Perfectly Secure Oblivious Parallel RAM

T-H. Hubert Chan', Kartik Nayak®?, and Elaine Shi*

! The University of Hong Kong, hubert@cs.hku.hk
2 University of Maryland,
3 VMware Research, nkartik@vmware.com
4 Cornell University, elaine@cs.cornell.edu

Abstract. We show that PRAMSs can be obliviously simulated with
perfect security, incurring only O(log N loglog N) blowup in par-
allel runtime, O(log® N) blowup in total work, and O(1) blowup
in space relative to the original PRAM. Our results advance the
theoretical understanding of Oblivious (Parallel) RAM in several
respects. First, prior to our work, no perfectly secure Oblivious
Parallel RAM (OPRAM) construction was known; and we are the
first in this respect. Second, even for the sequential special case of
our algorithm (i.e., perfectly secure ORAM), we not only achieve
logarithmic improvement in terms of space consumption relative to
the state-of-the-art, but also significantly simplify perfectly secure
ORAM constructions. Third, our perfectly secure OPRAM scheme
matches the parallel runtime of earlier statistically secure schemes
with negligible failure probability. Since we remove the dependence
(in performance) on the security parameter, our perfectly secure
OPRAM scheme in fact asymptotically outperforms known statis-
tically secure ones if (sub-)exponentially small failure probability
is desired. Our techniques for achieving small parallel runtime are
novel and we employ special expander graphs to derandomize ear-
lier statistically secure OPRAM techniques — this is the first time
such techniques are used in the constructions of ORAMs/OPRAMs.

1 Introduction

Oblivious RAM (ORAM), originally proposed in the ground-breaking work by
Goldreich and Ostrovsky [21}/22], is an algorithmic technique that transforms
any RAM program to a secure version, such that an adversary learns noth-
ing about the secret inputs from observing the program’s access patterns to
memory. The parallel extension of ORAM was first phrased by Boyle, Chung,
and Pass [6]. Similar to ORAM, an Oblivious Parallel RAM (OPRAM) com-
piler transforms a Parallel RAM (PRAM) program into a secure form such that
the resulting PRAM’s access patterns leak no information about secret inputs.
ORAMs and OPRAMs have been recognized as powerful building blocks in both
theoretical applications such as multi-party computation [5,/25,32], as well as in

2 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

practical applications such as cloud outsourcing [13}/40,43|, and secure processor
design [164[17}31}33/38].

Henceforth in this paper, we consider ORAMs to be a special case of OPRAMs,
i.e., when both the original PRAM and the OPRAM have only one CPU. To
characterize an OPRAM scheme’s overhead, we will use the standard terminol-
ogy total work blowup to mean the multiplicative increase in total computation
comparing the OPRAM and the original PRAM; and we use the term depth
blowup to mean the multiplicative increase in parallel runtime comparing the
OPRAM and the original PRAM — assuming that the OPRAM may employ
more CPUs than the original PRAM to help parallelize its computation [7].
Note that for the case of sequential ORAMSs, total work blowup is equivalent
to the standard notion of simulation overhead [21}22], i.e., the multiplicative
increase in runtime comparing the ORAM and the original RAM. Finally, we
use the term space blowup to mean the multiplicative blowup in space when
comparing the OPRAM (or ORAM) and that of the original PRAM (or RAM).

The original ORAM schemes, proposed by Goldreich and Ostrovsky [21}22],
achieved poly-logarithmic overheads but required the usage of pseudo-random
functions (PRFs); thus they defend only against computationally bounded ad-
versaries. Various subsequent works [2}[9)(11}[12[39141}142], starting from Aj-
tai [2] and Damgard et al. |[12] investigated information-theoretically secure
ORAM/OPRAM schemes, i.e., schemes that do not rely on computational as-
sumptions and defend against even unbounded adversaries. As earlier works
point out [2,/12], the existence of efficient ORAM schemes without computa-
tional assumptions is not only theoretically intriguing, but also has various ap-
plications in cryptography. For example, information-theoretically secure ORAM
schemes can be applied to the construction of efficient RAM-model, information-
theoretically secure multi-party computation (MPC) protocols [4]. Among known
information-theoretically secure ORAM/OPRAM schemes [2}/6}9}{12L394|41}[42],
almost all of them achieve only statistical security [2,/6,/9H11}[39,/41,42], i.e., there
is still some non-zero failure probability — either correctness or security failure
— but the failure probability can be made negligibly small in IV where N is the
RAM/PRAM’s memory size. Damgard et al. [12] came up with the first perfectly
secure ORAM construction — they achieve zero failure probability against com-
putationally unbounded adversaries. Although recent works have constructed
statistically secure OPRAMs [6,[9}/10], there is no known (non-trivial) perfectly
secure OPRAM scheme to date.

Motivation for perfect security. Perfectly secure ORAMs/OPRAMs are theoret-
ically intriguing for various reasons:

1. First, to achieve 27% failure probability (either in security or in correct-
ness), the best known statistically secure OPRAM scheme [7,/9] incurs a
O(klog N) total work blowup and O(log xlog N) depth blowup where N is
the PRAM’s memory size. Although for negligibly small in N failure prob-
ability the blowups are only poly-logarithmic in N, they can be as large as
Ne¢ for some constant ¢ < 1 if one desires (sub-)exponentially small failure
probability in N.

Perfectly Secure Oblivious Parallel RAM 3

2. Second, perfectly secure ORAM schemes have been used as a building block
in recent results on oblivious algorithms [3[39] and searchable encryption
schemes [14]. Typically these algorithmic constructions rely on divide-and-
conquer to break down a problem into smaller sizes and then apply ORAM to
a small instance — since the instance size N is small (e.g., logarithmic in the
security parameter), negligible in N failure probability is not sufficient and
thus these works demand perfectly secure ORAMs/OPRAMs and existing
statistically secure schemes result in asymptotically poorer performance.

3. Third, understanding the boundary of perfect and statistical security has
been an important theoretical question in cryptography. For example, a long-
standing open problem in cryptography is to separate the classes of languages
that admit perfect ZK and statistical ZK proofs. For ORAMs/OPRAMs too,
it remains open whether there are any separations between statistical and
perfect security (and we believe that this is an exciting future direction).
Perfect security is also useful in other contexts such as multi-party computa-
tion (MPC). For example, Ishai et al. [28] and Genkin et al. [19] show that
perfectly secure MPC is required to achieve their respective goals match-
ing the “circuit complexity” of the underlying application. Perfectly secure
ORAMs/OPRAMs can enable perfectly secure RAM-model MPC, and thus
we believe that they can be an important building block in other areas of
theoretical cryptography.

1.1 Our Results and Contributions

In this paper, we prove the following result which significantly advances our
theoretical understanding of perfectly secure ORAMs and OPRAMs in multiple
respects. We present the informal theorem statement below and then discuss its
theoretical significance.

Theorem 1 (Informal statement of main theorem). Any PRAM that con-
sumes N memory blocks each of which is at least log N -bits longE| can be sim-
ulated by a perfectly oblivious PRAM, incurring O(log3 N) total work blowup,
O(log N loglog N) depth blowup, and O(1) space blowup.

The above theorem improves the theoretical state of the art on perfectly
secure ORAMs/OPRAMs in multiple dimensions:

1. First, our work gives rise to the first perfectly secure (non-trivial) OPRAM
construction. No such construction was known before and it is not clear how
to directly parallelize the perfectly secure ORAM scheme by Damgard et
al. [12].

2. Second, even for the sequential special case, we improve Damgard et al. [12]
asymptotically by reducing a log N factor in the ORAM’s space consumption.

3. Third, our perfectly secure OPRAM’s parallel runtime matches the best
known statistically secure construction [7}/9] for negligibly small in N fail-
ure probabilities;

5 All existing ORAM and OPRAM works [21H231(30L[39] make this assumption.

4 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

4. Finally, when (sub-)exponentially small (in N) failure probabilities are re-
quired, our perfectly secure OPRAM scheme asymptotically outperforms all
known statistically secure constructions both in terms of total work blowup
and depth blowup. For example, suppose that we require 2~ failure proba-
bility and N = poly(x) — then all known statistically secure OPRAM con-
structions [6,(9}/10] would incur at least N¢ total work blowup and £2(log? N)
depth blowup and thus our new perfectly secure OPRAM construction is
asymptotically better for this scenario.

Theorem [1| applies to general block sizes. We additionally show that for suf-
ficiently large block sizes, there exists a perfectly secure OPRAM construction
with O(log? N) total work blowup and O(log m +loglog N') depth blowup where
m denotes the number of CPUs of the original PRAM (Corollary . Finally, we
point out that this work focuses mostly on the theoretical understanding of per-
fect security in ORAMs/OPRAMs, and we leave it as a future research direction
to investigate their practical performance (see also Section .

Technical highlights. Our most novel and non-trivial technical contribution is the
use of expander graphs techniques, allowing our OPRAM to achieve as small as
O(log N loglog N) depth blowup. To the best of our knowledge, this is the first
time such techniques have been used in the construction of ORAM/OPRAM
schemes. Besides this novel technique, our scheme requires carefully weaving
together many algorithmic tricks that have been used in earlier works [71/9}21122]

1.2 Related Work

Oblivious RAM (ORAM) was first proposed in a ground-breaking work by Gol-
dreich and Ostrovsky [21,22]. Goldreich and Ostrovsky first showed a com-
putationally secure ORAM scheme with poly-logarithmic simulation overhead.
Therefore, one interesting question is whether ORAMs can be constructed with-
out relying on computational assumptions. Ajtai [2] answered this question and
showed that statistically secure ORAMSs with poly-logarithmic simulation over-
head exist. Although Ajtai removed computational assumptions from ORAMs,
his construction has a (negligibly small) statistical failure probability, i.e., with
some negligibly small probability, the ORAM construction can leak information.
Subsequently, Shi et al. [39] proposed the tree-based paradigm for constructing
statistically secure ORAMs. Tree-based constructions were later improved fur-
ther in several works [9}/11}20L/41}/42], and this line of works improve the practical
performance of ORAM by several orders of magnitude in comparison with ear-
lier constructions. It was also later understood that the tree-based paradigm can
be used to construct computationally secure ORAMs saving yet another log log
factor in cost in comparison with statistical security [9L[15].

Perfect security requires that the (oblivious) program’s memory access pat-
terns be identically distributed regardless of the inputs to the program; and thus
with probability 1, no information can be leaked about the secret inputs to
the program. Perfectly secure ORAM was first studied by Damgard et al. [12].

Perfectly Secure Oblivious Parallel RAM 5

Their construction achieves O(log® N) simulation overhead and O(log N) space
blowup relative to the original RAM program. Their construction is a Las Vegas
algorithm and there is a negligibly small failure probability that the algorithm
exceeds the stated runtime. Raskin et al. [37] and Demertzis et al. [14] achieve
a worst-case bandwidth of O(\/Nlolgﬁ)g]v) and O(N'/3), respectively. As men-
tioned, even for the sequential case, our paper asymptotically improves Damgard
et al.’s result [12] by avoiding the O(log N) blowup in space; and moreover, our
ORAM construction is conceptually simpler than that of Damgard et al.’s.

Oblivious Parallel ORAM (OPRAM) was first proposed in an elegant work
by Boyle, Chung, and Pass [6], and subsequently improved in several followup
works [7HL0L[35]. All known results on OPRAM focus on the statistically secure
or the computationally secure setting. To the best of our knowledge, until this
paper, we know of no efficient OPRAM scheme that is perfectly secure. Chen,
Lin and Tessaro [10] introduced a generic method to transform any ORAM into
an OPRAM at the cost of a log N blowup. Their techniques achieve statistical
security since security (or correctness) is only guaranteed with high probability
(specifically, when some queue does not become overloaded in their scheme).

Defining a good performance metric for OPRAMs turned out to be more
interesting and non-trivial than for ORAMs. Boyle et al. [6] were the first to
define a notion of simulation overhead for OPRAM: if an OPRAM’s simulation
overhead is X, it means that if the original PRAM consumes m CPUs and
completes in parallel runtime T, then the oblivious counterpart must complete
within X -7 time also consuming m CPUs. The recent work of Chan, Chung, and
Shi [7] observes that if the OPRAM could consume more CPUs than the original
PRAM, then the oblivious simulation can benefit from the additional parallelism
and be additionally sped up by asymptotic factors. Under the assumption that
the OPRAM can consume more CPUs than the original PRAM, Chan, Chung,
and Shi [7,9] show that statistically secure OPRAM schemes can be constructed
with O(log? N) blowup in total work and only O(log N) blowup in depth (where
depth characterizes the parallel runtime of a program assuming ample number
of CPUs). Our paper is the first to construct an OPRAM scheme with perfect
security, and our OPRAM’s depth matches existing schemes with statistical
security assuming negligible in N security failure; however, if (sub-)exponentially
small failure probability is required, our new OPRAM scheme can asymptotically
outperform all known statistically secure OPRAMSs!

2 Technical Roadmap

In this section, we present an informal roadmap of our technical approach to aid
understanding.

2.1 Simplified Perfectly Secure ORAM with Asymptotically
Smaller Space

First, we propose a new perfectly secure ORAM scheme that is conceptually
simpler than that of Damgard et al. |[12] and asymptotically gains a logarithmic

6 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

factor in space. Our construction is inspired by the hierarchical ORAM paradigm
originally proposed by Goldreich and Ostrovsky [21,22]. However, most existing
hierarchical ORAMs achieve only computational security since they rely on a
pseudorandom function (PRF) for looking up hash tables in the hierarchical
data structure. Thus our focus is how to get rid of this PRF and achieve perfect
security.

Background: hierarchical ORAM. The recent work by Chan et al. [8] gave a clean
and modular exposition of the hierarchical paradigm. A hierarchical ORAM con-
sists of O(log N) levels that are geometrically increasing in size. Specifically, level
i is capable of storing 2! memory blocks. One could think of this hierarchical
data structure as a hierarchy of stashes where smaller levels act as stashes for
larger levels. In existing schemes with computational security, each level is an
oblivious hash-table |8]. To access a block at logical address addr, the CPU se-
quentially looks up every level of the hierarchy (from small to large) for the
logical address addr. The physical location of a logical address addr within the
oblivious hash-table is determined using a PRF whose secret key is known only
to the CPU but not to the adversary. Once the block has already been found
in some level, for all subsequent levels the CPU would just look for a dummy
element, denoted by L. When a requested block has been found, it is marked as
deleted in the corresponding level where it is found. Every 2¢ memory requests,
we perform a rebuild operation and merge all levels smaller than ¢ (including
the block just fetched and possibly updated if this is a write request) into level
¢ — at this moment, the oblivious hash-table in level ¢ is rebuilt, where every
block’s location in the hash table is determined using a PRF.

As Chan et al. [8] point out, the hierarchical ORAM paradigm effectively re-
duces the problem of constructing ORAM to constructing an oblivious hash-table
supporting two operations: 1) rebuild takes in a set of blocks each tagged with
its logical address, and constructs a hash-table data structure that facilitates
lookups later; and 2) lookup takes a request that is either a logical address
addr or dummy (denoted L), and returns the corresponding block requested.
Obliviousness (defined w.r.t. the joint access patterns of the rebuild and lookup
phases) is guaranteed as long as during the life-time of the oblivious hash-table,
the sequence of lookup requests never ask for the same real element twice — and
this invariant is guaranteed by the specific way the hierarchical ORAM frame-
work uses the oblivious hash-table as a building block (more specifically, the fact
that once a block is found, it is moved to a smaller level and a dummy block is
requested from all subsequent levels).

Removing the PRF. As mentioned, an oblivious hash-table relies on a PRF
to determine each block’s location within a hash-table instance; and both the
rebuilding phase and the lookup phase use the same PRF for placing and fetching
blocks respectively. Since we wish to achieve perfect security, we would like to
remove the PRF. One simple idea is to randomly permute all blocks within a
level — this way, each lookup of a real block would visit a random location
and we could hope to retain security as long as every real block is requested at

Perfectly Secure Oblivious Parallel RAM 7

most once for every level (in between rebuilds)lﬂ Using techniques from earlier
works [7,/9], it is possible to obliviously perform such a random permutation
without disclosing the permutation; however, difficulty arises when one wishes
to perform a look up — if blocks are randomly permuted within a level during
rebuild, lookup must know where each block resides to proceed successfully. Thus
if the CPU could hold a position map for free to remember where each block is
in the hierarchical data structure, the problem would have been resolved: during
every lookup, the CPU could first look up the physical location of the logical
address requested, and then proceed accordingly.

