
Security Analysis and Modification of ID-Based Encryption
with Equality Test from ACISP 2017

Hyung Tae Lee1, Huaxiong Wang2, and Kai Zhang34

1 Division of Computer Science and Engineering,
College of Engineering, Chonbuk National University, Republic of Korea

hyungtaelee@chonbuk.ac.kr
2 Division of Mathematical Sciences, School of Physical and Mathemathcial Sciences,

Nanyang Technological University, Singapore
hxwang@ntu.edu.sg

3 Department of Information Security, College of Computer Science and Technology,
Shanghai University of Electric Power, China

kzhang@shiep.edu.cn
4 Co-Innovation Center for Information Supply & Assurance Technology,

Anhui University, Hefei, China

Abstract. At ACISP 2017, Wu et al. presented an identity-based encryption with equality
test (IBEET) that considers to prevent insider attacks. To analyze its security, they proposed
a new security notion for IBEET, which is slightly weaker than the indistinguishability under
adaptive identity and chosen ciphertext attacks (IND-ID-CCA2) for traditional identity-
based encryption. Then, they claimed that their proposed scheme achieves this new security
notion under the Bilinear Diffie-Hellman (BDH) assumption in the random oracle model.

In this paper, we demonstrate that their scheme does not achieve the claimed security re-
quirement by presenting an attack. Our attack algorithm is very simple: It requires only a
pair of message and ciphertext, and takes one exponentiation and two bilinear map eval-
uations. Subsequently, we present a modification of their IBEET construction and show
that it satisfies their security notion under the BDH assumption and the existence of strong
pseudorandom permutation and existentially unforgeable message authentication code in
the random oracle model. We remark that our modification has better efficiency than the
original construction.

Keywords: Identity based encryption with equality test, insider attacks, chosen ciphertext
attacks, modification

1 Introduction

Identity-based encryption with equality test (IBEET) is a special kind of identity-based
encryption (IBE) that allows to perform equality tests between ciphertexts under different
identities as well as the same identity. More specifically, an IBEET system consists of a
sender(s), a receiver(s), and a tester(s): A sender encrypts a message using a receiver’s
identity and delivers a generated ciphertext to the receiver. The receiver may decrypt the
ciphertext using his/her secret key and/or store it at the server. Once a need arises, the
receiver issues a trapdoor for equality tests to a tester. Since then, the tester can perform
equality tests on ciphertexts under identities of receivers who already passed trapdoors to
the tester. This feature enables us to apply IBEET to various scenarios in practice, such
as keyword search on encrypted databases and efficient encrypted data management on
the cloud. Due to wide availability in practice, several IBEET constructions [2–4,6] have
been proposed.

On the other hand, supporting equality tests makes the security of IBEET schemes
weaken. Since the tester can have a trapdoor for equality test on the target ciphertext, she
can generate a ciphertext of any message by herself and perform equality tests between
the target ciphertext and the ciphertext generated by herself. We call this type of attacks
insider attack [7]. Due to insider attacks, we cannot expect that IBEET schemes achieve
indistinguishability-based security notions against testers who aim to distinguish whether
the challenge ciphertext contains which message between two candidates. Particularly,
if the message space is sufficiently small or the min-entropy of message distribution is
not as high as the security parameter, the tester can recover a message from the target
ciphertext by executing insider attacks. Therefore, to prevent insider attacks, in the pre-
vious IBEET schemes, it is assumed that the size of message space is exponential in the
security parameter and the min-entropy of message distribution is as high as the security
parameter.

Very recently, at ACISP 2017, Wu et al. [7] proposed an IBEET scheme which consid-
ers to prevent insider attacks. To this end, they first established a variant of traditional
IBEET model: In their IBEET system, anyone can perform equality tests between any
two ciphertexts publicly without trapdoors. Instead, only group members who have a
token for a receiver’s identity can generate a ciphertext. Hence, testers who do not have
a token cannot perform insider attacks. Thereafter, they constructed an IBEET scheme
using bilinear map groups under the proposed model. To analyze the security of their
scheme, they introduced a new security notion, which is slightly weaker than the indis-
tinguishability under adaptive identity and chosen ciphertext attacks (IND-ID-CCA2) for
traditional IBE; a main difference between two security models is that messages m0,m1

submitted by the adversary at the challenge phase cannot be queried to the encryption
oracle before and after the challenge phase in the security game for the new model. (Note
that the challenger in the security game for the new model should provide an encryption
oracle to the adversary because he does not have a token required for encryption, whereas
the adversary for the traditional security model of IBE can encrypt a message by him-
self.) They claimed that their scheme achieves this new security notion under the Bilinear
Diffie-Hellman (BDH) assumption in the random oracle model.

In this paper, we demonstrate that their construction does not satisfy their security
notion by presenting an attack. Our attack algorithm is very simple: Once the adversary
has the challenge ciphertext and a pair of message and ciphertext after the challenge
phase, he generates a valid part for equality test of submitted messages at the challenge
phase by manipulating the received ciphertext. Then, he can distinguish which message is
contained in the challenge ciphertext between two candidates by performing an equality
test between the challenge ciphertext and the ciphertext manipulated by himself. It takes
one exponentiation to manipulate a ciphertext to obtain a valid part for equality test
and two bilinear map evaluations to perform an equality test. Furthermore, our attack
requires one access to the encryption oracle only. Hence, it also seems hard that the
Wu et al.’s original construction achieves more weaker indistinguishability-based security
notions, e.g., the indistinguishability under chosen plaintext attacks and known plaintext
attacks.

