
Two-message Key Exchange with Strong Security from Ideal
Lattices?

Zheng Yang1, Yu Chen2, and Song Luo3

1 Department of Computer Science, University of Helsinki, Helsinki 00014, Finland
zheng.yang@rub.de

2 State Key Laboratory of Information Security, Chinese Academy of Sciences, Beijing 100190, China
chenyu@iie.ac.cn

3 School of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
ratio@cqut.edu.cn

Abstract. In this paper, we first revisit the generic two-message key exchange (TMKE) scheme
(which will be referred to as KF) introduced by Kurosawa and Furukawa (CT-RSA 2014). This
protocol is mainly based on key encapsulation mechanism (KEM) which is assumed to be secure
against chosen plaintext attacks (IND-CPA). However, we find out that the security of the KF pro-
tocol cannot be reduced to IND-CPA KEM. The concrete KF protocol instantiated from ElGamal
KEM is even subject to key compromise impersonation (KCI) attacks. In order to overcome the
flaws of the KF scheme, we introduce a new generic TMKE scheme from KEM. Instead, we require
that the KEM should be secure against one-time adaptive chosen ciphertext attacks (OT-IND-
CCA2). We call this class of KEM as OTKEM. In particular, we propose a new instantiation of
OTKEM from Ring Learning with Errors (Ring-LWE) problem in the standard model. This yields
a concrete post-quantum TMKE protocol with strong security. The security of our TMKE scheme
is shown in the extended Canetti-Krawczyk model with perfect forward secrecy (eCK-PFS).

Keywords: KCI attack, two-message key exchange, standard model, lattice, ring-lwe

1 Introduction

Two-message key exchange (TMKE) stands for a special class of round-efficient protocols which
allow two principles to agree on a shared key with only two protocol messages at all. If a
TMKE protocol is secure against active adversaries, it is also categorized as an authenticated
key exchange (AKE) protocol. Besides the communication efficiency, TMKE has some distinct
properties that multi-pass key exchange protocols cannot provide. One prominent example of
them is that a TMKE protocol can be used to provide security for asynchronous message
systems. Note that in a TMKE session the participants may be not online simultaneously (in
contrast to the multi-pass key exchange). A party (say Alice) could pre-generate her protocol
messages and store them on a message server. Whenever another party (say Bob) wants to
communicate with Alice (e.g., sending off-line messages), he can retrieve one of Alice’s unused
protocol messages from the server to generate his own protocol message based on Alice’s message
and complete the key exchange procedure.

Actually TMKE has a long research history that can be dated back to the seminal Diffie-
Hellman key exchange [16]. A lot of famous Diffie-Hellman like protocols, such as HMQV [23]
and NAXOS [25], are TMKE. However, we may require a TMKE protocol to be constructed
in a more general fashion (with abstract cryptographic build blocks) and to be independent of
specific computational hard problems. We could particularly obtain a wide range of protocol
instantiations by substituting those generic blocks (in such a generic protocol) with arbitrary
concrete algorithms (from different complexity hard problems), without substantially affecting

? A preliminary version of this paper appears in the proceedings of the RSA Conference Cryptographers’ Track
2018 (CT-RSA 2018). This is the full version.

their overall structure or security analysis. In 2008, Boyd et al. [9] proposed an elegant one-
round key exchange (ORKE) protocol4 (which will be referred to as BCNP scheme) from key
encapsulation mechanism (KEM). The BCNP scheme is shown to be secure in the Canetti-
Krawczyk (CK) model [10] if the KEM scheme is secure against adaptive chosen ciphertext
attacks (IND-CCA2). In the generic BCNP protocol, each party is assumed to have a long-
term public key. Each party would contribute half of the session key which is encapsulated
by its partner’s public key. However, the generic BCNP protocol cannot provide weak perfect
forward secrecy (wPFS) [23]. In order to improve the generic BCNP scheme, Fujioka et al.
[19] proposed a KEM based scheme (which is referred to as FSXY scheme) which satisfies a
stronger security in the CK+ model (which covers wPFS). To achieve wPFS, one more KEM
scheme which is secure against chosen plaintext attacks (IND-CPA) is used (comparing to the
BCNP scheme). Moreover, the NAXOS trick [25, 34] (which is known as twisted pseudo-random
function (TPRF)) is applied in the FSXY scheme in order to satisfy the CK+ security (which is
quite similar to the extended Canetti-Krawczyk (eCK) security [25]). The NAXOS trick works
here as a function which takes as input both long-term and ephemeral secret keys, and outputs
an intermediate secret which is assumed to be leakage free. Note that if one of its inputs is not
exposed, then its output is still hidden from the adversary. Hence, the NAXOS trick is widely
used in key exchange constructions to provide strong security. As pointed in [19], the FSXY
scheme can be instantiated by many kinds of KEM including lattice based ones. In particular, we
can easily obtain a post-quantum TMKE protocol, e.g. following another variant construction
[20], by appropriately instantiating the KEM. These advantages make such generic TMKE to
be more interesting. Moreover, the idea of KEM based key exchange is also widely used in real
world protocols, such as Transport Layer Security (TLS) protocol v1.2 [14]. More works about
TMKE construction are reviewed in Appendix E.

With respect to a generic TMKE protocol, it is remarkable that the security assumptions of
underlying cryptographic building blocks are extremely important. A weaker assumption may
allow a generic protocol to be more easily or even more efficiently implemented in practice. Note
that the FSXY scheme requires both IND-CCA2 KEM and IND-CPA KEM. Building an IND-
CCA2 KEM is notoriously more difficult, especially in the standard model. As an IND-CCA2
adversary is allowed to ask a polynomial number of queries to a decryption oracle. In order
to weaken the security assumptions of KEM, Kurosawa and Furukawa [24] proposed TMKE
protocols (which will be referred to as KF schemes) to provide the security in the CK model
and the eCK model respectively. The KF schemes are designed relying on an IND-CPA KEM,
and digital signature (SIG). The core idea of the KF scheme is that an initiator generates a
fresh ephemeral public key, and the session key is encapsulated by a responder using this public
key. The signature scheme here is used to sign the outgoing protocol message for authentication
purpose, instead of the long-term public key based IND-CCA2 KEM used in the FSXY and
BCNP schemes. Utilizing the IND-CPA KEM (as a building block) seems to be a breakthrough
in KEM based TMKE constructions with eCK like strong security. However, is this true? Un-
fortunately, we are going to show that this result is false.

Our Contributions. In this work, we first revisit the security results of the KF scheme. We
present a KCI attack against the concrete KF scheme, which is instantiated with the ElGamal
KEM [17]. Our attack shows that the KF scheme cannot provide eCK security based on IND-
CPA KEM. The authors have overlooked an important fact under the eCK model (wherein
KCI attack is formulated): an initiator’s session s′ may receive a protocol message m′ which
is generated by the adversary on behalf of certain corrupted party. In particular, we observe
that the session key of the concrete KF protocol can be manipulated by the adversary via her

4 ORKE is a special class of TMKE. Two protocol messages can be generated and sent independently.

2

own message. Suppose that the target session under attacked has the session key K∗. Then, the
adversary can easily lead another session (which is not the partner session of the target session)
to have a related session key K ′ = (K∗)β, where β is some value chosen by the adversary.
Namely, the adversary can result in two non-partnered sessions to have related session key
relying on the corrupted long-term secret key of the target session. Hence, the adversary can
simply obtain K∗ after revealing K ′. This is possible in the eCK model via a session key reveal
query. The details of this attack are illustrated in Section 4.

In order to overcome the design flaws of the KF scheme, we propose a generic construction for
TMKE based on KEM, SIG, and pseudo-random function (PRF). In our construction, we par-
ticularly study the assumptions required by these building blocks. The security of the proposed
scheme is proved without random oracles in the eCK-PFS model [13] which is strengthened
from previous works, e.g., [5, 10, 23, 25]. The eCK-PFS model covers several important classes
of attacks including: known session key (KSK) attacks, key compromise impersonation (KCI)
attacks, chosen identity and public key (CIDPK) attacks, ephemeral secret key leakage (ESKL)
attacks, and perfect forward secrecy (PFS) attacks. In order to resist with the quantum com-
puter attacks, we introduce a new KEM scheme (for our TMKE construction) based on the
presumed hardness of the Ring Learning with Error (Ring-LWE) problem.

Generic TMKE Scheme. Our construction is similar to the KF scheme (see Figure 1), but
in our new KEM based TMKE construction, we need two kinds of KEM. The first KEM is
required to satisfy IND-CPA and pair-generation-indistinguishability (PG-IND) introduced by
Alawatugoda et al. [3]. This kind of KEM is used as a NAXOS trick as in [3]. The second KEM is
used for session key generation, which should satisfy a weaker IND-CCA2 security, i.e., one-time
IND-CCA2 (OT-IND-CCA2). Note that OT-IND-CCA2 is just a special case of q-bounded IND-
CCA2 (q-IND-CCA2) security defined by Cramer et al. [12] when q = 1, where q is the number of
allowed decryption oracle queries. In contrast to the regular notion of IND-CCA2, the adversary
is only allowed to query at most one decryption oracle query to the challenge public key in the
security experiment. This is important to solve the simulation problem of the KF scheme (see
more details in Appendix A). One decryption oracle query is enough, because the public key
is freshly chosen for each session. We may call an OT-IND-CCA2 secure KEM as OTKEM for
short. Meanwhile, a signature scheme, which is strong existentially unforgeable under adaptive
chosen messages attacks (SEUF-CMA). It is used to sign the initiator’s ephemerally generated
public key (of OTKEM) and all protocol messages of the receiver (including the ciphertext
of OTKEM). PRF is used as a key derivation function to bind the session key material (the
encapsulated key generated by the OTKEM) to specific session identifier sid. Here, the session
identifier sid is determined by the whole transcript (T) of exchange protocol messages. Roughly
speaking, we want to ensure that only two sessions having the same T would generate identical
session keys. We highlight that PRF is useful to circumvent KCI attacks against the concrete
KF protocol. Analogously, PRF here is only needed to resist with one-time chosen message
attack.

OTKEM Construction from Ring-LWE. In [12], Cramer et al. proposed a generic q-IND-
CCA2 secure public key encryption (PKE) scheme from IND-CPA PKE and q-cover-free family.
Hence, we can obtain a number of OTKEM instantiations from various assumptions. However,
for a security parameter κ and q = 1, the Cramer et al.’s scheme has to generate 16κ secret
keys and 4κ ciphertexts of IND-CPA PKE scheme. This is quite inefficient. Since we only need
to focus on 1-bounded IND-CCA2 security (instead of generic q-bounded one) for instantiating
our TMKE scheme, we are motivated to build more efficient OTKEM. We here propose a new
post-quantum OTKEM based on Ring-LWE [28, 29] in the standard model (in Section 6).