Actually storing such a position map, however, would consume too much
CPU space. To avoid storing this position map, we are inspired by the recur-
sion technique that is commonly adopted by tree-based ORAM schemes [39] —
however, as we point out soon, making the recursion idea work for the hierarchi-
cal ORAM paradigm is more sophisticated. The high-level idea is to recursively
store the position map in a smaller ORAM rather than storing it on the CPU
side; we could then recurse and store the position map of the position map in
an even smaller ORAM, and so on — until the ORAM’s size becomes O(1) at
which point we would have the CPU store the entire ORAM. Henceforth, we use
the notation ORAMp to denote the ORAM that stores the actual data blocks
where D = O(log N); and we use ORAMy to denote the ORAM at depth d of
this recursion where d € [0..D — 1]. Thus, the larger d is, the larger the ORAM.

Although this recursion idea was very simple in the tree-based paradigm, it
is not immediately clear how to make the same recursion idea work in the hier-
archical ORAM paradigm. One trickiness arises since in a hierarchical ORAM,
every 2! requests, the ORAM would reshuffle and merge all levels smaller than
1 into level 4 — this is called a rebuild of level i. When a level-i rebuild hap-
pens, the position labels in the position-map ORAM must be updated as well
to reflect the blocks’ new locations. In a similar fashion, the position labels in
all of ORAMg, ORAMy, ..., ORAMp_; must be updated. We make the following
crucial observation that will enable a coordinated rebuild technique which we will
shortly explain:

(Invariant necessary for coordinated rebuild:) If a data block resides at level
i of ORAMp, then its position labels in all recursion depths must reside in
level i or smallen’]

This invariant enables a coordinated rebuild technique: when the data ORAM
(i.e., ORAMp) merges all levels smaller than i into level 4, all smaller recursion
depths would do the same (unless the recursion depth is too small and does
not have level 7, in which case the entire ORAM would be rebuilt). During this
coordinated rebuild, ORAMp would first perform its rebuild, and propagate the
position labels of all blocks involved in the rebuild to recursion depth D — 1;

5 As we point out later, randomly permuting real blocks is in fact not sufficient; we
also need to allow dummy lookups by introducing an oblivious dummy linked list.

7 A similar observation was adopted by Goodrich et al. [24] in their statistically secure
ORAM construction.

8 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

then ORAMp_; would perform its rebuild based on the position labels learned
from ORAMp, and propagate the new position labels involved to recursion depth
D —2, and so on. As we shall discuss in the technical sections, rebuilding a level
(in any recursion depth) can be accomplished through the help of O(1) oblivious
sorts and an oblivious random permutation.

Handling dummy blocks with oblivious linked lists. The above idea almost works,
but not quite so. There is an additional technical subtlety regarding how to
handle and use dummy blocks. Recall that during a memory access, if a block
requested actually resides in a hierarchical level, we would read the memory
location that contains the block (and this memory location could be retrieved
through a special recursive position map technique). If a block does not reside
in a level (or has been found in a smaller level), we still need to read a dummy
location within the level to hide the fact that the block does not reside within
the current level.

Recall that the i-th level must support up to 2 lookups before the level is
rebuilt. Thus, one idea is to introduce 2! dummy blocks, and obliviously and
randomly permute all blocks, real and dummy alike, during the rebuild. All
dummy blocks may be indexed by a dummy counter, and every time one needs
to look up a dummy block in a level, we will visit a new dummy block. In this
way, we can retain obliviousness by making sure that every real block and every
dummy block is visited at most once before the level is rebuilt again.

To make this idea fully work, there must be a mechanism for finding out
where the next dummy block is every time a dummy lookup must be performed.
One naive idea would be to use the same recursion technique to store position
maps for dummy blocks too — however, since each memory request might involve
reading O(log N') dummy blocks, one per level, doing so would incur extra blowup
in runtime and space. Instead, we use an oblivious dummy linked list to resolve
this problem — this oblivious dummy linked list is inspired by technical ideas
in the Damgard et al. construction [12]. In essence, each dummy block stores
the pointer to the next dummy block, and the head pointer of the linked list
is stored at a designated memory location and updated upon each read of the
linked list. In the subsequent technical sections, we will describe how to rely
on oblivious sorting to rebuild such an oblivious dummy linked list to support
dummy lookups.

Putting it altogether. Putting all the above ideas together, the formal presenta-
tion of our perfectly secure ORAM scheme adopts a modular approac}ﬂ First,
we define and construct an abstraction called an “oblivious one-time memory”.
An oblivious one-time memory allows one to obliviously create a data structure
given a list of input blocks. Once created, one can look up real or dummy blocks
in the data structure, and to look up a real block one must provide a correct po-
sition label indicating where the block resides (imagine for now that the position

8 In fact, later in our paper, we omit the sequential version and directly present the
parallel version of all algorithms.

Perfectly Secure Oblivious Parallel RAM 9

label comes from an “oracle” but in the full ORAM scheme the position label
comes from the recursion). An oblivious one-time memory retains obliviousness
as long as every real block is looked up at most once and moreover, dummy
blocks are looked up at most n times where n is a predetermined parameter
(that the scheme is parametrized with).

Once we have this “oblivious one-time memory” abstraction, we show how to
use it to construct an intermediate abstraction referred to as a “position-based
ORAM?”. A position-based ORAM contains a hierarchy of oblivious one-time
memory instances, of geometrically growing sizes. A position-based ORAM is
almost a fully functional ORAM except that we assume that upon every memory
request, an “oracle” will somehow provide a correct position label indicating
where the requested block resides in the hierarchy.

Finally, we go from such a “position-based ORAM” to a fully functional
ORAM using the special recursive position-map technique as explained. At this
point, we have constructed a perfectly secure ORAM scheme with O(log® N)
simulation overhead. Specifically, one log N factor arises from the log N depths
of recursion, the remaining log® N factor arises from the cost of the ORAM at
each recursion depth. Intuitively, our perfectly secure ORAM is a logarithmic
factor more expensive than existing computationally-secure counterparts in the
hierarchical framework [8}|23./30] since the computationally-secure schemes [8,
23.130] avoid the recursion by adopting a PRF to compute the pseudorandom
position labels of blocks.

2.2 Making Our ORAM Scheme Parallel

Our next goal is to make our ORAM scheme parallel. Instead of compiling a
sequential RAM program to a sequential ORAM, we are now interested in com-
piling a PRAM program to an OPRAM.

When the OPRAM Consumes the Same Number of CPUs as the
PRAM. Suppose that the original program is a PRAM that completes in T
parallel steps consuming m CPUs. We now would like to parallelize our earlier
ORAM scheme and construct an OPRAM that completes in T - O(log3 N) par-
allel steps consuming also exactly m CPUs. To accomplish this, first, we need
to parallelize within each position-based ORAM so m CPUs can perform work
concurrently. This is not too difficult to accomplish given the simplicity of our
position-based ORAM construction. Next, when m CPUs have all fetched posi-
tion labels at one recursion depth, they need to pass these position labels to the
CPUs at the next depth. The main technique needed here is oblivious routing:
when the m CPUs at recursion depth d have fetched the position labels for the
next recursion depth, the m CPUs at depth d must now obliviously route the
position labels to the correct fetch CPU at the next recursion depth. As shown in
earlier works [6}/7},9], such oblivious routing can be accomplished with m CPUs
in O(logm) parallel steps.

10 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

We stress that the simplicity of our sequential ORAM construction makes it
easy to parallelize — in comparison, we are not aware how to parallelize Damgard
et al. [12]’s constructioﬂ

When the OPRAM May Consume Unbounded Number of CPUs. The
more interesting question is the following: if the OPRAM 1is allowed to consume
more CPUs than the original PRAM, can we further reduce its parallel runtime?
If so, it intuitively means that the overheads arising due to obliviousness are
parallelizable in nature. This model was first considered by Chan et al. [7] and can
be considered as a generalization of the case when the OPRAM must consume
the same number of CPUs as the original PRAM.

So far, in our OPRAM scheme, although within each recursion depth, up to
m requests can be served concurrently, the operations over all O(log N) recursion
depths must be performed sequentially. There are two reasons that necessitate
this sequentiality:

1. Fetch phase: first, to fetch from recursion depth d, one must wait for the
appropriate position labels to be fetched from recursion depth d — 1 and
routed to recursion depth d;

2. Maintain phase: recall that coordinated rebuilding (see Section is per-
formed across all recursion depths in the reverse direction: recursion depth d
must rebuild first and then propagate the new positions labels back to recur-
sion depth d — 1 before d — 1 can rebuild (recall that recursion depth d — 1
must store the position labels for blocks in depth d).

Note that for the fetch phase, oblivious routing between any two adjacent
recursion depths would consume O(logm) depth; for the maintain phase, re-
building a hierarchical level can consume up to O(log N) depth (due to oblivious
sorting of up to O(N) blocks). Thus, the current OPRAM algorithm incurs a
depth blowup of O(log® N) for moderate sizes of m, e.g., when logm = O(log N).
Our next goal is to reduce the depth blowup to 6(log N), and this turns out to
be highly non-trivial.

Reducing the depth of the fetch phase with expander graphs. Using the recursion
technique, it seems inherent that one must fetch from smaller recursion depths
before embarking on larger ones. To reduce the depth of the fetch phase, we ask
whether the depth incurred by oblivious routing in between adjacent recursion
depths can be reduced. In the statistically and computationally secure settings,
the recent work by Chan, Chung, and Shi have tried to tackle a similar problem

9 In Damgérd et al. [12], the shuffle phase incurs an O(log® N) depth which is the
same as the overhead for accessing a block. Specifically, a log N factor arises due
to oblivious sorting, a log N factor due to the existence of hierarchies, and another
log N factor due to the extra log N dummies stored for every real element. Though an
offline/online technique like ours may be conceivable for their scheme, the existence
of the extra log N dummies makes it inherently hard to improve the depth by another
log N factor.

Perfectly Secure Oblivious Parallel RAM 11

for tree-based OPRAMSs [7]. Their idea is to construct an offline/online routing
algorithm. Although the offline phase incurs O(log V) depth per recursion depth,
the offline work of all recursion depths can be performed concurrently rather than
sequentially. On the other hand, the online phase of their routing algorithm must
be performed sequentially among the recursion depths, but happily the online
routing phase incurs only O(1) depth per recursion depth. Unfortunately, the
offline/online routing algorithm of Chan et al. 7] is a randomized algorithm that
leverages some form of statistical “load balancing”, and such load balancing can
fail with negligibly small probability — this makes their algorithm unsuitable
for the perfect security setting.

We propose a novel offline/online routing algorithm that achieves perfect
security using special expander graphs — our techniques can be viewed as a
method for derandomizing a new variant of the offline/online routing techniques
described by Chan et al. |7]. Like Chan et al. 7], our offline/online routing al-
gorithm achieves O(log N) depth for each recursion depth in the offline stage
but the work in all recursion depths can be performed in parallel in the offline
stage. By contrast, the online phase must traverse the recursion depths sequen-
tially, but the online stage of routing can be accomplished in O(1) depth per
recursion depth. To achieve this, we rely on a core building block called a “loose
compactor”. Leveraging special expander graphs, we show how to build a loose
compactor with small online depth — since this part of our techniques are novel,
we present a more expanded overview in Section while deferring a detailed,
formal description to later technical sections (Sections |§| and .

Reducing the depth of the maintain phase. We also must reduce the depth of the
maintain phase. Although a naive implementation of coordinated rebuild is to do
it sequentially from recursion depth D down to recursion depth 0, we devise a
method for performing the coordinated rebuild in parallel among all recursion
depths. Recall that in the naive solution, recursion depth d — 1 must wait for
recursion depth d to relocate its blocks and be informed of the new position
labels chosen before it starts reshuffling.

In our new algorithm, we introduce the notion of a rehearsal step called
“mock shuffle” which determines the new positions of each of the blocks. Note
that during this step, the newly chosen block contents (position labels) at the
recursion depths are not available. Now, instead of sequentially performing the
shuffle, in a mock shuffle, every recursion depth performs eager reshuffling with-
out having updated the block’s contents (recall that each block in recursion
depth d is supposed to store position labels for the next recusion depth d 4 1).
After this mock shuffle, all blocks’ new positions are determined though their
contents are not known. Each mock reshuffle incurs O(log N) depth, but they
are independent and can be performed in parallel. At this moment, recursion
depth d informs the newly chosen position labels to recursion depth d — 1 —
now recursion depth d — 1 relies on oblivious routing to deliver each block’s
contents to the block. Note that recursion depth d — 1 has already chosen each
block’s position at this point and thus in this content update step, each block’s

12 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

contents will be routed to the corresponding block and all blocks will maintain
their chosen positions.

Using this idea, although each recursion depth incurs O(log N) depth for
the maintain phase, all recursion depths can now perform the maintain-phase
operations in parallel.

Additional techniques. Besides the above, additional tricks are needed to achieve
O(log N) depth. For example, within each recursion depth, all the hierarchical
levels must be read in parallel during the fetch phase rather than sequentially
like in existing hierarchical ORAMs [21,/22], and the result of these fetches can
be aggregated using an oblivious select operation incurring O(loglog N) depth
(see Section. It is possible for us to read all the hierarchical levels in parallel
since each recursion depth must have received the position labels of all real blocks
requested before its fetch phase starts — and thus we know for each requested
block which level to look for a real element and which level to visit dummies.

We defer additional algorithmic details and tricks to the later technical sections.

2.3 Offline/Online Routing with Special Expander Graphs

Informal problem statement. Without going into excessive details, consider the
following abstract problem: imagine that m CPUs at a parent depth have fetched
m real or dummy blocks, and each real block contains two position labels for
the next depth — thus in total up to 2m position labels have been fetched.
Meanwhile, m CPUs at the next depth are waiting to receive m position labels
before they can start their fetch. Our task is to obliviously route the (up to) 2m
position labels at the parent depth to the m CPUs at the child depth. Using
oblivious routing directly would incur 2(logm) depth and thus is too expensive.

A blueprint: using an offline/online algorithm. As mentioned earlier, our high-
level idea is to leverage an offline-online paradigm such that the online phase,
which must be performed sequentially for all recursion depths, should have small
parallel runtime for each recursion depth.

Here is another idea: suppose that we are somehow able to compress the 2m
position labels down to m, removing the ones that are not needed by the next
recursion depth — this is in fact non-trivial but for now, suppose that somehow
it can be accomplished.

Our plan is then the following: in the offline phase, we obliviously and ran-
domly permute the m position labels to be routed (without leaking the permu-
tation), and we obliviously compute the routing permutation 7 preserving the
following invariant: the CPU at position 7(¢) (in the child depth) is waiting for
the i-th position label in the permuted array. In other words, the i-th position
label wants to be routed to the CPU in position 7(i); and in the offline phase,
we want to route down this 7.

If we can accomplish all of the above, then in the online phase we simply
apply the routing permutation that has been recorded and it takes a single
parallel step to complete the routing. Moreover, for the offline phase, as long

Perfectly Secure Oblivious Parallel RAM 13

as we can perform the operations in parallel across all recursion depths, we are
allowed to incur log m depth.

Informally, obliviousness holds because of the following: recall that the m
labels to be routed have been obliviously and randomly permuted. Now, al-
though the routing permutation 7 is revealed in the online phase, the revealed
permutation is uniform at random to an observer.

Technical challenges: compaction (and more). The above blueprint seems promis-
ing, but there are multiple technical challenges. One critical ingredient that is
missing is how to perform compaction from 2m elements down to m, removing
the labels not needed by the next recursion depth — in fact, even if we can
solve this compaction problem, additional challenges remain in putting these
techniques together. However, for the time being, let us focus on the compaction
problem alone, leaving the remaining challenges to Sections [6] and [7} The most
naive method is again to leverage oblivious sorting but unfortunately that takes
2(logm) depth and thus is too expensive for our purpose.

Pippenger’s factory-facility problem. Our approach is inspired by the elegant
techniques described by Pippenger in constructing a self-routing super-concentrator [36].
Pippenger’s elegant construction can be used to solve a “factory-facility” prob-
lem described as follows. Suppose that 2m factories and m facilities form a special
bipartite expander graph: each factory is connected to 0 facilities and each fa-
cility is connected to 20 factories, where 0 is a constant. Among the factories,
m/64 of them are productive and actually end up manufacturing products. Each
productive factory produces /2 products; these products must be routed to a
facility to be stored, and each facility has a storage capacity of /2. Now, the
question is: given the set of productive factories (and assuming that the bipartite
graph is known), can we find a satisfying assignment for routing products to fa-
cilities, such that 1) every edge in the bipartite graph routes carries at most one
unit of flow; 2) all products manufactured are routed; and 3) no facility exceeds
its storage capacity.