Next, we modify Wu et al.’s construction so that it achieves the security notion which
was presented in the original paper [7]. To avoid our attack presented in this paper, we
exploit a keyed permutation, and let group users share the same key for the exploited

2

keyed permutation and use it as a token for encryption. Moreover, we also employ a
message authentication code (MAC) to prevent an adversary from reusing an output of
the exploited keyed permutation by manipulating other parts. As a result, we obtain a
modification that achieves Wu et al.’s security notion if the exploited keyed permutation
is strong pseudorandom, the employed MAC is existentially unforgeable, and the BDH
assumption holds in the random oracle model. We remark that our modification has better
efficiency than the original construction in terms of computational costs and ciphertext
sizes, as a by-product of exploiting a keyed permutation, instead of bilinear maps for the
test algorithm.

Organization of the Paper. In Section 2, we introduce formal definitions for IBEET
system against insider attack, proposed by Wu et al. and give a description of their
construction in [7]. Section 3 presents our attack algorithm for their IBEET scheme. Our
modification and its security analysis are provided and discussed in Section 4. The details
of security proof are given in Appendix.

2 ID-Based Encryption with Equality Test Against Insider Attack

In this section, we introduce formal definitions for IBEET system against insider attack,
proposed by Wu et al. [7]. Then, we review the description of their IBEET construction
presented in [7].

Notations. For an algorithm A, a ← A denotes that a is an output of A. We say that
a function f : N → R is negligible if for all polynomials p(·) and sufficiently large λ,
f(λ) ≤ 1

p(λ) .

2.1 System for IBEET Against Insider Attack

Now, we look at the IBEET system model that considers to prevent insider attack, pro-
posed by Wu et al. [7]. The IBEET system against insider attack consists of a group
of users, tester(s), and other users outside of the group. Designated senders who have a
token for a receiver in the group can encrypt a message under the receiver’s identity and
sends it to the receiver. Testers and other users can not generate ciphertexts of users in
the group and only can conduct equality tests between ciphertexts of users in the group.
Note that Wu et al.’s system model regards testers and other users outside of the group
as insiders and attempts to prevent their attacks. Their model does not consider the se-
curity against other users in the group who have a token for encryption under the target
receiver’s identity, but do not generate the target ciphertext.

The IBEET scheme against insider attack consists of the following five polynomial-
time algorithms:

– Setup(λ): It takes a security parameter λ as an input and returns the system public
parameter pp, the master secret key msk, and the master token key mtk.
We note that all other algorithms take pp as an input, though it is not explicitly
stated.

– Extract(ID,msk,mtk): It takes an identity ID, the master secret key msk, and the
master token key mtk as inputs and returns the private key dID and token tokID for
identity ID.

3

It is assumed that dID and tokID are delivered to the user of identity ID and all group
users, respectively, via secure channel.

– Enc(pp,m, ID, tokID) : It takes the system public parameter pp, a message m, an
identity ID and the token tokID for identity ID as inputs and returns a ciphertext ct.

– Test(ctA,ctB) : It takes two ciphertexts ctA and ctB for identities IDA and IDB,
respectively, as inputs and returns 1 which indicates that ctA and ctB contain the
same message, or 0 which indicates that they contain different messages.

– Dec(ct, dID, tokID): It takes a ciphertext ct, the decryption key dID, and the token
tokID for identity ID as inputs and returns a message m or ⊥.

We say that the above IBEET scheme is correct if it satisfies the following conditions:

1. For any security parameter λ, identity ID, and message m, it holds that

Pr[m← Dec(ct, dID, tokID)] = 1

where (pp,msk,mtk) ← Setup(λ), (dID, tokID) ← Extract(ID,msk,mtk), and ct ←
Enc(pp,m, ID, tokID).

2. For any security parameter λ, identities IDA, IDB, and messages mA,mB, it holds that

Pr[1← Test(ctA,ctB)]

is 1 if mA = mB and negligible in the security parameter λ if mA 6= mB, where
(pp,msk,mtk) ← Setup(λ), (dIDA

, tokIDA
) ← Extract(IDA,msk,mtk), (dIDB

, tokIDB
)

← Extract(IDB,msk,mtk), ctA ← Enc(pp,mA, IDA, tokIDA
), and ctB ← Enc(pp,mB,

IDB, tokIDB
).

We note that the first condition is for the correctness of the decryption algorithm, whereas
the second condition is for the correctness of the test algorithm.

2.2 Security Definition for IBEET Against Insider Attack

The authors of [7] introduced a new security notion for IBEET, which is slightly weaker
than the formal IND-ID-CCA2 security for traditional IBE. Informally, a main difference
between their new security notion and traditional IND-ID-CCA2 security for IBE is that
messages m0,m1 submitted by the adversary at the challenge phase were never queried
to the encryption oracle before the challenge phase and should not be queried to the
encryption oracle after the challenge phase in the security game. (In fact, an adversary
can generate a ciphertext by himself and thus the encryption oracle does not exist in the
security game for traditional IBE schemes.)

The formal definition for their security notion is as follows. We say that an IBEET
scheme IBEET = (Setup,Extract,Enc,Test,Dec) achieves the weak indistinguishability un-
der adaptive identity and chosen ciphertext attacks (wIND-ID-CCA2) if for any probabilis-
tic polynomial-time (PPT) adversary A, its advantage in the following game played with
the challenger C is negligible in the security parameter λ:

1. Setup: C obtains the system public parameter pp, the master secret key msk, and
the master token key mtk by running (pp,msk,mtk)← Setup(λ). C passes pp to A.

4

2. Phase 1: A may issue queries to the following oracles adaptively and polynomially
many times in any order:

– OExtract(·) : On input IDi, the key extraction oracle returns dIDi
, where (dIDi

, tokIDi
)

← Extract(IDi,msk,mtk).

– OEnc(·,·) : On input a pair of message and identity (mIDi
, IDi), the encryption oracle

returns ctIDi
for ctIDi

← Enc(pp,mIDi
, IDi, tokIDi

).

