose the message is of length L = 2l.

5.1 Attacks Based on Deep Iterates (FGDI [Din16])
Properties of the random functional graph have been largely exploited in generic attacks
against hash-based MACs as shown in Sect. 4. Dinur discovers that some properties can
also be exploited to launch efficient generic attacks on MD hash combiners. In the sequel,
we denote by f1 = h1[m] and f2 = h2[m] the two n to n-bit random mappings derived from
the two underlying compression functions h1 and h2 in the way shown in Sect. 3.3, and
denote the corresponding functional graphs by FGf1 and FGf2 .

By exploiting special nodes in the functional graph, Dinur presents the first second-
preimage attack on the concatenation combiner and an improved preimage attack on the
XOR combiner of MD hash functions. The exploited special nodes are explicitly named
deep iterates. Actually, deep iterates have already been exploited in attacks on hash-based
MACs shown in Sect. 4.3 (the attacks based on the reduction of image-set size that occurs
when iterating a random mapping many times). They are named deep iterates because
they locate “deep” in the functional graph, i.e., there exists a terminal node reaching a
deep iterate after large number of iterations of the random mapping. In other words, they
are k-th iterate image nodes and k is relatively large. Two observations on deep iterates
make them helpful in the proposed attacks:
• Observation 1. It is easy to get a large set of deep iterates. Specifically, by running

Algorithm 1 with input parameter t (and do not record height), one can get a set of 2t

nodes, among which a constant fraction (Θ(2t)) are 2n−t-th iterates.
• Observation 2. A deep iterate has a relatively high probability to be reached from

an arbitrary starting node (refer Lemma 1). Thus, in a pair of functional graphs (FGf1 ,



Zhenzhen Bao, Jian Guo and Lei Wang 33

FGf2), the probability for a random pair (x0, y0) encountering d-th iterate image pair
(x̄, ȳ) at a common distance is estimated as d3/22n. The expected number of trials to find
such a pair (x0, y0) is then reasonably conjectured to be 22n/d3.

5.1.1 Second-Preimage Attack on Concatenation Combiner Based on Deep Iter-
ates [Din16]

A primary second-preimage attack modified from Kelsey and Schneier’s attack on a single
MD-hash function [KS05] (refer to Sect. 2.4.2) is not efficient on concatenation combiner
of two MD-hash functions mainly because of two problems: One should construct a set
of messages that is simultaneously expandable and colliding with respect to both of the
two underlying hash functions; One should efficiently find a common message fragment
mapping the two output states of the expandable messages to two internal states at the
same offset under two hash functions. There is actually 2n-bit to be hit. To solve the first
problem, Dinur invents the simultaneous expandable message (refer to Sect. 2.4.5). To
solve the second problem, Dinur exploits those deep iterates in functional graphs according
to the above observations.

In Dinur’s second-preimage attack on concatenation combiner, after constructing a
simultaneous expandable message starting from the two initialization vectors, instead of
directly mapping the final states to a pair of internal states at the same offset in the two hash
computations, it utilizes a pair of deep iterates as bridge to make the connection efficient.
More explicitly, the first observation on deep iterates makes it efficient to independently
find two sets of deep iterates for the two hash computations, which provides extra freedom
to launch a meet-in-the-middle procedure when finding a message block mapping a pair
of deep iterates to a pair of internal states at the same offset in the original two hash
computations. The second observation on deep iterates makes it efficient to find a pair of
random starting nodes connecting the pair of final states of the simultaneous expandable
message to the pair of target deep iterates with common distance. In other words, make
it efficient to find a common message fragment mapping the pair of final states of the
simultaneous expandable message to the target pair of deep iterates.

Given a target message M = m1‖m2‖ . . . ‖mL, the goal of the second-preimage attack
on concatenation combiner is to find another message M ′ such that H1(M ′)‖H2(M ′) =
H1(M)‖H2(M). Suppose the internal state chains in computations of the original message
M under the two hash functions are respectively (a1, a2, . . . , aL) and (b1, b2, . . . , bL). The
attack procedure is sketched as follows (See Fig. 22 for more detailed steps):
• Phase 1: Build a simultaneous expandable message MSEM starting from the pair of

initialization vectors (IV1, IV2) and ending at a pair of final state (x̂, ŷ), such that
its length could extend up to L.

• Phase 2: Find a pair of states (x̄, ȳ) and a single message block m̄ such that
there exist q ≤ L and (h1(x̄, m̄), h2(ȳ, m̄)) = (ap, bp). That is done as follows:
First, generate two independent sets (of size 2n−g) of 2g-th deep iterates in the two
functional graphs FGf1 and FGf2 . Then, from the two sets of deep iterates, launch
a meet-in-the-middle procedure to find a pair of state (x̄, ȳ) and the single-block
message m̄ fulfilling the requirement. Refer (x̄, ȳ) as target node pair.

• Phase 3: Find a message fragment M̂ = m̂‖[m]d such that it maps (x̂, ŷ) to
(x̄, ȳ). That is done as follows: First, launch a look-ahead procedure by developing
more nodes (2t) and storing with their distances from the target nodes in the
functional graphs FGf1 and FGf2 independently. Then, start from state pair (x̂, ŷ),
enumerate (22n−3g trials) a message block m̂ to find a pair of starting nodes (x0, y0) =
(h1(x̂, m̂), h2(ŷ, m̂)) such that they reach the pair of target deep iterate (x̄, ȳ) at
a common distance d in the two functional graphs FGf1 and FGf2 . Note that,
this phase is more efficient than 2n computations only when using results of the



34 Functional Graphs and Their Applications in Cryptanalysis

aforementioned look-ahead procedure to accelerate the deduction of distances between
the starting nodes and the target nodes.

At the end, select a message prefix M‖L−d−2 with L− d− 2 blocks from the simultaneous
expandable message MSEM, and construct a second-preimage M ′:

M ′ = M‖L−d−2‖m̂‖[m]d‖m̄‖mp+1‖ . . . ‖mL.

a0
IV1

b0
IV2

H1

H2

a1

m1

b1

m1

a2

m2

b2

m2

ap−1

bp−1

ap

mp

bp

mp

aL−1

bL−1

aL

mL

bLmL

‖

IV1
MSEM

x̂

IV2

MSEM ŷ

m̄

m̄

x̄

ȳ

x0

m̂

y0
m̂

[m]d

[m]d

M‖p−d−2

M‖p−d−2

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

Figure 22: Second-preimage attack on concatenation combiner based on deep iterates

Denote the message length L = 2l. Restriction on attack parameter g is g ≤ min(n/2, l).
Complexity of this attack is dominated by Phases 2 and 3 as long as message length is
not extremely large. For Phase 2, the time complexity of the generation of the two sets
of deep iterates is 2n−g, and the time complexity of the meet-in-the-middle procedure is
2n−g · 22g−l = 2n+g−l which is dominated in Phase 2. For Phase 3, mutual restraint factors
are the time complexity of the look-ahead procedure and complexity of finding a pair of
starting nodes fulfilling the requirement, i.e., between 2t and 22n−3g · 2n−t = 23n−3g−t.
Here, we can directly set t = 3n− 3g − t or t = 3n/2− 3g/2 to make a balance because t
is a local parameter in Phase 3. Thus, complexities of each phase are as follows:

Phase 1: 2l + n2 · 2n/2 Phase 2: 2n+g−l Phase 3: 23n/2−3g/2

From the complexity formula of Phase 3, the deeper the two target nodes are located
(the larger the value of g), the more efficient it is to find a pair of starting nodes reaching
them at a common distance. A more fundamental reason is that the deeper a target node
is located, the more preimages it has, the higher the probability is for a randomly selected
node being one of its preimages. On the other hand, from the complexity formula of Phase
2, the deeper the target nodes are located (the larger the value of g), the more difficult it
is to find a pair of them mapping by a message block m̄ to a pair of internal states in the
computation on the original message. A more fundamental reason is that the deeper the
target nodes are located, the less their population is. Note that, the inherent lower bound
on the complexity of this attack is determined by Phase 3. Because to fulfill restriction
g ≤ min(n/2, l), the complexity of Phase 3 is lower bounded by max(23n/4, 23n/2−3l/2).

We make a balance between Phases 2 and 3 by setting n + g − l = 3n/2 − 3g/2,
which gives g = n/5 + 2l/5. Thus, the overall complexity is 26n/5−3l/5 if l ≤ 3n/4, and is
optimally 23n/4 obtained for l = 3n/4. Otherwise, it is dominated by Phase 1 and equals
2l.



Zhenzhen Bao, Jian Guo and Lei Wang 35

5.1.2 Preimage Attack on XOR Combiner Based on Deep Iterates [Din16]

Similar to the second-preimage attack on concatenation combiner, deep iterates can also
be exploited to improve the preimage attack on XOR combiner.

