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Abstract.
At Oakland 2013, Rührmair and van Dijk showed that many advanced PUF (Physical
Unclonable Function)-based security protocols (e.g. key agreement, oblivious transfer,
and bit commitment) can be vulnerable if adversaries get access to the PUF and reuse
the responses used in the protocol after the protocol execution. This observation
implies the necessity of erasable PUFs for realizing secure PUF-based protocols in
practice. Erasable PUFs are PUFs where the responses of any single challenge-
response pair (CRP) can be selectively and dedicatedly erased, without affecting any
other responses.
In this paper, we introduce two practical implementations of erasable PUFs: Firstly, we
propose a full-fledged logical version of an erasable PUF, called programmable logically
erasable PUF or PLayPUF, where an additional constant-size trusted computing
base keeps track of the usage of every single CRP. Knowing the query history of each
CRP, a PLayPUF interface can automatically erase an individual CRP, if it has been
used for a certain number of times. This threshold can be programmed a-priori to
limit the usage of a given challenge in the future before erasure.
Secondly, we introduce two nanotechnological, memristor-based solutions: mrSHIC-
PUFs and erasable mrSPUFs. The mrSHIC-PUF is a weak PUF in terms of the
size of CRP space, and therefore its readout speed has to be limited intentionally
to prolong the time for exhaustive reading. However, each individual response can
be physically altered and erased for good. The erasable mrSPUF, as the second
proposed physical erasable PUF, is a strong PUF in terms of the size of CRP space,
such that no limit on readout speed is needed, but it can only erase/alter CRPs in
groups. Both of these two physical erasable PUFs improve over the state-of-the-art
erasable SHIC PUF, which does not offer reconfigurability of erased CRPs making
the erasable SHIC PUF less practical.
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Figure 1: PUF based session key exchange involved three parties.

In passing, we contextualize and locate our new PUF type in the existing landscape,
illustrating their essential advantages over variants like reconfigurable PUFs.
Keywords: Physical Unclonable Functions · PUF Re-use Model · Memristor · Erasable
PUFs · Reconfigurable PUFs · PLayPUFs · mrSHIC-PUFs · mrSPUFs

1 Introduction and Overview
Since physical unclonable functions have been introduced as a security primitive [GCvDD02b,
PRTG02], a variety of applications have been proposed [LLG+05, SD07, LLG+04], includ-
ing many advanced cryptographic protocols, e.g. Key Agreement, Oblivious Transfer and
Bit Commitment [BFSK11, Rüh10, OSVW13].

To show security vulnerabilities in the so-called “PUF re-use model” as proposed
in [RvD13], we pick a simple PUF-based key exchange protocol as an example for our
dicussion below. Figure 1 illustrates how a secure PUF-based key exchange protocol
can be compromised by PUF re-use model in practice. Following the PUF re-use model
introduced in [RvD13], an adversary is allowed to access the PUF used in the protocol
and apply arbitrary challenges to obtain corresponding responses. The adversary can also
eavesdrop on the communication channel.

Alice issues the PUF, evaluates two sets of CRPs (Challenge response pairs), and then
delivers the PUF to Bob. To establish a session key, κAB, with Bob, Alice sends the first
challenge set to Bob. Bob applies the received challenge set and obtains the responses that
are treated as the session key, κAB. Bob then evaluates a new set of CRPs and sends the
PUF to Charlie. Bob can now establish a session key, κBC, with Charlie using the new set
of CRPs Bob saved. While Alice can also establish a session key, κAC, with Charlie using
her second set of CRPs. Eve is able to eavesdrop on the first set of challenges that Alice
sends to Bob and then apply the eavesdropped challenges to obtain the corresponding
responses when Eve can physically access the PUF during the PUF transfer from Bob to
Charlie. This implies that κAB has been compromised by Eve under PUF re-use model.