– ODec(·,·) : On input a pair of identity and ciphertext (IDi,ctIDi
), the decryp-

tion oracle returns m by running m ← Dec(ctIDi
, dIDi

, tokIDi
) for (dIDi

, tokIDi
) ←

Extract(IDi,msk,mtk).

3. Challenge: A submits a target identity ID∗ and two messages m0,m1 of the same-
length to C, where ID∗ was never queried to OExtract(·) and m0,m1 were never queried
toOEnc(·,·) in Phase 1. C picks a random bit b ∈ {0, 1}, runs ct∗ID∗,b ← Enc(pp,mb, ID

∗,
tokID∗), and sends ct∗ID∗,b to A.

4. Phase 2: As in Phase 1, A may issue queries to the oracles adaptively and polyno-
mially many times in any order. The constraints for A’s queries are as follows:

(a) The challenge identity ID∗ cannot be queried to OExtract(·).

(b) The submitted messages m0,m1 cannot be queried to OEnc(·,·).

(c) The pair of the challenge identity and ciphertext (ID∗,ct∗ID∗,b) cannot be queried

to ODec(·,·).

5. Guess: A returns a random guess b′.

The advantage of A in the above game is defined to AdvwIND-ID-CCA2
A,IBEET (λ) :=

∣∣Pr[b′ = b]− 1
2

∣∣.
Remark 1. The extraction oracle OExtract(·) does not return tokIDi

though it executes the
extraction algorithm. This is because we assume that the adversary cannot generate ci-
phertexts of group users. Otherwise, he can generate ciphertexts of messages m0 and m1

and perform equality tests by himself and thus it is impossible to achieve wIND-ID-CCA2
security inherently.

2.3 Wu et al.’s IBEET Scheme

In this subsection, we review Wu et al.’s IBEET scheme [7]. The description of their
IBEET construction is as follows.

– Setup(λ) : On input a security parameter λ, generate two multiplicative cyclic groups
G1,G2 of prime order p = p(λ) and a bilinear map e : G1 ×G1 → G2. Pick a random
generator g of G1. Select two random elements α, β from Z∗p, and set a master secret
key msk and a master token key mtk as

msk = α and mtk = β.

Compute Ppub = gα. Generate three cryptographic hash functions

H : {0, 1}t → Z∗p, H1 : {0, 1}∗ → G1, and H2 : G3
1 ×G2 → {0, 1}t+`,

5

where t denotes the bit-length of messages and ` denotes the bit-length of randomness
utilized in the encryption algorithm, i.e., ` = dlog2 pe where dae denotes the smallest
integer that is larger than or equal to a for a ∈ R. Finally, output a system public
parameter

pp = (λ, p, t, `, g,G1,G2, Ppub, e,H,H1,H2)

and a pair of the master secret and master token keys (msk,mtk).

– Extract(ID,msk,mtk) : On input an identity ID, the master secret key msk = α, and
the master token key mtk = β, the key generation center (KGC) computes

gID = H1(ID), dID = gαID and tokID = gβID,

and outputs (dID, tokID).

– Enc(pp,m, ID, tokID) : It takes the system public parameter pp, a message m, an
identity ID, and the token tokID for identity ID as inputs and picks two random ele-
ments r1, r2 from Z∗p. Then, it computes

C1 = tok
r1H(m)
ID , C2 = gr1ID, C3 = gr2 ,

C4 = (m‖r1)⊕ H2(C1‖C2‖C3‖e(Ppub, gID)r2)

where gID = H1(ID). Finally, it outputs a ciphertext ct = (C1, C2, C3, C4).

– Test(ctA,ctB) : It takes two ciphertexts ctA = (CA,1, CA,2, CA,3, CA,4) and ctB
= (CB,1, CB,2, CB,3, CB,4) for identities IDA and IDB, respectively, as inputs. Check
whether

e(CA,1, CB,2) = e(CB,1, CA,2). (1)

If it holds, output 1. Otherwise, output 0.

– Dec(ct, dID, tokID) : It takes a ciphertext ct = (C1, C2, C3, C4), a decryption key dID
and a token tokID for user ID as inputs and computes

m′‖r′1 = C4 ⊕ H2(C1‖C2‖C3‖e(C3, dID)).

Then, check whether

C1 = tok
r′1H(m

′)
ID and C2 = g

r′1
ID.

where gID = H1(ID). If both hold, return m′. Otherwise, return ⊥.

Because our attack algorithm mainly exploits the test algorithm, we specially look into
the correctness of the test algorithm. Let ctA and ctB be valid ciphertexts of messages
mA and mB under identities IDA and IDB, respectively. That is,

ctA = (CA,1, CA,2, CA,3, CA,4)

= (tok
rA,1H(mA)
IDA

, g
rA,1

IDA
, grA,2 , (mA‖rA,1)⊕ H2(CA,1‖CA,2‖CA,3‖e(Ppub, gIDA

)rA,2))

and

ctB = (CB,1, CB,2, CB,3, CB,4)

= (tok
rB,1H(mB)
IDB

, g
rB,1

IDB
, grB,2 , (mB‖rB,1)⊕ H2(CB,1‖CB,2‖CB,3‖e(Ppub, gIDB

)rB,2))

6

for randomness rA,1, rA,2, rB,1, rB,2 ∈ Z∗p chosen by the encryption algorithm. Thus,

e(CA,1, CB,2) = e(tok
rA,1H(mA)
IDA

, g
rB,1

IDB
) = e(tokIDA

, gIDB
)rA,1rB,1H(mA) (2)

and

e(CB,1, CA,2) = e(tok
rB,1H(mB)
IDB

, g
rA,1

IDA
) = e(tokIDB

, gIDA
)rA,1rB,1H(mB). (3)

Since e(tokIDA
, gIDB

) = e(gIDA
, gIDB

)β = e(tokIDB
, gIDA

) for the master token key mtk = β,
Equation (2) is equal to Equation (3) if mA = mB. Otherwise, they are the same with
a negligible probability under assuming that the exploited hash function H is collision-
resistant. Therefore, the test algorithm correctly outputs the result of equality test on the
input ciphertexts.