Given a target hash digest V , the goal of the preimage attack on XOR combiner is
to find a message M such that H1(M) ⊕ H2(M) = V . The attack procedure is quite
similar to the second-preimage attack on concatenation combiner and is also composed of
three main phases. Differences mainly lie in the second phase because the target is now of
n-bit instead of (2n− l)-bit. The freedom from (n− l)-bit restriction allows us efficiently
finding more target pairs {(x̄1, ȳ1), (x̄2, ȳ2), . . . } instead of a single target pair (x̄, ȳ). The
attack procedure is sketched as follows (describe only the different phases with previous
second-preimage attack in Sect. 5.1.1, see Fig. 23 for detailed steps):
• Phase 2: Generate a set (of size 2s) of tuples {(x̄1, ȳ1, m̄1), (x̄2, ȳ2, m̄2), . . . } such

that for each i, h∗
1(x̄i, m̄i‖pad) ⊕ h∗

2(ȳi, m̄i‖pad) = V , where pad is the final block
of the (padded) preimage message of a predefined length L. This is done similarly
to Phase 2 in the second-preimage attack in Sect. 5.1.1, including generating 2g-th
iterates and launching a meet-in-the-middle procedure.

• Phase 3: Find a message fragment M̂ = m̂‖[m]d such that it maps (x̂, ŷ) to one
of the target pair (x̄i, ȳi). That is done as follows: First, launch a look-ahead
procedure by developing more nodes (2t) and storing with their distances from
all the target nodes in the functional graphs FGf1 and FGf2 independently. Note
that, this procedure additionally requires the distinguishing point technique because
one has to record the distance for each node from 2s target nodes instead of a
single target as in the previous attack. Here, the distinguishing point technique
provides trade-off between time and memory. Then, start from the state pair (x̂, ŷ),
enumerate (22n−3g−s trials) a message block m̂ to find a pair of starting nodes
(x0, y0) = (h1(x̂, m̂), h2(ŷ, m̂)) such that they reach any one of the pairs of target
deep iterate (x̄i, ȳi) at a common distance (denoted by d) in the two functional
graphs FGf1 and FGf2 . Again, this phase is more efficient than 2n computations
only when using results of previous look-ahead procedure.

At the end, select a message prefix M‖L−d−3 with a block length L−d−3 from the simultane-
ous expandable messageMSEM, and construct a preimage M : M = M‖L−d−3‖m̂‖[m]d‖m̄i‖pad.

IV1
MSEM

x̂

IV2

MSEM ŷ

H1

H2

⊕ = V

m̄
i‖pad

m̄i‖p
ad

x̄i

ȳi

x0

m̂

y0
m̂

[m]d

[m]d

M‖L−d−3

M‖L−d−3

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

Figure 23: Preimage attack on XOR combiner based on deep iterates

The complexity analysis of this attack is similar to that of the second-preimage attack
on concatenation combiner. Again, denote the message length L = 2l. Restriction on



36 Functional Graphs and Their Applications in Cryptanalysis

attack parameter g is also g ≤ min(n/2, l). Differences mainly lie in Phase 2. That
is, there is only n-bit restriction on the choice of x̄i, ȳi and m̄i. That is because the
equation h∗

1(x̄i, m̄i‖pad)⊕ h∗
2(ȳi, m̄i‖pad) = V only imposes n-bit restriction, compared

with the (2n− l)-bit restriction imposed by equation (h1(x̄, m̄), h2(ȳ, m̄)) = (ap, bp) (for
any p ≤ 2l) in the second-preimage attack on concatenation combiner. This (n − l)-bit
freedom allows collecting more target pairs (2s). Thus, the complexity of this phase is
reduced by a factor of 2n−l−s from 2n+g−l, and turns to be 2g+s. This freedom is further
transferred to the next phase to relieve from workload to find the pair of starting pairs
meeting the requirement (reduced by a factor of 2s from 22n−3g). The only inconvenience
caused by utilizing this freedom is that: when developing nodes during the look-ahead
procedure, one has to store with each node its distance from lots of target nodes. Thus,
memory consumption becomes severe. To keep memory requirement reasonable, one has
to trade the time for memory by adopting the distinguishing point technique. The specific
time traded off is at most 2l+t−n + 2l+s−(n−g) per trial of starting node pair. Thus, the
time complexity of Phase 3 turns to be 2t + 22n−3g−s · (2n−t + 2l+t−n + 2l+s−(n−g)) =
2t + 23n−3g−s−t + 2n−3g−s+l+t + 2n−2g+l. Again, because t is a local parameter in Phase
3, we can first make a balance within Phase 3 by setting t = 3n− 3g − s− t, which gives
t = 3n/2− 3g/2− s/2. Then, the time complexity of each phase can be summarized as
follows:

Phase 1: 2l + n2 · 2n/2 Phase 2: 2g+s

Phase 3: 23n/2−3g/2−s/2 + 25n/2−9g/2−3s/2+l + 2n−2g+l

From the complexity formula of Phase 3, the deeper the target nodes (the larger the
value of g) and the more the target pairs (the larger the value of s), the more efficient
this phase is. On the other hand, from the complexity formula of Phase 2, the effect of
increasing the depth and increasing the numbers of target nodes is reverse. To make a
balance, we first set g+s = 3n/2−3g/2−s/2, which results in s = n−5g/3. After plugging
s back, the complexity of Phase 2 and Phase 3 turns to be about 2n−2g/3 + 2n−2g+l.

In case of l ≤ n/2, we set g = l due to the restriction g ≤ min(n/2, l). The overall
time complexity is about 2n−2l/3. In case of l > n/2, we set g = n/2, the overall time
complexity is about 2l + 22n/3. The optimal complexity is 22n/3 obtained for l = n/2.

5.2 Attacks Based on Multi-Cycles (FGMC [BWGG17])
Note that, one of the key point in Dinur’s attacks on hash combiners is to efficiently find a
pair of starting nodes (x0, y0), which reaches to a pair of target deep iterates (x̄, ȳ) at a
common distance. In [BWGG17], cyclic nodes in functional graph are exploited to make it
more efficient to find such pair of starting nodes (x0, y0). Main observation is that, it is
effortless to loop around the cycles to correct bias between their distances using difference
of the two cycle lengths. More specifically, suppose one is starting from a random node x0
(resp. y0), after d1 (resp. d2) iterations of f1 (resp. f2), it reaches a cyclic node x̄ (resp.
ȳ) in FGf1 (resp. FGf2) for the first time. Further, suppose the cycle length is L1 (resp.
L2). Without loss of generality, assume L1 ≤ L2 and let ∆L = L2 mod L1. We know
if ∃ (i, j), 0 ≤ i, j ≤ t, s.t. d1 + i · L1 = d2 + j · L2 then (d1 − d2) mod L1 = j ·∆L
mod L1. Let

S = {j ·∆L mod L1 | j = 0, 1, . . . , t},

where t is the maximum number of cycles limited to be used. Since d1 = O(2n/2),
d2 = O(2n/2) and L1 = Θ(2n/2), it has |d1 − d2| = O(L1). We assume |d1 − d2| < L1 by
ignoring the constant factor. Then, for the randomly sampled pair (x0, y0) that encounters
(x̄, ȳ), as long as their distance bias (d1− d2) mod L1 is in the set S, we are able to derive



Zhenzhen Bao, Jian Guo and Lei Wang 37

a pair of integers (i, j) such that d1 + i · L1 = d2 + j · L2. That is to say, their distance
bias is correctable by differences of multi-cycle lengths. Hence, the probability of reaching
(x̄, ȳ) from a random pair (x0, y0) at the same distance is amplified by roughly t times. We
refer S as the set of correctable distance bias.

5.2.1 Preimage Attack on XOR Combiner Based on Multi-Cycles [BWGG17]

Using cyclic nodes as targets and exploiting multi-cycles to correct distance bias, Dinur’s
preimage attack on XOR combiner can be optimized for l ≥ n/2 as shown in [BWGG17].
The attack procedure is sketched as follows (describing only the differences with previous
preimage attack in Sect. 5.1.2, see Fig. 24 for detailed steps):

• Phase 2: Generate a set (of size 2s) of tuples {(x̄1, ȳ1, m̄1), (x̄2, ȳ2, m̄2), . . . } such
that for each i, h∗

1(x̄i, m̄i‖pad)⊕ h∗
2(ȳi, m̄i‖pad) = V , where pad is the final block of

the (padded) preimage message of a predefined length L. Besides, those x̄i’s and ȳi

are cyclic nodes within the largest components in FGf1 and FGf2 . That is done as
follows: First, repeat the cycle search a few times (refer Sect. 6.1). Thus, one can get
two independent sets (of size about 2n/2) of cyclic nodes as well as the cycle lengths
L1 and L2. Then, from the two sets of cyclic nodes, launch a meet-in-the-middle
procedure to find the set of tuples (x̄i, ȳi, m̄i) fulfilling the requirement.

In addition, compute the set of correctable distance bias S = {j ·∆L mod L1 | j =
0, 1, . . . , #C} with parameters L1, L2 and #C (where #C is the maximum number
of cycles that can use which is essentially bL/L1c, and ∆L = L2 mod L1.)