To solve this problem, Rührmair and van Dijk suggested the usage of erasable
PUFs [RvD13]. The concept of erasable PUFs was introduced in [RJA11], meaning
that users are allowed to irreversibly and selectively erase/alter the responses of a challenge
without affecting the other CRPs. If an erasable PUF is used in the above key exchange
protocol, Bob should erase the challenge set for deriving κAB, and thus Eve is not able to
read out those CRPs. This secures the PUF-based key exchange protocol. Notice that,
another PUF variant called reconfigurable PUF [KKvDL+11] can not help in this case,
since reconfigurable PUFs erase the entire challenge space, so all the CRPs will be altered
after reconfiguration. This can prevent the attacks in PUF re-use model, but it may
affect the further usage of this PUF, e.g. in the scanerio of Figure 1, Alice and Charlie
cannot establish secret key without another physical transfer of PUF. For the analysis on
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more PUF-based cryptographic protocols under PUF re-use model, readers are referred
to [RvD13] for a detailed discussion.

Considering the importance of this issue, its solution seems long overdue as only one
erasable PUF has been introduced so far [RJA11]. In this paper, we present two ways of
implementating erasable PUFs: Programmable Logically Erasable PUFs and Memristor
based Physical Erasable PUFs. Both of them have unique advantages comparing with the
existing erasable PUF design [RJA11].

Programmable logically erasable PUFs (PLayPUFs) realize the erasability by adding
a digital interface to keep track of the history of applied challenges. By merging an
authenticated search tree [BLL00] and a red-black tree [CLR+01, Bay72], we only need a
constant size non-volatile memory (NVM) and hash computation to be added into the
trusted computing base (TCB) to verify an arbitrarily large query history. We assume
that adversaries are not able to tamper with the computation and the NVM in the trusted
computing base, and the memory content of NVM is public. All the computation and
memory outside of TCB, namely the untrusted part, can be maliciously tampered with and
read out, and our system can still stay secure. The methodology of PLayPUF is generic,
because it can be added to any secure PUF designs to introduce erasability feature. An
erasure in PLayPUF is realized by denying the access to erased CRPs by its interface.
Notice that, because the CRP space of a strong PUF is exponentially large in size, it is
acceptable for users to permanently erase some CRPs of a strong PUF, but permanent
erasure of CRPs in weak PUFs will deplete the CRPs very quickly, so we do not recommend
to build a PLayPUF based on a weak PUF.

As the only existing erasable PUF design so far, erasable SHIC PUF is built on
top of a crossbar structure, and its erasure operation requires the destruction of an
underlying physical structure (a diode), such that the CRP created by this structure is
inaccessible/erased forever [RJA11]. This one-time erasure limitation depletes the entire
CRP space very fast, and SHIC PUF only has polynomial number of CRPs, so this one-time
erasure limitation also limits its usage as an erasable PUF. Another drawback of erasable
SHIC PUF is that since it only has a polynomial size CRP space, it has to intentionally
limit the readout speed and therefore throughput to increase the difficulty for exhaustive
readout.

Memristor, as an emerging nano-technology, has a unique physical phenomenon called
cycle-to-cycle variation, which means that every time a memristor cell is reprogrammed, the
user is not able to precisely control its resistance [YSS13, WS15, GRAS+16]. Leveraging
this phenomenon, we are able to build two types of memristor based erasable PUF (mrSHIC-
PUF and erasable mrSPUF), for which the erasure operation simply means reprogramming
a certain cell or a certain group of cells. By introducing the reconfigurability of individual
CRPs, mrSHIC PUF is able to reuse the underlying physical structure after an erasure
operation. This implies that the CRP space, will not be depleted, even though it is
also polynomial size. Of course, to build a secure erasable PUF, the new response of an
erased challenge should be random and independent of its previous response. However,
mrSHIC-PUF inherits the size of CRP space from SHIC PUF, so mrSHIC-PUF also needs
to have a throttling mechanism to limit its readout speed, so that an adversary cannot
enumerate all CRPs exhaustively.