3 Our Attack Against Wu et al.’s IBEET Scheme

In this section, we provide our attack algorithm against Wu et al.’s IBEET construction.

Description of Our Attack Algorithm. The description of our attack algorithm is as
follows.

1. At Phase 1, A issues an encryption oracle query with a message m and an identity ID.
Then, it returns a ciphertext ct = (C1, C2, C3, C4) of message m under identity ID
such that

C1 = tok
r1H(m)
ID , C2 = gr1ID, C3 = gr2 ,

C4 = (m‖r1)⊕ H2(C1‖C2‖C3‖e(Ppub, gID)r2)

where r1, r2 ∈ Z∗p are random elements chosen by the encryption algorithm and gID =
H1(ID).

2. At the challenge phase, A submits a target identity ID∗ and two messages m0,m1

of the same-length such that H(m0) 6= H(m1). Then, C returns the challenge cipher-
text ct∗ID∗,b = (C∗1 , C

∗
2 , C

∗
3 , C

∗
4) such that

C∗1 = tok
r∗1H(mb)

ID∗ , C∗2 = g
r∗1
ID∗ , C∗3 = gr

∗
2 ,

C∗4 = (mb‖r∗1)⊕ H2(C
∗
1‖C∗2‖C∗3‖e(Ppub, gID∗)r

∗
2)

where b is a random bit chosen by C, r∗1, r∗2 ∈ Z∗p are random elements chosen by the
encryption algorithm and gID∗ = H1(ID

∗).

3. Once receiving the challenge ciphertext ct∗ID∗,b = (C∗1 , C
∗
2 , C

∗
3 , C

∗
4) from C, A first

computes

C ′1 = (C
H(m)−1 mod p
1)H(m1) (4)

using the ciphertext ct = (C1, C2, C3, C4) of message m obtained at Phase 1. Then,
A checks whether

e(C ′1, C
∗
2)

?
= e(C∗1 , C2)

If it holds, it returns 1. Otherwise, it returns 0.

7

Correctness of Our Attack Algorithm. The correctness of our attack algorithm is
straightforward. First, from Equation (4), we have

C ′1 = (C
H(m)−1 mod p
1)H(m1) = ((tok

r1H(m)
ID)H(m)−1 mod p)H(m1) = tok

r1H(m1)
ID .

Thus,

e(C ′1, C
∗
2) = (tok

r1H(m1)
ID , g

r∗1
ID∗) = e(gID, gID∗)

βr1r∗1H(m1)

since tokID = gβID. On the other hand,

e(C∗1 , C2) = e(tok
r∗1H(mb)

ID∗ , gr1ID) = e(gID∗ , gID)βr1r
∗
1H(mb)

since tokID∗ = gβID∗ . Therefore, they are the same if b = 1 and different if b = 0 and so our
attack algorithm outputs the correct answer with probability 1. We note that our attack
algorithm succeeds regardless of whether ID = ID∗ or not.

Notes on Our Attack. Our attack algorithm only requires a pair of message and cipher-
text and takes one exponentiation in G1 and two bilinear map evaluations. Furthermore,
it does not need key extraction oracle and decryption oracle queries. Therefore, it seems
also hard that Wu et al.’s scheme achieves more weaker indistinguishability-based secu-
rity notions, such as the indistinguishability under chosen plaintext attacks and known
plaintext attacks.

4 Our Modification

In this section, we present our modification of Wu et al.’s IBEET construction. Before
providing the description of our modification, we briefly introduce our strategy first. From
our observation, a ciphertext of their scheme consists of two parts: One ((C3, C4) in the
ciphertext) is for recovering a message in the decryption algorithm and the other ((C1, C2)
in the ciphertext) is for performing equality tests in the test algorithm. To achieve the
security requirement for IBEET against insider attack, only group users who have a token
should be allowed to generate a valid part for equality tests in ciphertexts. However, in
Wu et al.’s construction, anyone can manipulate that part when another pair of message
and ciphertext is given, as described in Section 3 of this paper.

To avoid such a situation, we exploit another cryptographic tool, a keyed permuta-
tion F : K× {0, 1}n → {0, 1}n where K is a key space of F and n = n(λ) for the security
parameter λ. Then, we let group users share the same key K ∈ K for F and use it as a
token for encryption. More concretely, a ciphertext of message m for identity ID in our
modification has a form

C1 = F (K1,H(m)), C2 = gr, C3 = (m‖r)⊕ H2(C1‖C2‖e(Ppub, gID)r)

where H and H2 are cryptographic hash functions, g is a generator of the underlying group,
e is a bilinear map, and Ppub is the master public key, gID is a hashed value of ID, and r
is a randomness chosen by the encryption algorithm. Here, C1 is for the test algorithm
and a pair of (C2, C3) is for the decryption algorithm. However, unfortunately, the above

8

provisional construction is not secure against adaptive chosen ciphertext attacks since the
adversary can still generate another valid ciphertext

C1 = F (K1,H(m)), C ′2 = gs, C ′3 = (m‖s)⊕ H2(C1‖C ′2‖e(Ppub, gID)s)

by replacing r with s and request a decryption query on it.

To make up for the above issue, we additionally employ a MAC scheme and modify
the ciphertext so that it has a form

C1 = F (K1,H(m)), C2 = gr, C3 = (m‖r)⊕ H2(T‖C2‖e(Ppub, gID)r)

where T ← S(K2, C1) for the signing algorithm S of the employed MAC. For correct
encryption and decryption, we add the secret key K2 to both the master token key mtk
and the token for encryption.