3

In order to achieve OT-IND-CCA2 security, the public key pk is generated with a tree-like
structure, which consists of 2µ (for some integer µ) ring elements as the form pk = {Si,j =
a · si,j + ei,j}(i,j)∈[µ]×{0,1} where a is a public ring element, si,j is a secret key and ei,j is a secret
error.5 We stress that such public key is one-time programmable by the µ bits hash value h of a
target collision resistant hash function (TCRHF), i.e., h = (h(1), h(2), . . . , h(µ)) := TCRHF(m)
where h(i) is the i-th bit of h. The ‘programmable’ here means that the sub-public keys (i.e.,
Si,j) selected within the encryption algorithm are determined by the bits of h. Namely, given
h = (h(1), h(2), . . . , h(µ)), the set of {Si,h(i)}i∈[µ] will be chosen for encryption. Suppose that
TCRHF is target collision resistant and the inputs are distinct among oracle queries (challenge
or decryption). At least one of these ring elements can be used to embed the Ring-LWE challenge
value, and the other keys can be simulated by the KEM challenger with her own secrets. Then,
the challenge value is used only once to compute the challenge ciphertext and the session key.
On the other hand, the KEM challenger knows all secrets used to answer the decryption oracle
query. One remaining problem here is to determine what the input message of TCRHF should
be. Note that the Ring-LWE problem may actually result in an approximate key agreement
between sender and receiver. The reconciliation technique [36] can be applied to make the
sender and receiver to reach exact agreement from their distinct noisy ring elements. However,
the reconciliation function is run only after the session key is generated. Hence, we cannot take
the output u of the reconciliation function into the hash function TCRHF. Because the hash
value h should be used for session key computation. To prevent the adversary from manipulating
u, we exploit an one-time signature scheme to build a faithful chain for the ciphertext. First of
all, the ephemeral public key epk (in the ciphertext) of OTKEM and the verification key spk of
OTS are generated by the receiver and included in the hash input m = (pk, epk, spk). We have
that m in the challenge query is unique with overwhelming probability, since epk and spk are
freshly chosen at random. On the other hand, we sign the tuple (pk, epk, spk, u) with the OTS
signing key. As long as the OTS scheme is SEUF-CMA secure, then the adversary is unable to
manipulate the challenge ciphertext.

2 Preliminaries

General Notations. We let κ ∈ N be the security parameter and 1κ be a string that consists
of κ ones. For x ∈ R, we define bxe = bx + 1/2c ∈ Z. For any two subsets X,Y of some
additive group, let −X = {−x : x ∈ X} and X + Y = {x + y : x ∈ X, y ∈ Y }. We write
[n] = {1, . . . , n} ⊂ N to denote the set of integers between 1 and n. The radical of a positive

integer m is denoted rad(m) which is the product of all primes dividing m. The notation a
$← S

denotes the operation which samples a uniform random element from a set S. We let ‖ denote
the concatenation (operation) of two strings. We denote the binary representation of a value h
with size µ as h = (h(1), h(2), . . . , h(µ)) = {0, 1}µ.
Key Encapsulation Mechanism Schemes. Generally speaking, a KEM scheme consists of
three polynomial time algorithms KEM = (KEM.Gen, KEM.Enc, KEM.Dec) with the following
semantics:

– (pk, sk)
$← KEM.Gen(1κ, rpg): a key generation algorithm which on input a security param-

eter 1κ and a randomness rpg ∈ RGKEM, outputs a pair of long-term encryption/decryption
keys (pk, sk) ∈ (PK,SK), where RGKEM is a randomness space.

– (K,C)
$← KEM.Enc(pk, erk): an encryption algorithm which takes as input an encryption

key pk and a randomness erk
$← RKKEM, outputs a key K ∈ KKEM and a ciphertext

5 A similar construction idea is concurrently applied to build a Decisional Diffie-Hellman (DDH) based one-round
key exchange protocol [15].

4

C ∈ CKEM, where KKEM is a session key space, CKEM is a ciphertext space and RKKEM is a
randomness space.

– (K) ← KEM.Dec(sk, C): a decryption algorithm which takes as input a decryption key sk,
a ciphertext C ∈ CKEM, and outputs a key K ∈ KKEM.

All ‘spaces’ for the corresponding values are parametrized with the security parameter κ. Let
ind-x = {ind-cca2, ot-ind-cca2, ind-cpa} ba a variable which stores some indicator of the security
experiment, where ind-cca2 denotes the indistinguishability against adaptive chosen ciphertext
attacks (IND-CCA2), ot-ind-cca2 denotes indistinguishability against one-time adaptive chosen
ciphertext attacks (OT-IND-CCA2), ind-cpa denotes indistinguishability against chosen plain-
text attacks (IND-CPA).

Definition 1. For a key encapsulation mechanism scheme KEM = (KEM.Gen, KEM.Enc,
KEM.Dec) and an adversary D, we define the following experiment:

EXPind-x
KEM,D(κ, q) DEC(sk, C) :

rpg
$←RGKEM; If C = C∗ then return a failure ⊥,

(pk, sk)← KEM.Gen(1κ, rpg); Otherwise K ← KEM.Dec(sk, C)

(K∗0 , C
∗)

$← KEM.Enc(pk, erk), Return K

K∗1
$← KKEM, b

$← {0, 1};
b′ ← DDEC(sk,·)(pk,K∗b , C∗);
if b = b′ then return 1,
otherwise return 0.

The number of decryption oracle DEC queries is bound by the parameter q. We define the
advantage of D in the above experiment as:

Advind-xKEM,D(κ, q) :=

∣∣∣∣Pr[EXPind-x
KEM,D(κ, q) = 1]− 1

2

∣∣∣∣ .
We say that a key encapsulation mechanism scheme KEM is secure, if for all PPT adversaries

D the advantage Advind-xKEM,D(κ, q) is a negligible function in κ. If q = 1 then the KEM scheme is
called as an OT-IND-CCA2 secure one-time key encapsulation mechanism (OTKEM) scheme.
If q = 0 then the KEM scheme is IND-CPA secure KEM scheme.

We also recall the notion regarding the pair-generation-indistinguishability introduced in
[3]. We slightly change it for IND-CPA KEM. Let D1 and D2 be two distributions such that

D1 = {(K,C) : erk
$← RKKEM, (K,C)

$← KEM.Enc(ek, erk)} and D2 := {(K,C) : C
$←

CKEM,K ← KEM.Dec(dk,C)}. The KEM is ε-pair-generation-indistinguishable (PG-IND) if for
all (ek, dk) ← KEM.Gen(1κ, rpg), the two distributions D1 and D2 are statistically indistin-

guishable with at most ε distance, where ε ≤ Advind-cpaKEM,D(κ, 0). Such KEM will be referred to as
PG-IND-CPA KEM.

(One-time) Digital Signature Schemes. We consider a digital signature scheme SIG that
consists of three probabilistic polynomial time (PPT) algorithms SIG = (SIG.Gen, SIG.Sign,
SIG.Vfy) which are described in Section 5. We denote one-time signature (OTS) scheme by
OTS = (OTS.Gen, OTS.Sign, OTS.Vfy) representing a special case of SIG. Let (PKOTS, SKOTS

MOTS, SOTS) be the public, secret key, message and signature space of OTS respectively.
The signature scheme is associated with public and secret key spaces {PKSIG,SKSIG}, mes-

sage space MSIG, a secret randomness space RSSIG and signature space SSIG in the security
parameter κ. The algorithms of SIG are defined as follows:

– (sk, vk) ← SIG.Gen(1κ, rsg): This algorithm takes as input the security parameter κ and a
randomness rg ∈ RGSIG, and outputs a (public) verification key vk ∈ PKSIG and a secret
signing key sk ∈ SKSIG, where RGSIG is a randomness space.

5

– σ ← SIG.Sign(sk,m, rs): This is the signing algorithm that generates a signature σ ∈ SSIG
for a message m ∈ MSIG with the signing key sk and a randomness rs ∈ RSSIG, where
RSSIG is a randomness space. We here assume that rs includes all randomnesses that are
needed for signature generation. For a deterministic signature, rs is empty ∅.

– {0, 1} ← SIG.Vfy(vk,m, σ): This is the verification algorithm that takes as input a verifica-
tion key pk, a message m and a signature σ, outputs 1 if σ is a valid signature for m under
vk, and 0 otherwise.

Let SIG(sk, ·) be a signing oracle which on input message m returns a signature σ ←
SIG.Sign(sk,m, rsi), where rsi

$← RSSIG. We use a list Slist to record all tuple (mi, σi, rsi)
where mi and σi are the input and output of i-th SIG oracle query respectively.

Definition 2. For a signature scheme SIG = (SIG.Gen,SIG.Sign,SIG.Vfy) and an adversary F ,
we define the following experiment:

EXPseuf-cma
SIG,F (κ, q) :

rsg ∈ RGSIG; (sk, vk)
$← SIG.Gen(1κ, rsg);

(σ∗,m∗) ← FSIG(sk,·)(vk), which may make up to q queries to oracle SIG(sk,m); Return
1, if SIG.Vfy(pk,m∗, σ∗) = 1, and (m∗, σ∗) /∈ Slist; Output 0 otherwise.

We define the advantage of F in the above experiment as:

Advseuf-cma
SIG,F (κ, q) := Pr[EXPseuf-cma

SIG,F (κ, q) = 1].

We say that SIG is secure against strong existential forgeries F under adaptive chosen-message
attacks (SEUF-CMA), if for all PPT adversaries F the advantage Advseuf-cma

SIG,F (κ, q) is a negligible
function in κ. If q = 1 then SIG is called as a SEUF-CMA secure OTS scheme.

Target Collision-Resistant Hash Functions. Let TCRHF : KTCRHF ×MTCRHF → YTCRHF
be a family of keyed-hash functions where KTCRHF is the key space, MTCRHF is the message
space and YTCRHF is the hash value space. The public key hkTCRHF ∈ KTCRHF defines a hash
function, denoted by TCRHF(hkTCRHF, ·). On input a message m ∈ MTCRHF, this function
TCRHF(hkTCRHF,m) generates a hash value y ∈ YTCRHF. If the hash key hkTCRHF is obvious
from the context, we write TCRHF(m) for TCRHF(hkTCRHF,m).

Definition 3. For a function TCRHF : KTCRHF ×MTCRHF → YTCRHF and an adversary H, we
define the advantage of H against TCRHF as:

AdvcrTCRHF,H(κ) := Pr[hkTCRHF
$← KTCRHF,m←MTCRHF,m

′ ← H(hkTCRHF) :

m 6= m′ ∧ TCRHF(m) = TCRHF(m′)].

We say that TCRHF is target-collision-resistant if for all PPT adversaries H the advantage
AdvtcrTCRHF,H(κ) is a negligible function in κ.

Pseudo-Random Functions. A pseudo-random function family is denoted by PRF : KPRF ×
DPRF → RPRF, where KPRF is the key space, DPRF is the domain and RPRF is the range of PRF
for security parameter κ. Let PList be a list to store the messages queried in the following PRF
oracle FN .

6

Definition 4. For a PRF : KPRF×DPRF → RPRF and an adversary B = (B1,B2), we define the
following experiment:

EXPind-cma
PRF,B (κ, q) : FN (k, x) :

b
$← {0, 1}, k $← KPRF; append x→ PList;

(x∗, st)← BFN (k,·)
1 , s.t. x∗ /∈ PList; return PRF(k, x);

if x ∈ PList then return a failure ⊥;

V ∗1 := PRF(k, x∗), V ∗0
$← RPRF;

b′ ← BFN (k,·)
2 (st, V ∗b)

If b = b′ then return 1;
Otherwise return 0;

In the above experiment, the adversary B is allowed to ask at most q oracle queries to FN . We
define the advantage of B in breaking the indistinguishability of PRF as:

Advind-cma
PRF,B (κ, q) :=

∣∣∣∣Pr[EXPind-cma
PRF,B (κ, q) = 1]− 1

2

∣∣∣∣ .
The pseudo-random function PRF is said to be a secure, if for all PPT adversaries B the

advantage Advind-cma
PRF,B (κ, q) is a negligible function in κ. If q = 1 then PRF scheme is called as a

secure one-time PRF scheme.

Subgaussian Distributions and Random Variables. We review the standard notion of
subgaussian which is slightly relaxed as in [32]. For any δ > 0, a random variable X (or its
distribution) over R is said to be δ-subgaussian with parameter z > 0 if for all r ∈ R, the
(scaled) moment-generating function satisfies E[exp(2πrX)] ≤ exp(δ) · exp(πz2r2). In the light
of Markov’s inequality, for all r ≥ 0, we have that

Pr[|X| ≥ r] ≤ 2exp(δ − πr2/z2). (1)

It is a well known fact that any B-bounded centered random variable X (i.e., |X| < B
always) is 0-subgaussian with parameter B

√
2π. The notion of subgaussian can be generally

extended to vectors. We say that a random real vector x is δ-subgaussian (of parameter z) if
the inner product 〈u,x〉 ∈ R is δ-subgaussian (of parameter z) for any real unit vector u.