In his ingenious work [36], Pippenger described a distributed protocol for find-
ing such an assignment: imagine that the factories and facilities are Interactive
Turing Machines. Now the factories and facilities exchange messages over edges
in the bipartite graph. Pippenger’s protocol completes after O(logm) rounds of
interaction and a total of O(m) number of messages. Pippenger proved that as
long as the underlying bipartite graph satisfies certain expansion properties, his
protocol is guaranteed to find a satisfying assignment.

Using Pippenger’s protocol for oblivious loose compaction. Now we can reduce
the problem of (loose) compaction to Pippenger’s factory-facility problem. Imag-
ine that there are twice as many factories as there are facilities. Another way
to think of the factory-facility problem is the following: imagine that the fac-
tories initially store real elements (i.e., the manufactured products) as well as
dummies, and in total 2m - (9/2) amount of storage is consumed since each fac-
tory can produce at most 9/2 products. We ensure that only m /64 factories are

14 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

productive by appropriately adding a constant factor of dummy elements (i.e.,
dummy factories and facilities). Now, when routed to the facilities, the storage
amount is compressed down by a factor of 2 since each facility can store up to
9/2 products and the number of facilities is half that of factories. Further, for
any satisfying assignment, we guarantee that no real element is lost during the
routing, and that is why the compaction algorithm satisfies correctness. Note
that such compaction is loose, i.e., we do not completely remove dummies dur-
ing compaction although we do cut down total storage by a half while preserving
all real elements. In our OPRAM algorithm, it turns out that such loose com-
paction is sufficient, since CPUs who have received dummy position labels can
always perform dummy fetch operations.

Pippenger’s protocol can be easily simulated on a PRAM incurring O(m)
total work and O(logm) parallel runtime — however, a straightforward PRAM
simulation of their protocol is not oblivious. In particular, the communication
patterns between the factories and facilities (which translate to memory access
patterns when simulated on a PRAM) leak information about which factories
are productive. Thus it remains for us to show how to obliviously simulate his
protocol on a PRAM. We show that this can be done incurring O(m logm) total
work and O(logm) parallel runtime — note that the extra logm overhead arises
from the obliviousness requirement.

Finally, we apply the loose compaction algorithm in an offline/online fashion
too. In the offline phase, we execute Pippenger’s protocol obliviously on a PRAM
to compute the satisfying assignment — the offline phase can be parallelized
over all recursion depths, thus incurring O(logm) parallel runtime overall. In
the online phase, we only have to carry out the satisfying assignment that has
already been recorded in the offline phase to perform the actual routing of the
fetched position labels, and this can be accomplished in O(1) online parallel
runtime.

We defer a detailed description of the techniques to the formal technical
sections.

3 Definitions

3.1 Parallel Random-Access Machines

We review the concepts of a parallel random-access machine (PRAM) and an
oblivious parallel random-access machine (OPRAM). Some of the definitions in
this section are borrowed verbatim from Boyle et al. [6] or Chan and Shi [9).

Although we give definitions only for the parallel case, we point out that
this is without loss of generality, since a sequential RAM can be thought of as a
special case PRAM with one CPU.

Parallel Random-Access Machine (PRAM). A parallel random-access machine
consists of a set of CPUs and a shared memory denoted by mem indexed by the
address space {0,1,..., N — 1}, where N is a power of 2. In this paper, we refer
to each memory word also as a block, which is at least £2(log N) bits long.

Perfectly Secure Oblivious Parallel RAM 15

In a PRAM, each step of the execution can employ multiple CPUs, and
henceforth we use m; to denote the number of CPUs involved in executing the
t-th step for ¢ € N. In each step, each CPU executes a next instruction circuit
denoted II, updates its CPU state; and further, CPUs interact with memory
through request instructions I*) := (IZ-(t) : 1 € [my]). Specifically, at time step ¢,
CPU 7’s instruction is of the form IZ-(t) := (read, addr), or Ii(t) := (write, addr, data)
where the operation is performed on the memory block with address addr and
the block content data.

If IZ-(t) = (read, addr) then the CPU ¢ should receive the contents of mem/[addr]

at the beginning of time step t. Else if IZ-(t) = (write, addr,data), CPU ¢ should
still receive the contents of mem[addr] at the beginning of time step ¢; further,
at the end of step ¢, the contents of mem[addr] should be updated to data.

Write conflict resolution. By definition, multiple read operations can be exe-
cuted concurrently with other operations even if they visit the same address.
However, if multiple concurrent write operations visit the same address, a con-
flict resolution rule will be necessary for our PRAM to be well-defined. In this
paper, we assume the following:

— The original PRAM supports concurrent reads and concurrent writes (CRCW)
with an arbitrary, parametrizable rule for write conflict resolution. In other
words, there exists some priority rule to determine which write operation
takes effect if there are multiple concurrent writes in some time step t.

— Our compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-
sive write” PRAM (CREW). In other words, our OPRAM algorithm must
ensure that there are no concurrent writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule
is among the most powerful CRCW-PRAM model, whereas CREW is a much
weaker model. Our results are stronger if we allow the underlying PRAM to be
more powerful but our compiled OPRAM uses a weaker PRAM model. For a
detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [26).

CPU-to-CPU communication. In the remainder of the paper, we sometimes de-
scribe our algorithms using CPU-to-CPU communication. For our OPRAM algo-
rithm to be oblivious, the inter-CPU communication pattern must be oblivious
too. We stress that such inter-CPU communication can be emulated using shared
memory reads and writes. Therefore, when we express our performance metrics,
we assume that all inter-CPU communication is implemented with shared mem-
ory reads and writes. In this sense, our performance metrics already account for
any inter-CPU communication, and there is no need to have separate metrics
that characterize inter-CPU communication. In contrast, some earlier works [10]
adopt separate metrics for inter-CPU communication.

16 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

Additional assumptions and notations. Henceforth, we assume that each CPU
can only store O(1) memory blocks. Further, we assume for simplicity that the
runtime 7" of the PRAM is fized a priori and publicly known. Therefore, we can
consider a PRAM to be parametrized by the following tuple

PRAM := (II, N, T, my,ma, ..., mr),

where IT denotes the next instruction circuit, N denotes the total memory size
(in terms of number of blocks), T' denotes the PRAM’s total runtime, and my
denotes the number of CPUs in the ¢-th step for ¢ € [T7.

Finally, in this paper, we consider PRAMSs that are stateful and can evaluate
a sequence of inputs, carrying state in between. Without loss of generality, we
assume each input can be stored in a single memory block.

3.2 Oblivious Parallel Random-Access Machines

An OPRAM is a (randomized) PRAM with certain security properties, i.e., its
access patterns leak no information about the inputs to the PRAM.

Randomized PRAM. A randomized PRAM is a PRAM where the CPUs are
allowed to generate private random numbers. For simplicity, we assume that a
randomized PRAM has a priori known, deterministic runtime, and that the CPU
activation pattern in each time step is also fixed a priori and publicly known.

Memory access patterns. Given a PRAM program denoted PRAM and a sequence
inp of inputs, we define the notation Addresses|PRAM]|(inp) as follows:

— Let T be the total number of parallel steps that PRAM takes to evaluate
inputs inp.

— Let Ay := (addr},addr}, ... ,addrfm) be the list of addresses such that the ith
CPU accesses memory address addr! in time step ¢.

— We define Addresses[PRAM](inp) to be the random object [Ay];c(7y-

Oblivious PRAM (OPRAM). We say that a PRAM is perfectly oblivious, iff
for any two input sequences inp, and inp; of equal length, it holds that the
following distributions are identically distributed (where = denotes identically
distributed):

Addresses|PRAM]|(inp,) = Addresses|PRAM](inp;)

We remark that for statistical and computational security, some earlier works [8|
9] presented an adaptive, composable security notion. The perfectly oblivious
counterpart of their adaptive, composable notion is equivalent to our notion
defined above. In particular, our notion implies security against an adaptive
adversary who might choose the input sequence inp adaptively over time after
having observed partial access patterns of PRAM.

Perfectly Secure Oblivious Parallel RAM 17

We say that OPRAM is a perfectly oblivious simulation of PRAM iff OPRAM
is perfectly oblivious, and moreover OPRAM(inp) is identically distributed as
PRAM(inp) for any input inp. In the remainder of the paper, we always assume
that the original PRAM has a fixed number of CPUs (denoted m) in all steps
of execution. For the compiled OPRAM, we consider two models 1) when the
OPRAM always consumes exactly m CPUs in every step (i.e., the same number
of CPUs as the original PRAM); and 2) when the OPRAM can consume an
unbounded number of CPUs in every step; in this case, the actual number of
CPUs consumed in each step may vary. We leave it as an open problem how to
obliviously simulate a PRAM with a varying number of CPUs (without naively
padding the number of CPUs to the maximum which can incur large overhead).

Oblivious simulation metrics. We adopt the following metrics to characterize
the overhead of (parallel) oblivious simulation of a PRAM. In the following,
when we say that an OPRAM scheme consumes T parallel steps (or W total
work), we mean that the OPRAM scheme consumes T parallel steps (or W total
work) except with negligible in N probability. In other words, the definition of
our metrics allows the OPRAM to sometimes, but with negligibly small (in V)
probability, exceed the desired runtime or total work bound; however, note that
the security or correctness failure probability must be 0[]

— Simulation overhead (when the OPRAM consumes the same number of CPUs
as the PRAM). If a PRAM that consumes m CPUs and completes in T parallel
steps can be obliviously simulated by an OPRAM that completes in v-T steps
also with m CPUs (i.e., the same number of CPUs as the original PRAM),
then we say that the simulation overhead is . Note that this means that
every PRAM step is simulated by on average v OPRAM steps.

— Total work blowup (when the OPRAM may consume unbounded number of
CPUs). A PRAM’s total work is the number of steps necessary to simulate
the PRAM under a single CPU, and is equal to the sum ZtE[T] my. If a PRAM
of total work W can be obliviously simulated by an OPRAM of total work
~v - W we say that the total work blowup of the oblivious simulation is ~.

— Depth blowup (when the OPRAM may consume unbounded number of CPUs).
A PRAM’s depth is defined to be its parallel runtime when there are an un-
bounded number of CPUs. If a PRAM of depth D can be obliviously simulated
by an OPRAM of depth - D we say that the depth blowup of the oblivious
simulation is 7.

Note that the simulation overhead is a good standalone metric if we assume
that the OPRAM must consume the same number of CPUs as the PRAM. If
the OPRAM is allowed to consume more CPUs than the PRAM, we typically
use the metrics total work blowup and depth blowup in conjunction with each
other: total work blowup alone does not characterize how much the OPRAM

10 Similarly, the perfectly secure ORAM by Damgérd et al. [12] also allowed a negligible
small probability for the algorithm to exceed the desired complexity bound but the
security or correctness failure probability must be 0.

18 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

preserves parallelism; and depth blowup alone does not capture the extent to
which the OPRAM preserves total work.

Finally, the following simple fact is useful for understanding the complexity
of (oblivious) parallel algorithms.

Fact 2 Let C > 1. If an (oblivious) parallel algorithm can complete in T steps
consuming m CPUs, then it can complete in CT steps consuming [CPUs.

3.3 Building Blocks

We now introduce several useful oblivious building blocks. With the exception
of oblivious random permutation, we assume that all remaining building blocks
are deterministic: for a deterministic algorithm, obliviousness means that the
algorithm’s memory access pattern is independent of its input.

Oblivious sort. Ajtai, Komlds, and Szemerédi [1] show how to construct a circuit
with n log n comparators that can correctly sort any input sequence containing n
comparable elements. This immediately gives rise to a parallel oblivious sorting
algorithm with O(nlogn) total work and O(logn) depth.

Oblivious routing. Oblivious routing solves the following problem. Suppose n
source CPUs each holds a data block with a distinct key (or a dummy block).
Further, n destination CPUs each holds a key and requests a data block identified
by its key — multiple destination CPUs can possibly request the same key. An
oblivious routing algorithm routes the requested data block to the destination
CPU in an oblivious manner. We may assume that the destination CPUs are
represented by an ordered array X. Initially the payload of each entry of X is
left empty. After the routing, each entry of X receives a data block (the received
data block is dummy if no source CPUs hold the same key as requested). The
ordering of elements in X is preserved between the input and output.

Boyle et al. [6] showed that through a combination of oblivious sorts and
oblivious aggregation, oblivious routing can be achieved in O(logn) parallel run-
time with O(n) CPUs.

Obliviously computing the routing permutation. Suppose that we are given a
source array src of length n where each entry holds a distinct key, and a destina-
tion array dst also of length n where each entry holds a distinct key. Further, it
is guaranteed that the set of keys in src is the same as the set of keys in dst. We
would like to write down a permutation 7 (henceforth referred to as the routing
permutation) such that applying 7 to src would result in the same order of keys
as dst. The recent work by Chan and Shi 9] showed how to implement the above
task obliviously using O(1) number of oblivious sorts. Thus, with O(n) CPUs
the routing permutation can be computed in O(logn) parallel runtime.

Perfectly Secure Oblivious Parallel RAM 19

Oblivious select. Consider the following problem: given a set of n elements among
which at most one element is distinguishing, output the distinguishing element
(and if no element is distinguishing, output L). It is not difficult to see that by
building an aggregation tree over the n elements, one can accomplish oblivious
select with n CPUs in logn parallel steps.

Oblivious prefiz sum. Given an array X of length n, every i € [n] wants to
compute the sum of the prefix X[1..i]. There exists a parallel oblivious algorithm
to achieve this in O(logn) steps consuming n CPUs [27].

Oblivious random permutation. Let ORP be an algorithm that upon receiving
an input array X, outputs a permutation of X. Let Fperm denote an ideal func-
tionality that upon receiving the input array X, outputs a perfectly random
permutation of X.

We say that ORP is a perfectly oblivious random permutation, iff there exists a
simulator Sim such that the joint distribution (Fperm(X), Sim(].X|)) is identically
distributed as the joint distribution of the output and the addresses incurred by
running ORP on X. Note that the simulator Sim is given only the input length
|X| but not the contents of X.

Chan, Chung, and Shi [7] recently describe a perfectly oblivious random
permutation algorithm, which, except with negligible in A probability, completes
in O(logn) parallel steps consuming n CPUs assuming each block is large enough
to store log A bits. We summarize their construction in the following theorem:

Theorem 3 (Perfectly oblivious random permutation [7]). Assume that
each memory block is large enough to store at least log A bits and that n < \ <
20(n%) Then, there exists a perfectly oblivious random permutation algorithm
that consumes n CPUs. Except with negligible in \ probability, the algorithm
completes in O(logn) parallel steps and O(nlogn) work.

We note that the failure is in terms of the algorithm’s runtime — there is
a negligibly small probability that the algorithm will run for longer, but the
algorithm guarantees perfect security regardless.

4 Parallel One-Time Oblivious Memory

We define and construct an abstract datatype to process non-recurrent memory
lookup requests. Although the abstraction is similar to the oblivious hashing
scheme in Chan et al. [8], our one-time memory scheme needs to be perfectly
secure and does not use a hashing scheme. Furthermore, we assume that every
real lookup request is tagged with a correct position label that indicates where the
requested block is — in this section, we simply assume that the correct position
labels are simply provided during lookup; but later in our full OPRAM scheme,
we will use a recursive ORAM/OPRAM technique reminiscent of those used in
binary-tree-based ORAM/OPRAM schemes [9}11,39}/41,|42] such that we can
obtain the position label of a block first before fetching the block.

20 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

4.1 Definition: One-Time Oblivious Memory

Intuition. We describe the intuition using the sequential special case but our
formal presentation later will directly describe the parallel version. An oblivious
one-time memory supports three operations: 1) Build, 2) Lookup, and 3) Getall.
Build is called once upfront to create the data structure: it takes in a set of
real blocks (each tagged with its logical address) and creates a data structure
that facilitates lookup. After this data structure is created, a sequence of lookup
operations can be performed: each lookup can request a real block identified by
its logical address or a dummy block denoted | — if the requested block is a real
block, we assume that the correct position label is supplied to indicate where
in the data structure the requested block is. Finally, when the data structure
is no longer needed, one may call a Getall operation to obtain a list of blocks
(tagged with their logical addresses) that have not been looked up yet — in our
OPRAM scheme later, this is the set of blocks that need to be preserved during
rebuilding.