The erasable mrSPUF, as the second proposed physical erasable PUF design, is a strong
PUF, according to the size of its CRP space. Therefore, no more limited readout speed is
needed, but it can only erase/alter the responses in a more coarse-grained way, meaning
that it has to erase/alter CRPs in a small number of possible erasable sets, instead of
erasing CRPs individually. This reduces the flexibility of the erasure operation, but it will
still be of interest for PUF-based cryptographic protocols. Again, in order not to deplete
the CRP space (notice there are only a polynomial number of possible erasable sets that
partitions the whole exponentially large CRP space), we need reconfigurability of each
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group of CRPs.

1.1 Our Contributions
We made three significant contributions in this paper:

1. We provide a unified formal definitional framework of PUF, which captures the
properties of strong PUFs, weak PUFs, stateless PUFs, stateful PUFs and erasable
PUFs.

2. We introduce programmable logically erasable PUFs, which can be added as an
interface to any PUFs to realize erasability. As an additional property, we gain
programmability for free, which means that users can precisely define a-priori how
many times a given challenge can be accessed in the future before erasure. Notice
that the erasibility property alone just allows an erasure function, but not a guarantee
under which it has to be applied in the future. Note that, due to their programmability,
PlayPUFs can, for example, be used to realize count-limited certificates [SvDO+06].
In addition, the performance evaluation and security analysis of PLayPUF are
provided in the paper as well.

3. Utilizing the unique feature of memristors, we propose two physical erasable PUFs,
which can erase one or a group of challenges without affecting the other challenges.
Both proposed physical erasable PUFs, by introducing reconfigurability to individual
underlying physical structure, overcome the one-time erasure limitation of the existing
erasable PUFs. The two proposed physical erasable PUFs have their own advantages:
mrSHIC-PUF allows one to erase CRPs one by one, but the total number of CRPs is
limited, and thus we have to limit its readout speed. Erasable mrSPUF is a strong
PUF, which provides larger CRP space, so its readout speed/throughput can be
selected as needed. However, its erasure operation has to erase a group of CRPs (all
the CRPs created by one column of memristor cells), so when it is used in a protocol,
one needs to carefully select the CRPs used in the protocol.

1.2 Organization of This Paper
Section 2 presents a formal definitional framework of PUFs and its variants. After that,
programmable logically erasable PUFs and memristor based physical erasable PUFs are
introduced in Section 3 and 4, respectively. This paper concludes in Section 5.

2 A Formal Definitional Framework of PUFs
Intuitively, a silicon Physical Unclonable Function (PUF) is a fingerprint of a chip, that

Manufacturing Resistance: leverages process manufacturing variation to generate a unique
function taking “challenges” as input and generating “responses” as output, which

HW Unclonability: cannot be cloned in hardware (the PUF’s internal behavior, e.g. its
unique physical characteristics or behavior of its wires, cannot be read out accurately
enough; also it is not feasible to manufacture two PUFs with the same responses to
a significant subset of challenges) and

SW Unclonability: cannot be efficiently learned given a “polynomial number” of challenge
response pairs (making it impossible to impersonate/clone the function’s behavior to
a new random challenge in software).
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2.1 Stateless PUFs
A formal (ideal) definition of a PUF is as follows:

Definition 1. [Stateless PUFs] A family of stateless PUFs is described by manufacturing
processes {Mλ} such that each physical object Pλ ←Mλ can be stimulated by challenges
c from a challenge space Cλ, by which it reacts with corresponding responses r from a
response space Rλ. We reserve a special symbol ⊥ ∈ Rλ for the case, where if stimulated
by a challenge c ∈ Cλ for which Pλ does not have a response, it can output ⊥. We
model Pλ by an associated function g[Pλ] : Cλ → Rλ that maps challenges c to responses
r = g[Pλ](c); functions g[Pλ] execute in poly(λ) time. The pairs (c, g[Pλ](c)) are called
challenge-response pairs (CRPs) of PUF Pλ. The manufacturing processMλ can be viewed
as a distribution from which a function g[Pλ] is drawn.