Informally, the adversary should generate at least the corresponded tag T or the
solution (e(Ppub, gID)r) to the BDH instance to obtain a valid ciphertext by modifying
the given ciphertext. Furthermore, it seems hard for him to obtain a useful information
about F (K1,H(m0)) or F (K1,H(m1)) by manipulating C1 parts of valid ciphertexts of
messages which are not m0 and m1. Therefore, our scheme seems secure if F is strong
pseudorandom, the exploited MAC is existentially unforgeable, and the BDH assumption
holds in the random oracle model. Refer to Section 4.2 and Appendix for the details.

4.1 Description of Our Modification

Building Blocks. We employ a keyed permutation and a MAC for our modification.
Their definitions are as follows.

Definition 1 (Keyed Permutation [1]). Let F : {0, 1}κ×{0, 1}n → {0, 1}n be a length-
preserving, keyed function, that is, F is a two input function where the first input is called
the key and the second input is called just the input. We say that a keyed function F is a
keyed permutation if for every key k ∈ {0, 1}κ, the function Fk(·) := F (k, ·) is one-to-one.

Definition 2 (Message Authentication Code). A message authentication code MAC
consists of the following three polynomial time algorithms:

– G(λ): On input a security parameter λ, it returns a secret key K.

– S(K,m): Given the secret key K and a message m, it returns a tag T .

– V(K,m, T): Given the secret key K, a message m, and a tag T , it returns 1 or 0.

Note that we do not exploit the verification algorithm V in our modification, but we
assume that the signing algorithm S is deterministic.

Description of Our Modification. The description of our modification is as follows:

– Setup(λ) : It generates parameters p, G1, G2, e : G1 × G1 → G2, msk = α, and
Ppub = gα by the same manner as in Wu et al.’s setup algorithm. Choose a keyed
permutation F : {0, 1}κ × {0, 1}n → {0, 1}n for positive integers κ = κ(λ) and n =
n(λ). Select a random value K1 from {0, 1}κ. Generate a MAC scheme MAC = (G, S,V)

9

and obtain K2 by running G(λ). Set the master token key mtk = (K1,K2). Generate
three cryptographic hash functions

H : {0, 1}t → {0, 1}n, H1 : {0, 1}∗ → G1, and H2 : T ×G1 ×G2 → {0, 1}t+`,

where t denotes the bit-length of messages, ` denotes the bit-length of randomness
utilized in the encryption algorithm and T denotes the range of outputs of S. We
remark that the image of H and the domain of H2 are slightly modified from those of
the original scheme. Finally, output a system public parameter

pp = (λ, p, t, `, g,G1,G2, Ppub, e, F,MAC,H,H1,H2)

and a pair of the master secret and master token keys (msk,mtk).

– Extract(ID,msk,mtk) : While dID is generated by the same manner as in Wu et al.’s
extract algorithm, tokID is set to mtk = (K1,K2), and it outputs (dID, tokID).

– Enc(pp,m, ID, tokID) : Given the system public parameter pp, a message m, an iden-
tity ID, and the token tokID = (K1,K2) for identity ID as inputs, pick a random
element r from Z∗p. Then, it computes

C1 = F1(K1,H(m)), C2 = gr, C3 = (m‖r)⊕ H2(T‖C2‖e(Ppub, gID)r) (5)

where T ← S(K2, C1) and gID = H1(ID). Finally, it outputs a ciphertext ct =
(C1, C2, C3).

– Test(ctA,ctB) : On input two ciphertexts ctA = (CA,1, CA,2, CA,3) and ctB = (CB,1,
CB,2, CB,3) for identities IDA and IDB, respectively, check whether CA,1 = CB,1. If it
holds, output 1. Otherwise, output 0.

– Dec(ct, dID, tokID) : Given a ciphertext ct = (C1, C2, C3), a decryption key dID and a
token tokID = (K1,K2) for user ID as inputs, compute

m′‖r′ = C3 ⊕ H2(T‖C2‖e(C2, dID)).

where T ← S(K2, C1). Then, it checks whether C1 = F1(K1,H(m′)) and C2 = gr
′
. If

both hold, return m′. Otherwise, return ⊥.

Remark 2. While a token tokID is changed per identity ID in the original construction, it is
fixed for all group users in our modification. We note that since designated senders should
know a receiver’s token key to generate a ciphertext, it is not a secret information among
all group users. Thus, using the same token key among them does not cause any security
issue under Wu et al.’s security model. On the other hand, it enables us to improve the
efficiency of our modification by realizing a part of ciphertext for the test algorithm using
a keyed permutation.

Correctness of Our Modification. Let ct = (C1, C2, C3) be a valid ciphertext of
message m with respect to identity ID, i.e., it satisfies Equation (5) for some r. Then, for
T ← S(K2, C1) with a deterministic algorithm S,

m′‖r′1 = C3 ⊕ H2(T‖C2‖e(C2, dID))

= (m‖r)⊕ H2(T‖C2‖e(Ppub, gID)r)⊕ H2(T‖C2‖e(C2, dID)) = m‖r

10

since e(Ppub, gID)r = e(gα, gID)r = e(gr, gαID) = e(C2, dID). Moreover, it holds both C1

= F (K1,H(m′)) and C2 = gr
′
. Thus, our decryption algorithm returns m correctly.

Suppose that two valid ciphertexts ctA = (CA,1, CA,2, CA,3) and ctB = (CB,1, CB,2,
CB,3) of messages mA and mB for identities IDA and IDB, respectively, are given. Then,

CA,1 = F (K1,H(mA)) and CB,1 = F (K1,H(mB))

and so the test algorithm always outputs 1 if mA = mB and outputs 0 if mA 6= mB

with overwhelming property when the exploited hash function H is collision-resistant.
Therefore, our modification is correct.