We require that our oblivious one-time memory data structure retain obliv-
iousness as long as 1) the sequence of real blocks looked up all exist in the data
structure (i.e., it appeared as part of the input to Build), and moreover, each
logical address is looked up at most once; and 2) at most 7 number of dummy
lookups may be made where n is a predetermined parameter (that the scheme
is parametrized with).

Formal Definition Our formal presentation will directly describe the parallel
case. In the parallel version, lookup requests come in batches of size m > 1.

A (parallel) one-time memory scheme denoted OTM™™4 i parametrized by
three parameters: n denotes the upper bound on the number of real elements;
m is the batch size for lookups; ¢ is the upper bound on the number of batch
lookups supported. We use three parameters because we use different versions
of OTM. For the basic version in Section [5] we have ¢t = > number of batch
lookups, whereas in Section [7} the number of batch lookups is larger (which
means that some of the lookup addresses must be dummy).

The (parallel) one-time memory scheme oTMmmm 1 g comprised of the fol-
lowing possibly randomized, stateful algorithms to be executed on a Concurrent-
Read, Exclusive-Write PRAM — note that since the algorithms are stateful, ev-
ery invocation will update an implicit data structure in memory. Henceforth we
use the terminology key and value in the formal description but in our OPRAM
scheme later, a real key will be a logical memory address and its value is the
block’s content.

— U « Build({(k;,v;) : i € [n]}): given a set of n key-value pairs (k;, v;), where
each pair is either real or of the form (L, 1), the Build algorithm creates an
implicit data structure to facilitate subsequent lookup requests, and moreover
outputs a list U of exactly n key-position pairs where each pair is of the form
(k, pos). Further, every real key input to Build will appear exactly once in
the list U; and the list U is padded with L to a length n. Note that U

Perfectly Secure Oblivious Parallel RAM 21

does not include the values v;’s. Later in our scheme, this key-position list U
will be propagated back to the parent recursion depth during a coordinated
rebuild]

— (v; 11 € [m]) « Lookup({(ki, pos;) : i € [m]}): there are m concurrent Lookup
operations in a single batch, where we allow each key k; requested to be either
real or L. Moreover, in each batch, at most n/t of the keys are real.

— R <+ Getall: the Getall algorithm returns an array R of length n where each
entry is either L or real and of the form (k,v). The array R should contain
all real entries that have been inserted during Build but have not been looked
up yet, padded with | to a length of n.

Valid request sequence. Our oblivious one-time memory ensures obliviousness
only if lookups are non-recurrent (i.e., never look for the same real key twice);
and moreover the number of lookups requests must be upper bounded by a
predetermined parameter. More formally, a sequence of operations is valid, iff
the following holds:

— The sequence begins with a single call to Build upfront; followed by a sequence
of at most ¢ batch Lookup calls, each of which supplies a batch of m keys and
the corresponding position labels; and finally the sequence ends with a single
call to Getall.

— The Build call is supplied with an input array S := {(ki, v;)}ie[n], such that
any two real entries in S must have distinct keys.

— For every Lookup({(k;, pos;) : i € [m]}) query in the sequence, if each k; is a
real key, then k; must be contained in S that was input to Build earlier. In
other words, Lookup requests are not supposed to ask for real keys that do
not exist in the data structurﬁ moreover, each (k;, pos;) pair supplied to
Lookup must exist in the U array returned by the earlier invocation of Build,
i.e., pos; must be a correct position label for k;; and

— Finally, in all Lookup requests in the sequence, no two keys requested (either
in the same or different batches) are the same.

Correctness. Correctness requires that

1. for any valid request sequence, with probability 1, for every Lookup({(k;, pos;) :
i € [m]}) request, the i-th answer returned must be L if k; = L;elseif k; # L,
Lookup must return the correct value v; associated with k; that was input to
the earlier invocation of Build.

11 Note that we do not explicitly denote the implicit data structure in the output
of Build, since the implicit data structure is needed only internally by the current
oblivious one-time memory instance. In comparison, U is explicitly output since U
will later on be (externally) needed by the parent recursion depth in our OPRAM
construction.

We emphasize this is a major difference between this one-time memory scheme and
the oblivious hashing abstraction of Chan et al. [§]); Chan et al.’s abstraction [§]
allows lookup queries to ask for keys that do not exist in the data structure.

12

22 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

2. for any valid request sequence, with probability 1, Getall must return an array
R containing every (k,v) pair that was supplied to Build but has not been
looked up; moreover the remaining entries in R must all be L.

Perfect obliviousness. We say that two valid request sequences are length-equivalent,
if the input sets to Build have equal size, and the number of Lookup requests
(where each request asks for a batch of m keys) in the two sequences are the
same.

We say that a (parallel) one-time memory scheme is perfectly oblivious, iff
for any two length-equivalent request sequences that are valid, the distribution
of access patterns resulting from the algorithms are identically distributed.

4.2 Construction

Intuition. We first explain the intuition for the sequential case, i.e., m = 1.
The intuition is simply to permute all elements received as input during Build.
However, since subsequent lookup requests may be dummy (also denoted 1),
we also need to pad the array with sufficiently many dummies to support these
lookup requests. The important invariant is that each real element as well as
each dummy will be accessed at most once during lookup requests. For reals, this
is guaranteed since the definition of a valid request sequence requires that each
real key be requested no more than once, and that each real key requested must
exist in the data structure. For dummies, every time a |-request is received, we
always look for an unvisited dummy. To implement this idea, one tricky detail is
that unlike real lookup requests, dummy requests do not carry the position label
of the next dummy to be read — thus our data structure itself must maintain an
oblivious linked list of dummies such that we can easily find out where the next
dummy is. Since all real and dummies are randomly permuted during Build, and
due to the aforementioned invariant, every lookup visits a completely random
location of the data structure thus maintaining perfect obliviousness.

It is not too difficult to make the above algorithm parallel (i.e., for the case
m > 1). To achieve this, one necessary modification is that instead of maintaining
a single dummy linked list, we now must maintain m dummy linked lists. These
m dummy linked lists are created during Build and consumed during Lookup.

Detailed Construction. At the end of Build, our algorithm creates an in-
memory data structure consisting of the following:

1. An array A of length n + n, where n := tm denotes the number of dummies
and n denotes the number of real elements. Each entry of the array A (real
or dummy alike) has four fields (key, val, next, pos) where
— key is a key that is either real or dummy; and val is a value that is either

real or dummy.

— the field next € [0..n + 1) matters only for dummy entries, and at the end
of the Build algorithm, the next field stores the position of the next entry in
the dummy linked list (recall that all dummy entries form m linked lists);
and

2.

Perfectly Secure Oblivious Parallel RAM 23

— the field pos € [0..n + 1) denotes where in the array an entry finally wants
to be — at the end of the Build algorithm it must be that A[i].pos = i. How-
ever, during the algorithm, entries of A will be permuted transiently; but
as soon as each element 4 has decided where it wants to be (i.e., A[i].pos),
it will always carry its desired position around during the remainder of the
algorithm.

An array that stores the head pointers of all m dummy linked lists. Specif-

ically, we denote the m head pointers as {dpos, : i € [m]} where each

dpos; € [0..n 4+ n) is the head pointer of one dummy linked list.

These in-memory data structures, including A and the dummy pointers will

then be updated during Lookup.

Build. Our oblivious Build({(k;, v;)}ie[n)) algorithm proceeds as follows.

1.

Initialize. Construct an array A of length n+n whose entries are of the form
described above. Specifically, the keys and values for the first n entries of A
are copied from the input. Recall that the input may contain dummies too,
and we use L to denote a dummy key from the input.

The last 1 entries of A contain special dummy keys that are numbered. Specif-
ically, for each i € [1..711], we denote A,[i] := A[n—1+1], and the entry stored
at A,[i] has key L; and value L.

Every element decides at random its desired final position. Specifically, per-
form a perfectly oblivious random permutation on the entries of A — this
random permutation decides where each element finally wants to be.

Now, for each i € [0..n+7), let A[i].pos := i. At this moment, A[i].pos denotes
where the element A[7] finally wants to be. Henceforth in the algorithm, the
entries of A will be moved around but each element always carries around its
desired final position.

Construct the key-position map U. Perform oblivious sorting on A using the
field key. We assume that real keys have the highest priority followed by
1 < 1y <- < 1y (where smaller keys come earlier).

At this moment, we can construct the key-position map U from the first n
entries of A — recall that each entry of U is of the form (k, pos).

Construct m dummy linked lists. Observe that the last n entries of A con-
tain special dummy keys, on which we perform the following to build m
disjoint singly-linked lists (each of which has length ¢). For each i € [1..7], if ¢
mod t # 0 we update the entry A, [i].next := A,[i + 1].pos, i.e., each dummy
entry (except the last entry of each linked list) records its next pointer.

We next record the positions of the heads of the m lists. For each i € [m], we
set dpos, := A,[t(i — 1)].pos.

Mowe entries to their desired positions. Perform an oblivious sort on A, using
the fourth field pos. (This restores the ordering according to the previous
random permutation.)

At this moment, the data structure (A, {dpos; : i € [m]}) is stored in memory.

The key-position map U is explicitly output and later in our OPRAM scheme
it will be passed to the parent recursion depth during coordinated rebuild.

24 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

Fact 4 Consuming O(n + n) CPUs and setting (n + n)? < X\ < 2717 the
Build algorithm completes in O(log(n+n)) parallel steps, except with probability
negligible in \.

Proof. Observe that the algorithm’s cost is dominated by O(1) number of obliv-
ious sorts which can be realized with the AKS sorting network [1].

Moreover, the algorithm incurs one application of oblivious random permu-
tation, whose performance is stated in Theorem

Lookup. We implement a batch of m concurrent lookup operations {Lookup({(k;, pos;) :
i € [m]}) as follows. For each i € [m], we perform the following in parallel.

1. Decide position to fetch from. If k; # L is real, set pos := pos;, i.e., we

want to use the position label supplied from the input. Else if k; = L, set

pos := dpos;, i.e., the position to fetch from is the next dummy in the i-

th dummy linked lists. (To ensure obliviousness, the algorithm can always

pretend to execute both branches of the if-statement.)

At this moment, pos is the position to fetch from (for the i-th request out of

m concurrent requests).

Read and remove. Read the value from A[pos] and mark A[pos] := L.

3. Update dummy head pointer if necessary. If pos = dpos;, update the dummy
head pointer dpos, := next. (To ensure obliviousness, the algorithm can pre-
tend to modify dpos, in any case.)

4. Return. Return the value read in the above Step

o

The following fact is straightforward from the description of the algorithm.

Fact 5 The Lookup algorithm completes in O(1) parallel steps with O(m) CPUs.

Getall. Getall is implemented by the following simple procedure: obliviously sort
A by the key such that all real entries are packed in front. Return the first n
entries of the resulting array (and removing the metadata entries next and pos
in the result).

Fact 6 The Getall algorithm completes in log(n + n) parallel steps consuming
O(n+n) CPUs.

Proof. Straightforward by observing that the algorithm’s cost is dominated by
O(1) number of oblivious sorts which can be realized with the AKS sorting
network [1].

Lemma 1 (Perfect obliviousness of the one-time memory scheme). The
above (parallel) one-time memory scheme satisfies perfect obliviousness.

Proof. 1t suffices to prove that for any valid request sequence, the memory access
patterns are identically distributed as those output by the following simulator
that knows only n, m and the number of Lookup requests in the sequence.

Perfectly Secure Oblivious Parallel RAM 25

First, almost all parts of Build are deterministic and data oblivious and thus
the algorithm’s access patterns can be simulated in the most straightforward
fashion. The only randomized part of access patterns for Build is due to the
oblivious random permutation. To simulate this part, the simulator calls the
oblivious random permutation’s simulator algorithm.

Second, to simulate the access patterns of Lookup, the simulator would read
the memory location storing dpos; for every i € [m]. Then, it reads a random
unread index of the array A and writes to it once too. Finally, it writes to dpos;
for every i € [m].

Third, simulating the access patterns of Getall is done in the most natural
manner since Getall is deterministic.

It is not difficult to see that the real-world access patterns are identically
distributed as the simulated ones due to the definition of oblivious random per-
mutation (see Section Particularly, observe that the above way of simulating
the access patterns of Build is the same in nature as if we randomly permuted
the data structure A upfront by a random permutation, (that is chosen indepen-
dently from the simulated access patterns), then every real element and 1; will
be in a random location. Note also that as long as no two real keys requested
collide and every real key requested exists in the data structure A, then the
real-world algorithm accesses each real or L; element at most once, and thus
every real-world access visits a random position of the array A (besides reading
and writing {dpos; : i € [m]}).

Summarizing the above, we conclude with the following theorem.

Theorem 7 (One-time oblivious memory). Let A € N be a parameter re-
lated to the probability that the algorithm’s runtime exceeds a desired bound.
Assume that each memory block can store at least logn + log A bits. There ex-
ists a perfectly oblivious one-time scheme such that Build takes O(logn) parallel
steps (except with negligible in A probability) consuming n CPUs, Lookup for
a batch of m requests takes O(1) parallel steps consuming m CPUs, and Getall
takes O(logn) parallel steps consuming n CPUs.

5 Basic OPRAM with O(log® V) Simulation Overhead

Recall that N denotes the number of logical memory blocks consumed by the
original PRAM, and each memory block can store at least 2(log N) bits. For
clarity, in this section, we will first describe an OPRAM construction such that
each batch of m memory requests takes O(log3 N) parallel steps to satisfy with
m CPUs. Later in Section [7] we will describe how to further parallelize the
OPRAM when the OPRAM can consume more CPUs than the original PRAM.

Roadmap. We briefly explain the technical roadmap of this section:

— In Section [6.1, we will first describe a position-based OPRAM that supports
two operations: Lookup and Shuffle. A position-based OPRAM is an almost

26 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

fully functional OPRAM scheme except that every real lookup request must
supply a correct position label. In our OPRAM construction, these position
labels will have been fetched from small recursion depths and therefore will
be ready when looking up the position-based OPRAM.

Our position-based OPRAM relies on the hierarcial structure proposed by
Goldreich and Ostrovsky [21}[22], as well as techniques by Chan et al. [§] that
showed how to parallelize such a hierarchical framework.

— In Section we explain how to leverage “coordinated rebuild” and recur-
sion techniques to build a recursive OPRAM scheme that composes loga-
rithmically many instances of our position-based OPRAM, of geometrically
decreasing sizes.

5.1 Position-Based OPRAM

Our basic OPRAM scheme (Section will consist of logarithmically many
position-based OPRAMSs of geometrically increasing sizes, henceforth denoted
OPRAMgy, OPRAM;, OPRAMg, ..., OPRAMp where D := log, N — log, m.
Specifically, OPRAM, stores ©(2% - m) blocks where d € {0,1,..., D}. The last
one OPRAMp stores the actual data blocks whereas every other OPRAM, where
d < D recursively stores the position labels for the next depth d + 1.

Data Structure. As we shall see, the case OPRAM) is trivial and is treated
specially at the end of this section (Section . Below we focus on describing
OPRAM, for some 1 < d < D = logN — logm. For d # 0, each OPRAMy
consists of d 4+ 1 levels geometrically growing in size, where each level is a one-
time oblivious memory scheme as defined and described in Section[d] We specify
this data structure more formally below.

Hierarchical levels. The position-based OPRAM, consists of d + 1 levels hence-
forth denoted as (OTM; : j = 0,...,d) where level j is a one-time oblivious
memory scheme,

OTM, := OTME 2]

with at most n = 27 - m real blocks and m concurrent lookups in each batch
(which can all be real). This means that for every OPRAM,, the smallest level
is capable of storing up to m real blocks. Every subsequent level can store twice
as many real blocks as the previous level. For the largest OPRAMp, its largest
level is capable of storing NV real blocks given that D = log N — logm — this
means that the total space consumed is O(N).

Every level j is marked as either empty (when the corresponding OTM; has
not been rebuilt) or full (when OTM; is ready and in operation). Initially, all
levels are marked as empty, i.e., the OPRAM initially is empty.

Position label. Henceforth we assume that a position label of a block specifies
1) which level the block resides in; and 2) the position within the level the block
resides at.

Perfectly Secure Oblivious Parallel RAM 27

Additional assumption. We assume that each block is of the form (logical ad-
dress, payload), i.e., each block carries its own logical address.