Fact 1 If X1 is δ1-subgaussian with parameter z1, and X2 is δ2 subgaussian with parameter z2,
and X1, X2 are independent, then X1 +X2 is (δ1 + δ2)-subgaussian with parameter

√
z21 + z22.

Cyclotomic Rings. We briefly review the background knowledge of cyclotomic rings used
in our works. Let m be a positive integer, and F = Q(ςm) be the mth cyclotomic field,
where ςm denotes an abstract field element of order m. We denote the cyclotomic ring by
R = Z[X]/(Φm(X)) ⊂ F where Φm(X) denotes the mth cyclotomic polynomial which is a
monic and irreducible polynomial (with degree n = ϕ(m)) over rationals. The complex roots of
Φm(X) are all the primitive mth roots of unity θim (i ∈ Z∗m) in C, where θm = exp(2π

√
−1/m).

Let Rq denote the quotient ring R/qR, for any integer modulus q ≥ 1. For any p|m, we let

ςp = ς
m/p
m ∈ R (with order p) and define g =

∏
odd prime p|m(1 − ςp) [36], where ς

m/p
m belongs

to a Z-basis of R, i.e., {1, ςm, ς2m, . . . , ςn−1m }. We also define m̃ = m/2 if m is even, and m̃ = m
otherwise. Hence we have the fact that the element g divides m̃ ∈ R, and is co-prime in R with
all integer primes except the odd primes p|m.

Canonical Embedding. We here review the canonical embedding % : F → Cn for defining
all geometric quantities. The canonical embedding is represented by the concatenation of n

7

ring embeddings %i : F → C that fix Q coordinate-wise, such that %(a) = (%i(a))i∈Z∗m . Note
that, for each i ∈ Z∗m, there is an embedding % defined by %i(ςi) = θim, where θm ∈ C is some
fixed primitive mth root of unity. Clearly, the embeddings come in pairs of complex conjugates,
i.e., %i = %m−i. In the light of the conjugate pairs of embeddings, % actually maps into the
subspace H ⊆ Cn characterized by this conjugate symmetry. In addition, `2 and `∞ norms on
F are defined by ‖e‖2 := ‖%(e)‖2 = (

∑
i∈Z∗m |%i(e)|

2)1/2 and ‖e‖∞ := ‖%(e)‖∞ = maxi∈Z∗m |%i(e)|,
respectively. We also have the expansion bound ‖e+e′||2 ≤ ‖e‖2+‖e′‖2 and ‖e·e′‖2 ≤ ‖e‖2·‖e′‖∞.

Decoding Basis. We here recall some properties of a certain decoding basis [29, 36]. Let
R∨ = (m̂/g)−1R ⊂ F be a codifferent fractional ideal [29]. Following the demonstration of [36],
we map R∨ to R by multiplying (m̂/g). Then the decoding basis of R is the elements of the
decoding basis of R∨ times (m̂/g). Any e∨ ∈ R∨ that would normally belong to the codifferent
by e = (m̂/g)e∨ ∈ R. While dealing with an error term e, we may always times it with g (i.e.,
g · e) to undo the distortion caused by multiplying (m̂/g).

Lemma 1 ([36]). Let e ∈ F be such that g × e is δ-subgaussian with parameter m̂ × z, and
let e′ ∈ F be arbitrary. Then every decoding-basis coefficient of e × e′ is δ-subgaussian with
parameter z · ‖e′‖2.

Error Distributions. The Gaussian distribution Dz over R with parameter z > 0 is defined

by a probability distribution function exp(−πx2/z2)
z . The error distributions are of the form ψ =

(m̂/g) × Dz over F . Such distributions are also discretized to the ring R, which result in a
distribution X = bψe, i.e. sampling an elements a ∈ F from ψ and then rounding each of its
rational decoding-basis coefficients to their nearest integers. We have the following fact from
[29].

Fact 2 Let e ← X where X = bψe and ψ = (m̂/g) × Dz. Then we have that (i) g · e is δ-
subgaussian with parameter m̂ ·

√
z2 + 2πrad(m)/m for some δ ≤ 2−n; (ii) ‖g · e||2 ≤ m̂ · (z +√

rad(m)/m) ·
√
n except with probability at most 2−n.

Theorem 1 ([28]). Let R be the m-th cyclotomic ring with dimension n = ϕ(m). Let α =
α(n) <

√
log n/n, and let q = q(n) be a poly(n)-bounded prime such that q = 1 mod m and

αq ≥ ς(
√

log n). This is a poly(n)-time quantum reduction from Õ(
√
n/α)-approximate SIVP

(or SVP) on ideal lattices in R to solving Ring-LWE problem given only ` ≥ 1 samples, where
X = bψe and ψ is the Gaussian distribution (m̂/g) ·Dξq for ξ = α · (n`/ log n`)1/4.

Ring Learning with Errors. We consider the ring learning with error (Ring-LWE) problem
based on a variant of cyclotomic ring with canonical embedding and decoding basis as in [29].
We denote Dz the Gaussian distribution over R with parameter z > 0, which is defined by a
probability distribution function exp(−πx2/z2)/z. We here just let Rq denote the quotient ring
R/qR for any integer modulus q ≥ 1, and X be an error distribution.

We here review the decisional problem regarding Ring-LWE. Consider the ring Rq (or just

R) defined above, and let the secret s
$← X be sampled from the discretized error distribution X .

The Ring-LWE distribution As,X over Rq ×Rq is now generated by uniformly selecting a
$← Rq

and e
$← X , and outputting (a, b = a · s+ e).

Definition 5. For a ring Rq and a discretized error distribution X and an adversary E, we
define the following experiment:

EXPrlwe
Rq,X ,E(κ)

a
$← Rq, (s, e)

$← X , V ∗0 := a · s+ e ∈ As,X , V ∗1
$← Rq, b

$← {0, 1},
b′ ← E(Rq,X , a, V ∗b); if b = b′ then return 1, otherwise return 0.

8

We define the advantage of E in the above experiment as:

AdvrlweRq ,X ,E(κ) :=

∣∣∣∣Pr[EXPrlwe
Rq ,X ,E(κ) = 1]− 1

2

∣∣∣∣ .
We say that the decisional Ring-LWE problem is hard relative to Rq and X , if for all PPT

adversaries E the advantage AdvrlweRq ,X ,E(κ) is a negligible function in κ.

Reconciliation Mechanism. Now we recall the reconciliation mechanism used in [36] for
transforming approximate agreement to exact agreement. This technique is one of the foun-
dations of our one-time KEM scheme. For an integer p (e.g. p = 2) that divides q, we write
b·ep : Zq → Zp to denote the modular rounding function which works as bvep := bpq · ve, and

b·cp : Zq → Zp to denote the modular rounding half down function which works as b·cp := bpq ·vc.
For p = 2 and the even modulus q ≥ 2, we define two disjoint intervals I0 := {0, 1, . . . , b q4e− 1},
I1 := {−b q4c, . . . ,−1} mod q consisting of b q4e and b q4c cosets in Zq respectively. Note that
these intervals split all elements v ∈ Zq into two participations such that bve2 = 0 (v ∈ {I0, I1})
and bve2 = 1 (v ∈ { q2 + I0,

q
2 + I1}) respectively. We define the crossing-rounding function

HLP : Zq → Z2 as HLP(v) = b4q · vc mod 2.

For two sufficiently close elements v, v′ ∈ Zq and the set E := [− q
8 ,

q
8] ∩ Z, we define the

reconciliation function REC : Zp × Z2 → Z2 as:

REC(v′, b) =

{
0 if v′ ∈ Ib + E (mod q)
1 otherwise

When q is odd, we define the randomized function DBL : Zq → Z2q. On input a v ∈ Zq,
it outputs v̄ = 2v − ē ∈ Z2q for some random ē ∈ Z which is uniformly random modulo two
and independent of v, and small in magnitude. Note that if v, v′ ∈ Zq are close, then so are
2v′,DBL(v) ∈ Z2q. If v′ = v + e mod q for some small e, then 2v′ = v̄ + (2e + ē) mod 2q,
where ē is a random element chosen by DBL(v) operation. To reconcile some v′ ∈ Zq, we first
transform it to an even element 2v′ and apply REC to 2v′ ∈ Z2q instead.

We review the security properties of the above functions, i.e. [36, Claim 3.1, Claim 3.2 and
Claim 3.3], by the following Lemma 2.

Lemma 2. For even q, if v ∈ Zq is uniformly random, then bve2 is uniformly random given
HLP(v); if v′ = v+ e mod q for some v ∈ Zq and e ∈ E, then REC(v′,HLP(v)) = bve2. For odd
q, if v ∈ Zq is uniformly random and v̄ := DBL(v) ∈ Z2q, then bv̄e2 is uniformly random given
HLP(v̄).

As demonstrated in [36], the above (cross-)rounding and reconciliation functions can be
extended to cyclotomic rings R with the decoding basis, and a vector of ring elements. For a
decoding basis T = {ti} ⊂ R and v =

∑
j vj · tj ∈ Rq for coefficients vj ∈ Zq, we can re-write

bve2 :=
∑

jbvje2 · tj ∈ R2, and HLP(v) := HLP(vj) · tj ∈ R2. And the reconciliation function can
be modified as REC(v′, b) =

∑
j REC(wj , bj) · tj , where v′ =

∑
j wj · tj and b =

∑
j bj · dj .

3 Security Model

In this section, we review the eCK-PFS model which follows from [13, 6, 39]. In order to simulate
the behaviors of a set of honest protocol principles in the real world, we may realize a collection
of oracles {πsidi : i ∈ [λ], s ∈ [d]} for (λ, d) ∈ N. Each oracle πsidi works as the s-th protocol
instance (session) performed by party idi. We stress that all oracles in this model can be run
sequentially and concurrently. All identities and corresponding public keys {idi, pkidi : i ∈ [λ]}

9

are stored in a public directory PD that can be accessed by all oracles. Furthermore, each
oracle πsidi is supposed to keep a list of internal state variables: (i) pidsidi storing the identities
and public keys of session participants (which are sorted lexicographically in terms of identity),
e.g., pidsidi = (IDi, pkidi , idj , pkidj) where idj is the intended communication partner of idi in
the session πsidi ; (ii) dssidi ∈ {accept, reject} denoting the final decision of a session; (iii) Ks

idi
storing the session key Ks

idi
∈ Kake (where Kake is a session key space); (iv) sT sidi recording the

transcript of messages sent by oracle πsidi ; (v) rT sidi recording the transcript of messages received
by oracle πsidi ; (vi) the role ρsidi ∈ {Initiator(I), Responder(R)} of idi in the session πsidi .

Adversarial Model. We model an active adversary A as a probabilistic polynomial time (PPT)
Turing Machine. Roughly speaking, active AKE adversaries may take full control of the com-
munication networks, who are able to compromise the ephemeral or long-term secret from a
party and to register some malicious parties of her choice, etc. To model these powers, we allow
the adversary to ask the following queries:

– Send(idi, s,m): The adversary can use this query to send any message m of his own choice
to the oracle πsidi . The oracle will respond with the next message m∗ (if any) to be sent
according to the protocol specification and its internal states. Oracle πsidi would be initiated

via sending the oracle the first message m = (>, ĩdj) consisting of a special initialization

symbol > and a value ĩdj . The ĩdj is either the identity idj of the intended partner or an
empty string ∅. After answering a Send query, the variables (pidsidi , ds

s
idi
,Ks

idi
, sT sidi , rT

s
idi,·)

will be updated depending on the specific protocol.
– RevealKey(idi, s): The oracle πsidi responds with the contents of the variable Ks

idi
if and only

if the oracle πsidi has reached an internal state dssidi = accept.
– RevealRand(idi, s): The oracle πsidi responds with the per-session randomness which is used

to generate the protocol message of πsidi .
– Corrupt(idi, pk

∗): This query is proceeded in terms of the following cases:
• If i ∈ [λ] and the public key of idi is honest (i.e., it has not been modified by this query),

then this query responds with the honest long-term secret key skidi (corresponding to
the original pkidi) of the party idi, and the current public key pkidi stored in the public
directory PD is replaced with the new pk∗ of adversary’s choice.
• If i ∈ [λ] and the current public key pkidi has been modified by the adversary via this

query before, then this query just updates the pkidi with pk∗.
• If i /∈ [λ], then a failure symbol ⊥ is returned.