• Phase 3: Find a message fragment M̂ = m̂‖[m]d such that it maps (x̂, ŷ) to one of
the target pair (x̄i, ȳi). That is done as follows: First, launch a look-ahead procedure
by developing more nodes (2t) similar to that in previous preimage attack. The
difference is that, it does not require the distinguishing point technique to trade
time for memory, because the distance for each node from all target nodes can be
derived from the distance value for this node from any one target node, and the
distance from this particular target node to other targets nodes. Then, start from
the state pair (x̂, ŷ), enumerate (2n−s−l trials) a message block m̂ to find a pair of
starting nodes (x0, y0) = (h1(x̂, m̂), h2(ŷ, m̂)) such that they reach any one of the
pairs of target deep iterate (x̄i, ȳi) with distance bias (d1 − d2) mod L1 ∈ S in the
two functional graphs FGf1 and FGf2 . Retrieve the common distance and denote it
by d , d1 + i · L1 = d2 + j · L2 according to d1, d2, L1 and L2. Again, this phase is
more efficient than 2n computations only when using results of previous look-ahead
procedure.

At the end, select a message prefix M‖L−d−3 with a block length L−d−3 from the simultane-
ous expandable message MSEM, and construct a preimage M : M = M‖L−d−3‖m̂‖[m]d‖m̄i.

The complexity analysis of this attack can be briefly deduced based on that of the
deep-iterate-based preimage attack in Sect. 5.1.2. Denote the message length L = 2l.
In Phase 2, considered deep iterates are cyclic nodes whose depth is 2n/2, and whose
population is about 2n/2. We can simply plug g = n/2 into the previous complexity
formula 2g+s of Phase 2 in the deep-iterate-based preimage attack, which gives 2n/2+s. For
Phase 3, complexity analysis also can be made based on the previous complexity formula
2t + 22n−3g−s · 2n−t of Phase 3 in the previous preimage attack (note that there is no
additional time consumption caused by the distinguishing point technique as discussed
before). The difference is that, number of required trials on starting node pairs can be
reduced by a factor of #C = L · 2−n/2 = 2l−n/2 from 22n−3g−s. Again, after plugging
g = n/2 into the reduced formula, we get the complexity of this updated Phase 3, i.e.,
2t + 22n−3n/2−s−l+n/2 · 2n−t = 2t + 22n−s−l−t. To make a balance within Phase 3, we set
t = 2n− s− l− t, which results in t = n− s/2− l/2. Thus, the computational complexity



38 Functional Graphs and Their Applications in Cryptanalysis

IV1
MSEM

x̂

IV2

MSEM ŷ

H1

H2

L1

L2

loop

⊕ = V

m̄‖pad

m̄‖pa
d

x̄

ȳ

loop

x0

m̂

y0
m̂

[m]d1

[m]d2

M‖L−d−3

M‖L−d−3

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

Figure 24: Preimage attack on XOR combiner based on multi-cycles

for each phase is as follows:

Phase 1: 2l + n2 · 2n/2 Phase 2: 2n/2+s Phase 3: 2n−s/2−l/2

From the complexity formula of Phase 3, the more the target pairs (the larger the value of
s) and the larger the maximum number of cycles limited to be used (which depended on l,
and is 2l−n/2), the more efficient this phase is. On the other hand, from the complexity
formula of Phase 2, the more required target pairs, the more time-consuming this phase is.
To make a balance, we set n/2+s = n−s/2− l/2 which gives s = n/3− l/3. Consequently,
the final complexity is 2l + 25n/6−l/3. Note that, this is only applicable for l ≥ n/2. The
optimized complexity of this attack is 25n/8, obtained when l = 5n/6− l/3, i.e. l = 5n/8.

5.2.2 Second-Preimage Attack on Zipper Hash Based on Multi-Cycles [BWGG17]

Previous techniques used in generic attack on parallel combiners are also applicable to
carry out a second-preimage attack on the cascade combiner Zipper hash. Authors in
[BWGG17] present the first generic second-preimage attack on Zipper hash, which is
applicable for idealized compression function. The unique specification of Zipper hash
makes it a main victim of the proposed second-preimage attack. Since the message length
is fed in the middle of the computation instead of at the end, it enables to propagate an
internal collision of messages of different length to the final output. That brings extra
freedom to optimize the computational complexity by choosing a length for the second
preimage message. Moreover, processing different message blocks enables to break the
dependency between the two computational passes by building two independent standard
multi-collsions, and thus enables to launch a meet-in-the middle procedure when searching
for a pair of starting nodes reaching a pair of targets nodes (x̄, ȳ) at a common distance.

The second-preimage attack on Zipper hash goes as follows ( See Fig. 25 for more detailed
steps): Given a target message M = m1‖m2‖ . . . ‖mL, the goal of the second-preimage
attack on Zipper hash is to find another message M ′ such that H2(H1(IV, M ′),

←−
M ′) =

H2(H1(IV, M),←−M). Suppose the internal state chains in computations of the original mes-
sage M under the two hash functions are respectively (a1, a2, . . . , aL) and (b1, b2, . . . , bL).
• Phase 1: Generate a pair of target nodes (x̄, ȳ) which are the root of the largest

trees in the largest cycles in FGf1 and FGf2 (refer to Sect. 6.1).
Besides, generate two independent 2r-multi-collisions MMC1 and MMC2 starting from
these two target nodes x̄ and ȳ and ending at x̂ and ŷ respectively.



Zhenzhen Bao, Jian Guo and Lei Wang 39

• Phase 2: Build a cascade simultaneous expandable message MSEM starting from x̂
and ending at ỹ across the two passes, such that its length could extend up to L′ (a
chosen length for the second-preimage message, denote L′ = 2l′) (refer to Sect. 2.4.5).

• Phase 3: Find a message block m̄ mapping the final state ŷ of the second multi-
collision to one of the chaining values bp in the second pass of the original message,
then compute the corresponding state x̃ from ap with m̄ in the first pass.

• Phase 4: Find a pair of starting nodes (x̌, y̌) in FGf1 and FGf2 such that they
reach the pair of target nodes (x̄, ȳ) at a common distance d (or at distances of
which the bias is correctable by difference of the two cycle lengths). That is done as
follows: First, launch a look-ahead procedure to develop more (2t) nodes in FGf1

and FGf2 and record the distance information similar to the previous attack. Then,
exploit messages in MMC1 and MMC2 to get two independent sets (of size 2r) of
starting nodes, compute and store with their distances from the targets x̄ and ȳ in
two tables T1 and T2 independently. Finally, launch a meet-in-the-middle procedure
to find a match on the distance d between T1 and T2. Retrieve the corresponding
message M2 ∈MMC2 and M1 ∈MMC1. This phase is accelerated by using results of
the look-ahead procedure.

At the end, select a message suffix M‖q with a proper block length q = L′ − p − 2r − d
from the simultaneous expandable message MSEM, and construct a second-preimage M ′:
m1‖ . . . ‖mp‖M2‖[m]d‖M1‖M‖L′−p−2r−d.

a0 = IV

H(M) = a0

H1

H2

a1

m1

b1

m1

ap−1

bp−1

ap

mp

bp

mp

aL−2

bL−2

aL−1

mL−1

bL−1

mL−1

aL

mL

bL = xL

mL

x̃
m̄

ŷ

m̄

x̌

MMC2

M2

ȳ

|G2| = 2t

MMC2

r

x̄

|G1| = 2t

[m] d

y̌
[m]d

x̂MMC1

r

ỹ
MMC1

M1

ẍ
MSEM

MSEM

ÿ
=

h
2
(h

1
(ẍ

,
m

′ L
′)
,
m

′ L
′)

M‖q

M‖q

- Step 1

- Step 2

- Step 3

- Step 4

- Step 5

- Step 6

- Step 7 ∼ 8

- Step 9

Figure 25: Second-preimage attack on Zipper hash based on multi-cycles

The time complexity of this attack is dominated by that of Phases 2, 3 and 4. In
Phase 2, time complexities of building the simultaneous expandable message is about 2l′ .
In Phase 3, time complexities of connecting ȳ with bp is about 2n−l. In Phase 4, time
complexities of the look-ahead procedure is about 2t, and that of the meet-in-the-middle
procedure to find a pair of (x̌, y̌) connecting to the target nodes (x̄, ȳ) at a common distance
(or with distances of which the bias is correctable by difference of the two cycle lengths) is
about 2r · 2n−t = 2r+n−t (where value of parameter r is discussed below). Within Phase 4,
we can directly balance the time complexities of the look-ahead procedure with that of the
meet-in-the-middle procedure by setting t = r + n− t, which gives t = r/2 + n/2.