Operations. Each position-based OPRAM supports two operations, Lookup
and Shuffle. For every OPRAM,; consisting of d+1 levels, we rely on the following
algorithms for Lookup and Shuffle.

Lookup. Every batch lookup operation, denoted Lookup({(addr;, pos;) : i € [m]})
receives as input the logical addresses of m blocks as well as a correct position
label for each requested block. To complete the batch lookup request, we perform
the following.

1. For each level j =0,...,d in parallel, perform the following:

— For each ¢ € [m] in parallel, first check the supplied position label pos; to
see if the requested block resides in the current level j: if so, let addr, :=
addr; and let pos; := pos, (and specifically the part of the position label
denoting the offset within level j); else, set addr; := | and pos := L to
indicate that this should be a dummy request.

— (vij : i € [m]) + OTM,.Lookup({addr;, pos : i € [m]}).

2. At this point, each of the m CPUs has d answers from the d levels respectively,
and only one of them is the valid answer. Now each of the m CPUs chooses
the correct answer as follows.

For each i € [m] in parallel: set val; to be the only non-dummy element in

(vij + j = 0,...,d), if it exists; otherwise set val; := L. This step can be

accomplished using an oblivious select operation (see Section in logd

parallel steps consuming d CPUs.

3. Return (val; : i € [m]).

We remark that in Goldreich and Ostrovsky’s original hierarchical ORAM |21}
22|, the hierarchical levels must be visited sequentially — for obliviousness, if
the block is found in some smaller level, all subsequent levels must perform a
dummy lookup. Here we can visit all levels in parallel since the position label
already tells us which level it is in. Now the following fact is straightforward to
observe:

Fact 8 For OPRAM,, Lookup consumes O(logd) parallel steps consuming m -d
CPUs where m is the batch size.

Shuffle. Similar to earlier hierarchical ORAMs [2122] and OPRAMs [8], a shuffle
operation merges consecutively full levels into the next empty level (or the largest
level). However, in our Shuffle abstraction, there is an input U that contains some
logical addresses together with new values to be updated. Moreover, the shuffle
operation is associated with an update function that determines how the new
values in U should be incorporated into the OTM during the rebuild.

In our full OPRAM scheme later, the update array U will be passed from
the immediate next depth OPRAM 1, and contains the new position labels that

28 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

OPRAM+1 has chosen for recently accessed logical addresses. These position
labels must then be recorded by OPRAM, appropriately.

More formally, each position-based OPRAM, supports a shuffle operation,
denoted Shuffle(U, ¢; update), where the parameters are explained as follows:

1. An update array U in which each (non-dummy) entry contains a logical
address that needs to be updated, and a new value for this block. (Strictly
speaking, we allow a block to be partially updated.)

We will define additional constraints on U subsequently.

2. The level £ to be rebuilt during this shuffle.

3. An update function that specifies how the information in U is used to compute

the new value of a block in the OTM.
The reason we make this rule explicit in the notation is that a block whose
address that appears in U may only be partially modified; hence, we later
need to specify this update function carefully. However, to avoid cumbersome
notation, we may omit the parameter update, and just write Shuffle(U, ¢),
when the context is clear.

For each OPRAM, when Shuffle(U, ¢; update) is called, it must be guaranteed
that ¢ < d; and moreover, either level £ must either be empty or ¢ = d (i.e., this
is the largest level in OPRAM,). Moreover, there is an extra OTMg; jumping
ahead, we shall see that OTM, contains the blocks that are freshly fetched.

The Shuffle algorithm then combines levels 0,1, ..., ¢ (of OPRAM,), together
with the extra OTMy, into level £, updating some blocks’ contents as instructed
by the update array U and the update function update. At the end of the shuffle
operation, all levels 0,1,...,¢ — 1 are now marked as empty and level £ is now
marked as full.

We now explain the assumptions we make on the update array U and how
we want the update procedure to happen:

— We require that each logical address appears at most once in U.

— Let A be all logical addresses remaining in levels 0 to £ in OPRAMy: it must
hold that the set of logical addresses in U is a subset of those in A. In other
words, a subset of the logical addresses in A will be updated before rebuilding
level £.

— If some logical address addr exists only in A but not in U, after rebuilding
level ¢, the block’s value from the current OPRAM, should be preserved.
If some logical address addr exists in both A and in U, we use the update
function to modify its value: update takes a pair of blocks (addr, data) and
(addr, data’) with the same address but possibly different contents (the first
of which coming from the current OPRAM, and the second coming from U),
and computes the new block content data® appropriately.

We remark that the new value data* might depend on both data and data’.
Later, we will describe how the update rule is implemented.

Upon receiving Shuffle(U, ¢; update), proceed with the following steps:

Perfectly Secure Oblivious Parallel RAM 29

1. Let A := UfZOOTMi.GetaII U OTMj.Getall, where the operator U denotes
concatenation. Moreover, for an entry in A that comes from OTM;, then it
also carries a label i.

At this moment, the old OTMy, ..., OTM, instances may be destroyed.

2. We obliviously sort AU U in increasing order of logical addresses, and more-

over, placing all dummy entries at the end. If two blocks have the same logical
address, place the entry coming from A in front of the one coming from U.
At this moment, in one linear scan, we can operate on every adjacent pair
of entries using the aforementioned update operation, such that if they share
the same logical address, the first entry is preserved and updated to a new
value, and the second entry is set to dummy.
We now obliviously sort the resulting array moving all dummies to the end.
We truncate the resulting array preserving only the first 2¢ - m elements and
let A’ denote the outcome (note that only dummies and no real blocks will
truncated in the above step).

3. Next, we call U’ < Build(A’) that builds a new OTM’ and U’ contains the
positions of blocks in OTM’.

4. OTM' is now the new level ¢ and henceforth it will be denoted OTM,. Mark
level ¢ as full and levels 0,1,...,¢ — 1 as empty. Finally, output U’ (in our
full OPRAM construction later, U’ will be passed to the next (i.e., immedi-
ately smaller) position-based OPRAM as the update array for performing its
shuffle).

If we realize the oblivious sort with the AKS network [1] that sorts n items
in O(logn) parallel steps consuming n CPUs, we easily obtain the following
fact — note that there is a negligible in N probability that the algorithm runs
longer than the stated asymptotic time due to the oblivious random permutation
building block (see Section [3.3).

Fact 9 Suppose that the update function can be evaluated by a single CPU in
O(1) steps. For OPRAMy, let £ < d, then except with negligible in N probability,
Shuffle(U, £) takes O(log(m - 2%)) parallel steps consuming m - 2¢ CPUs.

Observe that in the above fact, the randomness comes from the oblivious random
permutation subroutine used in building the one-time oblivious memory data
structure.

Trivial case: OPRAMg. In this case, OPRAM, simply stores its entries in an array
A[0..m) of size m and we assume that the entries are indexed by a (log, m)-bit
string. Moreover, each address is also a (log, m)-bit string, whose block is stored
at the corresponding entry in A.

— Lookup. Upon receiving a batch of m depth-m truncated addresses where all
the real addresses are distinct, use oblivious routing to route A[0..m) to the
requested addresses. This can be accomplished in O(m logm) total work and
O(logm) depth. Note that OPRAM;’s lookup does not receive any position
labels.

— Shuffle. Since there is only one array A (at level 0), Shuffle(U,0) can be
implemented by oblivious sorting.

30 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

5.2 OPRAM Scheme from Position-Based OPRAM

Recursive OPRAMs. The OPRAM scheme consists of D + 1 position-based
OPRAMSs henceforth denoted as OPRAMg, OPRAM, OPRAM,, ..., OPRAMp.
OPRAMp stores the actual data blocks, whereas every other OPRAM, where d #
D recursively stores the position labels for the next data structure OPRAMy, 1.
Our construction is in essence recursive although in presentation we shall spell
out the recursion for clarity. Henceforth we often say that OPRAMy is at recur-
sion depth d or simply depth d.

Although we are inspired by the recursion technique for tree-based ORAMs [39],
using this recursion technique in the context of hierarchical ORAMs/OPRAMs
raises new challenges. In particular, we cannot use the recursion in a blackbox
fashion like in tree-based constructions since all of our (position-based, hierarchi-
cal) OPRAMs must reshuffle in sync with each other in a non-blackbox fashion
as will become clear later.

Format of depth-d block and address. Suppose that a block’s logical address is a
log, N-bit string denoted addr‘®’ := addr[1..(log, N)] (expressed in binary for-
mat), where addr[1] is the most significant bit. In general, at depth d, an address
addr'® is the length-(logy, m + d) prefix of the full address addr‘”’. Henceforth,
we refer to addr® as a depth-d address (or the depth-d truncation of addr).

When we look up a data block, we would look up the full address addr'? in
recursion depth D; we look up addr{P~1) at depth D — 1, addr{P=2 at depth
D —2, and so on. Finally at depth 0, the log, m-bit address uniquely determines
one of the m blocks stored at OPRAMj. Since each batch consists of m concurrent
lookups, one of them will be responsible for this block in OPRAMy.

A block with the address addr'® in OPRAMy stores the position labels for two
blocks in OPRAM 41, at addresses addr'®||0 and addr®||1 respectively. Hence-
forth, we say that the two addresses addr‘? ||0 and addr'®||1 are siblings to each
other; addr{?||0 is called the left sibling and addr{® |1 is called the right sibling.
We say that addr{? |0 is the left child of addr® and addr{®||1 is the right child
of addr'®.

Operations Each batch contains m requests denoted as ((op;, addr;,data;) : i €
[m]), where for op, = read, there is no data;. We perform the following steps.

1. Conflict resolution. For every depth d € {0,1,..., D} in parallel, perform

oblivious conflict resolution on the depth-d truncation of all m addresses
requested.
For d = D, we suppress duplicate addresses. If multiple requests collide on
addresses, we would prefer a write request over a read request (since write
requests also fetch the old memory value back before overwriting it with a
new value). In the case of concurrent write operations to the same address,
we use the properties of the underlying PRAM to determine which write
operation prevails.

Perfectly Secure Oblivious Parallel RAM 31
For 0 < d < D, after conflict resolution, the m requests for OPRAM, become

((addr§d>,f|agsi) 11 € [m]),

where each non-dummy depth-d truncated address addrgd> is distinct and
has a two-bit flags; that indicates whether each of two addresses (addr§d>||0)
and (addr§d>|\1) is requested in OPRAM 1. As noted by earlier works on
OPRAM [6,[9,/10], conflict resolution can be completed through O(1) num-
ber of oblivious sorting operations. We thus defer the details of the conflict
resolution procedure to Appendix

2. Fetch. For d = 0 to D sequentially, perform the following:

— For each i € [m] in parallel: let addrf»d> be the depth-d truncation of
addr!?’,

— Call OPRAM,.Lookup to look up the depth-d addresses addr§d> for all i €
[m]; observe that position labels for the lookups of non-dummy addresses
will be available from the lookup of the previous OPRAM,_; for d > 1,
which is described in the next step. Recall that for OPRAMg, no position
labels are needed.

— If d < D, each lookup from a non-dummy (addr§d>7flagsi) will return two

positions for the addresses addr§d>|\0 and addr§d>||1 in OPRAM ;. The
two bits in flags; will determine whether each of these two position labels
are needed in the lookup of OPRAM 4.

We can imagine that there are m CPUs at recursion depth d 4 1 waiting
for the position labels corresponding to {addrl@r1> : i € [m]}. Now, using
oblivious routing (see Section , the position labels can be delivered to
the CPUs at recursion depth d + 1.

— If d = D, the outcome of Lookup will contain the data blocks fetched.
Recall that conflict resolution was used to suppress duplicate addresses.
Hence, oblivious routing can be used to deliver each data block to the
corresponding CPUs that request it.

— In any case, the freshly fetched blocks are updated if needed in the case
of d = D, and are placed in OTMj, in each OPRAM;.

3. Maintain. We first consider depth D. Set depth-D’s update array U‘P) := §.

Suppose that £(P) is the smallest empty level in OPRAMp.

We have the invariant that for all 0 < d < D, if £P? < d, then ¢‘P) is also

the smallest empty level in OPRAM,.

For d := D downto 0, do the following:

— If d < 0P) set ¢ := d; otherwise, set £ := (D).

— Call U <+~ OPRAM,.Shuffle(U{% ¢; update) where update is the following
natural function: recall that in U(¥ and OPRAM,_1, each depth-(d — 1)
logical address stores the position labels for both children addresses. For
each of the child addresses, if U'® contains a new position label, choose
the new one; otherwise, choose the old label previously in OPRAM ;.

32 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

— If d > 1, we need to send the updated positions involved in U to depth
d—1.
We use the Convert subroutine to convert U into an update array for
depth-(d — 1) addresses, where each entry may pack the position labels
for up to two sibling depth-d addresses. Convert can be realized with
O(1) oblivious sorting operations and we defer its detailed presentation
to Appendix
Now, set U{?=1) <~ Convert(U, d), which will be used in the next iteration
for recursion depth d — 1 to perform its shuffle.

With the above basic OPRAM construction, we can achieve the following
theorem whose proof is deferred to Appendix

Theorem 10. The above construction is a perfectly secure OPRAM scheme
satisfying the following performance overhead:

— When consuming the same number of CPUs as the original PRAM, the
scheme incurs O(log® N) simulation overhead;

— When the OPRAM is allowed to consume an unbounded number of CPUs, the
scheme incurs O(log® N) total work blowup and O((logm +loglog N)log N)
depth blowup.

In either case, the space blowup is O(1).
Proof. We defer the obliviousness proof and performance analysis to Appendix|[B]

Note that at this moment, even for the sequential special case, we already
achieve asymptotic savings over Damgard et al. |[12] in terms of space consump-
tion. Furthermore, Damgard et al. [12]’s construction is sequential in nature and
does not immediately give rise to an OPRAM scheme.

6 Oblivious Loose Compaction from Expander Graphs

The basic OPRAM construction of Section [5| has a depth blowup O(log2 N)
assuming that the OPRAM may consume an unbounded number of CPUs —
assuming that the original PRAM has sufficient parallelism m, e.g., when logm =
2(log N). Our next objective is to improve the depth blowup to O(log N), but
doing so is highly non-trivial. One barrier arises from the online fetch phase:
the basic OPRAM scheme of Section [5| requires that position labels be fetched
from OPRAM,_; before before fetching OPRAM, and consequently fetches are
sequential in nature across all logarithmically many recursion depths. Now, Chan
et al. |7] proposed an interesting offline/online algorithmic paradigm to overcome
this problem but achieving only statistical security. We will also rely on an
offline/online paradigm, but our instantiation of this paradigm is different from
that of Chan et al. [7], not only in that we achieve perfect security (as opposed
to statistical), but also that we do so through a new algorithmic abstraction
called an “offline/online loose compactor”.

Perfectly Secure Oblivious Parallel RAM 33

Definition: offline/online loose compactor. Let C' be an appropriate universal
constant. Loose compaction is the following abstraction. Given an input array of
2C'm elements out of which at most m are real and the remaining are dummies,
construct an output array of length C'm that contains all real elements of the
input array padded with dummies. The compaction is “loose” in the sense that
although we reduce the number of dummies in the output, we do not completely
remove the dummies. In our paper, we define a new abstraction of loose com-
paction that consists of an offline and an online phase, where the offline phase
computes the necessary instructions regarding how to route inputs to outputs,
and the online phase performs the actual work of moving elements around.

We will leverage expander graphs and techniques from the self-routing super-
concentrator work by Pippenger [36] to construct such an offline-online oblivious
loose compaction algorithm.

6.1 Preliminary: Bipartite Expander Graphs

We use G = (A, B, E) to denote a bipartite multi-graph, where A and B are the
vertex sets and F is the multi-set of edges between A and B. For u € AU B and
multi-set F' C F, we denote F[u] as the subset of edges in F that are incident
to u. The degree deg(u) is the number of edges in E incident to u; for F C E,
degp(u) := |Fu]|]. For S C AUB, we use degg(u) to denote the number of edges
between v and S.

Explicit construction of expander graphs. Many prior works (e.g., Margulis [34],
Gabber and Galil [18], and Jimbo and Maruoka [29]) have shown how to con-
struct bipartite expander graphs with varying parameters.

In particular, based on the explicit construction by Jimbo and Maruoka [29],
Pippenger [36], Proposition 4] gave a construction for a family of bipartite graphs
with the following properties.