After this query, the party idi is called corrupted and all unstopped oracles of idi can answer
other queries using its old public/secret key pair. But if the honest public key pkidi is replaced
with a dishonest public key pk∗ by this query, then no more oracle of idi can be initiated
since then.

– RegCorrupt(idı, pkidı): This query allows the adversary to register an identity idı (λ < ı and
ı ∈ N) and a static public key pkidı on behalf of a party idı. Parties established by this query
are called dishonest and are controlled by adversary.

– Test(idi, s): If the oracle has state dssidi 6= accept or Ks
idi

= ∅, then this query returns a

failure symbol ⊥. Otherwise it flips a fair coin b
$← {0, 1}, samples a random key K0

$← Kake,
and sets K1 = Ks

idi
. Finally, the key Kb is returned. The oracle πsidi selected by adversary in

this query is called as test oracle.

Secure AKE Protocols. We first review the notions regarding the communication partnership of
two oracles, i.e. matching sessions and origin session [13]. The definition of origin session here
is a little different from [13]. Namely, the identity and the role of a party are considered in our
definition.

10

Definition 6 (Origin Session). An oracle πsidi is said to have an origin session to an oracle

πtidj , if πsidi has sent all protocol messages, idi ∈ pidtidj , ρ
s
idi
6= ρtidj and sT sidi = rT tidj . The oracle

πsidi is also said to be the origin oracle of πtidj .

Definition 7 (Matching Sessions). An oracle πsidi is said to have a matching session to an
oracle πtidj , if πsidi is an origin oracle of πtidj , and πtidj is also an origin oracle of πsidi. The oracle

πtidj is said to be the partner oracle of πsidi.

Correctness. We say an AKE protocol Π is correct, if the oracles πsidi and πtidj accept with
matching sessions, then both oracles should generate the same session key.

Oracle Freshness We now review the notion of oracle freshness that describes the active
attacks which are allowed in the following security experiment. Let πsidi be an accepted or-
acle with intended partner idj . And let πtidj be an oracle (if it exists), such that πsidi has a

matching session to πtidj . Let πzidj be an oracle (if it exists), such that πzidj has an origin session

to πsidi . Then the oracle πsidi is said to be fresh if none of the following conditions holds: (i)
A queried RegCorrupt(idj , pkidj); (ii) A queried RevealKey(idi, s); (iii) If πtidj exists, A queried

RevealKey(idj , t); (iv) A queried both Corrupt(idi, pkidi) and RevealRand(idi, s); (v) If πzidj exists,

A queried both Corrupt(idj , pkidj) and RevealRand(idj , z); (vi) If πzidj does not exist, A queried

Corrupt(idj , pkidj) prior to the acceptance of πsidi .

Security Experiment EXPake
Π,A(κ): On input security parameter 1κ, the security experiment

is proceeded as a game between a challenger C and an adversary A based on AKE protocol Π,
where the following steps are performed:

1. C first implements the collection of oracles {πsidi : i ∈ [λ], s ∈ [d]}, and generates the long-
term key pairs (pkidi , skidi) for all honest parties idi for i ∈ [λ] where the identity idi of each
party is chosen uniquely from some identity space IDS. C gives A all identities and public
keys {(id1, pkid1), . . . , (idλ, pkidλ)}.

2. During the game, A may issue a polynomial number of queries regarding Send, RevealRand,
Corrupt, RegCorrupt and RevealKey. At some point, A may ask one (and at most once)
Test(idi, s) query.

3. At the end of the game, A may terminate and output a bit b′ as its guess for b of the
Test(idi, s) query. Then the experiment returns a failure symbol ⊥ if one of the following
conditions is held: (i) A has not issued a Test(idi, s) query, or (ii) the Test(idi, s) query
returns a failure symbol ⊥, or (iii) the test oracle is not fresh.

4. Finally, the experiment returns 1 if b = b′; Otherwise 0 is returned.

We call an adversary, which runs the above experiment without causing any failure, as a
‘legal’ adversary.

Definition 8 (Session Key Security). We define the advantage of a legal adversary A run-
ning the above experiment against a correct AKE protocol Π as follows:

AdvakeΠ,A(κ) :=
∣∣∣2 Pr[EXPake

Π,A(κ) = 1]− 1
∣∣∣

We say that a correct AKE protocol Π is session-key-secure, if for all PPT legal adversaries A
the advantage AdvakeΠ,A(κ) is a negligible function in the security parameter κ.

11

4 On the Insecurity of the KF Scheme

In this section, we present the problems which are overlooked in the KF scheme. We here mainly
discuss the issues based on the eCK secure KF protocol [24, Appdenix A], i.e., the 2-pass-eCK
protocol. The KF scheme is claimed to be secure in the eCK model relying on the IND-CPA KEM
KEM = (KEM.Gen, KEM.Enc, KEM.Dec), a signature scheme SIG = (SIG.Gen,SIG.Sign,SIG.Vfy)
and a twisted pseudo-random function TPRF : KPRF × {0, 1}∗ → RPRF (We refer the reader to
[24] for details of TPRF). As suggested in [24], TPRF can be just constructed from regular PRF.
For example, TPRF((s, s′), (r, r′)) = PRF(s, r′)⊕PRF(r, s′) where (s, s′) are long-term keys and
(r, r′) are ephemeral keys. One could just consider TPRF having the similar input and output
of PRF, i.e., k = (s, s′) and m = (r, r′).

Here TPRF is served as a NAXOS trick to resist with the exposure of either ephemeral or
long-term key of a session. However, TPRF does not affect our following attack. The core con-
struction idea of the KF scheme is to establish a session key based on an ephemerally generated
public key epk of the IND-CPA KEM, i.e., the session key chosen by the receiver is encapsulated
by the ephemeral public key generated by the initiator. Meanwhile, the signature scheme used
in the KF scheme is expected to authenticate the exchanged messages. Namely, the transported
messages (e.g., public key and ciphertext of KEM) are signed by each corresponding party. How-
ever, the KF scheme ignores the fact that the protection of a signature becomes invalid if the
signing key is corrupted, in such case, the attacker can choose arbitrary protocol message on
behalf of the corrupted party.

The KF Scheme. We first review the KF scheme6 (2-pass-eCK) between two parties id1 and
id2 as follows:
Step 1. id1 chooses two random values (r1, r2) and computes R1 := TPRF(sid1 , r1) and R2 :=
TPRF(sid1 , r2), where sid1 is one of the long-term keys of id1. Next id1 generates (eskid1 , epkid1)←
KEM.Gen(1κ, R1). id1 sends X = (id1, epkid1) and σX := SIG.Sign(sskid1 , X,R2) to id2, where
sskid1 is the signing key of id1.
Step 2. If σX is invalid, then id2 aborts. Otherwise id2 chooses (r3, r4) randomly, and computes
R3 = TPRF(sid2 , r3) and R4 = TPRF(sid2 , r4). id2 computes (K,C) := KEM.Enc(epkid1 , R3),
and sends Y = (id2, C) to id1. id2 also sends its signature σY X = SIG.Sign(sskid2 , Y ||X,R4) to
id1. It then outputs the session key K.
Step 3. If σY X is invalid, then id1 aborts. Otherwise id1 computes
K = KEM.Dec(eskid1 , C), and outputs the session key K.

Note that Kurosawa and Furukawa suggested to instantiate the protocol with ElGamal KEM
[17]. This yields a concrete KF protocol. Let G be a cyclic group with prime order p and group
generator g. Then we could instantiate the values of KEM in the above scheme as epk = ga,

C = gr and K := gar, where (a, r)
$← Z∗p.

A KCI Attack against the Concrete KF Protocol. In the following, we show a KCI
attack against the ElGamal KEM based concrete KF protocol. This attack could also support
our observation on the reduction problem of the generic KF scheme.

We show how an adversary A violates the security of KF in the eCK model via the following
attack:

1. A first executes the KF protocol instances between two oracles πsid1 and πt
∗
id2

. A relays the

message from πsid1 to πt
∗
id2

without any modification.

6 The KF scheme here is described verbatim as in [24].

12

2. A corrupts id2 (this is allowed due to the modeling of KCI attacks), and intercepts the
signature σY X := SIG.Sign(sskid2 , Y

∗||X,R∗4) from πt
∗
id2

and C∗ := gr
∗
.

3. A chooses a value β and computes CA := gr
∗β.

4. Then A generates another signature value σA = SIG.Sign(sskid2 ,
id2||CA||X,R′4), and sends (CA, σA) to πsid1 . The oracle πt

∗
id2

would accept the session but it
is not partnered with πsid1 .

5. A selects the oracle πt
∗
id2

as the test oracle which should generate the session key K∗ = gar
∗
. A

reveals the session key of πsid1 , i.e. K = gar
∗β. Note that we have the implication K = (K∗)β.

Then the adversary could win the game by extracting the session key of the oracle πt
∗
id2

as

K∗ := (K)β
−1

.

Thus, A succeeds in impersonating the honest party id1 to id2’s oracle πt
∗
id2

, since πt
∗
id2

is fresh but

id1 has no partner oracle to πt
∗
id2

. The above attack is enough to prove that the KF construction
is flawed in the eCK model. We also present the proof reduction problem of the generic KF
scheme in Appendix A.

5 A Generic TMKE Construction from OTKEM

In this section, we propose a generic construction for eCK-PFS secure TMKE to overcome
the problems of the KF scheme. Another motivation of our scheme is to achieve PFS which is
an important security property and not satisfied by the KF scheme. The proposed generic
TMKE protocol makes use of building blocks including: (i) OT-IND-CCA2 KEM OTKEM
= (OTKEM.Gen, OTKEM.Enc, OTKEM.Dec); (ii) PG-IND-CPA KEM wKEM = (wKEM.Gen,
wKEM.Enc, wKEM.Dec); (iii) pseudo-random function PRF : KOTKEM × {0, 1}∗ → Kake; (iv)
signature scheme SIG=(SIG.Gen, SIG.Sign, SIG.Vfy) which is strong existentially unforgeable
against adaptive chosen message attacks (SEUF-CMA).

It is not hard to see that our KCI attack against the concrete KF scheme can be seen as
a variant of chosen ciphertext attack against KEM. Hence, in order to fix the KF scheme, we
particularly exploit OT-IND-CCA2 KEM as one of our cryptographic blocks. This is just based
on our observation that the ephemeral public key of the initiator should be able to answer at
least one decryption oracle query. Note that, in order to resist with the decryption query, a
secure OTKEM needs to ensure that the session keys encapsulated by two distinct ciphertexts
should be totally independent. This fact could thwart our KCI attack against the KF scheme
(and fix the reduction problem shown in Figure 3). In contrast to the KF scheme, the pseudo-
random function PRF is used as a key derivation function to bind all session related information
(protocol messages and identities) into the corresponding session key. This is important to
withstand active attacks, such as unknown key share attacks, and many others.