Parameter λ represents a design parameter of Mλ and characterizes the “unclonability”
property: Given any poly(λ) sized list of CRPs (ci, g[Pλ](ci)) (intuitively, the CRPs
collected by an attacker by, e.g., eavesdropping, stealing, or black-box access to Pλ while
in possession of the PUF) it is impossible to determine a response g[Pλ](c) for a c 6∈ {ci}
by using a probabilistic poly(λ) time algorithm with probability > 2−λ: For all λ, c ∈ Cλ,
and ppt algorithms A,

Probg←Mλ
[g(c) = r | ⊥ 6= r ← AGg,c,Mλ(1λ, c)] ≤ 2−λ,

where A has oracle access to (1) Gg,c which outputs g(c′) for inputs c′ ∈ Cλ with c′ 6= c,
and halts on input c, and to (2) distribution Mλ.

We argue that this definition captures the essence of PUFs for our purpose:

Measurement Noise: Definition 1 does not model measurement noise in the PUF
itself. In practice one may need to correct noise by for example using a fuzzy extractor
[DRS04, FMR13, HRvD+17, JHR+17]. We assume that interface circuitry for noise
correction is included in the physical objects, and therefore we model combined PUFs +
interfaces (which Definition 1 calls PUFs) as ideal functionalities without noise. We also
assume that interface circuitry is included which expands inputs to the physical object to
challenges to the PUF which are separated by some minimum distance so that produced
responses become uncorrelated (notice that some PUF designs have correlated CRPs, e.g.
arbiter PUFs [GCvDD02b], so a pre-hash in the PUF interface can seperate CRPs as
desired [GCvDD02a]).

Manufacturing Variations and Hardware Unclonability: Definition 1 does not
mention manufacturing variation as the source for unclonability at all and allows physical
objects that implement digital circuitry without any manufacturing variations, e.g., a
digital PUF [GDC+08] which has a fused secret key K and implements g(c) = EncK(c) for
some semantically secure encryption scheme. The unclonability defined in Definition 1 does
not formalize HW unclonability (in our applications we do not assume physical attacks
which can break HW unclonability) but formalizes SW unclonability by only considering
an adversary with black-box access to the physical object, i.e., the adversarial algorithm
A has adaptive access to an oracle Gg,c which represents the physical object as a black
box. Notice that manufacturing resistance is covered by giving A access to an oracle Mλ

which represents the manufacturing process. Finally, Definition 1 implicitly assumes that
manufacturing is trusted as adversary A cannot maliciously change Mλ, in particular, he
cannot create malicious or bad PUFs [RvD13].

Software Unclonability: Definition 1 explicitly states that the object can not be cloned
in software, i.e., there does not exist a polynomial time algorithm which can predict a
response for a new challenge c (whose response has not yet been given by the oracle) of its
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choice with probability > 2−λ. In other words, new responses have at least λ bits entropy
unknown to attackers (Definition 1 does allow some of the response bits to be SW cloned
as long as at least λ bits entropy are guaranteed).

Strong PUFs vs Weak PUFs: By convention, if the challenge space is too large to be
exhaustively enumerated by an adversary, we call it a strong PUF. Otherwise, it is called
a weak PUF. Notice that, our Definition 1 captures the properties of both strong and
weak PUFs, because adversaries are required to predict an unseen CRP with an advantage
of poly(λ) adaptively chosen CRPs for learning. In order for Definition 1 to work, we
need the CRPs of a PUF to be uncorrelated, see Measurement Noise for a detailed
discussion.

Trusted Computing Base: Outside the TCB of a PUF is an interface part of the PUF
which is public and which does not need to be tamper-resistant. This means that we
should refine Definition 1: Oracle Gg,c only represents black-box access to the TCB of the
physical object. Oracle Gg,c interacts with the public part of the physical object which
is under control of adversary A (who can modify its functionality in whatever malicious
way as desired). So, oracle access is now a protocol between A simulating the public part
of the physical object and oracle Gg,c modeling the TCB part of the physical object as
a finite state machine. In the remainder of this proposal we implicitly assume such an
extension to Definition 1.