Proposition 1 (Bipartite Expander Graphs). There exists a universal con-
stant 0 (that is even) such that the following holds. For any square number n, a
bipartite multi-graph G,, = (A, B, E) with |A| = 2n and |B| = n can be explicitly
constructed such that the following holds.

1. For any a € A, deg(a) =0; for any b € B, deg(b) = 20.
2. For any R C A such that |R| < &, define S := {b € B : degp(b) > $} and

T :={a € R:degg(a) > $}. Then, |T| < %,

6.2 Preliminary: A Factory-Facility Problem

Now, let us consider the following factory-facility problem. Suppose G,, = (A, B, E)
is the bipartite multi-graph where |A| = 2n and |B| = n as given in Proposi-
tion[I} Specifically, we will think of each vertex in A as a factory, and each vertex
in B as a storage facility (or facility for short).

34 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

Now, some factories in A will manufacture products, and each manufactured
product needs be routed to some facility to be stored. Every edge between a € A
and b € B allows at most one product produced by the factory a to be routed to
the facility b. From Proposition [1| we know that each factory a € A has a total
of ® edges to facilities in B, and each facility b € B has exactly 20 edges from
factories in A.

Now, imagine that at most n/64 factories in A actually end up manufacturing
any product at all — if so, we say that such a factory is productive. Moreover,
suppose that every productive factory in A produces at most /2 products; and
each facility in B has a storage capacity of 9/2 as well, i.e., it can receive no
more than 9/2 products.

Our goal is to design a (non-uniform) algorithm that is provided with a
non-uniform advice string that describes such an expander graph G satisfying
Proposition [T}

— Input. The algorithm receives as input the number of products produced by
each factory in A satisfying the aforementioned requirements;

— Output. For each factory, the algorithm will output a set of incident edges
for routing each of its products — henceforth the output (for all factories) is
referred to as an assignment.

An assignment is satisfactory iff 1) all productive factories in A can route
all of their products to some facility in B (recall that each productive factory
produces no more than 9/2 products); and 2) every facility in B receives no more
than 9/2 products.

6.3 Preliminary: Pippenger’s “Propose-Accept-Finalize” Protocol

Pippenger [36] presented an elegant protocol that solves the factory-facility prob-
lem by finding a satisfying assignment, henceforth called the “propose-accept-
finalize” protocol. Pippenger’s result is described in the form of a protocol (as
opposed to a PRAM algorithm) where factories and facilities behave like au-
tomatons that interact with each other. Therefore below we will describe Pip-
penger’s result in a protocol format. Although there is a straightforward PRAM
algorithm that efficiently emulates Pippenger’s protocol, the most naive PRAM
emulation of the protocol is not oblivious. In the subsequent Section [6.4] we will
instead explain how to efficiently emulate this protocol as an oblivious parallel
algorithm.

The propose-accept-finalize protocol consists of O(log n) phases: in each phase,
factories first make “proposals” to facilities; the facilities then respond accord-
ingly based on some decision procedure; upon hearing the responses, factories
finalize their decisions of this phase. At the end of each phase, some more facto-
ries may become satisfied. When the next phase begins, these satisfied factories
stop participating. More formally, “propose-accept-finalize” protocol works as
follows. We will the notation req(a) to denote the number of products manufac-
tured by some factory a € A.

Perfectly Secure Oblivious Parallel RAM 35

ProposeAcceptFinalize: (A protocol for solving the factory-facility problem)

Initially, each factory a € A with zero requirement req(a) = 0 is satisfied; else,
it is unsatisfied.

Repeat the following for % log, 6%1 times:

1. Propose: Each unsatisfied factory sends a proposal along each of its incident
edges.

2. Accept: If a facility b € B received no more than 0/2 proposals, it sends an
acceptance message along each of its 20 incident edges.

3. Finalize: Each currently unsatisfied factory a € A checks if it received at
least % acceptance messages. If so, it picks an arbitrary subset of the edges
over which acceptance messages were received, such that the subset is of
size req(a). The factory records these edges and these edges will be used to
route all its products. At this moment, this factory becomes satisfied.

Pippenger [36] proved that if the graph G satisfies Proposition [1} then in
every phase of the propose-accept-finalize protocol, at least 3/4 fraction of the
unsatisfied factories will become satisfied. Thus in O(logn) number of phases,
all factories in A will become satisfied. Further, it is not difficult to see that the
total number of messages exchanged in the protocol is upper bounded by O(n).

6.4 Oblivious Simulation of the Propose-Accept-Finalize Protocol
on a PRAM

We would like to have a (deterministic) parallel algorithm that obliviously em-
ulates the aforementioned propose-accept-finalize protocol. In other words, the
algorithm’s memory access patterns should not depend on the inputs to the
factory-facility problem, i.e., how many products each factory produces (see
Section . Recall that the graph G is a non-uniform advice string provided to
the algorithm and it is assumed to be public information.

We will accomplish oblivious simulation of the propose-accept-finalize pro-
tocol in two steps. First, we make the protocol communication-oblivious (which
we will define shortly below); next, we describe how to obliviously efficiently
emulate this communication-oblivious protocol on a PRAM.

Making the Protocol Communication-Oblivious Recall that in the propose-
accept-finalize protocol, in each phase not all factories may send messages to
facilities and not all facilities may send messages to factories. Therefore, the
communication patterns of the protocol (i.e., who talks to whom in each phase)
can leak information about the inputs, i.e., how many products are manufac-
tured by each factory in A. Our first step is to transform the protocol into a
communication-oblivious form, i.e., the protocol’s communication patterns must
not depend on the inputs.

To this end, our idea is very simple: in each phase, we can have every factory
always send a message over each of its incident edges: if the factory is unsatisfied

36 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

and wants to make proposals, then all messages would be 1; else all messages
would be 0. Similarly, every facility should always send a response over each of
its incident edges: if the facility wants to accept, all messages would be 1; else
all messages would be 0.

Protocol complexity. In this communication-oblivious variant, a factory (or fa-
cility) must send (possibly dummy) messages over all incident edges whether
or not it actually wants to send messages. It is not hard to see that this mod-
ification blows up the original protocol’s communication complexity (i.e., total
number of messages exchanged) by a logarithmic factor since now in each of the
logarithmically many phases, O(n) messages need to be sent.

We thus have that the communication-oblivious propose-accept-finalize pro-
tocol completes in O(logn) rounds and consumes O(nlogn) total messages.

Oblivious Simulation on a PRAM: the Propose-Accept-Finalize Algo-
rithm Once the protocol has been made communication-oblivious, we simulate
it on a PRAM as follows. Abstractly, each phase of the protocol consists of 1)
message passing between the factories and the facilities; and 2) after receiving
messages, local computation performed by the factories or facilities. We thus
need to discuss how to emulate both message passing and local computation:

— Obliviously emulate message passing. We focus on describing how to emulate

(on a PRAM) factories in A sending messages to facilities in B, since the
reverse direction is symmetric. Henceforth, imagine that each factory in A
and each facility in B is a CPU. To emulate a factory in A sending a message
over each of its incident edges, we can imagine that every edge in the graph
G, corresponds to a designated location in memory. Thus a factory a € A
simply writes the message to the memory location corresponding to each edge
that a is incident to (in a fixed, predetermined order).
For every facility b € B to receive messages collected over all edges it is
incident to, we can imagine that a facility b € B reads the memory locations
corresponding to all edges it is incident to (in a fixed, predetermined order),
and writes each message fetched (along with its sender) into a local array
that is 20 in length. Henceforth, all computation performed by b € B will
touch only local memory.

— Obliviously emulate each factory/facility’s local computation. First, assume
that in some phase of the communication-oblivious protocol, a facility in B
has successfully received messages and stored the received messages in a local
array of length O(1). At this point it is not difficult to see that there is a
(possibly non-oblivious) algorithm consuming only O(1) time and space for
each facility in B to perform its subsequent computation. Such computation
can be obliviously simulated in a trivial manner: every memory access can be
performed with a linear scan of its local memory, incurring only O(1) blowup.

Henceforth, we refer to the resulting PRAM algorithm as the “propose-accept-
finalize algorithm”.

Perfectly Secure Oblivious Parallel RAM 37

Obliviousness. Suppose that the protocol being simulated satisfies communication-
obliviousness. In the above oblivious simulation of the protocol, the memory
access patterns for simulating message passing between vertices in A and B de-
pend only on the communication patterns of the underlying protocol; and all
other memory accesses of the algorithm are deterministic and depend only on
the length of the input array but not its contents. Thus the following fact is not
difficult to see.

Fact 11 The resulting propose-accept-finalize algorithm has deterministic mem-
ory access patterns that do not depend on the inputs (i.e., how many products
are produced by each factory).

PRAM Complexity. It is not difficult to see that the resulting propose-accept-
finalize algorithm can be completed in O(logn) depth and O(nlogn) total work
since 0 = O(1).

6.5 Reduction from Loose Compaction to the Factory-Facility
Problem

Loose compaction problem. The input is an array Input of length 2C'm, where
C = 320 (recall that d is the universal constant from Proposition [l)) and m
is a square numbexiE|7 such that at most m entries are real, where the real
elements are distinct. The output is an array Output of length C'm that contains
all the real entries in the input (while the rest of the entries are dummy). We
would like a deterministic algorithm that is oblivious, i.e., its access patterns are
deterministic and depend only on the length of the input array but not on the
input array’s contents.

Offline preparation stage vs. online routing stage. We assume that the input is
released in two stages. In the offline preparation stage, the algorithm is given the
indices of the entries of the input array that contain real elements, but the ele-
ments are not available yet. The algorithm might perform some pre-computation
in this stage, and we aim for O(mlogm) total work and O(logm) depth in this
stage. At the end of the preparation stage, the algorithm has (obliviously) com-
puted some intermediate data structure Route that will be used in the online
routing stage.

In the online routing stage, the real elements in the input array are ready,
and using the pre-computed Route, they are routed obliviously to the output
array (of size Cm). We aim to have O(m) total work and O(1) depth for this
stage.

Reduction to the factory-facility problem. Our idea is to reduce the loose com-
paction problem to the factory-facility assignment problem mentioned earlier.

13 If m is not a square number, we can always round it up to the next square incurring
only O(1) blowup.

38 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

Let n := 64m and suppose G,, = (A, B, E) is the bipartite multi-graph (which
can be constructed explicitly) as in Proposition [I| where |A| = 2n and |B| = n.

In the offline stage, the algorithm receives an input S[1..2C'm] where S[i] =1
denotes that the i-th element is real — but at this moment, the algorithm has
not yet received this element that needs to be routed to the output. The indices
of the input array S[1..2C'm] are partitioned into 2n parts, where each part
consists of % consecutive indices. We assign each such part to a vertex in A, and
hence, each vertex in A is associated with % contiguous entries of S. We define
the requirement function req : A — {0,1,..., 3} such that req(a) is the number
of real entries in the input array associated with a. Observe that at most m = g
vertices in A have non-zero requirements.

Recall that the factory-facility problem allows each vertex a € A to choose a
multi-set of exactly req(a) incident edges for routing all real entries assigned to
the vertex a. After the routing actually happens, every vertex b € B receives at
most /2 real entries of the input array — now if each vertex in B writes down
an array of length 0/2 containing all real entries it has received (and padded
with dummies to a length of 9/2), then the concatenation of all arrays written
down by vertices in B will become the output array containing all real entries
of the input array, but whose size is only half that of the input array.

In this way, the offline stage simply calls the oblivious propose-accept-finalize
algorithm of Section such that each factory in A computes a set of incident
edges to route its products. The actual routing of the elements happen in the
online stage when the algorithm receives the actual elements to be routed. Since
in the offline stage, each vertex in A has learned a set of edges over which to
route elements, the online stage can simply execute this plan that the offline
stage has decided. To make sure that the algorithm is oblivious, even when a
factory in a € A does not want to route anything over an incident edge, it will
send a dummy message over that edge anyway.

Thus we obtain the following theorem:

Theorem 12 (Offline-online oblivious loose compaction). There exists
a (non-uniform) offline-online loose compaction algorithm that is deterministic
and oblivious, such that its offline stage completes in O(mlogm) total work and
O(logm) depth; and its online stage completes with O(m) total work and O(1)
depth.

7 Improving the OPRAM’s Depth to 6(10g N)

In the scheme described in Section [5] each batch of m requests can be served
with O(mlog® N') amortized total work and (worst-case) depth O(log® N).

We now ask the question, can we improve the OPRAM’s depth, i.e., if the
OPRAM is allowed to have unbounded number of CPUs, then what parallel
runtime can be achieved?

The bottleneck for depth in the previous scheme in Section[5] comes from both
the fetch and maintain phases. Both phases process the recursion depths in a
sequential manner, the fetch phase from small to large depths d and the maintain

Perfectly Secure Oblivious Parallel RAM 39

phase in the reverse order. Specifically, the fetch phase obtains m blocks (storing
position labels) from OPRAM, for some d < D, and then obliviously route the
position labels to the next recursion depth OPRAMy ;. Thus, the total depth
of the fetch phase is £2(logmlog N) where {2(logm) comes from the depth of
obliviously routing m objects to their destinations, and 2(log N) comes from the
number of recursion depths d. On the other hand, during the maintain phase,
the position-based OPRAMs at various recursion depths perform shuffling in
sequential order: each d > 0, OPRAMy,; would perform reshuffling through
£2(1) number of oblivious sorts incurring possibly 2(logm) depth (on average),
then it emits an update array U to pass to the immediately smaller recursion
depth which then embarks on its own shuffling. Thus, in total, the average depth
of the maintain phase is 2(logmlog N).

Our goal is to reduce the depth of our OPRAM to O(log N) without increas-
ing total work asymptotically, i.e., we would like to shave an additional logarith-
mic factor off the depth, for the case when m is large (i.e., logm = O(log N)).
As described in the remainder of the section, different techniques are required
to improve the depths of the fetch and maintain phases respectively.

7.1 Modifications to the OPRAM’s Data Structure

In the improved scheme, the data structure is almost identical to our previous
scheme (Section [5]) except that now the one-time oblivious memory scheme in
each hierarchical level would over-provision by some constant factor C'. We note
that C is a universal constant that is independent of m or N and its concrete
choice is discussed in Section

Henceforth in this section, we assume that in each OPRAM,, each hierarchical
level j € [d] is a (parallel) one-time oblivious memory scheme with at most 27 -m
real elements and supporting 27 batch requests (each having size Cm) as follows:

OTM, := OTMEZ ™ Cm. 2],

7.2 Improving the Depth of the Fetch Phase

To asymptotically improve the depth of the fetch phase, we would like to improve
the depth required to route fetched position labels to the next recursion depth.
Earlier, we adopted a naive oblivious routing algorithm which incurs ©(logm)
depth.

Our idea is to employ an offline-online oblivious routing algorithm. Although
the offline phase still has depth ©(log m), the offline phases among all recursion
depths can be performed in parallel.

On the other hand, the online phase still must be performed sequentially
among the recursion depths — however, the online routing now consumes only
O(1) depth per recursion depth! In the recent work by Chan, Chung, and Shi (7],
they also employed a similar offline-online routing paradigm, but their approach
incurs (negligibly small) statistical failures and cannot work in our context where

40 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

perfect security is required. Instead, we devise a new technique that achieves
offline-online routing with no failures. Our algorithm employs a loose compaction
algorithm as described in Section [6.5] whose construction fundamentally relies
on expander graphs [36].

Offline Preparation Recall that a batch access consists of m requests ((op;, addr;, data;) :
i € [m]). Conflict resolution can be performed in parallel over each recursion

depth. At the highest level D, duplicate addresses are suppressed, while for

0 <d < D, the m requests at OPRAM, are:

((addr§d>,flagsi) 11 € [m]),

where each non-dummy depth-d truncated address addrf-d> is distinct and has
a two-bit flags; that indicates whether each of two addresses (addr§d>||0) and

(addr§d>||1) is requested in OPRAMg ;1. In the offline preparation stage, the
depth-d truncated address and the two-bit flag are available while the data (po-
sition labels) is not. The goal of the offline phase is to compute a “route” from
depth d to depth d + 1 for all 0 < d < D. Moreover, this needs to be done
in parallel in O(logm) steps, so that actual routing in the online phase can be
performed in O(1) steps per depth. We use the notation that Data denotes the
mock copy of Data used in offline preparation.