In our scheme, the PG-IND-CPA KEM wKEM is used as a NAXOS trick [3] to compute the
input random valuees of other underlying building blocks. This NAXOS trick is only used as
an alternative example to resist with the ephemeral key leakage from the test oracle. Moreover,
one could obtain a leakage resilient TMKE protocol by appropriately instantiating wKEM as
in [3]. However, we stress that, without such NAXOS trick, our scheme can still be secure in a
rather strong security model called CK-PFS [40] which is just a variant of the CK model with
PFS. Hence, one is free to obtain a simpler construction which is easier to realize, if achieving
eCK-PFS like security is not a priority.

To provide the security in the eCK-PFS model, we require the signature scheme to meet
one of the following additional requirements (which may be referred to as AR for short): (i) SIG
is deterministic; (ii) each signing random value rs can be found within the corresponding sig-
nature σ, i.e., rs ∈ σ, where σ ← SIG.Sign(sk,m, rs) for some message m. These requirements

13

are implicitly given in the eCK-PFS secure BJS scheme [6]. Note that we do not generate the
random value rs for signature generation via wKEM. Because, if we do so, we may be unable to
reduce the security of our scheme to the IND-CPA security of wKEM. When the test oracle has
no origin oracle (e.g., the adversary outputs a forgery based on an honest initiator’s ephemeral
public key), then the indented parter idj of the test oracle πs

∗
idi

is allowed to be corrupted after

πs
∗

idi
accepts. In this case, the adversary may know all secrets (ephemeral or long-term) of idj ’s

oracles. This is also why we need the strong unforgeability here (unlike EUF-CMA required in
the KF scheme). However, during the security reduction to the SEUF-CMA security of SIG,
each signing random value rsidj of idj might be unknown to the challenger without AR.

Protocol Description. Our generic protocol is described as follows.

Initiation: At the beginning, a party id first chooses random value rsid
$← RSSIG and rpg′id

$←
RGwKEM. Then, it runs (sskid, spkid)← SIG.Gen(1κ, rsid) and (dkid, ekid)← wKEM.Gen(1κ, rpg′id),
where ekid is discarded. The long-term secret key of id is skid = (sskid, dkid), and the correspond-
ing public key is pkid = spkid.

Protocol Execution: The detail protocol executed between two parties id1 and id2 is shown
by Figure 1.

id1
(skid1 , pkid1) = ((sskid1 , dkid1), spkid1)

id2
(skid2 , pkid2) = ((sskid2 , dkid2), spkid2)

Protocol Execution

cid1
$← CwKEM, rsid1

$←RSSIG
rpgid1 ← wKEM.Dec(dkid1 , cid1)

(epkid1 , eskid1)
$← OTKEM.Gen(1κ, rpgid1)

σid1 ← SIG.Sign(sskid1 , epkid1 , rsid1)
mid1 := (id1, epkid1 , σid1)

mid1−−−−−−→
reject if SIG.Vfy(spkid1 , σid1 , epkid1) 6= 1

cid2
$← CwKEM, rsid2

$←RSSIG
erkid2 ← wKEM.Dec(dkid2 , cid2)

(k,Cid2)
$← OTKEM.Enc(epkid1 , erkid2)

T := id1||pkid1 ||epkid1 ||σid1 ||id2||pkid2 ||Cid2
σid2 ← SIG.Sign(sskid2 , T, rsid2)
mid2 := (id2, Cid2 , σid2)

mid2←−−−−−−
T := id1||pkid1 ||epkid1 ||σid1 ||id2||pkid2 ||Cid2

reject if SIG.Vfy(spkid2 , σid2 , T) 6= 1
k ← OTKEM.Dec(eskid1 , Cid2)

sid := T ||σid2 sid := T ||σid2
accept K := PRF(k, sid) accept K := PRF(k, sid)

Fig. 1: Generic TMKE from OTKEM

Instantiations of Building Blocks. We hereby try to instantiate other underlying crypto-
graphic building blocks which are able to resist with quantum computer attacks. With respect
to wKEM, one could (for example) instantiate it using the Ring-LWE based scheme recently
proposed by Peikert in [36] (or the one by Lyubashevsky et al. [29]). It is not hard to check
that Peikert’s scheme is ε-PG-IND with a negligible ε (otherwise it is not IND-CPA secure).

14

The lattice-based SEUF-CMA signature scheme proposed by Rückert [33] may be suitable for
instantiating our scheme. An efficient Ring-LWE based PRF introduced by Banerjee et al. [4]
can be used to realize our scheme. However, we stress that our TMKE scheme only needs PRF
to withstand ‘one chosen message query’ in the security reduction. This property may lower
the assumption when selecting concrete PRF schemes. We refer reader to [21, 35, 1, 2, 11] for
LWE-based public-key cryptosystems which might be alternatively applicable to instantiate
our generic protocol. Moreover, we compare our generic scheme with other KEM-based TMKE
in Appendix B. In the next section, we will introduce a new concrete OTKEM which is suitable
for our generic TMKE construction.
Security Analysis. The security result of our scheme is shown by the following theorem.

Theorem 2. Suppose that the pseudo-random function PRF is secure, the key encapsulation
mechanism OTKEM is OT-IND-CCA2 secure, the signature scheme SIG is SEUF-CMA secure
and meets AR, and the key encapsulation mechanism wKEM is both ε-PG-IND and IND-CPA
secure, with respect to the Definitions in Section 2. Then the proposed generic TMKE protocol is
session-key-secure with AdvakeTMKE,A(κ) ≤ λ · Advseuf-cma

SIG,F (κ, d) + (4(dλ)2) · (4 · Advind-cpawKEM,N (κ, 0) +

2 · Advot-ind-cca2OTKEM,D(κ, 1) + Advind-cma
PRF,B (κ, 1)).

The full proof of this theorem can be found in Appendix C. We here only give some intuition
for the proof of Theorem 2. The proof is basically proceeded in a sequence of games following
the approach introduced by Shoup [38].

The first Game 0 is the real security experiment. In Game 1, we show that no PPT
adversary can forge the signature of any uncorrupted party. Otherwise the game is aborted. As
a result, the test oracle always has an origin oracle.

In Game 2, we try to guess some important information regarding the test oracle and its
origin oracle. The subsequent games are proceeded based on such correct guess.

We gradually change Game 2 to Game 3, Game 4 and Game 5 by modifying the random
values used by the test oracle and its origin oracle to be uniform random instead of generating
them from wKEM. If the ephemeral key (i.e. the ciphertext c) is not exposed, then the output
of wKEM.Dec(dk, c) is just a random value. When dk is not corrupted, the challenger just uses
the encryption key ek to generate c instead. The security of wKEM can ensure that no PPT
adversary is able to distinguish this change. Meanwhile, the security of OTKEM can ensure that
each oracle generates a unique ephemeral public key epk.

We modify Game 5 to Game 6 by changing the PRF seed of the test oracle to be a random
value. This change is used to reduce the security to that of OTKEM.

In the last game, i.e. Game 7, the session key of the test oracle is changed to be a random
value. No PPT adversary can distinguish this change because of the security of PRF. Since the
bit of Test query is not used any more. The adversary’s advantage in this game is just zero.

6 An OTKEM from Ring-LWE

In this section, we introduce a new construction for OTKEM from Ring-LWE. The other building
blocks include a collision resistant hash function TCRHF : hkTCRHF × Rq → {0, 1}µ where

hkTCRHF
$← KTCRHF, and a SEUF-CMA one-time signature scheme OTS=(OTS.Gen, OTS.Sign,

OTS.Vfy).A concrete solution for collision resistant hash function over rings can be found in
[27]. The one-time signature scheme, for example proposed by Lyubashevsky and Micciancio
[26] based on ideal lattice, could satisfy our requirement.

Construction. Let m be a positive integer specifying the m-th cyclotomic ring R of degree
n = φ(m) and order q. Let q denote a positive odd modulus which is co-prime with every odd

15

prime dividing m and q ≡ 1 mod m. Let X = bψe be a discretized error distribution over

R, where ψ = (m̂/g) · Dz is over F for some parameter z. We also randomly choose a
$← Rq

as a public parameter. The main construction idea is inspired by the ‘encoding procedure’ in
garbled circuits. And we rely on the possibility of homomorphic operations over ring elements.
The concrete algorithms of our OTKEM are defined in Figure 2.

OTKEM.Gen(1κ, rpg): OTKEM.Dec(sk, C):

Parse rpg = {sη,ι, eη,ι}(η,ι)∈[µ]×{0,1}
$← (X)2µ; T = pk||Y ||spk;

sk = {sη,ι}(η,ι)∈[µ]×{0,1}; reject if OTS.Vfy(spk, σ, T ||u) 6= 1 ;
pk = {Sη,ι}(η,ι)∈[µ]×{0,1} h = (h(1), h(2), . . . , h(µ)) := TCRHF(T);

:= {a · sη,ι + eη,ι}(η,ι)∈[µ]×{0,1}; v′ = g · Y ·
∑µ
η=1 sη,h(η)

Return (sk, pk). = g · (a · r + e) ·
∑µ
η=1 sη,h(η)

K := REC(2v′, u);
Return K.

OTKEM.Enc(pk, erk):

Parse erk = (r, e, f, rsg, rs)
$← (X)3 ×RGOTS ×RSOTS;

(ssk, spk)← OTS.Gen(1κ, rsg), Y := a · r + e, T := pk||Y ||spk;
h = (h(1), h(2), . . . , h(µ)) := TCRHF(T);
v := g · r · (

∑µ
η=1 Sη,h(η)) + f = g · r · (

∑µ
η=1(a · sη,h(η) + eη,h(η)) + f ;

v̄ = DBL(v), u := HLP(v̄), K := bv̄e ∈ R2;
σ := OTS.Sign(sk, T ||u, rs), C := (Y, u, spk, σ);
Return (K,C).

Fig. 2: A Concrete OTKEM

Correctness. In order to show that both encryption and decryption algorithms compute the
same session key, we first further expand the computations of v and v′ as follows:
(i) v = (

∑µ
η=1 g · r · a · sη,h(η) +

∑µ
η=1 g · r · eη,h(η)) + f ; and

(ii) v′ = g · (a · r + e) ·
∑µ

η=1 sη,h(η) =
∑µ

η=1 g · a · r · sη,h(η) +
∑µ

η=1 g · e · sη,h(η).

Let ĝ1 = (
∑µ

η=1 g · r · eη,h(η)) + f , ĝ2 =
∑µ

η=1 g · e · sη,h(η), and f̂ =
∑µ

η=1 r · sη,h(η). Then
we can rewrite v and v′ as v′ = v + ĝ2 − ĝ1. We note that if v and v′ are sufficiently close,
then we have both encryption and decryption algorithms compute the same session key. Let
z′ =

√
z2 + 2π · rad(m)/m and γ = m̂ · (z +

√
rad(m)/m) ·

√
n.

Lemma 3. Suppose ‖g · sη,h(η)‖2 ≤ γ and ‖g · eη,h(η)‖2 ≤ γ for η ∈ [µ], and (q/8)2 ≥ ω2 · (z′2 ·
(2µγ2 + n) + π/2), for some ω > 0. Then the proposed OTKEM.Dec decrypts correctly except
with probability at most 2n · exp((2µ+ 1)δ − ω2π) for some δ ≤ 2−n.

Proof. Let t = ĝ2 − ĝ1 and ē be the random error chosen by DBL(v) on calculating v̄ := 2v− ē.
By applying Lemma 2, it suffices to show that the decoding-basis coefficients of 2t+ ē are all in
[− q

4 ,
q
4) with overwhelming probability as claimed. Due to the Fact 2, we have that g · e and g · r

are δ-subgaussian with parameter m̂·z′. As MAX(‖g ·sη,h(η)‖2, ‖g ·eη,h(η)‖2) ≤ γ (for η ∈ [µ]), the
decoding-basis coefficients of g ·e·sη,h(η) and g ·r ·eη,h(η) are all δ-subgaussian with parameter z′γ.
By applying Lemma 1 and assuming e′ = 1 (with ‖e′‖2 =

√
n), the decoding-basis coefficients of

f are all δ-subgaussian with parameter z′
√
n. By the assumption the decoding-basis coefficients

of ē are all 0-subgaussian with parameter
√

2π. Because the elements r, f , e and ē are all
mutually independent, the decoding-basis coefficients of 2t + ē are all (2µ + 1)δ-subgaussian
with parameter 2(z′2 · (2µγ2 +n) + π

2)1/2. The result of this lemma follows by applying equation
1 and the union bound over all n coefficients.