Efficiency Comparison of Our Modification with the Original Scheme. We now
compare the efficiency of our modification and the original construction. Our encryption
algorithm replaces two components (C1, C2) in the original construction, which are ob-
tained by two exponentiations, with one component C1, which is an output of a keyed
permutation. It also replaces the first component of an input of H2 by the output of
the signing algorithm of the MAC. In general, it is regarded that an evaluation of keyed
permutation and an execution of the signing algorithm of MACs much cheaper than an
ex ponentiation and so our encryption algorithm is more efficient. This modification also
yields to replacing an exponentiation with an evaluation of keyed permutation and an ex-
ecution of the signing algorithm of the MAC in the decryption algorithm. Finally, whereas
the test algorithm of the original construction requires two bilinear map evaluations, ours
consists of checking equality between two components. Thus, our test algorithm saves two
bilinear map evaluations.

4.2 Security Analysis

Now, we show that our modification is wIND-ID-CCA2 secure under Wu et al.’s security
model. To this end, we first introduce three cryptographic assumptions below which will
be utilized for our security proof.

Definition 3 (Bilinear Diffie-Hellman Assumption). Let G1,G2 be two multiplica-
tive cyclic groups of prime order p = p(λ) for the security parameter λ. Let g be a generator
of G1 and e : G1×G1 → G2 be a bilinear map. The Bilinear Diffie-Hellman (BDH) prob-
lem on (g,G1,G2, e) is to find e(g, g)xyz where gx, gy, gz are given for randomly chosen
x, y, z from Z∗p. For a PPT adversary A, its advantage in solving the BDH problem on
(g,G1,G2, e) is defined to Pr[A(gx, gy, gz) = e(g, g)xyz].

We say that the BDH assumption holds if for any PPT adversary A, its advantage is
negligible in the security parameter λ.

Definition 4 (Strong Pseudorandom Permutation from Definition 3.28 in [1]).
We say that a keyed permutation F : {0, 1}κ(λ) × {0, 1}n(λ) → {0, 1}n(λ) is a strong
pseudorandom permutation if for any PPT adversary A, it holds that∣∣∣Pr[AFk(·),F−1

k (·)(λ) = 1]− Pr[Af(·),f−1(·)(λ) = 1]
∣∣∣

is negligible in the security parameter λ where k is chosen uniformly at random from
{0, 1}κ(λ) and f is chosen uniformly at random from the set of permutations on n(λ)-bits.

11

We note that a strong pseudorandom permutation can be implemented using a block
cipher in practice. See [1, Chapter 5] for details.

Definition 5 (Existential Unforgeability under Chosen Message Attacks). We
say that a message authentication code MAC = (G,S,V) is existentially unforgeable un-
der chosen message attack if for any PPT adversary A who can access to the signing
oracle OS(K,·),

|Pr[V(K,m, T) = 1]|

is negligible in the security parameter λ where K ← G(λ), (m,T) is the output of A and
m is not queried to OS(K,·).

The following theorem shows that our modification is wIND-ID-CCA2 secure in the
random oracle model if the BDH assumption holds, the exploited F is a strong pseudo-
random permutation and the employed MAC scheme is existentially unforgeable under
chosen message attack. We give the detailed proof of the theorem in Appendix.

Theorem 1. Our modification presented in Section 4.1 is wIND-ID-CCA2 secure if the
exploited F is a strong pseudorandom permutation, the exploited MAC is existentially
unforgeable under chosen message attack and the BDH assumption holds in the random
oracle model.

Sketch Proof. We prove this theorem by using the standard hybrid argument. To this
end, we first define a series of security games below. Let ct∗ = (C∗1 , C

∗
2 , C

∗
3) denote the

challenge ciphertext in security games.

Game0: This is equivalent to the original security game described in Section 2.2.

Game1: This is almost the same as Game0, except that F is replaced by a truly random
permutation f which is chosen uniformly at random from the set of permutations on
n-bits and modelled as a random oracle with the constraint that m0 and m1 cannot be
queried to this random oracle.

Game2: This is almost the same as Game1, except that the adversary cannot request
decryption queries on valid ciphertexts ct = (C1, C2, C3) such that C1 = C∗1 , but ct 6=
ct∗.

We first show that the difference between adversarial advantages in Game0 and
Game1 is negligible in the security parameter if the exploited F is a strong pseudo-
random permutation by using the difference lemma [5]. Next, since if the adversary can
generate a valid ciphertext ct = (C1, C2, C3) such that C1 = C∗1 , but ct 6= ct∗, then
the value T which is the outcome of S(K2, f(mb)) for the challenge message mb, should
appear at the H2 oracle query. Using this property, we prove that the difference between
adversarial advantages in Game1 and Game2 is negligible if the employed MAC scheme
is existentially unforgeable under chosen message attack. Finally, we show that the advan-
tage of the adversary in Game2 is negligible if the BDH assumption holds by constructing
a simulator who solves the BDH problem using the adversary in Game2, which is almost
the same as that in the proof of Theorem 1 in [7]. See Appendix for details. ut

12

5 Conclusion

In this paper, we presented an attack on the identity-based encryption scheme with equal-
ity test against insider attack, proposed by Wu et al. [7]. Then, we provided a modification
of their scheme and showed that it achieves the weak indistinguishability under adaptive
identity and chosen ciphertext attacks, which was defined and claimed to be achieved in
the original paper.

From our observation, Wu et al.’s original security model does not capture attacks by
group members who can generate valid ciphertexts of group members, but did not generate
a target ciphertext. It would be an interesting open problem to establish a security model
that captures such an attack, which seems stronger than the current one, and to design a
scheme satisfying this security model.