At depth d, there is a randomly permuted Receiver'? array which stores the
requests for this depth, and the offline phase computes a route to next depth,
ie., Receiver“™"). Note that Receiver® and Receiver!™") do not store the same
set of keys; each block at depth-d stores position labels for two blocks at depth
d + 1. Thus, we need to first convert the keys to the ones at depth d + 1. This
is performed using the depth-d address and the flags at Receiver'¥ to obtain

=—{d . . .
an array Fetched< > of size 2C'm but still containing up to m real keys. We now
need to reduce the number of keys from 2C'm to Cm. We use the offline phase
of the offline-online oblivious loose compaction problem (Section [6.5]) to do this

—(d
and (1) obtain the array Result) of size Cm and (2) the route that will be used
by the loose compactor algorithm in the online phase. The routing permutation
d .
from Result<) to the next recursion depth Receiver(4t
using the oblivious routing permutation from Section [3.3
We now describe the offline phase in detail. During an offline preparation

stage, every recursion depth d outputs the following:

can now be computed

1. Receiver array Receiver<d>, for 1 < d < D. This is an array of length
C'm such that m of its random locations hold the m requests of OPRAM,
(in random relative order), while the remaining entries hold dummies. We
assume that a total ordering is defined on the C'm entries (for instance, even
the dummies are uniquely tagged) such that sorting can be carried out with
a unique resulting order.

2. Pre-computed compaction routing information Route<d>, for 0 <d<
D.

Perfectly Secure Oblivious Parallel RAM 41

3. Routing permutation (¥ : [1..Cm] — [1..Cm], for 0 < d < D: This
pre-computed routing permutation 7(? (stored as an array) will be applied
in the online phase to route fetched and processed position labels to the next
recursion depth d + 1.

Algorithm. We devise the following offline preparation algorithm. In this algo-
rithm, Data is used to denote mock copy of Data that is used in the offline
preparation algorithm.

— Create randomly permuted receiver array. For each 1 < d < D, the following
can be performed in parallel. Take the batch of m requests (after conflict
resolution) in OPRAM, and extend them to an array of size Cm by inserting
entries with dummy addresses at the end.

We emphasize that later oblivious sort will be performed using the depth-d
address as preference. Each dummy address is labeled uniquely according to
the relative rank among dummies in the current array. For instance, the first
dummy in the array has label 11, the second dummy has label 15, and so
on. This can be achieved by either oblivious prefix sum or oblivious sorting,
both of which take O(mlogm) total work and O(logm) depth.

Oblivious permutation is applied to the length-C'm array and the resulting
array is Receiver'® . For d = 0, Receiver!”) can be constructed similarly, except
that the oblivious permutation step is unnecessary.

— Emulate online fetch phase. For each 0 < d < D in parallel, we emulate
the fetching phase of OPRAMy to construct a routing permutation (% :
[1..Cm] — [1..C'm] that will be used to pass the fetched positions to the
requests in OPRAM .

Observe that at this moment, Receiver(41

is already created.

1. We construct a mock copy of the “result array” denoted Fetched<d>, which
has length 2Cm. Each entry of Receiver®[1..C'm] produces two entries

in Fetched<d> as follows. (
If Receiver(® [4] contains a dummy address, then both Fetched

and Fetched [27] are dummies.
Otherwise, if Receiver'? [4] contains a real depth-d address addr; and flags

bg, b1. Then, if by = 1, then Fetched<d> [27—1] contains the address addr;||0;
else, Fetched [27 — 1] is dummy. Similarly, if by = 1, then Fetched (2]

contains addr;||1; else, Fetched [27] is dummy.
2. Apply the offline preparation stage of the loose compaction algorithm us-

V125 1)

ing Fetched [1..2C'm] as input to produce routing information at depth
d.

3. Apply the online routing stage of the loose compaction algorithm on
Fetched [1..2C'm] using the routing information at depth d computed
in the offline stage to produce Result [1..Cm).

Observe that Result " [1..C'm)] contains all the real entries of Fetched "’ [1..2C'm].
Sy

Moreover, each dummy in Result™'[1..C'm] is uniquely tagged according

(d) [

42 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

to the relative rank among dummies in the current array. For instance, the
first dummy in the array is labeled 11, the second dummy is labeled 1,
and so on. This can be achieved by either oblivious prefix sum or oblivious
sorting, both of which take O(mlogm) total work and O(logm) depth.

— Compute routing permutation to next recursion depth. We next (obliviously)
compute a routing permutation 7(% : [1..Cm] — [1..C'm] that is supposed to

match each entry in Result ¥ [1..C'm] to the corresponding one in Receiver ™1 [1..C'm].

=——(d :
Observe that Resul’c<) and Receiver!™1 have the same set of real elements,
and the dummies also have the same set of labels. Hence, we can use the
oblivious algorithm for computing the routing permutation described in Sec-

tion [3.31

The routing permutation (% : [1..C'm] — [1..C'm] can be obliviously com-

puted such that for each i € [1..Cm], Result [i] and Receiver‘“™1 [r{@)[]]
have the same real or dummy label.

Lemma 2. The offline preparation step takes O(logm) depth and O(Dmlogm)
total work.

Online Fetch and Route In the online phase, each recursion depth fetches the
position labels needed for the next recursion depth, and routes them in a single
parallel step to the next recursion depth. We describe the detailed algorithm
below.

For d from 0 to D sequentially, perform the following:

1. Recall that Receiver® is an array of length C'm and m of its entries store
the m (conflict resolved) requests in OPRAM,.

For each j € [1..Cm)], the j-th entry of Receiver'¥ contains an address addr;,
where a non-dummy addr; is a depth-d address in OPRAM, . Moreover, for
0 < d < D, the entry also contains two bits flags; indicating whether the
two depth-(d + 1) addresses addr;||0 and addr||1 are needed in OPRAM41.
For d = 0, no position label is needed in OPRAM, which is simply an array
of length m. For 1 < d < D, we shall see that the step below ensures that the
previous iteration has delivered the correct position pos; to each non-dummy
address addr; in Receiver'?.

Therefore, we call OPRAM,.Lookup({(addr;, pos;) : j € [C'm]}). Since OPRAM,
consists of d + 1 one-time oblivious memory data structures, this step takes
O(log d) depth and O(md) total work.

2. If d = D, then the result of the Lookup returns the values of the requested
addresses. Then, oblivious routing can be used to deliver the blocks to the
corresponding requesting CPUs; the whole fetch phase is completed.

For 0 < d < D, for each j € [1..Cm], if addr; is a non-dummy address, then
the position labels (pos),pos}) of the depth-(d + 1) addresses addr;||0 and
addr,||1 are returned.

Perfectly Secure Oblivious Parallel RAM 43

We next construct an array Fetched'®[1..2Cm]. For each j € [1..Cm), the
information (addr;, flags;, (pos‘;—, posjl-)) is used to create the two entries in

Fetched‘? with indices 2j — 1 + b, where b € {0,1}, in the following way.

If flags; indicates that addr;||b is not requested in OPRAMg 1, then the entry
Fetched‘? [2j — 14 b] is dummy; otherwise, Fetched‘® [2j — 14 b] contains the
pair (addr,||b, posg’»), where posg is the correct position label of the depth-
(d+ 1) address addr||b in OPRAM1.

3. Using the pre-computed routing information at depth d, apply the rout-
ing online stage of the loose compaction algorithm to Fetched‘® [1..2C'm] to
(obliviously) produce Result'®[1..C'm].

4. Using the pre-computed permutation 7{® : [1..C'm] — [1..C'm], for each j €
[1..C'm] in parallel, send the contents of Result 4] to Receiver'“1 [z ([j]].
Observe that this step delivers the correct position labels for OPRAM 1;
moreover, the permutation 7% is revealed. As mentioned above, since the
elements in Receiver!®!) have been permuted uniformly at random indepen-
dently, 7{% looks uniformly at random and independent to the adversary.

Lemma 3. The online fetch and route step takes O(D log D) depth and O(mD?)
total work.

Proof. For each d, OPRAM has d levels. Hence, a batch of m concurrent lookups
in OPRAM, takes O(logd) depth and O(md) total work. Observe that using
the pre-computed information in the offline step, routing between successive
recursive OPRAM’s takes O(1) depth and O(m) total work. Summing up from
d =0 to D gives the result.

7.3 Improving the Depth of the Maintain Phase

Our earlier maintain phase algorithm (see Section [5|) performs shuffling for each
recursion depth OPRAM,; sequentially, starting from d = D to 0. Specifically, the
OPRAM, must wait for the updated position labels of addresses in OPRAM g1
before it begins reshuffling. Since the shuffling for each recursion depth takes
2(log N) depth, the sequential nature of the execution over all ©(log V) recur-
sion depths lead to a total depth of 2(log” N).

Intuition. To improve the depth of the maintain phase to O(log N), we would
like to perform shuffling for different recursion depths in parallel. Our idea is
to separate the algorithm into a “mock shuffling” stage and an “index update”
stage.

1. Mock shuffle. The mock shuffling stage achieves the following:

— For 1 < d < D, at the end of the mock shuffling stage, OPRAM, will have
finished building a one-time oblivious memory OTM, at some level ¢, even
though the contents of the stored blocks might be incorrect.

However, the positions of the depth-d addresses stored in this OTM, will
later be passed to OPRAM,_; at the beginning of the index update stage.

44

T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

— As mentioned, after the mock shuffling stage, the contents of the blocks
stored in the freshly built OTM; in OPRAM, might be incorrect. Recall
that the content of each block in OPRAMy is supposed to store the posi-
tions of two depth-(d + 1) addresses in OPRAMg4.

This information on the updated positions of the depth-(d + 1) addresses
will be available at the end of the mock shuffling stage.

Index update. For 0 < d < D, OPRAM receives the updated positions of

the depth-(d + 1) addresses from OPRAM, 1, which are available at the end
of the mock shuffling stage. These updated positions are the correct contents
of the blocks stored in the OTM, that is freshly built in OPRAM, (where

OPRAMy is the special case with just one array of length m).

Observe that the contents of the blocks in this OTM, in OPRAM, can be

updated correctly using oblivious sorting.

Algorithm. We now describe the improved maintain-phase algorithm.

1.

(D)

Initialize. For depth D, for every i € [m], let w; := (addr;”’, data;), where

addr{?)’s are the depth-D addresses after conflict resolution, and data; is the

updated content for the corresponding address addr§D>. Denote U(P) := (u; :
For depth 1 < d < D, set Ut® := (.

Suppose that £(P} is the smallest available level in OPRAMp; if every level
is full, then set ¢(P) « D.

. Mock shuffle. For 1 < d < D in parallel:

— Set £y := min{¢‘P} d}.

— Call U < OPRAM,.Shuffle(U(® ¢4)

— Compute Uy_y < Convert(U, d).

Index update. For 0 < d < D in parallel:

— In OPRAMy, let A denote the data structure corresponding to OTMy,,
i.e., the array at level £; of the hierarchy. At this moment, the positions
of the blocks with real addresses in A have already been determined, but
the contents of these blocks might need to be updated with Uy generated
from OPRAMg4; in the mock shuffling stage.

— Relying on oblivious routing where ﬁd acts as the source and A acts as
the destination, depth-d addresses are used to send the contents of each
entry in Uy to the corresponding entry in A.

After the entries in A receives the correct updated contents (which are
position labels for addresses in OPRAMg41), it becomes the new data
structure for OTMy,.

Lemma 4. The maintain phase has O(log N) depth.

Proof. Since the D recursive OPRAM’s are operated in parallel, it suffices to
analyze the depth incurred by the largest OPRAMp, which stores O(N) blocks.
Therefore, the oblivious shuffling and routing subroutines involved (which make
use of oblivious sorting) have O(log N) depth.

Perfectly Secure Oblivious Parallel RAM 45

7.4 Obliviousness

We next argue why our scheme satisfies obliviousness. Our argument follows the
same approach used in Chan et al. |7]. The difference is that the loose compaction
algorithm used here is perfectly secure.

The security of the improved OPRAM scheme is based on that of the basic
OPRAM scheme in Section [5} From the description of the scheme, most parts
of the scheme have deterministic access pattern that does not depend on the
requested addresses. The only part of the access pattern that has randomness
involves the subroutine oblivious random permutation (which by construction
satisfies obliviousness) and the online routing of information between successive
depths of recursive OPRAM’s in the fetch phase. Hence, it suffices to show that
the online fetch and route procedure is also secure.

Lemma 5 (Security of Position Identifiers Routing). In the online fetch
and route procedure described in Section[7.3, the resulting distribution of physical
access pattern is independent of the requested addresses.

Proof. It suffices to check that in the description of the scheme, the physical
memory are accessed using the building blocks described in Section [3.3] which
ensure that the access pattern is independent of the requested addresses. We
next inspect each step more carefully.

Fix some 0 < d < D. In the offline phase, the elements in the array Receiver
have been randomly permuted in an oblivious manner using fresh randomness.

Therefore, the routing permutation (% (that can be observed by the adver-
sary later in the online phase) is a uniformly random permutation, even when
conditioned on having observed the access patterns of the oblivious random per-
mutation in the offline phase — note that this is implied by our formal definition
of oblivious random permutation (in Section [3.3).

Other steps in the procedure invokes subroutines described in Section (3.3
which produces deterministic access pattern independent of the requested ad-
dresses.

In the online phase, the only part of the procedure that involves randomness
concerns the routing of information from OPRAM, to OPRAM g1, for 0 < d < D.

As mentioned earlier, the routing permutation 7{# is revealed, but it has an
independent uniform distribution, because the destination array Receiver (4t
was permuted using a (secret) fresh random permutation.

(d+1)

With Lemma [5] and combining the security argument of basic OPRAM
scheme in Section [} it follows that our improved small-depth OPRAM con-
struction is indeed perfectly secure, i.e., the following Theorem [13] holds.

Theorem 13 (Perfectly secure, small-depth OPRAM). There exists a
perfectly secure OPRAM scheme (for general block sizes) with O(log® N) total
work blowup, O(log N loglog N) depth blowup, and O(1) space blowup; moreover,
each CPU in the OPRAM consumes only O(1) blocks of private cache.

46 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

8 Conclusion and Future Work

In this paper, we constructed a perfectly secure OPRAM scheme with O(log3 N)
total work blowup, O(log N loglog N) depth blowup, and O(1) space blowup. To
the best of our knowledge our scheme is the first perfectly secure (non-trivial)
OPRAM scheme, and even for the sequential special case we asymptotically
improve the space overhead relative to Damgard et al. [12]. Prior to our work,
the only known perfectly secure ORAM scheme is that by Damgard et al. [12],
where they achieve O(log® N) simulation overhead and O(log N) space blowup.
No (non-trivial) OPRAM scheme was known prior to our work, and in particular
the scheme by Damgard et al. [12] does not appear amenable to parallelization.
Finally, in comparison with known statistically secure OPRAMs [9,{42], our work
removes the dependence (in performance) on the security parameter; thus we
in fact asymptotically outperform known statistically secure ORAMs [42] and
OPRAMSs [9] when (sub-)exponentially small failure probabilities are required.
Exciting questions remain open for future research:

— Are there any separations between the performance of perfectly secure and
statistically secure ORAMs/OPRAMs?

— Can we construct perfectly secure ORAMs/OPRAMs whose total work blowup
matches the best known statistically secure ORAMs/OPRAMSs assuming neg-
ligible security failures?

— Can we construct perfectly secure ORAM/OPRAM schemes whose concrete
performance lends to deployment in real-world systems?

Acknowledgments

T-H. Hubert Chan was supported in part by the Hong Kong RGC under grant 17200418.
This work is supported in part by NSF grants CNS-1314857, CNS-1514261, CNS-
1544613, CNS-1561209, CNS-1601879, CNS-1617676, an Office of Naval Research
Young Investigator Program Award, a Packard Fellowship, a DARPA Safeware

grant (subcontractor under IBM), a Sloan Fellowship, Google Faculty Research
Awards, a Google Ph.D. Fellowship Award, a Baidu Research Award, and a
VMware Research Award.

We gratefully acknowledge Shai Halevi and Craig Gentry for helpful discus-
sions and for suggesting the use of expander graphs to achieve low-online-depth
routing of position labels. We are extremely grateful to Bruce Maggs for most
patiently explaining Pippenger’s result [36] to us and answering many of our
technical questions. We acknowledge Kai-Min Chung for many helpful technical
discussions regarding perfectly secure ORAM and OPRAM. We thank Ling Ren
for many early discussions on perfectly secure ORAMs. We thank Muthuramakr-
ishnan Venkitasubramaniam, Antigoni Polychroniadou, and Kai-Min Chung for
helpful discussions on the significance of achieving perfect security in crypto-
graphic primitives, and for helpful editorial comments. Elaine Shi is grateful to
Bruce Maggs, Bobby Bhattacharjee, Kai-Min Chung, and Feng-Hao Liu for their
unwavering moral support during the period this research was conducted.