If there is nolimitation on the maximum message length, one can use multi-cycles
technique to improve the complexity of Phase 4. Required number of trials to find (x̌, y̌) is
22r = 22n−3n/2−(l′−n/2). Thus, r = n/2− l′/2. In this case, the complexity of each phase



40 Functional Graphs and Their Applications in Cryptanalysis

is:

Phase 1: 2n/2 Phase 2: 2l′
Phase 3: 2n−l Phase 4: 23n/4−l′/4

• If l ≥ 2n/5, we set l′ = 3n/5 to balance Phases 2 and 4. The total complexity is
23n/5.
• If 3n/8 ≤ l < 2n/5, we set l′ = n− l to balance Phases 2 and 3. The total complexity

is 2n−l.
• If l < 3n/8, we set l′ = 3n/8. The total complexity is dominated by Phase 3, which

is 2n−l.
If the maximum message length is limited to be not longer than 2n/2, we pick 2n/2 to

be the length of the second-preimage to optimize the complexity. Required number of
trials to find (x̌, y̌) is 22r = 22n−3n/2. Thus, r = n/4. The complexity of each phase is as
follows:

Phase 1: 2n/2 Phase 2: 2n/2 Phase 3: 2n−l Phase 4: 25n/8

In this case, the total complexity is 25n/8 for 3n/8 ≤ l < n/2, and 2n−l for 0 < l < 3n/8.

6 Discussions, Summary and Open Problems
6.1 Relations Between Properties Utilized in Various Attacks and Prop-

erties of Functional Graphs
Almost all presented attacks consist of some probabilistic algorithms restoring part of
the functional graph. They exploit the entropy loss phenomenon in the output of the
corresponding probabilistic algorithm. Here, we characterize these probabilistic algorithms
from their external behaviors (like black-boxes), in order to highlight that they all lose an
amount of entropy in their output (compare with the entropy in their uniformly random
auxiliary input). The amount of entropy they lost is closely related to the properties of the
functional graph, and is a key factor affecting the efficiencies of the corresponding attacks:
• Cycle search algorithm: A probabilistic algorithm with a uniformly random variable

x
$←− {0, 1, · · · , 2l − 1}, outputs f i(x) and j − i where j ≥ i and j is the minimum

index such that f j(x) = f i(x). Entropy loss in the output of this algorithm is about
l bits (two outputs collide with constant probability). We explain more in Sect. 6.1.1.

• Chain evaluation algorithm: A probabilistic algorithm with a uniformly random
variable x

$←− {0, 1, · · · , 2l − 1}, outputs f2s(x). Entropy loss in the output of this
algorithm is about s bits (two outputs collide with probability 2s−l). We explain
more in Sect. 6.1.2.

• Collision search algorithm: A probabilistic algorithm with independent uniformly
random variables x, y

$←− {0, 1, · · · , 2l − 1}, outputs f i(x) if j is the minimum index
such that f i(x) = f j(y) and c · 2s ≤ i, j ≤ 2s (where c is a constant factor, say 0.25).
Entropy loss in the output of this algorithm is about 2s bits (two outputs collide
with probability 22s−l). We explain more in Sect. 6.1.3.

For brute force algorithm, the entropy is full (2l). Loosely speaking, for shortcut
approaches, the more entropy lost in a utilized probability event, the higher efficiency the
attack achieves. An intuitive explanation is that the loss of entropy reduces the real value
of the birthday bound to find a match. For example, for cycle-based attacks, the probability
for a certain output to occur is close to be constant and the entropy almost reduces to 0.
Cycle-based attacks achieve the best efficiency. The computation complexities of presented
attacks based on the reduction of image-set size and attacks based on collisions are directly



Zhenzhen Bao, Jian Guo and Lei Wang 41

related to the amount of entropy lost in the output of the chain evaluation algorithm or
the collision search algorithm.

On the other hand, all output values of the discussed probabilistic algorithms are
essentially special nodes in the functional graph. Special nodes exploited by the presented
attacks can be classified as follows:
• Cyclic nodes Located in cycles of the functional graph, these nodes provide efficiency

for both generic attacks on hash-based MACs and generic attacks on hash combiners.
Detecting cycle and collecting cyclic nodes require computations of birthday bound,
which is relatively fast. However, message length is also of birthday bound. They
are essentially the most special nodes. Lots of them are both deep iterate nodes and
collision nodes.

• Deep iterate nodes Located (deep) in the low stratum of the functional graph,
these nodes provide trade-offs between the time complexity and the message length
of presented attacks. Generally speaking, the deeper these iterate nodes locate, the
higher efficiency the attacks achieve, at the same time, the longer the message length
is required.

• Deep collision nodes The collision-based attacks presented in this paper essentially
use the collisions located (deep) in the low stratum of the functional graph. We
discuss this in depth in Sect. 6.1.3. Like deep iterate nodes, deep collision nodes
can also provide trade-offs between the time complexity and the message length
for presented attacks. These deep collision nodes are images of two deep iterates.
Entropy on k-th deep collision nodes (see Definition 2) is strictly less than entropy
on k-th deep iterate nodes. Additionally, entropy reduces more rapidly with the
increasing of k for k-th deep collision nodes than the entropy reducing speed for
k-th deep iterate nodes. That brings advantage for collision-based attacks when the
maximum length of messages is limited to be small.

We note that the essential reason for entropy loss in the output of the cycle search
algorithm, the reason for entropy loss in the output of the chain evaluation algorithm,
and the reason for entropy loss in the output of the collision search algorithm are closely
related. All of them can be uniformly explained using properties of functional graph of
random mappings.

6.1.1 Relation Between Entropy Loss of the Cycle Search Algorithm and Properties
of the Functional Graph

The cycle search algorithm (also known as cycle detection, cycle finding [Jou09, Chapter 7])
has been widely used in cryptanalysis. The relation between entropy loss in the output of
the cycle search algorithm and properties of the functional graph has also been noticed.

On the one hand, from probabilistic argument and the birthday paradox, one knows
that after about 2n/2 iterations on a random mapping, the computation chain enters a
cycle. On the other hand, from the known properties of the functional graph, we can get
further support for this statement. Additionally, properties of the functional graph indicate
that by running the cycle search algorithm several times, we can get the cycle in the giant
component in the functional graph of the mapping. Besides, we can also locate the root
of the largest tree. That is because, in the functional graph of a random mapping, the
giant component is expected to occupy a fraction of 0.75782 of the total nodes, the largest
tree 0.48 (refer to Theorem 5). All nodes in the giant component can reach the cycle,
and they are expected to reach the cycle after iterating the function about 2n/2 times
because the expected tail length and the expected rho length are respectively 0.62 · 2n/2

and 1.2 · 2n/2 (refer to Theorem 2). Besides, nodes in the largest tree reach the cycle
through the root of the largest tree. Thus, if we run the cycle search algorithm starting
from a randomly selected node, with a probability about 0.75782 the obtained cycle is the



42 Functional Graphs and Their Applications in Cryptanalysis

cycle in the largest component. Note that 0.75782 + 0.48 > 1, therefore the largest tree
is in the largest component with asymptotic probability one. Assume the cycle we get is
indeed the one in the largest component, then with probability about 0.48/0.75782 ≈ 0.63
the α-node we get is the root of the largest tree [LPW13].

6.1.2 Relation Between Entropy Loss of the Chain Evaluation Algorithm and the
Number of k-th Iterates In the Functional Graph

The chain evaluation is simply starting from a random point and iteratively evaluating the
mapping f up to a certain number k of times, i.e., evaluation of fk (more generally, the
chain evaluation can be done on various mappings, i.e., gk = fk ◦ · · · f1, which is applicable
for HAIFA mode). The reduction of the image-set size of fk with increasing of k can be
illustrated by statistical properties of the functional graph of f . The image-set size of fk

is directly related to the expected number of k-th iterates in the functional graph of f .
Let E(N, k) denote the expected number of k-th iterate image points in a random

mapping f in FN . According to Theorem 1 (Theorem 2 in [FO89]), for fixed k,

lim
N→∞

E(N, k)
N

= 1− τk (1)

where the τk satisfies the recurrence τ0 = 0 and τk+1 = e−1+τk .
By mathematical induction, for 3 ≤ k,

1 < k · (1− τk) < 2. (2)

Thus, by combining Eq.(1) and Eq.(2), we have

Lemma 4. Let E(N, k) denote the expected number of k-th iterate image points in a
random mapping f in FN . For fixed k and k ≥ 3,

1 < lim
N→∞

k · E(N, k)
N

< 2. (3)

Further, according to [RS67], the ratio 1− τk has the following asymptotic expansion
in k:

1− τk ≈
2
k
− 2

3
log k

k2 −
c

k2 − · · · , (4)

where c is a certain constant.
Hence, limk→∞ k · (1− τk) = 2. Thus, for k growing with N , we conjecture:

Conjecture 3. 6 The number E(N, k) are so well-behaved that one can combine Eq.(1)
and Eq.(4) as follows: if k →∞ grows not too fast (i.e., k/

√
N → 0), then

lim
N→∞

k · E(N, k)
N

= 2.