Security Result. Now we show the security of our proposed OTKEM via the following theorem.

16

Theorem 3. Suppose the Ring-LWE assumption holds, the one-time signature scheme OTS
is SEUF-CMA secure, and the hash function TCRHF is target-collision-resistant, then the
proposed one-time key encapsulation mechanism OTKEM is secure with Advot-ind-cca2OTKEM,D(κ, 1) ≤
Advseuf-cma

OTS,F (κ, 1) + AdvtcrTCRHF,H(κ) + 4µ · AdvrlweRq ,X ,E(κ).

The full proof is presented in Appendix D. We here give a general overview of the proof
of Theorem 3. The proof is again shown by a number of games as the approach in [38]. Let
C∗ := (Y ∗, u∗, spk∗, σ∗) denote the ciphertext generated by challenge query.

Game 0 is the real security experiment. In Game 1, the challenger aborts if the adversary
can generate a forge of the OTS scheme for the challenge OTS verification key spk∗. Due to the
security of the OTS scheme, the adversary is unable to manipulate the value u∗.

In Game 2, we reduce the security to that of TCRHF. Therefore, there is no collision to
h∗ = TCRHF(pk∗||Y ∗||spk∗) in the subsequent games.

In Game 3, we try to guess the τ∗-th bit in h∗, which is distinct to the τ∗ bit of the hash
value generated in the decryption oracle query.

In Game 4, we change the public key S∗τ∗,h∗(τ∗) to be a random ring element.
Finally, Y ∗, v∗ and K∗ are changed to be random values in Game 5. These changes enable

us to reduce the security to the hardness of the Ring-LWE problem.

Concrete Parameters. We now select the choices of the parameters for guaranteeing the
asymptotic hardness (worst-case) of the Ring-LWE problem in our scheme. Suppose that µ ≤ n
and m̂ = O(n). Since rad(m)/m ≤ 1, we have that each ‖g · sη,h(η)‖2 ≤ m̂ · (r + 1) ·

√
n and

z′ ≤ z2 + 2π, except probability at most 2−n. By taking ω =
√
ln(2n/ε)/π (following [31,

Lemma 3.3]) and q ≤ 8ω
√

(z2 + 2π)(2µ · m̂2 · (z + 1)2 + 1) · n = O(m̂ ·z2 ·n) ·ω, the probability
of a decryption failure is then bounded by ε. For instance, let ε = 2−128. Therefore, we may
take q = O(z2 · n2 log n). By applying Theorem 1 with ` = 2µ + 1, we specify that z = ξq and
ξ = α·((2µ+1)n/log((2µ+1)n))1/4 ≤ (2n2/log(2n2))1/4, where z = (2n2/log(2n2))1/4·ω(

√
log n)

and q = Õ(n3). Then, the Ring-LWE problem is hard as long as the SVP problem on ideal lattices
in R is hard to approximate to Õ(

√
n/α) = Õ(

√
n · q) = Õ(n7/2).

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In Proc. of EURO-
CRYPT’10, Vol. 6110 of LNCS, pp. 553–572. Springer, Heidelberg, May 2010.

2. S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and shorter-ciphertext
hierarchical IBE. In Proc. of CRYPTO’10, Vol. 6223 of LNCS, pp. 98–115. Springer, Heidelberg, August
2010.

3. J. Alawatugoda, D. Stebila, and C. Boyd. Modelling after-the-fact leakage for key exchange. In Proc. of
ASIACCS’14, pp. 207–216. ACM Press, June 2014.

4. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In Proc. of EUROCRYPT’12,
Vol. 7237 of LNCS, pp. 719–737. Springer, April 2012.

5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Proc. of CRYPTO’93, Vol. 773
of LNCS, pp. 232–249. Springer, Heidelberg, August 1994.

6. F. Bergsma, T. Jager, and J. Schwenk. One-round key exchange with strong security: An efficient and
generic construction in the standard model. In Proc. of PKC’15, Vol. 9020 of LNCS, pp. 477–494. Springer,
March / April 2015.

7. J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and D. Stebila.
Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE. In Proc. of ACM CCS’16, pp.
1006–1018. ACM Press, 2016.

8. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS protocol from
the ring learning with errors problem. In Proc. of IEEE S&P 2015, pp. 553–570. IEEE Computer Society
Press, May 2015.

9. C. Boyd, Y. Cliff, J. G. Nieto, and K. G. Paterson. Efficient one-round key exchange in the standard model.
In Proc. of ACISP’08, Vol. 5107 of LNCS, pp. 69–83. Springer, Heidelberg, July 2008.

17

10. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure channels.
In Proc. of EUROCRYPT’01, Vol. 2045 of LNCS, pp. 453–474. Springer, Heidelberg, May 2001.

11. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In Proc. of
EUROCRYPT’10, Vol. 6110 of LNCS, pp. 523–552. Springer, Heidelberg, May 2010.

12. R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, A. Shelat, and V. Vaikuntanathan. Bounded
CCA2-secure encryption. In Proc. of ASIACRYPT’07, Vol. 4833 of LNCS, pp. 502–518. Springer, Heidelberg,
December 2007.

13. Cas J. F. Cremers and M. Feltz. Beyond eCK: Perfect forward secrecy under actor compromise and ephemeral-
key reveal. In Proc. of ESORICS’12, Vol. 7459 of LNCS, pp. 734–751. Springer, Heidelberg, September 2012.

14. T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2. rfc 5246 (proposed stan-
dard), Auguest 2008.

15. Z. Yang, J. Lai. New constructions for (multiparty) one-round key exchange with strong security[J]. Sciece
China Information Sciences, 2018, 61(5):059102.

16. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

17. T. Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory, 31(4):469–472, Jul 1985.

18. E. S. V. F., D. Hofheinz, E. Kiltz, and K. G. Paterson. Non-interactive key exchange. In Proc. of PKC’13,
Vol. 7778 of LNCS, pp. 254–271. Springer, Heidelberg, February / March 2013.

19. A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama. Strongly secure authenticated key exchange from
factoring, codes, and lattices. In Proc. of PKC’12, Vol. 7293 of LNCS, pp. 467–484. Springer, Heidelberg,
May 2012.

20. A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama. Practical and post-quantum authenticated key exchange
from one-way secure key encapsulation mechanism. In Proc. of ASIACCS’13, pp. 83–94. ACM Press, May
2013.

21. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic construc-
tions. In Proc. of ACM STOC’08, pp. 197–206. ACM Press, May 2008.

22. T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the standard model. In
Proc. of CRYPTO’12, Vol. 7417 of LNCS, pp. 273–293. Springer, Heidelberg, August 2012.

23. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Proc. of CRYPTO’05, Vol.
3621 of LNCS, pp. 546–566. Springer, August 2005.

24. K. Kurosawa and J. Furukawa. 2-pass key exchange protocols from CPA-secure KEM. In Proc. of CT-RSA’14,
Vol. 8366 of LNCS, pp. 385–401. Springer, Heidelberg, February 2014.

25. B. A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange. In Proc. of
ProvSec’07, Vol. 4784 of LNCS, pp. 1–16. Springer, Heidelberg, November 2007.

26. V. Lyubashevsky and D. Micciancio. Asymptotically efficient lattice-based digital signatures. In Proc. of
TCC’08, Vol. 4948 of LNCS, pp. 37–54. Springer, Heidelberg, March 2008.

27. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A modest proposal for FFT hashing.
In Proc. of FSE’08, Vol. 5086 of LNCS, pp. 54–72. Springer, Heidelberg, February 2008.

28. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In Proc.
of EUROCRYPT’10, Vol. 6110 of LNCS, pp. 1–23. Springer, Heidelberg, May 2010.

29. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography. In Proc. of EURO-
CRYPT’13, Vol. 7881 of LNCS, pp. 35–54. Springer, May 2013.

30. A. Menezes and B. Ustaoglu. Comparing the pre- and post-specified peer models for key agreement. In Proc.
of ACISP’08, Vol. 5107 of LNCS, pp. 53–68. Springer, Heidelberg, July 2008.

31. D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian measures. In Proc. of
FOCS’04, pp. 372–381, Oct 2004.

32. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In Proc. of EURO-
CRYPT’12, Vol. 7237 of LNCS, pp. 700–718. Springer, Heidelberg, April 2012.

33. M. Rückert. Strongly Unforgeable Signatures and Hierarchical Identity-Based Signatures from Lattices with-
out Random Oracles. In Proc. of PQCrypto, Vol. 6061 of LNCS, pp.182-200. Springer, Heidelberg, May
2010.

34. T. Okamoto. Authenticated key exchange and key encapsulation in the standard model (invited talk). In
Proc. of ASIACRYPT’07, Vol. 4833 of LNCS, pp. 474–484. Springer, Heidelberg, December 2007.

35. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In
Proc. of ACM STOC’09, pp. 333–342. ACM Press, May / June 2009.

36. C. Peikert. Lattice Cryptography for the Internet, In Proc. of PQCrypto’14, pp. 197–219. Springer Interna-
tional Publishing, 2014.

37. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proc. of ACM
STOC’05, pp. 84–93. ACM Press, May 2005.

18

38. V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive,
Report 2004/332, 2004. http://eprint.iacr.org/.

39. Z. Yang, J. Lai, C. Liu, W. Liu, and S. Li. Simpler generic constructions for strongly secure one-round key
exchange from weaker assumptions. The Computer Journal, 60(8):1145–1160, August 2017.

40. Z. Yang, J. Lai, C. Liu, W. Liu, and S. Luo. Signorke: Improving pairing-based one-round key exchange
without random oracles. IET Information Security, 11 (5):243–249, September 2017.

41. J. Zhang, Z. Zhang, J. Ding, M. Snook, and Ö. Dagdelen. Authenticated key exchange from ideal lattices.
In Proc. of EUROCRYPT’15, Vol. 9057 of LNCS, pp. 719–751. Springer, Heidelberg, April 2015.

42. B. Gong, Y. Zhao. Small Field Attack, and Revisiting RLWE-Based Authenticated Key Exchange from
Eurocrypt’15. IACR Cryptology ePrint Archive, 2016/913.

A Incorrect Security Reduction of the KF Scheme

The reduction problem of the KF scheme is illustrated in the following, which is also informally
shown in Figure 3. Consider the situation that there exists a distinguisher D who tries to
make use of a successful eCK adversary A against the KF scheme to break the IND-CPA
security of KEM. Given a KEM challenge instance (pk∗, C∗,K∗b), the goal of D is to distinguish
whether or not K∗b is a real session key or a uniform random. Then D simulates the AKE
security experiment for A. Assume that the test oracle selected by A is πt

∗
id2

which has intended
communication partner id1. Note that, in the simulation, D needs to set one of the messages of
πt
∗
id2

to be C∗, and the ephemeral public key of an oracle πsid1 to be pk∗. The other ephemeral
secrets R2 and R∗4 are chosen at random. The signatures are generated honestly as the protocol
specification.

Note that A can replay the message from πsid1 to πt
∗
id2

. Meanwhile, A corrupts id2, and then
generates a valid protocol message (in particular for the ciphertext CA) of her own choice using
the knowledge of id2’s signing key, and sends such message (i.e., CA and σA) to πsid2 . Recall
that the ephemeral public key of πsid1 is set to be the KEM challenge value pk∗ in order to do
the security reduction. In this case, D cannot generate the session key for πsid1 without knowing
both the ephemeral secret key for decrypting the received ciphertext CA (chosen by adversary
A) and the secret key sk∗ (related to pk∗). The ephemeral secret key esk∗ and the ephemeral
key used to compute CA are both unknown to D. But the adversary A can generate the session
key of πsid1 , since the ciphertext CA is chosen by herself. In a nutshell, D is unable to correctly
plug the KEM challenge instance into the simulation of the security experiment for A.