2.2 Stateful PUFs
Due to the existence of strong adversaries who can look into the internal digital state of a
circuit, we only assume tamper-resistant non-volatile memory in PUFs with state. PUFs
with tamper-resistant not-private state are defined as follows:

Definition 2. [Stateful PUFs] A family of PUFs with tamper-resistant state is described
by manufacturing processes {Mλ} such that each physical object Pλ ←Mλ has an internal
state s from a state space Sλ of O(λ) size, and can be stimulated by challenges c from a
challenge space Cλ, by which it reacts with corresponding responses r from a response
space Rλ (which includes the empty response ⊥). We model Pλ by an associated poly(λ)
time algorithm g[Pλ] : Cλ × Sλ → Rλ × Sλ that maps challenges c to responses r with

(r, snew) = g[Pλ](c, scurrent), (1)

where initially scurrent = ε ∈ Sλ. The manufacturing process Mλ can be viewed as a
distribution from which an algorithm g[Pλ] is drawn.

Parameter λ represents a design parameter of Mλ and characterizes the “unclonability”
property: For all λ, c ∈ Cλ, and ppt algorithms A,

Probg←Mλ
[∃scurrent,snew∈Sλ (r, snew) = g(c, scurrent)

| ⊥ 6= r ← AGg,c,Mλ(1λ, c)] ≤ 2−λ,

where oracle Gg,c keeps state scurrent (initialized to scurrent = ε) and receives besides
input c′ ∈ Cλ a second input k ∈ {0, 1} indicating whether A wants to receive the output
of the oracle:

If c′ 6= c or k = 0, then Gg,c simulates algorithm (r, snew) = g(c′, scurrent), outputs
(r, snew) if k = 1 and outputs the empty string if k = 0, and updates its state scurrent to
snew; if c′ = c and k = 1, then oracle Gg,c halts.

In the above definition flag k = 0 indicates that the adversary is not in possession
of the PUF while it is being challenged. In this case the adversary does not receive the
response. Since challenges are in general used as public strings in protocols or systems, we



Yansong Gao, Chenglu Jin, Jeeson Kim, Hussein Nili, Xiaolin Xu, Wayne Burleson, Omid
Kavehei, Marten van Dijk, Damith C. Ranasinghe and Ulrich Rührmair 7

assume that the adversary does learn the sequence of challenges issued to the PUF when it
was not in his possession. For this reason the oracle is fine with processing challenge c (by
updating state scurrent) if k = 0 as it will not reveal the corresponding response. If k = 1
(indicating that the PUF is in possession of the adversary), then A indeed learns from the
oracle how state scurrent is updated (it is not private), however, he can not modify its
content (it is tamper-resistant). The adversary’s task is to predict a non-empty response
r with (r, .) = g(c, s) for some s without asking the oracle for response r: this should be
hard and represents SW unclonability.

Notice that the special case where the tamper-resistant state is always scurrent =
snew = ε in Definition 2 is equivalent to Definition 1. For this reason next definitions will
be based on families of PUFs with tamper-resistant state of the more general Definition 2.

2.3 Erasable PUFs
To fix key exchange in the PUF re-use model, as depicted in Figure 1, Rührmair and van
Dijk pointed out that a PUF should be strengthened with other complementary features,
such as making the CRPs “erasable” [vDR14]. To make this possible a PUF must have
a form of non-volatile state to enable this erasure operation. In [RJA11], erasability is
defined by an extra interface function ER(.) which represents a special erasure operation.
If ER(.) takes as input a challenge c of PUF P , it turns P into a physical system P ′ with
the following properties:

1. P ′ has got the same set of possible challenges as P (and P ′ is again an erasable
PUF). Let E be the set of previous inputs to ER(.), including c.