References

1. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC, 2008.
2. H. T. Lee, S. Ling, J. H. Seo, and H. Wang. Semi-generic construction of public key encryption and

identity-based encryption with equality test. Inf. Sci., 373:419–440, 2016.
3. H. T. Lee, S. Ling, J. H. Seo, H. Wang, and T. Youn. Public key encryption with equality test in the

standard model. IACR Cryptology ePrint Archive, 2016:1182, 2016.
4. S. Ma. Identity-based encryption with outsourced equality test in cloud computing. Inf. Sci., 328:389–

402, 2016.
5. V. Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology

ePrint Archive, 2004:332, 2004.
6. L. Wu, Y. Zhang, K. R. Choo, and D. He. Efficient and secure identity-based encryption scheme with

equality test in cloud computing. Future Generation Comp. Syst., 73:22–31, 2017.
7. T. Wu, S. Ma, Y. Mu, and S. Zeng. ID-based encryption with equality test against insider attack.

In Information Security and Privacy - 22nd Australasian Conference, ACISP 2017, Auckland, New
Zealand, July 3-5, 2017, Proceedings, Part I, pages 168–183, 2017.

A Proof of Theorem 1

Theorem 1. Our modification presented in Section 4.1 is wIND-ID-CCA2 secure if the
exploited F is a strong pseudorandom permutation, the exploited MAC is existentially
unforgeable under chosen message attack and the BDH assumption holds in the random
oracle model.

Proof. We prove this theorem by using the standard hybrid argument. To this end, we
first define a series of security games below. Let ct∗ = (C∗1 , C

∗
2 , C

∗
3) denote the challenge

ciphertext in security games.

Game0: This is equivalent to the original security game described in Section 2.2.

Game1: This is almost the same as Game0, except that F is replaced by a truly random
permutation f which is chosen uniformly at random from the set of permutations on
n-bits and modelled as a random oracle with the constraint that m0 and m1 cannot be
queried to this random oracle.

Game2: This is almost the same as Game1, except that the adversary cannot request
decryption queries on valid ciphertexts ct = (C1, C2, C3) such that C1 = C∗1 , but ct 6=
ct∗.

13

The difference between Game0 and Game1 is the replacement of a keyed permutation
only. Thus, by the difference lemma [5], we obtain that the difference between adversarial
advantages of those two games is bounded by the advantage of any PPT adversary who
breaks strong pseudorandomness of the exploited keyed permutation F . Since we assume
that F is a strong pseudorandom permutation, we have that this difference is negligible
in the security parameter.

Lemma 1. The difference between adversarial advantages in Game1 and Game2 is neg-
ligible in the security parameter if the exploited MAC scheme is existentially unforgeable
under chosen message attack in the random oracle model.

Proof of Lemma 1. We analyze the difference between adversarial advantages in Game1
and Game2. Let D be the event that the adversary asks a decryption oracle query on
a valid ciphertext ct = (C1, C2, C3) such that C1 = C∗1 , but ct 6= ct∗. We construct a
simulator B who breaks existential unforgeability of the exploited MAC = (G,S,V) using
the adversary A who generates the event D. Suppose that the signing oracle OS(K,·), which
takes a message m as an input and returns the outcome of S(K,m), and the verification
oracle OV(K,·,·), which takes a pair of message m and tag T as an input and returns the
outcome of V(K,m, T), are given to B for the fixed target secret key K. Then, B performs
as follows.

1. B runs Setup(λ) to generate a system public parameter pp, replaces a MAC scheme
in pp by the target MAC scheme MAC, and passes pp to A.

2. B responses A’s queries by the following manner:

– OH query: Given m ∈ {0, 1}t as an input, it first checks whether there exists
the same input stored at the H-table, which was initiated as an empty set at the
beginning of the game. If exists, it returns the stored value. Otherwise, it generates
a random value h ∈ {0, 1}n, stores (m,h) at the H-table, and returns h.

– OH1 query: On input ID ∈ {0, 1}∗, it first searches the H1-table, which was initiated
as an empty set at the beginning of the game. If the same input is stored, it returns
the stored value. Otherwise, it chooses a random value h1 ∈ G1, stores (ID, h1) at
the H1-table, and returns h1.

– OH2 query: Given a pair (T,C2, E) ∈ T ×G1×G2 as an input, it first searches the
H2-table, which was initiated as an empty set at the beginning of the game. If the
same input is stored at the table, it outputs the stored value. Otherwise, it selects
a random value h2 ∈ {0, 1}t+`, adds (T,C2, E, h2) to the H2-table, and returns h2.

– Of query: On input h, it first checks whether h is stored at the f -table, which was
initiated as an empty set at the beginning of the game. If exists, it returns the
stored value. Otherwise, it selects a random value Rf from {0, 1}n \ Sfout where
Sfout is the set of outputs stored at the f -table. Then, it stores (h,Rf) at the
f -table and returns Rf .

– OExtract query: On input an identity ID, B returns dID by computing dID = gαID
using the master secret key msk = α.

– OEnc query: Given an identity ID and a message m, it first requests OH query on
input m and receives h. Then, it requests Of query on input h and receives Rf .

14

Thereafter, it requests OS(K,·) query on Rf and receives T . It sets a ciphertext
ct = (C1, C2, C3) so that

C1 = Rf , C2 = gr, and C3 = (m‖r)⊕ h2

where r is a random element from Z∗p and h2 is the result of OH2 query on
(T,C2, e(Ppub, gID)r). Finally, it returns ct = (C1, C2, C3).

– ODec query: Given a ciphertext ct = (C1, C2, C3), it first asks a signing oracle
query OS(K,·) on C1 and receives T . Then, it computes e(C2, dID), requests OH2

query on (T,C2, e(C2, dID)) and receives h2. Using h2 and C3, it recovers m and r,
and then checks whether (H(m), C1) is stored at the f -table and C2 = gr. If both
hold, it returns m. Otherwise, it returns ⊥.