From Lemma 4, for large N and fixed k, the expected number of k-th iterate image
points in a random mapping f ∈ FN is less than 2

k N . From Conjecture 3, for large N and
large k and k �

√
N , with high probability, the number of k-th iterate image points in a

random mapping f ∈ FN is about 2
k N . 7 For k of order

√
N , we conjecture that:

6In the formerly published version of this paper [BGW18], this conjecture is wrongly stated as a
lemma that lim

N→∞,k→∞,k≤
√

N
(1 − τk) · N ≈ 2n−log2(k)+1, which in a strict sense not mathematically

meaningful (the limit on the L.H.S. is always ∞) as pointed out by Ernst Schulte-Geers from the German
BSI. Besides, as Ernst pointed out, Eq.(1) is asymptotic in N for fixed k, while Eq.(4) is asymptotic in k.
Thus, for k growing with N , we cannot directly combine them without an assumption. He also suggested
the reformulation in the form of the conjectures (3 and 4) given here.

7Our experiment shows that 2
k

N is a good approximation for E(N, k) when N ≥ 212 and k <
√

N .



Zhenzhen Bao, Jian Guo and Lei Wang 43

Conjecture 4. The number E(N, k) are so well-behaved that one can conjecture that: Let
0 ≤ a. If N →∞ and k = a

√
N , then there exists a constant C(a), s.t.

lim
N→∞

k · E(N, k)
N

= lim
N→∞

a · E(N, a
√

N)√
N

= C(a).

The determination of (a rigorous upper bound for) C(a) is left as an open problem.

We note that Lemma 4 is essentially consistent with Lemma 1 and 2, which also
appears in different forms in many previous literature [GK11, GJMN15, DL17, Din16].
Here, Lemma 4 and Conjecture 3 provide estimation on the entropy loss of the chain
evaluation algorithm based on statistical properties of the functional graph of random
mappings, which originate from analytic combinatorics (the use of the symbolic method,
generating functions and singularity analysis) [FO89, FS09].

6.1.3 Relation Between Entropy Loss of the Collision Search Algorithm and Proper-
ties of the Functional Graph

The presented collision-based generic attacks on MD hash-based MACs essentially exploit
entropy loss in the output of the collision search algorithm (Algorithm 2).

Authors in [DL17] provided a proof for the probability of two outputs (denote by x̂
and ŷ) of the collision search algorithm being equal (Lemma 3). Suppose the setting of
the collision search algorithm in Lemma 3 is to compute chains of length 2s to search for
collisions (same-offset or free-offset) with a fixed n-bit random function f . In the proof
provided in [DL17], an assumption is required (the assumption is thought to be fulfilled
with constant probability), i.e., the offset of one collision x̂ is a constant fraction of 2s.
Actually, the offset of the other collision ŷ should also be assumed to be a constant fraction
of 2s 8. That implicitly requires that these considered collisions are collisions of images of
Θ(2s)-iterate image nodes (this is the reason why we imposed a restriction c · 2s ≤ i, j ≤ 2s

on the offset i, j of the collision at the beginning of Sect. 6.1). In the following, we name
the collisions fulfilling this assumption explicitly. In that, we investigate them from another
point of view, more specifically, from the properties of the functional graph of random
mappings. Thereby, we show the relation between the entropy loss in the output of the
collision search algorithm and the properties of the functional graph.

Here, we explicitly propose the concept of k-th iterate collision node to represent
collisions fulfilling the assumption in the proof of Lemma 3 in [DL17].

Definition 2 (k-th iterate collision node). A k-th iterate collision node in the functional
graph of a random mapping f ∈ FN , is an r-node (a node of in-degree r), where r ≥ 2
and at least two of its pre-images are k-th iterate image nodes.

Denote the set of k-th iterate collision node by Ak. We have, all nodes in Ak are also
in Ak−1. And clearly, a k-th iterate collision node is also a (k − 1)-th iterate image node.
The expected number of k-th iterate collision nodes is determined by the expected number
of k-th iterate image nodes.

8The reason is as follows. Following the convention in the proof in [DL17]: Given a collision x̂. Denote
by A the event that two new chains of length 2s, starting from arbitrary points (y0, y′

0), also collide on
x̂. Denote by B the event that the chains starting from (y0, y′

0) collide on ŷ. Denote the starting points
of the chains which collide on x̂ by (x0, x′

0) and the actual corresponding colliding points of the chains
by (xi, x′

i), so that f(xi) = f(x′
i) = x̂ with xi 6= x′

i. Denote by I that 0.25 · 2s ≤ i ≤ 0.75 · 2s. The
goal is to calculate the conditional probability Pr[A | B] = Pr[x̂ = ŷ]. The following equations are used:
Pr[A | B] = Pr[A ∩ B]/ Pr[B] = Pr[A]/ Pr[B]. That requires to assume Pr[A ∩ B] = Pr[A]. However, the
further derivation on Pr[A] ≥ Pr[A | I] Pr[I] = Θ(22(2s−l)) requires assuming most of the nodes in chains
starting from y0 are not equal to the nodes in chains starting from y′

0 (so that the following two events are
independent: event X — the chain starting from y0 collides with the chain starting from x0 and event Y

— the chain starting from y′
0 collides with the chain starting from x′

0, or vise-versa). Combining with the
assumption Pr[A ∩ B] = Pr[A], these require the offset of collision point ŷ being a constant fraction of 2s.



44 Functional Graphs and Their Applications in Cryptanalysis

Conjecture 5. 9 For N → ∞ and k growing with N such that k/
√

N < C < ∞ (C is
a constant number), the expected number of k-th iterate collision nodes in the functional
graph of a random mapping f ∈ FN is Θ(k−2 ·N).

Proof. Let x be an arbitrary node selected uniformly at random. Denote the set of k-th
iterate collision nodes in the functional graph of a random mapping f by Ak(f). Denote the
set of k-th iterate image nodes by Bk(f). From the definitions, we have Ak(f) ⊂ Bk+1(f),
and

Pr
f

(x ∈ Ak(f)) = 1− Pr
f

(x 6∈ Bk+1(f))− Pr
f

(|f−1({x}) ∩Bk(f)| = 1)

We have Prf (x 6∈ Bk+1(f)) = τk+1. Now, let us consider the event |f−1({x})∩Bk(f)| = 1:

Pr
f

(|f−1({x}) ∩Bk(f)| = 1)

=
∑

y

Pr
f

(
{y ∈ Bk(f)} ∩ {f(y) = x} ∩

⋂
z∈Bk(f)\{y}

{f(z) 6= x}
)

≈
∑

y

Pr
f

(
{y ∈ Bk(f)}

)
Pr
f

(
{f(y) = x} ∩

⋂
z∈Bk(f)\{y}

{f(z) 6= x}
)

= Pr
f

(
{x ∈ Bk(f)}

) ∑
y

Pr
f

(
{f(y) = x} ∩

⋂
z∈Bk(f)\{y}

{f(z) 6= x}
)

= Pr
f

(
{x ∈ Bk(f)}

) ∑
y

Pr
f

(
{f(y) = x} ∩

⋂
z∈Bk(f)

{f(z) 6= x}
)

≈ Pr
f

(
{x ∈ Bk(f)}

)
Pr
f

({x 6∈ Bk+1(f)})

≈ (1− τk) · τk+1

Note that, in line 2, we assume the event “a point y is a k-th iterate image node in FGf ”
and the event “a random mapping f maps y to a fixed point x” is independent. And, in
line 3, we use that the probability Prf ({y ∈ Bk(f)}) does not depend on y (since f is
chosen uniformly random, the probability does not depend on the concrete value of y). In
line 4, we assume |Bk+1(f)| is large enough. Accordingly, we have (for any fixed k and
very large N)

Pr
f

(x ∈ Ak(f)) = 1− Pr
f

(x 6∈ Bk+1(f))− Pr
f

(|f−1({x}) ∩Bk(f)| = 1)

≈ 1− τk+1 − (1− τk) · τk+1

= 1− 2τk+1 + τk · τk+1

≈ 2
k(k + 1)

Therefore, we conjecture that also for k growing with N , the number of k-th iterate collision
nodes in the functional graph of a random mapping in FN is Θ(k−2 ·N).

Considering an extreme case to look into this conjecture: When k = 2s and s→ n/2,
according to Conjecture 4, the number of k-th iterate image nodes keeps stable in 2n−s →
2n/2 which is the expected number of cyclic nodes. And the number of k-th iterate collision

9In the formerly published version of this paper [BGW18], this conjecture is also wrongly stated as
a lemma, which is informal and does not rigorously state the underlying assumptions. Thanks to Ernst
Schulte-Geers again for pointing out this and providing this relatively formal argument. In the meanwhile,
he has proved some exact results using analytic combinatorics method (exponential generating function,
singularity analysis), which settles one of the open problems mentioned in the next subsection. For the
full derivation and proofs, we refer to a separate paper (in preparation).



Zhenzhen Bao, Jian Guo and Lei Wang 45

nodes is 2n−2s → Θ(1). That is reasonable, because collision implies entropy loss. When
there is no collision, entropy is conserved.

From Conjecture 5, if two k-th iterate collisions are found independently with a random
n-bit mapping f , then they are equal with probability Θ(k2 · 2−n).