2. For all challenges c 6= c, it holds that gP ′(c) = gP (c).

3. Given a list of all collected CRPs so far, c, and black-box access to P ′, it is impossible
to determine gP (c) with a probability that is substantially better than random
guessing. Intuitively, the response gP (c) of the erasable PUF for challenge c has
been erased in P ′ and for this reason we call the challenges in E erased. Notice that
this property strengthens Definition 1 in that responses of erased challenges (besides
those of unused challenges) can also not be cloned.

We adapt this definition to our framework: we interpret an input challenge as a pair
consisting of the original input challenge and a flag indicating whether we want to erase
the corresponding CRP or not.

Definition 3. [Erasable PUFs] A family of PUFs with tamper-resistant state described
by manufacturing processes {Mλ} is called erasable if each algorithm g ← Mλ has the
property that it takes as input a challenge (c, e) ∈ Cλ with e ∈ {0, 1} together with state
scurrent ∈ Sλ such that g((c, e), scurrent) = ḡE((c, e), scurrent) where algorithm ḡ is defined
as follows:

• Initially we define the set of erased states E = ∅.

• Whenever (r, snew) = g((c, e), scurrent) is executed, E is extended with c if and only
if e = 1 (indicating that the corresponding response should be erased). If e = 1 or
c ∈ E , then ḡ outputs (⊥, snew), otherwise it outputs (r, snew).

Notice that e = 1 indicates to the PUF that the response corresponding to c should be
erased. Algorithm ḡ has oracle access to what has been erased in the past and outputs the
empty response if the corresponding challenge has been erased before. By requiring g = ḡ
we know that the actual physical object implements this type of erasability as well. The
unclonability property for erasable PUFs implies that if a response to a challenge has been
erased (e = 1 in Definition 3), then an adversary without access to this response (k = 0
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in Definition 2 for the interaction which generates the response) cannot replay back this
previous state in which the PUF will issue the response again and is not able to gather
information which can predict a sufficient number of response bits.

Physical Erasable PUFs: In the above definition algorithm g’s behavior can be the
result of pure physics and engineering properties of the PUF in which case there is no
digital non-volatile state scurrent; instead of a digital state the physics properties of the
engineered PUF itself somehow remembers what has been erased (set E) and what has not
been erased. When talking about physical erasable PUFs we mean exactly this kind. We
introduce the our physical erasable PUF design (in terms of Definition 3) in Section 4.

Programmable Logical Erasable PUFs If we do rely on non-volatile tamper-resistant
(but not tamper-evident) state scurrent, then we do not necessarily rely on the PUF design
itself; we create erasability of challenges by exploiting scurrent. A logic circuitry which
interfaces with the PUF-core interprets scurrent and in essence implements an access control
policy. Not surprisingly, it turns out that scurrent can therefore be used to implement
a more generalized form of erasable PUFs, coined programmable logical erasable PUFs
introduced in Section 3.

2.4 (Partially) Reconfigurable PUFs
Unlike the research on erasable PUFs, another related PUF variant, called reconfigurable
PUFs, attracted attention in the community. A variety of reconfigrable PUF designs
have been proposed. They introduced reconfigurability either logically by adding a digital
interface [KKvDL+11, LP11, EKvdL11], or physically by exploiting some physical features
of special materials [KSS+09, ZKC+14, GRAS+15a, Che15, SRK+18]. However, they all
reconfigure and, as a result, erase the entire CRP space at once. So, they all fall into the
category of fully reconfigurable PUFs.

On the spectrum between erasable PUFs and fully reconfigurable PUFs, we notice that
some PUFs can be partially reconfigurable, meaning they allow users to erase a subset
of the entire CRP space without affecting the other CRPs, and after erasing a set of
CRPs, reconfigure the responses corresponding to the erased challenges to new random
responses. As explained in the introduction, for our physical erasable PUF designs to be
practical (i.e. not deplete CRPs space too fast), we need reconfigurability property in
addition to erasability. A definition of partially reconfigurable/erasable PUFs is similar
to Definition 3, but for a specific list of subsets of CRPs. In particular, this partially
reconfigurable/erasable PUF is of interest to us, because it allows us to build a strong
physical erasable PUF, which has a much larger CRP space. This concept is demonstrated
in Section. 4.4 by the design of erasable mrSPUFs.