Perfectly Secure Oblivious Parallel RAM 47

References

1.

10.

11.

12.

13.

14.

15.

M. Ajtai, J. Komlds, and E. Szemerédi. An O(N log N) sorting network. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
STOC 83, pages 1-9, New York, NY, USA, 1983. ACM.

. Miklés Ajtai. Oblivious RAMs without cryptogrpahic assumptions. In Proceedings

of the Forty-second ACM Symposium on Theory of Computing, STOC ’10, pages
181-190, New York, NY, USA, 2010. ACM.

Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. Oblivious computation with data locality. TACR Cryptology ePrint
Archive, 2017:772, 2017.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 1—
10, 1988.

Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation:
Multi-party computation for (parallel) RAM programs. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II, pages 742-762, 2015.

Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and appli-
cations. In Theory of Cryptography - 13th International Conference, TCC 2016-A,
Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 175-204, 2016.
T-H. Hubert Chan, Kai-Min Chung, and Elaine Shi. On the depth of oblivious
parallel RAM. In Asiacrypt, 2017.

T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Oblivious hashing
revisited, and applications to asymptotically efficient ORAM and OPRAM. In
Asiacrypt, 2017.

T-H. Hubert Chan and Elaine Shi. Circuit OPRAM: A unifying framework for
computationally and statistically secure ORAMs and OPRAMs. In TCC, 2017.
Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious parallel RAM: improved
efficiency and generic constructions. In Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part
11, pages 205234, 2016.

Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with
O(log®n) overhead. In Asiacrypt, 2014.

Ivan Damgard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure obliv-
ious RAM without random oracles. In Theory of Cryptography Conference (TCC),
pages 144-163, 2011.

Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst ORAM: Minimizing
ORAM response times for bursty access patterns. In 28rd USENIX Security Sympo-
sium (USENIX Security 14), pages 749-764, San Diego, CA, August 2014. USENIX
Association.

Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos Papamanthou.
Searchable encryption with optimal locality: Achieving sublogarithmic read ef-
ficiency. Cryptology ePrint Archive, Report 2017/749, 2017. https://eprint.
iacr.org/2017/749.

Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas
Devadas. Freecursive ORAM: [nearly] free recursion and integrity verification for
position-based oblivious RAM. In ASPLOS, 2015.

https://eprint.iacr.org/2017/749
https://eprint.iacr.org/2017/749

48

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Ste-
fanov, and Srinivas Devadas. RAW Path ORAM: A low-latency, low-area hardware
ORAM controller with integrity verification. IACR Cryptology ePrint Archive,
2014:431, 2014.

Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan,
and Srinivas Devadas. Suppressing the oblivious RAM timing channel while making
information leakage and program efficiency trade-offs. In HPCA, pages 213-224,
2014.

Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentra-
tors. Journal of Computer and System Sciences, 22(3):407-420, June 1981.
Daniel Genkin, Yuval Ishai, and Mor Weiss. Binary AMD circuits from secure
multiparty computation. In Theory of Cryptography Conference, pages 336—366.
Springer, 2016.

Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana
Raykova, and Daniel Wichs. Optimizing ORAM and using it efficiently for se-
cure computation. In Privacy Enhancing Technologies Symposium (PETS), 2013.
O. Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In ACM Symposium on Theory of Computing (STOC), 1987.

Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious RAMs. J. ACM, 1996.

Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of
outsourced data via oblivious RAM simulation. In International Colloguium on
Automata, Languages and Programming (ICALP), pages 576-587, 2011.

Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. Privacy-preserving group data access via stateless oblivious RAM sim-
ulation. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 12, pages 157-167, Philadelphia, PA, USA, 2012. So-
ciety for Industrial and Applied Mathematics.

S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In ACM Conference on Computer and Communications Security
(CCS), 2012.

Torben Hagerup. Fast and optimal simulations between CRCW PRAMs. In STACS
92, 9th Annual Symposium on Theoretical Aspects of Computer Science, Cachan,
France, February 13-15, 1992, Proceedings, pages 45-56, 1992.

Torben Hagerup. The log-star revolution. In Proceedings of the 9th Annual Sym-
posium on Theoretical Aspects of Computer Science, STACS 92, pages 259-278,
London, UK, UK, 1992. Springer-Verlag.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sa-
hai. Efficient non-interactive secure computation. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 406—425.
Springer, 2011.

Shuji Jimbo and Akira Maruoka. Expanders obtained from affine transformations.
In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Comput-
ing, STOC 85, pages 88-97, New York, NY, USA, 1985. ACM.

Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-
based oblivious RAM and a new balancing scheme. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2012.

Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine
Shi. Ghostrider: A hardware-software system for memory trace oblivious compu-
tation. SIGPLAN Not., 50(4):87-101, March 2015.

Perfectly Secure Oblivious Parallel RAM 49

32. Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM:
A programming framework for secure computation. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 359—
376, 2015.

33. Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Kriste Asanovic,
John Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a
secure processor. In ACM Conference on Computer and Communications Security
(CCS), 2013.

34. G. A. Margulis. Explicit construction of concentrators. Problems of Information
Transmission, 9(4):325-332, 1973.

35. Kartik Nayak and Jonathan Katz. An oblivious parallel RAM with o(log2n) par-
allel runtime blowup. IACR Cryptology ePrint Archive, 2016:1141, 2016.

36. Nicholas Pippenger. Self-routing superconcentrators. In Proceedings of the Twenty-
fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pages 355-361,
New York, NY, USA, 1993. ACM.

37. Michael Raskin and Mark Simkin. Oblivious ram with small storage overhead.
Cryptology ePrint Archive, Report 2018/268, 2018. https://eprint.iacr.org/
2018/268.

38. Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas
Devadas. Design space exploration and optimization of path oblivious RAM in
secure processors. In ISCA, pages 571-582, 2013.

39. Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM
with O(log® N) worst-case cost. In ASTACRYPT, pages 197-214, 2011.

40. Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud stor-
age. In IEEE Symposium on Security and Privacy (S & P), 2013.

41. Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. Path ORAM — an extremely simple oblivious
RAM protocol. In ACM Conference on Computer and Communications Security
(CCS), 2013.

42. Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On Tight-
ness of the Goldreich-Ostrovsky Lower Bound. In ACM CCS, 2015.

43. Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: A parallel oblivious file
system. In ACM Conference on Computer and Communications Security (CCS),
2012.

A Additional Algorithmic Details

For ease of understanding, we graphically illustrate our OPRAM’s data structure
in Figure|l] In the remainder of this section, we supply some missing algorithmic
details.

A.1 Conflict Resolution

For completeness, we briefly describe the conflict resolution procedure for 1 <
d < D as follows:

1. Consider the depth-(d+1) truncated address: A+ .= (addr§d+1>7 ..., addr{dt),
and use oblivious sorting to suppress duplicates of depth-(d + 1) addresses,

https://eprint.iacr.org/2018/268
https://eprint.iacr.org/2018/268

50 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

OTM at level [=D Z

OTM at level [=d -1

(storing < 2'm real blocks) /

OTM at level =1

(storing < m real blocks)

/

- — —
OPRAM, OPRAM, OPRAM,
(OPRAM at depth d) (D =log N—logm)

Fig.1: OPRAM data structures at a glance. Each OTM is a
one-time memory instance defined and constructed in Section [} each
OPRAMy, OPRAMy, ..., OPRAMp is a position-based OPRAM defined and con-
structed in Section

i.e., each repeated depth-(d+ 1) address is replaced by a dummy. Let Ald+1)
be the resulting array (of size m) sorted by the (unique) depth-(d + 1) ad-
dresses.

2. For each i € [l..m], we produce an entry (addr;,flags;) according to the

following rules:

(a) If addr§d+1> is a dummy, then addr; := L is also dummy.

(b) If addr§d+1> does not share its length-d prefix with ;addrlgd_'sl_1> or addrﬁf{”,
then addr; is set to be the length-d prefix of addr§d+1>. Moreover, if
addrf-d+1> ends with 0, then flags, := 10; otherwise, flags; := 01.

(c) If addrgd+1> and addricl:[1> share the same length-d prefix, then addr; :=

1; otherwise, if addrl@'|r1> and addrﬁ'{l) share the same length-d prefix,
then addr; is set to the shared length-d prefix of the address, and flags, :=
11.

3. Then, the batch access for OPRAM is ((addr;, flags;) : i € [m]).

A.2 The Convert Subroutine

The Convert subroutine takes an array that stores the position labels within
OPRAMy, for depth-d addresses, and converts the array to one that contains
depth-(d — 1) addresses where each entry may pack up to two position labels for
its child addresses at depth-d.

Perfectly Secure Oblivious Parallel RAM 51

The subroutine Convert(U,d) proceeds as follows. First, perform oblivious

sort on the depth-d addresses to produce an array denoted as {(addrf»d>7 pos;) :
i€ (U]}

Next, for ¢ € [|U]] in parallel, look to the left and look to the right and do
the following:

— If addr!” = addr||0 and addr!?, = addr||1 for some addr, i.e., if my right
neighbor is my sibling, then write down uj = (addr, (pos;, pos;;)), i.e., both
siblings’ positions need to be updated.

— If addrjdjl = addr||0 and addr§d> = addr||1 for some addr, i.e., if my left
neighbor is my sibling, then write down u} = L.

— Else if 4 does not have a neighboring sibling, parse add rz@ = addr||b for some
b € {0,1}, then write down w}, = (addr, (pos;,*)) if b = 0 or write down
u, = (addr, (%, pos;)) if b = 1. In these cases, only the position of one of the
siblings needs to be updated in OPRAM;_;.

— Let U1 := {w/ : i € [|U]]}. Note here that each entry of U~ contains a
depth-(d — 1) address of the form addr, as well as the update instructions for
two position labels of the depth-d addresses addr||0 and addr||1 respectively.
We emphasize that when * appears, this means that the position of the
corresponding depth-d address does not need to be updated in OPRAM_;.

— Output U4=1,

B Basic OPRAM Scheme: Analysis and Extensions

We now give detailed analysis and proofs for our basic OPRAM scheme in Sec-
tion B

B.1 Correctness and Obliviousness

Fact 14 The above construction maintains correctness. More specifically, at ev-
ery recursion depth d, the correct position labels will be input to the Lookup
operations of OPRAMy; and every batch of requests will return the correct an-
swers.

Proof. Straightforward by construction.

In our OPRAM construction, for every OPRAM at recursion depth d, the
following invariants are respected by construction as stated in the following facts.

Fact 15 For every OPRAMy, every OTM; instance at level i < d that is cre-
ated needs to answer at most 2¢ batches of m requests before OTM; instance is
destroyed.

Proof. For every OPRAMy, the following is true: imagine that there is a (d-+1)-bit
binary counter initialized to 0 that increments whenever a batch of m requests
come in. Now, for 0 < ¢ < d, whenever the ¢-th bit flips from 1 to 0, the /-th

52 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

level of OPRAM, is destroyed; whenever the ¢-th bit flips from 0 to 1, the ¢-th
level of OPRAMy is reconstructed. For the largest level d of OPRAMy, whenever
the d-th (most significant) bit of this binary counter flips from 0 to 1 or from 1
to 0, the (d + 1)-th level is destroyed and reconstructed. The fact follows in a
straightforward manner by observing this binary-counter argument.

Fact 16 For every OPRAMy and every OTM; instance at level £ < d, during
the lifetime of the OTMy instance: (a) no two real requests will ask for the same
depth-d address; and (b) for every request that asks for a real depth-d address,
the address must exist in OTM;.

Proof. We first prove claim (a). Observe that for any OPRAMy, if some depth-d
address addr!? is fetched from some level ¢ < d, at this moment, addr{® will
either enter a smaller level £/ < £; or some level £/ > ¢ will be rebuilt and add r(d)
will go into level £/ — in the latter case, level £ will be destroyed prior to the
rebuilding of level ¢”. In either of the above cases, due to correctness of the
construction, if addr{? is needed again from OPRAMy, a correct position label
will be provided for add ‘¥ such that the request will not go to level £ (until the
level is reconstructed). Moreover, two real requests will not appear in the same
request due to the conflict resolution procedure. Finally, claim (b) follows from
correctness of the position labels.

Given the above facts, our construction maintains perfect obliviousness.

Lemma 6 (Obliviousness). The above OPRAM construction satisfies perfect
obliviousness.

Proof. For every parallel one-time memory instance constructed during the life-
time of the OPRAM, Facts [I5] and [I6] are satisfied, and thus every one-time
memory instance receives a valid request sequence. The lemma then follows in
a straightforward fashion by the perfect obliviousness of the parallel one-time
memory scheme, and by observing that all other access patterns of the OPRAM
construction are deterministic and independent of the input requests.

B.2 Asymptotic Complexity

We now analyze the asymptotic efficiency of our OPRAM construction. First,
observe that the asymptotic performance of the fetch phase as stated in the
following fact.

Fact 17 The fetch phase can be completed in O(mlog2 N) total work, and in
O((logm +loglog N) -log N) depth (assuming an unbounded number of CPUs).

Proof. For total work, it is not difficult to see that one log N factor arises from
the recursion depths, and within each recursion depth it takes O(mlog N +
mlogm) work to perform the fetch. Here, mlogm is the total work incurred

Perfectly Secure Oblivious Parallel RAM 53

by the oblivious routing in between recursion depths and mlog N is the work
incurred within a single position-based OPRAM.

For depth, one log N factor comes from the log N recursion depths, the other
(log m+loglog N) factor is due to the depth incurred by each recursion depth as
well as due to the routing in between depths: 1) Within each recursion depth, it
takes O(1) depth to look up each of the up to O(log N) hierarchical levels, and
then select the correct result in another O(loglog N) depth; and 2) the routing
between adjacent depths can be implemented with the AKS sorting network [1]
that takes O(logm) depth.

We now proceed to analyze the efficiency of the maintain phase.

Fact 18 Averaging over a sequence of batch accesses, the maintain phase costs
O(mlog® N) amortized total work (except with negligible in N probability). Fur-
ther, for each batch of accesses, the maintain phase can always be completed in
O(log® N) depth assuming an unbounded number of CPUs.

Proof. For each OPRAM, every level £ < d 4+ 1 must be rebuilt after every
2¢ batch of m requests. Due to Fact |§|, each rebuilding operation will take
O(2° - mlog(2* - m)) total work, and has depth O(log(2¢ - m)), which is at most
O(log N). After the rebuilding, the Convert algorithm also has the same asymp-
totic performance. Thus, for each recursion depth, the amortized total work is
O(mlog® N). Counting all O(log N) recursion depths, we have the desired result
for total work.

For depth, observe that for each recursion depth, the depth incurred by
the rebuilding is dominated by the depth of the AKS sorting network which is
O(log N). We then have the depth result by observing that the maintain phase
is performed sequentially over O(log N) recursion depths.

Lemma 7. In the above OPRAM construction, the total work blowup is O(log3 N),
and the depth blowup is O((logm + loglog N)log N).

Proof. Straightforward from Facts [[7] and

Corollary 1. The above OPRAM construction incurs O(log® N) simulation over-
head when consuming the same number of CPUs as the original PRAM.

Proof. This corollary is implied directly by Lemma [7/] The difference is that
Lemmal[7] would require more than m CPUs such that the depth of the algorithm
may be smaller than the total work blowup, but if we are constrained to exactly

m CPUs, the amortized parallel runtime per batch of accesses would be exactly
O(log® N).

B.3 Extension: Results for Large Block Sizes

Observe that if the block size is large, then each block in OPRAM, can store more
position identifiers for blocks in OPRAM 1. Hence, the number D of recursive
OPRAMSs can be reduced. This can lead to the following improvement.

54 T-H. Hubert Chan, Kartik Nayak, and Elaine Shi

Corollary 2 (Large Block Size). Suppose the block size is O(N€) bits. Then,
the above OPRAM construction can be modified to have O(% log? N) total work
blowup and simulation overhead, and O(%(logm + loglog N)) depth blowup.
Proof. When the block size is B := @(N€) bits, the number of depths of recursive
OPRAMSs becomes D := —oe N — o).

log 7
og N
Hence, in every performance metric stated in Lemma [7] and Corollary [} one

factor of log N is replaced with O(1).

	Perfectly Secure Oblivious Parallel RAM