Next, we discuss the applicability of Conjecture 5 in the setting of collision-based
attacks to provide ground for complexity analysis. Both of the same-offset collisions and
the free-offset collisions found by corresponding collision search algorithms can be k-th
iterate collision nodes, as long as their offsets concerning the two colliding chains are both
larger than k. Note that, when analyzing the complexity of the collision-based attacks
according to Conjecture 5, one will find limitations on the applicability of Conjecture 5.
The first limitation is that it is only applicable when the target hash-based MACs being of
Merkle-Damgård construction (for HAIFA construction, refer to [DL17] for analysis on
entropy loss in the output of the same-offset collision search). The second limitation is that
it is only applicable when among all collisions found by the collision searching algorithm
using chains of length 2s, there is a constant fraction of them being Θ(2s)-th iterate collision
node (for both same-offset collisions and free-offset collisions). Recall the assumption in
the original proof which states that the offset of a collision is uniformly distributed in
the interval [0, 2s]. This assumption implies the fulfillment of the requirement. However,
this assumption is not true in general. The number of collisions at the beginning of those
chain evaluations are more than that at the end. That is not hard to be understood
considering that images at the beginning of those chains are more than that at the end due
to entropy loss. The more nodes, the more likely to occur collisions in the next iteration.
Thus, to meet the assumption, a restriction on the number of chains (denoted by 2t) and
the length of the chains (denoted by 2s) is necessary. To make the observation on this
phenomenon clearer, we have also performed experiments to evaluate the distribution of
offset of same-offset collisions. Results show that when t and s are large, the number of
collisions at each offset decreases more obviously with the increase of the value of offset
(an extreme case is when t = n, number of collisions at small offsets are significantly
larger than that at large offsets). When t and s are relatively small (e.g., when t = 5n/8
and s = n/8 ), this decreasing trend is not so obvious, and offset of the collisions can be
roughly viewed as uniformly distributed in the interval [0, 2s] 10. Actually, the primary
restriction on t and s in the collision search algorithm stated in Lemma 3, i.e. t + 2s < n,
is sufficient to meet the assumption. Under this restriction, each evaluated chain is not
expected to collide with more than one different chain, thus collisions can be seen to be
independent. As noted in the proof of Lemma 3 in [DL17], Lemma 1 shows that increasing
the length of the chains increases the collision probability (at a common offset) by the
same multiplicative factor. When collisions can be seen to be independent (t + 2s < n), the
offset of the collision can be seen to be uniformly distributed in the interval [0, 2s]. Thus,
a constant fraction of the collisions obtained by running the collision search algorithm
are Θ(2s)-th iterate collision nodes, and thus Conjecture 5 is applicable in the complexity
analysis of collision-based attacks.

6.1.4 Remarks on Approaches from Analytic Combinatorics

Lots of statistic results on functional graphs of random mappings have been deduced using
approaches from analytic combinatorics (refer to Sect. 3 and [FO89, FS09]). Meanwhile,
in previous generic cryptanalysis, properties of probabilistic algorithms related to the
random mappings are usually derived using probabilistic arguments. Conclusions from
these two independent approaches are usually consistent. However, analytic combinatorics
(the symbolic method, generating functions and asymptotic analysis) is more powerful
than probabilistic arguments when the corresponding amount is beyond the birthday

10Refer to https://github.com/FreeDisciplina/CollisionOffset for the source code of this experi-
ment and more detailed experimental results.

https://github.com/FreeDisciplina/CollisionOffset


46 Functional Graphs and Their Applications in Cryptanalysis

bound. The applicability of probabilistic arguments is sometimes based on assumptions on
independence between analyzed probability events (otherwise, complex correlations will
have to be concerned). Whereas, using probabilistic argument is more convenient. As has
been shown in the previous paragraph, conclusions obtained from probabilistic arguments
can be uniformly obtained from known statistical results on functional graphs.

A natural question is: “Is it possible to use approaches from analytic combinatorics
to directly get a recursive asymptotic formula for the expected number of k-th iterate
collision nodes, or for more generalized concepts, such as collision nodes that at least one
of their preimages is k-th iterates, or cyclic nodes which are also collision nodes and deep
iterates?” Another question is: “Is it possible to build discrete combinatorial models for
other concerned objects (e.g., the functional graph of constrained mappings, the partial
functional graph restored by some probabilistic algorithm, iterations on distinct random
functions) and then apply approaches from analytic combinatorics to obtain a quantitative
estimation for the concerned parameters, such that they can be used in cryptanalysis on
those objects?” A particular example is: “Is it possible to build a combinatorial model
for the data structure constructed using Algorithm 1 to obtain a theoretical proof for
Conjecture 2 (on height distribution)?” If these are possible, it will be great that more
seemingly scattered enumerating problems in generic cryptanalysis can be uniformly solved
systematically based on a solid theoretical foundation. We leave these to be a future work.

Experimental Verification on Statistical Properties of Functional Graph A practical
question is: “For real world pseudo-random mappings designed by cryptographers, how
the properties of their functional graph diverse from those statistical properties of the
functional graph of random mappings, which is deduced using approaches from analytic
combinatorics?” To answer this question, we performed experiments by simulating a
few of n-bit random mappings with chopped AES-128 (obtained by fixing an arbitrary
key and 128 − n bits of the input and taking n bits as the output, n ∈ {12, . . . , 28}).
For each n < 26, we sample hundreds of random mappings11, and examined the average
value, the maximum value, the minimum value with respect to parameters considered in
Theorem.1, e.g., their number of cyclic nodes and their number of k-th iterates. We saw
consistency between the experimental results and the theoretical ones. For example, for
24-bit chopped AES-128, deviation between the experimental average number of image
nodes (denoted by Eexp{images}) and the theoretical one (denoted by Ethm{images}) is
|Eexp{images} −Ethm{images}| ≈ 2−20.31Ethm{images} 12. That shows the power of the
approaches from analytic combinatorics.

6.2 Summary on Generic Attacks against Hash-based MACs
As noted above, the presented attacks on hash-based MACs are based on attributes of
three types of probabilistic algorithms restoring part of the functional graph. These attacks
simulate the off-line probabilistic algorithm by querying the oracle. The advantages of the
adversaries depend on how efficient the probabilistic algorithms reduce the uncertainty
on their output, such that the on-line simulation could also capture the same certainty.
We use entropy to represent the amount of uncertainty. By detecting the overlap between
the output of off-line probabilistic algorithm and that of the on-line simulation, one can
get information on the on-line simulation. The loss of entropy reduces the real value of
the birthday bound to detect an overlap. The more entropy loss in the output of the used
probabilistic algorithm, the more efficiency the attacks achieve.

Here we summarize results of those presented generic attacks against hash-based MACs
by drawing trade-off curves between the complexities and the maximum limited length of

11For n >= 26, we can only sample several random mappings due to limited computing resource
12Refer to https://github.com/FreeDisciplina/FunctionalGraphStatistics for the source code of

the experiment and more detailed experimental results.

https://github.com/FreeDisciplina/FunctionalGraphStatistics


Zhenzhen Bao, Jian Guo and Lei Wang 47

queries (see Fig.26a and Fig.26b). From these figures, we can see that attacks based on the
reduction of image-set size do not have an advantage over attacks based on entropy loss of
collisions. Notably, the universal forgery attack based on the reduction of image-set size
was originally thought to have some advantage compared with the universal forgery attack
based on collisions when queries are shorter than 22l/7. However, from Fig.26b (curve of
Attack 3 and curve of Attack 4) we can see, this is a wrong impression. The induction
that leads this wrong impression, is possibly because in the description of the Attack 3,
length of queries is denoted by 22s instead of by 2s like that in the description of Attack
4. Roughly speaking, the reason those attacks based on the reduction of image-set size
are less efficient than attacks based on entropy loss of collisions, is that, the former has
to either build more filters or test more filters to detect overlap between off-line nodes
and on-line nodes (note that number of matching pairs is 2l−s for the former and 2l−2s

for the latter). Comparing between the cycle-based attacks and the attacks based on
collisions, we can find that: the cycle-based attacks are generally more efficient. Reasons
include that, there is no need to build a filter to make a match, the cycle length is a good
filter, and the α-node can be efficiently detected both off-line and on-line. Additionally,
we can use multi-cycles to correct difference of length of two distinct messages. On the
other hand, disadvantage of the cycle-based attacks is also notable. That is, they are
inapplicable for short messages. For short messages, the most efficient attacks are those
collision-based attacks. However, there are also inherent limitations on the efficiency of
those collision-based attacks. Collision-based attacks always evaluate a large number of
internal states to collect enough off-line collisions and on-line collisions such that there
exists an overlap; they also have to build filters and match using these filters for a large
set of states to detect the overlap between on-line collisions and off-line collisions; These
are expensive and are the performance bottlenecks of these attacks.