B Comparison

In this section, we briefly summarize the comparison among our generic TMKE scheme and
some other TMKE schemes which might be post-quantum secure. In Table 1, we mainly compare
the building blocks and their security assumptions. Let ‘EXT’ denote the strong randomness
extractor and ‘H’ be a cryptographic hash function (which is modeled as a random oracle).
Let P1 (C1), P2 (C2) and P3 (C3) denote public key (ciphertext) of IND-CPA, IND-CCA and
OT-IND-CCA2 KEM schemes respectively. Let R denote a ring element. And let S denote a
SEUF-CMA regular signature. The efficiency here is not our main concern due to their similar
(KEM-based) construction structures.

C Proof of Theorem 2: Session Key Security of the Proposed Generic
TMKE Scheme

In this proof, we wish to show that there is no adversary A which can distinguish the real session
key of the test oracle from a uniform random. Otherwise there must exist some adversary which

19

IND-CPA KEM challenge instance (pk∗, C∗,K∗b)

id1 A(Adversary) id2
Protocol Simulation of D

πsid1 (some oracle whose

ephemeral key is pk∗)

πt
∗

id2
(test oracle)

X = (id1, pk∗) CA := KEM.Enc(pk∗, R′) Y ∗ := (id2, C∗)
Corrupt id2

YA := (id2, CA)

σX
$←

SIG.Sign(sskid1 , X,R2)
σA

$← SIG.Sign(sskid2 ,
YA||X,R′′)

σY ∗X
$←

SIG.Sign(sskid2 , Y
∗||X,R∗4)

X,
−−−→

X,
−−→

σX σX

YA,←−−−
Y ∗,
←−−−

σA Drop Y ∗, σY ∗X σY ∗X

Cannot decrypt CA

Fig. 3: Reduction Problem of the Generic KF Scheme.

Peer NAXOS Standard Security Building Blocks & Ephemeral Key
Setting Trick? Model? Model Assumptions [Initiator][Responder]

BCNP [9] Pre No Yes CK IND-CCA KEM [1C2][1C2]
EXT, PRF

FSXY [19] Pre Yes Yes CK+ IND-CPA wKEM [1P1][1C1]
IND-CCA KEM [1C2][1C2]

EXT, PRF
TMKE Post Yes Yes eCK-PFS PG-IND-CPA wKEM [1P3][1C3]

OT-IND-CCA KEM [1S][1S]
SEUF-CMA SIG

PRF

Table 1: Comparison.

can break the security of the underlying cryptographic building blocks. Let πs
∗

idi
be the test

oracle and πz
∗

idj
be the origin oracle of πs

∗
idi

. Since each protocol message contains the identity of

the sender, the origin oracle must come from its intended partner (i.e. idj).
To complete the proof, we need to examine all possible freshness cases formulated by Def-

inition 3. Note that the adversary A is not allowed to ask RevealKey query to the test oracle
or its partner oracle (if it exists). But there might different combinations regarding RevealRand
and Corrupt queries. Hence, we here list all possible freshness cases related to RevealRand and
Corrupt queries as follows:

– E1 : If πt
∗
idj

exists :
• C1 – A did not query RevealRand(idi, s

∗) nor RevealRand(idj , t
∗).

• C2 : A did not query Corrupt(idi, pk
∗) nor RevealRand(idj , t

∗).
• C3 : A did not query Corrupt(idi, pk

∗) nor Corrupt(idj , pk
∗).

• C4 : A did not query RevealRand(idi, s
∗) nor Corrupt(idj , pk

∗).
– E2 : If πt

∗
idj

does not exist :

• C5 : A did not query Corrupt(idi, pk
∗) nor Corrupt(idj) prior to the acceptance of πs

∗
idi

.
• C6 : A did not query RevealRand(idi, s

∗) nor Corrupt(idj , pk
∗) prior to the acceptance

of πs
∗

idi
.

However, only one of above cases would occur to the test oracle during the whole simulation
of the security experiment. This means we only need to simulate the game under one of above
freshness cases each time.

20

In the following, we proceed the proof via the game-based approach [38]. Let Advξ denote
the advantage of A in Game ξ.

Game 0. The first game is the real security experiment. Thus we have that

AdvakeTMKE,A(κ) = Adv0.

Game 1. This game proceeds exactly as the previous game, but the challenger aborts if: there
is a fresh oracle πsidi received a message m (m = (idj , epkidj , σidj) or m = (idj , Cidj , σidj)) which
is not sent by any oracle of idj before idj is corrupt, but SIG.Vfy(vkidj , σidj ,m) = 1.

If the challenger aborts with overwhelming probability, then we could construct a signature
forger F as follows. The forger F receives as input a public key pk∗, and runs the adversary A as

a subroutine and simulates the challenger for A. It first guesses a coordinate j
$← [λ] pointing to

the public key for which the adversary is able to forge, and sets pkidj = pk∗. Next F generates
all other long-term public/secret keys honestly as the challenger in the previous game. Then F
proceeds as the challenger in Game 1, except that it uses its chosen-message oracle to generate
a signature under pkidj for the oracles of idj . While answering the RevealRand(idj , t) query, F
includes rss (if any) extracted from the corresponding σ (in terms of AR) for this query.

When A has forged a signature on behalf of the guessed uncorrupted party idj , then F can
use it to break the SEUF-CMA security of SIG. Since there are ` honest parties, the probability
that F guesses correctly on idj is larger than 1/λ. Therefore we have that

Adv0 ≤ Adv1 + λ · Advseuf-cma
SIG,F (κ, d).

As a result, the test oracle πs
∗

idi
in this game always has an origin oracle πz

∗
idj

before idj is
corrupted. In particular, if the test oracle is initiator then it must have a matching session.
Those facts imply that the freshness cases C5 and C6 never hold in this game.

Game 2. This game proceeds as before, but C tries to guess the test oracle and its origin oracle
and one of the possible freshness cases (from C1 to C4). Technically, C aborts if it fails in this
guess. Since there are 4 fresh cases and λ parties at all, and at most d oracles for each party,
then the probability of a correct guess is at least 1/4(dλ)2. Thus we have that

Adv1 ≤ 4(dλ)2 · Adv2.

Game 3. In this game, we first change the computation of the randomness (rpgs
∗

idi
or erks

∗
idi

)

for the test oracle if its owner is guessed to be uncorrupted, i.e., the corresponding dks
∗

idi
is

not known to the adversary. Specifically, we do the following modifications. The ephemeral

public key eks
∗

idi
of πs

∗
idi

is not discarded. C chooses an internal randomness erk′
$← RKwKEM, and

computes the ephemeral key as (cs
∗
idi,wKEM

,Ks∗
idi,wKEM

) := wKEM.Enc(eks
∗

idi
, erk′). Then cs

∗
idi,wKEM

will be returned by the RevealRand query, and K∗wKEM will be parsed as the randomness of
OTKEM. If the origin oracle is not corrupted before the acceptance of the test oracle, then we
do the same change to it. Due to the ε-PG-IND security property of wKEM, we have that

Adv2 ≤ Adv3 + 2 · ε ≤ Adv3 + 2 · Advind-cpawKEM,N (κ).

Note that the function wKEM.Dec is deterministic and its input ciphertext cs
∗
idi,wKEM

is cho-

sen uniformly at random (in the origin protocol). If the ephemeral key (i.e., cs
∗
idi,wKEM

) is not

revealed by the adversary, then the randomness (rpgs
∗

idi
, erks

∗
idi

) are just random values as the
previous game. Thus in this game (and in the following games), we only concentrate on the

21

oracles whose owner is uncorrupted (but its ephemeral key is revealed).

Game 4. This game proceeds as before, but C replaces the randomness (rpgs
∗

idi
or erks

∗
idi

) of the

test oracle πs
∗

idi
with a uniform random, if idi is guessed to be uncorrupted before πs

∗
idi

accepts.
If there exists an adversary A which can distinguish this game from the previous game , then
we could construct an algorithm N to break the security of wKEM scheme by making use of A.

In the following, we present the proof for the test party whose long-term secret key is
uncorrupted. The algorithm N receives the challenge public key ek∗wKEM and the challenge
values (K∗wKEM, C

∗
wKEM) from the wKEM challenger. As for the test oracle, N parses K∗wKEM as

the randomnesses of OTKEM, i.e., rpgs
∗

idi
= K∗wKEM or erks

∗
idi

= K∗wKEM (depending on the role

of idi). And C∗wKEM is set as the ephemeral secret key of the test oracle, i.e., cs
∗
idi,wKEM

= C∗wKEM.
The rest of the simulation is identical to the previous game. Meanwhile, N answers the oracle
queries as before.

If b = 1, then K∗wKEM is the decryption of C∗wKEM and the simulation constructed by N is
identical to the previous game. Otherwise the simulation of N is the same as this game. Thus
we have that

Adv3 ≤ Adv4 + Advind-cpawKEM,N (κ, 0).

Note that rpgs
∗

idi
or erks

∗
idi

in this game is non-related to the ephemeral secret key of the test
oracle. This implies the simulator in the following game can choose arbitrary ephemeral secret
key cs

∗
idi,wKEM

to answer the RevealRand query to the test oracle.

Game 5. We change this game by replacing the randomnesses (rpg∗ or erk∗) of the uncorrupted
origin oracle (of the test oracle), with a uniform random. With the similar argument as in the
previous game, we have that

Adv4 ≤ Adv5 + Advind-cpawKEM,N (κ, 0).

Up to now, the randomness of each fresh oracle is just uniform random and hidden from the
adversary.

Game 6. In this game, the challenger proceeds exactly like the previous game, except that it
adds an additional abortion rule. Namely the challenger aborts, if a fresh oracle generates an
ephemeral public key (or an ephemeral ciphertext of OTKEM) which has appeared before. If
two oracles generate the same ephemeral public key or ephemeral ciphertext with overwhelming
probability. This implies that the OTKEM is insecure at all, because of the high collision prob-
ability of key generation algorithm. Due to the security of OTKEM, the abortion event must
occur with negligible probability. We have that

Adv5 ≤ Adv6 + Advot-ind-cca2OTKEM,D(κ, 1).

In this game, we can have the fact that the test oracle has a unique origin oracle.

Game 7. In this game, we would like to reduce the security to the OT-IND-CCA2 security
of OTKEM. Hence, we change this game from the previous game by replacing the key material

ks
∗

idi
(generated by the OTKEM scheme) with a random value k̃s

∗
idi

. If there exists an adversary
A which can distinguish this game from the previous game. Then we can use it to build an
efficient algorithm D to break the security of OTKEM.

Again D simulates the game for A. Recall that, in order to simulate the game appropriately,
D has to guess correctly in advance about the oracles that A will attack. D then obtains the
challenge public key pk∗OTKEM, challenge ciphertext C∗OTKEM and challenge K∗OTKEM from the

22

KEM challenger. The goal of D is to distinguish whether K∗OTKEM is the true key or a random
key. With respect to A’s queries, D answers them as follows:

– Send(idu, t,m): This query is performed as defined in the security model according to the
protocol specification. Meanwhile, D uses the values pk∗OTKEM and C∗OTKEM to simulate the
test oracle or its origin oracle (depending on which one is initiator).

– RevealKey(idj , t): Note that this query would be never asked to the test oracle and its partner
oracle. Otherwise the test oracle is not fresh. D can use the secrets chosen by herself to
compute the session key honestly following the protocol specification.