3. Once A submits the target identity ID∗ and two messages m0,m1, B selects a random
bit b ∈ {0, 1} and asks an f -query on mb. Then, it sets a challenge ciphertext to

C∗1 = f(mb), C
∗
2 = gr

∗
, and C∗3 = R∗2

for randomly chosen r∗ and R∗2 from Z∗p and {0, 1}t+n, respectively, and sends ct∗ =
(C∗1 , C

∗
2 , C

∗
3) to A.

4. B responses A’s queries as almost the same as in Step 2, except the case that (C∗1 , ·, ·)
is queried to the decryption oracle. In this case, the decryption oracle returns ⊥.

5. Once A outputs its guess, B selects a random element (T,C2, E, h2) from the H2-table
and outputs (f(mb), T).

We note that if the event D occurs, the above game is the case that B interacts with
A in Game1. Otherwise, it is the case that B interacts with A in Game2. On the other
hand, in order that the event D occurs, A should request an H2-oracle query on (T,C2, E)
where T is the output of S(K, f(mb)). So, the H2-table includes the value T such that
1← V(K, f(mb), T) and f(mb) is not queried to the OS(K,·) oracle since m0 and m1 cannot
be queried to the encryption oracle. Thus, B can break existential unforgeability of MAC
with probability 1/qH2 if D occurs where qH2 is the number of H2 queries. Therefore,
the difference between adversarial advantages of Game1 and Game2 is negligible if the
exploited MAC is existentially unforgeable under chosen message attack. ut

Lemma 2. The advantage of the adversary in Game2 is negligible in the security pa-
rameter if the BDH assumption holds in the random oracle model.

Proof of Lemma 2. We note that the proof of this lemma is very similar to that of
Theorem 1 in [7]. We construct a simulator B who solves the BDH problem using the
adversary A in Game2. Suppose that the BDH instance (X = gx, Y = gy, Z = gz) for
randomly chosen x, y, z ∈ Z∗p is given. Then, B performs as follows.

1. B executes Setup(λ) to obtain a system public parameter pp and replaces Ppub by
Ppub = Xs = (gx)s for randomly chosen s ∈ Z∗p. B sends pp to A. We note that B
knows mtk and s, but does not know x.

2. B responses A’s queries by the following manner:

– OH, OH2 , Of queries: They perform as the same as in the proof of Lemma 1.

15

– OH1 : On input IDi ∈ {0, 1}∗, it first searches the H1-table, which was initiated as
an empty set at the beginning of the game. If the same input is stored, it returns
the stored value. Otherwise, it tosses a coin with Pr[coini = 0] = δ. If coini = 1,
it selects a random element ai from Z∗p and computes gIDi

= gai . Otherwise, it
computes gIDi

= Y ai = (gy)ai . For each case, it stores (IDi, gIDi
, ai, coini) at the

H1-table.

– OExtract query: Given an identity IDi as an input, it first obtains H1(IDi) by re-
questing the H1 query. If coini = 0, B aborts. Otherwise, it computes dIDi

= P aipub =
(X)s·ai , and returns dIDi

to A.

– OEnc query: Given an identity IDi and a message m, it first asks the H1 query to
obtain H1(IDi) and the f query on m. Then, B chooses a random element r ∈ Z∗p,
and computes

C1 = f(m), C2 = gr, C3 = (m‖r)⊕ h2

where h2 is the response of the H2 query on (T,C2, e(Ppub, gIDi
)r) and T ←

S(K2, C1). It returns ct = (C1, C2, C3).

– ODec query: Given a ciphertext ct = (C1, C2, C3) for identity IDi, it first searches
the H1-table to obtain (IDi, gIDi

, ai, coini). If coini = 0, it aborts. Otherwise, it
computes

e(X,C2)
sai = e(Xs, gr)ai = e(Ppub, gIDi

)r

where r is the randomness used for generating ct. Then, it runs T ← S(K2, C1)
and obtains h2 by requesting a H2 query on (T,C2, e(X,C2)

sai). It recovers m and
r from m‖r = C3 ⊕ h2, checks whether C1 = f(m) and C2 = gr. If both hold, it
returns m. Otherwise, it returns ⊥.

3. Once A submits the target identity ID∗ and two messages m0,m1, B first asks a
H1 query on ID∗ to obtain (ID∗, gID∗ , a

∗, coin∗). If coin∗ = 1, it aborts. Otherwise, it
randomly selects b ∈ {0, 1} and asks an f query on mb. Then, it sets a challenge
ciphertext to

C∗1 = f(mb), C
∗
2 = Z, and C∗3 = R∗2

where R∗2 is randomly chosen from {0, 1}t+`. B sends ct∗ = (C∗1 , C
∗
2 , C

∗
3) to A.

4. B responses A’s queries as the same as in Step 2.

5. Once A outputs its guess b′, if b 6= b′, then B aborts. Otherwise, it randomly selects a
tuple (T,C2, E) from the H2-table and returns E(a∗s)−1

as a solution to the BDH prob-
lem on instance (X,Y, Z) where E is expected to be e(Ppub, gID∗)

z = e(Xs, Y a∗)z =
e(X,Y)sa

∗z.

We note that the above simulator is actually the same as that in the proof of Theorem 1
in [7], except the adjustment by considering that the part for equality test and the first
component of an input of H2 function are modified. Thus, the analysis for the advantage
of B is exactly the same as that in the proof of Theorem 1 in [7]. We omit the details and
refer to [7].

16

From the difference lemma, Lemmas 1 and 2, we proved that our modification in
Section 4.1 is wIND-ID-CCA2 secure if the exploited keyed permutation F is strong pseu-
dorandom, the employed MAC scheme is existentially unforgeable under chosen message
attack, and the BDH assumption holds. ut

17