1
24

1
12

1
8

1
6

5
24

1
4

7
24

1
3

3
8

5
12

11
24

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

5
6

7
8

11
12

23
24

1

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

5
6

7
8

11
12

23
24

1

( 1
2 , 1

2 )

( 1
3 , 1)

( 1
5 , 4

5 )
( 1

4 , 3
4 )

( 1
3 , 2

3 )

( 1
8 , 3

4 )

Limited maximum length of messages (log2(L)/l)

C
om

pl
ex

it
y

(l
og

2
(C

)/
l)

Attack 1. Use the largest cycle [PW14]
Attack 2. Use shorter cycles [DL17]
Attack 3. Use reduction of image-set size [DL17]
Attack 4. Use same-offset collision [LPW13]
Attack 5. Use free-offset collision + off-line filter [DL17]
Attack 6. Use free-offset collision + on-line filter [DL17]

(a) State recovery attacks

1
24

1
12

1
8

1
6

5
24

1
4

7
24

1
3

3
8

5
12

11
24

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

5
6

7
8

11
12

23
24

1

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

5
6

7
8

11
12

23
24

1

( 1
2 , 5

6 ) ( 5
6 , 5

6 )

( 1
2 , 3

4 ) ( 3
4 , 3

4 )

( 2
7 , 6

7 )

( 2
5 , 4

5 )

Limited maximum length of messages (log2(L)/l)

C
om

pl
ex

it
y

(l
og

2
(C

)/
l)

Attack 1. Based on height [PW14]

Attack 2. Based on height [GPSW14]

Attack 3. Based on image-set reduction [DL17]

Attack 4. Based on collisions [DL17]

(b) Universal forgery attack
Figure 26: Relation curves between the limited maximum length of messages and the
complexity of attacks on MACs

6.3 Summary on Generic Attacks against Hash Combiners
Here, we summarize results of presented generic attacks on hash combiners by drawing
trade-off curves between the complexity and the length of the message (see Fig.27). From
this figure, we can see that for MD XOR combiner and MD Zipper hash, security upper
bounds provided by these generic attacks are quite close to the security lower bounds (2n/2)
regarding (second) preimage resistance. However, when limiting the length of message,
security upper bounds remain high enough. That is mainly due to the limitation of



48 Functional Graphs and Their Applications in Cryptanalysis

the functional-graph-based attacks which generally iterate the underlying compression
function many times thus resulting long messages. Is it possible, for short message, to
launch efficient attacks on hash combiners by exploiting other special nodes besides those
deep-iterates in the functional graph? Is it possible, for long messages, to completely
eliminate the gap between the security upper bound and the lower bound of these hash
combiners by further exploiting the properties of random functional graph? We leave these
as open problems.

1
24

1
12

1
8

1
6

5
24

1
4

7
24

1
3

3
8

5
12

11
24

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

5
6

7
8

11
12

23
24

1

1
2

13
24

7
12

5
8

2
3

17
24

3
4

19
24

5
6

7
8

11
12

23
24

1

( 1
3 , 5

6 )

( 1
3 , 1)

( 3
4 , 3

4 )

( 1
2 , 2

3 )

( 5
8 , 5

8 )( 3
8 , 5

8 )
( 2

5 , 3
5 )

( 1
3 , 2

3 )

Length of the preimage messages (log2(L)/n)

C
om

pl
ex

it
y

(l
og

2
(C

)/
n

)

[LW15] Preimage on HAIFA H1(M) ⊕ H2(M), Tech. IS
[Din16] 2nd preimage on MD H1(M)‖H2(M), Tech. SEM+FGDI
[Din16] Preimage on MD H1(M) ⊕ H2(M), Tech. SEM+FGDI
[BWGG17] Preimage on MD H1(M) ⊕ H2(M), Tech. SEM+FGMC

[BWGG17] 2nd-preimage on Zipper, Limit on L: 2n/2, Tech. SEM+MC+FGDI
[BWGG17] 2nd-preimage on Zipper, No limit on L, Tech. SEM+MC+FGMC
[ABDK09] 2nd-preimage on Hash-Twice, Tech. EM+MC+DS

Figure 27: Trade-offs between message length and attack complexity for hash combiners

Acknowledgments.

The authors would like to thank the reviewers of FSE 2018 for their detailed comments
and valuable suggestions. Special thanks go to Pierre Karpman and Maria Eichlseder for
their careful reading and thorough comments which helped us improve the manuscript
significantly. Lei Wang is sponsored by National Natural Science Foundation of China
(61602302, 61472250, 61672347), Natural Science Foundation of Shanghai (16ZR1416400),
Shanghai Excellent Academic Leader Funds (16XD1401300), 13th five-year National
Development Fund of Cryptography (MMJJ20170114).

References
[ABD+16] Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, Pierre-Alain Fouque,

Jonathan J. Hoch, John Kelsey, Adi Shamir, and Sébastien Zimmer. New
Second-Preimage Attacks on Hash Functions. J. Cryptology, 29(4):657–696,
2016.

[ABDK09] Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, and John Kelsey. Herd-
ing, Second Preimage and Trojan Message Attacks beyond Merkle-Damgård.
In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, edi-
tors, Selected Areas in Cryptography, 16th Annual International Workshop,
SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Selected
Papers, volume 5867 of LNCS, pages 393–414. Springer, 2009.

[ABF+08] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch,
John Kelsey, Adi Shamir, and Sébastien Zimmer. Second Preimage Attacks on
Dithered Hash Functions. In Nigel P. Smart, editor, Advances in Cryptology -



Zhenzhen Bao, Jian Guo and Lei Wang 49

EUROCRYPT 2008, 27th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17,
2008. Proceedings, volume 4965 of LNCS, pages 270–288. Springer, 2008.

[AD99] Christopher Allen and Tim Dierks. The TLS Protocol Version 1.0. RFC 2246,
January 1999.

[BB06] Dan Boneh and Xavier Boyen. On the Impossibility of Efficiently Combining
Collision Resistant Hash Functions. In Cynthia Dwork, editor, Advances in
Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 2006, Proceedings, volume
4117 of LNCS, pages 570–583. Springer, 2006.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions
for Message Authentication. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
LNCS, pages 1–15. Springer, 1996.

[BD07] Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions -
HAIFA. Cryptology ePrint Archive, Report 2007/278, 2007. http://eprint.
iacr.org/2007/278.

[BGW18] Zhenzhen Bao, Jian Guo, and Lei Wang. Functional graphs and their ap-
plications in generic attacks on iterated hash constructions. IACR Trans.
Symmetric Cryptol., 2018(1):201–253, 2018.

[Bra90] Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings, volume 435 of LNCS. Springer, 1990.

[BSU12] Simon R. Blackburn, Douglas R. Stinson, and Jalaj Upadhyay. On the
complexity of the herding attack and some related attacks on hash functions.
Des. Codes Cryptography, 64(1-2):171–193, 2012.

[BWGG17] Zhenzhen Bao, Lei Wang, Jian Guo, and Dawu Gu. Functional Graph Revis-
ited: Updates on (Second) Preimage Attacks on Hash Combiners. In Jonathan
Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part II, volume 10402 of LNCS, pages
404–427. Springer, 2017.

[Dam89] Ivan Damgård. A Design Principle for Hash Functions. In Brassard [Bra90],
pages 416–427.

[Dea99] Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis,
Princeton University Princeton, 1999.

[Din16] Itai Dinur. New Attacks on the Concatenation and XOR Hash Combiners. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I, volume 9665 of LNCS, pages 484–508. Springer,
2016.

[DL14] Itai Dinur and Gaëtan Leurent. Improved Generic Attacks against Hash-Based
MACs and HAIFA. In Garay and Gennaro [GG14], pages 149–168.

http://eprint.iacr.org/2007/278
http://eprint.iacr.org/2007/278


50 Functional Graphs and Their Applications in Cryptanalysis

[DL17] Itai Dinur and Gaëtan Leurent. Improved Generic Attacks Against Hash-Based
MACs and HAIFA. Algorithmica, 79(4):1161–1195, 2017.

[DR06] Tim Dierks and Eric Rescorla. The transport layer security (TLS) protocol
version 1.1. RFC 4346, April 2006.

[FKK11] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The Secure Sockets Layer
(SSL) Protocol Version 3.0. RFC 6101, August 2011.

[FL07] Marc Fischlin and Anja Lehmann. Security-Amplifying Combiners for
Collision-Resistant Hash Functions. In Alfred Menezes, editor, Advances
in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume
4622 of LNCS, pages 224–243. Springer, 2007.

[FL08] Marc Fischlin and Anja Lehmann. Multi-property Preserving Combiners for
Hash Functions. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory
of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008.,
volume 4948 of LNCS, pages 375–392. Springer, 2008.

[FLP08] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust Multi-property
Combiners for Hash Functions Revisited. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, Automata, Languages and Programming, 35th Interna-
tional Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Pro-
ceedings, Part II - Track B: Logic, Semantics, and Theory of Programming
& Track C: Security and Cryptography Foundations, volume 5126 of LNCS,
pages 655–666. Springer, 2008.

[FLP14] Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust Multi-Property
Combiners for Hash Functions. J. Cryptology, 27(3):397–428, 2014.