If the test oracle is initiator, then it must have a matching session. In this case, the test
oracle and its partner oracle will use the same key material K∗OTKEM to generate the final
session key. All other session keys can be computed by the ephemeral secret keys chosen
by D. Once the test oracle is responder, the situation is more complicated. We need to
correctly simulate the session key of the origin oracle πz

∗
idj

. If πz
∗

idj
is the partner oracle of

the test oracle, then D computes the same session key for them. If πz
∗

idj
is not the partner

oracle of the test oracle, but it receives C∗ as input. Then D uses the same challenge key
K∗OTKEM to generate the session key as Kz∗

idj
= PRF(K∗OTKEM, sid

z∗
idj

). Note that we must

have sidz
∗

idj
6= sids

∗
idi

in this case. If πz
∗

idj
is not the partner oracle of the test oracle and it

receives C ′ such that C ′ 6= C∗OTKEM. Then D asks its decryption oracle DEC(C ′) to obtain
the corresponding key k′. The session key is then generated as Kz∗

idj
= PRF(k′, sidz

∗
idj

). In a

nutshell, we can appropriately compute the session key of πz
∗

idj
in all cases.

– RevealRand(idi, s): D responds with the ephemeral keys chosen by herself.

– Corrupt(idi, pkidi) and RegCorrupt(idı, pkidı):D proceeds them as the original AKE challenger.

– Test(id∗i , s
∗): D changes the returned key of this query as Ks∗

idi
= PRF(k∗, sids

∗
idi

).

The simulation of D is perfect so far. If K∗OTKEM is a random key then the game is equivalent
to this game. Otherwise it is identical to the previous game. Applying the OT-IND-CCA2
security of OTKEM, we therefore obtain that

Adv6 ≤ Adv7 + Advot-ind-cca2OTKEM,D(κ, 1).

Game 8. In this game, the function PRF(k̃s
∗

idi
, ·) is replaced with a truly random function for

the test oracle and its partner oracle (if it exists). Notice that the secret seed k̃s
∗

idi
of the test

oracle is changed to a truly random value due to the previous game. And the test oracle has a
session identifier sid∗ (i.e., the input of PRF) which is only shared with its partner oracle. Note
that the origin oracle of the test oracle would deal with at most one chosen messages attack.
When the origin oracle is not partnered to the test oracle but they share the same secret seed,
we could ask a PRF oracle query FN (sidz

∗
idj

) to compute the session key of the origin oracle.

Then any PPT adversary A distinguishing Game 8 from Game 7 can be used to break PRF.
In terms of the security of PRF, we therefore have that

Adv7 ≤ Adv8 + Advind-cma
PRF,B (κ, 1).

Note that in this game the session key returned by the Test query is totally a truly random
value which is independent of the bit b chosen by the Test query and any messages. Thus, the
advantage that the adversary wins in this game is Adv8 = 0.

Put altogether the probabilities from Game 0 to Game 8, we obtained the overall result of
this theorem.

23

D Proof of Theorem 3: OT-IND-CCA2 Security of the Proposed OTKEM

In this proof, we are going to reduce the security of our proposed protocol to that of the
underlying building blocks and the Ring-LWE problem. The proof is proceeded following the
game-based approach. Let C∗ := (Y ∗, u∗, spk∗, σ∗) denote the ciphertext generated by challenge
query.

Game 0. The first game is the real security experiment. Thus we have that

Advot-ind-cca2OTKEM,D(κ, 1) = Adv0.

Game 1. This game proceeds exactly as the previous game, but the challenger aborts if: the
decryption oracle received a ciphertext C ′ = (Y ′, u′, spk∗, σ′) such that (Y ′, u′) 6= (Y ∗, u∗), but
SIG.Vfy(spk∗, σidj ,
pk||Y ′||spk∗||u) = 1.

If the challenger aborts with overwhelming probability, then we could construct a signature
forger F as follows. The forger F receives as input a public key vk∗, and runs the adversary
A as a subroutine and simulates the challenger for A. It will set spk∗ := vk∗ in the challenge
query. Then F proceeds as the challenger in the Game 1, except that it asks its signing oracle
to generate a signature under vk∗ for the challenge query. When A has forged a signature, then
F can use it to break the SEUF-CMA security of OTS. Therefore we have that

Adv0 ≤ Adv1 + Advseuf-cma
OTS,F (κ, 1).

As a result, the challenge value u∗ is tightly bound together to other values in the challenge
ciphertext. Then the adversary is unable to replace u∗ with another u′ of her own choice.

Game 2. This game proceeds as the previous game, except that the simulator aborts if the
decryption oracle receives a ciphertext which generates the same hash value of the challenge
query. When the event does occur, we can easily construct an algorithm to break the target
collision resistant hash function TCRHF. Hence, we have that

Adv1 ≤ Adv2 + AdvtcrTCRHF,H(κ).

Game 3. Recall that the hash value of the challenge query is unique due to the results of the
previous games. The secret key sk∗ and the public key pk∗ = {S∗1,0, S∗1,1, . . . , S∗µ,0, S∗µ,1} (used
to compute the session key) are programmed by the ‘bits’ (h(1), . . . , h(µ)) of a hash value. The
hash value h′ generated by the decryption oracle must be distinct to h∗ of the challenge query,
i.e., h′ 6= h∗. In this case, we can embed the Ring-LWE challenge value into the public key and
correctly answer the decryption oracle query. Since h′ 6= h∗, there must exist one bit, say with
coordinate τ∗ in h∗, is distinct to the τ∗-th bit of h′. Hence, we require that the challenger
should guess the coordinate τ∗ and the exact value of h∗(τ∗). If it fails in the above guesses,
then the challenger aborts. The successful probability of the guess is at least 1

2µ .

Adv2 ≤ 2µ · Adv3.

Game 4. In this game, we replace the (τ∗, h∗(τ∗))-th public key with a random value, i.e.,

S∗τ∗,h∗(τ∗)
$← Rq. If D is able to distinguish this game from the previous game, then we can make

use of D to build a Ring-LWE solver E . As the tuple (a, S∗τ∗,h∗(τ∗) is either a real sample from the

distribution Asτ∗,h∗(τ∗),X for some random sτ∗,h∗(τ∗)
$← X (which is unknown to E), or a uniform

random from Rq × Rq. In the reduction, E can generate all other public key values honestly

24

with the secrets chosen by herself. Note that the public keys would be divided into two parts
in terms of the hash value h∗. The first part contains the values that the adversary E knows
all corresponding secrets of her own choice. The second part contains the key S∗τ∗,h∗(τ∗) which
is only used by the challenge query. These facts imply that E is able to answer the decryption
oracle using the secret keys of her own choice. But the session key of the challenge query would
be generated involving (a, S∗τ∗,h∗(τ∗)). Due to the computational complexity of Ring-LWE, we
have that

Adv3 ≤ Adv4 + AdvrlweRq ,X ,E(κ).

Game 5. In this game, we replace Y ∗, v∗ and K∗ with random values, i.e., (Y ∗, v∗,K∗)
$←

Rq × Rq × R2. Again, if D is able to distinguish this game from the previous game, then we
can make use of it to solve the Ring-LWE problem. Specifically, E takes as input two pairs
(a,w), (b, v) ∈ Rq × Rq, and sets a∗ := a, Y ∗ := w and Sτ∗,ι∗ := g−1b. For the challenge query,
E computes v̄∗ = HLP(v), and K∗ = bv̄∗e. Now if the inputs to E is sampled from Ar∗,X , the
output of E is distributed exactly as the previous game. Since (a, b) are independently random,
and we have Y ∗ = w = a·r∗+e and v = b·r+g ·r ·(

∑µ
η=1,η 6=τ∗ S

∗
η,h∗(η))+f for independent f . On

the other side, if the inputs given to E are uniform random over Rq×Rq and independent. Then
the output of E is distributed exactly as in this game. As (a, b, w, v) are uniform random and
independent, K∗ is also uniform random. Meanwhile, the decryption oracle will be simulated
as the previous game.

The simulation of E is perfect so far. If w = a · r∗ + e then the game is equivalent to the
previous game, otherwise the game is identical to this game. Due to the hardness of Ring-LWE
problem, we therefore obtain that

Adv4 ≤ Adv5 + AdvrlweRq ,X ,E(κ).

Note that in this game the session key returned the challenge query is totally a truly random
value which is independent of the bit b. Thus, the advantage that the adversary wins in this
game is Adv5 = 0.

Put altogether the probabilities from Game 0 to Game 5, we obtained the overall result of
this theorem.

E Other Related Work

Besides KEM, non-interactive key exchange (NIKE) [18] is recently applied to construct generic
TMKE, e.g., [6, 39]. In PKC 2015, Bergsma et al. [6] introduced a very interesting generic
ORKE scheme (which will be referred to as BJS scheme) from CKS-light NIKE scheme [18]
and SEUF-CMA SIG scheme. The BJS scheme is the first eCK-PFS secure [13] generic ORKE
construction in the standard model. In 2016, Yang et al. [39] proposed a simpler NIKE and SIG
based ORKE scheme (which will be referred to as YLLLL scheme). In particular, the YLLLL
scheme requires weaker assumptions on both NIKE and SIG in contrast to the BJS scheme. In
particular, the SIG scheme only needs to provide strong existential unforgeability under weak
chosen message attacks (SEUF-WCMA). Therefore, the YLLLL scheme turns out to have more
protocol instantiations and to be much more efficient than the BJS scheme.

One important advantage of these NIKE based TMKE schemes (in contrast to the BCNP
scheme and the FSXY scheme) is that they are truly TMKE which can work under the post-
specified peer model [10]. In the post-specified peer model, a party does not know any crypto-
graphic information (such as public key) about the receiver at the session initiation phase. As
pointed out by Menezes and Ustaoglu [30], a protocol working under the pre-specified peer model

25

(such as the BCNP scheme and the FSXY scheme) may need an extra communication round
to exchange identity and public keys. Moreover, we note that both the BJS protocol and the
Yang’s protocol are suggested to instantiate the NIKE scheme from [18] based on the traditional
Diffie-Hellman based hard problems (We also refer reader to [34, 40] for more strongly secure
Diffie-Hellman TMKE schemes without random oracles in the post-specified peer model). In this
paper, we just focus on the generic TMKE construction which has post-quantum instantiations
in the post-specified peer model.

Recently, there are several attempts have been made to build the lattice-based key exchange,
e.g., [36, 8, 41, 7]. In PQCrypto 2014, Peikert [36] introduced an IND-CPA KEM based key
exchange protocol in the post-specified peer modelbased on Ring-LWE. Peikert’s construction
[36] enjoys explicit authentication based on digital signature and message authentication code
(MAC). Bos et al. [8] proposed an instantiation of Peikert’s protocol, and integrated it into the
TLS to provide post-quantum security. In CCS 2016, Bos et al. further developed key exchange
for the TLS based on the Ring-LWE problem [37].

However, all the above protocols require multiple communication rounds (more than 2-pass)
to exchange protocol messages. As introduced in Section 1, these protocols cannot be used for
securing asynchronous communication in contrast to TMKE.

Moreover, the securities of Bos et al.’s schemes [8, 7] are shown in the ACCE security model
[22] which is only developed from the Bellare-Rogaway (BR) model [5]. In 2015, Zhang et al.[41]
proposed an efficient HMQV like TMKE protocol from Ring-LWE. However, this protocol is
proved only with random oracles in a variant of BR model [5] with wPFS. In contrast, our
constructions are primarily motivated to provide eCK-PFS security (which covers much more
attacks than the BR security, such as KCI attacks, ephemeral key leakage attacks, UKS attacks,
and PFS attacks, etc.) in the standard model. Although the instantiation of our generic TMKE
in the standard model might be less efficient, we can also instantiate it with the IND-CCA2
secure KEM (e.g. [36]) in the random oracle model to obtain better performance. In addition,
the security of the Zhang et al.’s scheme was recently challenged by Gong and Zhao [42].

26