[FO89] Philippe Flajolet and Andrew M. Odlyzko. Random Mapping Statistics. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryp-
tology - EUROCRYPT ’89, Workshop on the Theory and Application of of
Cryptographic Techniques, Houthalen, Belgium, April 10-13, 1989, Proceedings,
volume 434 of LNCS, pages 329–354. Springer, 1989.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. cambridge
University press, 2009.

[GG14] Juan A. Garay and Rosario Gennaro, editors. Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of LNCS. Springer,
2014.

[GJMN15] Jian Guo, Jérémy Jean, Nicky Mouha, and Ivica Nikolić. More Rounds,
Less Security? Cryptology ePrint Archive, Report 2015/484, 2015. http:
//eprint.iacr.org/2015/484.

[GK11] Danilo Gligoroski and Vlastimil Klima. Practical Consequences of the Aberra-
tion of Narrow-Pipe Hash Designs from Ideal Random Functions. In Marjan
Gusev and Pece Mitrevski, editors, ICT Innovations 2010: Second Inter-
national Conference, ICT Innovations 2010, Ohrid Macedonia, September
12-15, 2010. Revised Selected Papers, volume 83 of CCIS, pages 81–93, Berlin,
Heidelberg, 2011. Springer.

http://eprint.iacr.org/2015/484
http://eprint.iacr.org/2015/484


Zhenzhen Bao, Jian Guo and Lei Wang 51

[GPSW14] Jian Guo, Thomas Peyrin, Yu Sasaki, and Lei Wang. Updates on Generic
Attacks against HMAC and NMAC. In Garay and Gennaro [GG14], pages
131–148.

[JN15] Ashwin Jha and Mridul Nandi. Some Cryptanalytic Results on Zipper Hash
and Concatenated Hash. Cryptology ePrint Archive, Report 2015/973, 2015.
http://eprint.iacr.org/2015/973.

[Jou04] Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cas-
caded Constructions. In Matthew K. Franklin, editor, Advances in Cryptology
- CRYPTO 2004, 24th Annual International CryptologyConference, Santa
Barbara, California, USA, August 15-19, 2004, Proceedings, volume 3152 of
LNCS, pages 306–316. Springer, 2004.

[Jou09] Antoine Joux. Algorithmic cryptanalysis. CRC Press, 2009.

[KBPH06a] Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the
Security of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and
SHA-1. Cryptology ePrint Archive, Report 2006/187, 2006. http://eprint.
iacr.org/2006/187.

[KBPH06b] Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the
Security of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and
SHA-1 (Extended Abstract). In Roberto De Prisco and Moti Yung, editors,
Security and Cryptography for Networks, 5th International Conference, SCN
2006, Maiori, Italy, September 6-8, 2006, Proceedings, volume 4116 of LNCS,
pages 242–256. Springer, 2006.

[KK06] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nos-
tradamus Attack. In Serge Vaudenay, editor, Advances in Cryptology - EU-
ROCRYPT 2006, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 -
June 1, 2006, Proceedings, volume 4004 of LNCS, pages 183–200. Springer,
2006.

[KK13] Tuomas Kortelainen and Juha Kortelainen. On Diamond Structures and
Trojan Message Attacks. In Sako and Sarkar [SS13], pages 524–539.

[KR95] Burt Kaliski and Matt Robshaw. Message authentication with MD5. Crypto-
Bytes, Sping, 1995.

[KRS88] Burton S. Kaliski, Ronald L. Rivest, and Alan T. Sherman. Is the Data
Encryption Standard a group? (Results of cycling experiments on DES).
Journal of Cryptology, 1(1):3–36, Jan 1988.

[KS05] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions
for Much Less than 2n Work. In Ronald Cramer, editor, Advances in Cryp-
tology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May
22-26, 2005, Proceedings, volume 3494 of LNCS, pages 474–490. Springer,
2005.

[Leh10] Anja Lehmann. On the Security of Hash Function Combiners. PhD thesis,
Darmstadt University of Technology, 2010.

http://eprint.iacr.org/2015/973
http://eprint.iacr.org/2006/187
http://eprint.iacr.org/2006/187


52 Functional Graphs and Their Applications in Cryptanalysis

[Lis06] Moses Liskov. Constructing an Ideal Hash Function from Weak Ideal Com-
pression Functions. In Eli Biham and Amr M. Youssef, editors, Selected Areas
in Cryptography, 13th International Workshop, SAC 2006, Montreal, Canada,
August 17-18, 2006 Revised Selected Papers, volume 4356 of LNCS, pages
358–375. Springer, 2006.

[LPW13] Gaëtan Leurent, Thomas Peyrin, and Lei Wang. New Generic Attacks against
Hash-Based MACs. In Sako and Sarkar [SS13], pages 1–20.

[LW15] Gaëtan Leurent and Lei Wang. The Sum Can Be Weaker Than Each Part.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, volume 9056 of LNCS, pages 345–367. Springer,
2015.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [Bra90],
pages 428–446.

[Mut88] Ljuben R Mutafchiev. The limit distribution of the number of nodes in low
strata of a random mapping. Statistics & Probability Letters, 7(3):247 – 251,
1988.

[Pie07] Krzysztof Pietrzak. Non-trivial Black-Box Combiners for Collision-Resistant
Hash-Functions Don’t Exist. In Moni Naor, editor, Advances in Cryptology -
EUROCRYPT 2007, 26th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24,
2007, Proceedings, volume 4515 of LNCS, pages 23–33. Springer, 2007.

[Pie08] Krzysztof Pietrzak. Compression from Collisions, or Why CRHF Combiners
Have a Long Output. In David A. Wagner, editor, Advances in Cryptology
- CRYPTO 2008, 28th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2008. Proceedings, volume 5157 of LNCS,
pages 413–432. Springer, 2008.

[Pro74] G. V. Proskurin. On the Distribution of the Number of Vertices in Strata of
a Random Mapping. Theory of Probability & Its Applications, 18(4):803–808,
1974.

[PSW12] Thomas Peyrin, Yu Sasaki, and Lei Wang. Generic Related-Key Attacks for
HMAC. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology
- ASIACRYPT 2012 - 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings, volume 7658 of LNCS, pages 580–597. Springer, 2012.

[PvO95] Bart Preneel and Paul C. van Oorschot. MDx-MAC and Building Fast MACs
from Hash Functions. In Don Coppersmith, editor, Advances in Cryptology
- CRYPTO ’95, 15th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 27-31, 1995, Proceedings, volume 963 of
LNCS, pages 1–14. Springer, 1995.

[PW14] Thomas Peyrin and Lei Wang. Generic Universal Forgery Attack on Iterative
Hash-Based MACs. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of LNCS,
pages 147–164. Springer, 2014.



Zhenzhen Bao, Jian Guo and Lei Wang 53

[RS67] A. Rényi and G. Szekeres. On the height of trees. Journal of the Australian
Mathematical Society, 7(4):497–507, 11 1967.

[SS13] Kazue Sako and Palash Sarkar, editors. Advances in Cryptology - ASI-
ACRYPT 2013 - 19th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Bengaluru, India, December 1-5,
2013, Proceedings, Part II, volume 8270 of LNCS. Springer, 2013.

[Tsu92] Gene Tsudik. Message authentication with one-way hash functions. In Proceed-
ings IEEE INFOCOM ’92, The Conference on Computer Communications,
Eleventh Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, One World through Communications, Florence, Italy, May
4-8, 1992, pages 2055–2059. IEEE, 1992.

[Yas07] Kan Yasuda. "Sandwich" Is Indeed Secure: How to Authenticate a Message
with Just One Hashing. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson,
editors, Information Security and Privacy, 12th Australasian Conference,
ACISP 2007, Townsville, Australia, July 2-4, 2007, Proceedings, volume 4586
of LNCS, pages 355–369. Springer, 2007.


	1 Introduction
	1.1 Our Contributions
	1.2 Notations and Roadmap in the Rest of Paper

	2 Preliminaries
	2.1 Hash Functions and Iterative Constructions
	2.2 Hash-based MACs
	2.3 Hash Combiners
	2.4 A Toolbox for Generic Attacks on Hash Constructions

	3 Functional Graph of Random Mappings
	3.1 Known Results on Parameters of Functional Graph Flajolet1990
	3.2 Height Distribution and the  -th Stratum
	3.3 Turn the Compression Function Into Random Mapping on Itself

	4 Attacks on Hash-based MAC Based on Functional Graph
	4.1 Cycle-based Attacks
	4.2 Height-based Attacks
	4.3 Attacks Based on Entropy Loss of Chain Evaluation and Collision Search

	5 Attacks on Hash Combiners Based on Functional Graph
	5.1 Attacks Based on Deep Iterates (FGDI Dinur2016)
	5.2 Attacks Based on Multi-Cycles (FGMC BaoW0G17)

	6 Discussions, Summary and Open Problems
	6.1 Relations Between Properties Utilized in Various Attacks and Properties of Functional Graphs
	6.2 Summary on Generic Attacks against Hash-based MACs
	6.3 Summary on Generic Attacks against Hash Combiners