3 Programmable Logical Erasable PUF
We extend Definition 3 towards programmable logical erasable PUFs: We propose to
implement an erasability functionality by programming a counter value ctr representing
the number of times a response for a given challenge can be generated, i.e. once this
number ctr is exceeded, challenge c ought to be automatically erased. This allows an
application to program how many times a response for a given challenge can be extracted.

Definition 4. [Programmable Logical Erasable PUFs or PLayPUFs] A family of
PUFs with tamper-resistant state described by manufacturing processes {Mλ} is called
programmable logically erasable if each algorithm g ←Mλ has the property that it takes as
input a challenge (c, ctr) ∈ Cλ with ctr ∈ {0, 1, . . .} together with state scurrent ∈ Sλ such
that g((c, ctr), scurrent) = ḡE((c, ctr), scurrent) where algorithm ḡ is defined as follows:
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Figure 2: The entire system of Programmable Logically Erasable PUF

• Initially we define E as the function which maps each challenge in Cλ to ∞.

• Whenever (r, snew) = g((c, ctr), scurrent) is executed, if E(c) 6= 0, then ḡ outputs
(r, snew) and E(c) is updated to min{(E(c)− 1), ctr} (indicating that the response
corresponding to c moves at least one step closer to being erased), and if E(c) = 0
(the response corresponding to c has been erased), then ḡ outputs (⊥, snew).

Notice that E(c) = 0 indicates that the response corresponding to c should be erased.
Algorithm ḡ has oracle access to E(.) and outputs the empty response if the corresponding
challenge should have been erased before. By requiring g = ḡ we know that the actual
physical object implements this type of erasability as well. The unclonability property for
PUFs with tamper-resistant state implies that if a response to a challenge has been erased,
then an adversary without access to this response (k = 0 in Definition 2 for the interaction
which generates the response) cannot replay back this previous state in which the PUF
will issue the response again and is not able to gather information which can predict a
sufficient number of response bits.

For completeness we notice that the logically reconfigurable PUF in [KKvDL+11]
was the first to use tamper-resistant state for the purpose of reconfiguring all the CPRs
together.

3.1 Implementation
We propose to merge a Red-Black Tree [CLR+01, Bay72] and an Authenticated Search
Tree [BLL00] to construct a data structure which can be stored in public storage and
which integrity and freshness can be verified using a small O(λ) sized tamper-resistant
state inside the TCB of the PUF. The tree structure records the hashes of each of the
challenges with their counter values.

For a new challenge c, the potentially untrusted tree structure must provide to the
TCB (by using its authenticated search tree structure) a “proof of non-existence” for c so
that the TCB allows a response for c to be computed. The tree needs to be updated with
c and its counter value. Here, the rotation operation of the Red-Black Tree [CLR+01]
structure of the tree is used to keep the tree balanced. This means that the depth of the
tree will be proportional to the log of the number of nodes in the tree, for any access
pattern.

For an already used challenge c as input, the tree structure must provide to the TCB
(by using its authenticated search tree structure) a “proof of integrity and freshness” for
Hash(c) and its most recent counter value E(c), see Definition 4. The TCB will check
whether E(c) 6= 0 in which case it allows a response for c to be computed.

Figure 2 shows the proposed design. It consists of a public software interface with
public memory/state and a hardware TCB which contains the PUF functionality based on
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Figure 3: The average and worst-case latency for serving one challenge request with respect
to the depth of the RB Tree.

manufacturing variations and a small O(λ) sized tamper-resistant state in the form of the
root-hash of the tree. Each node in the tree structure contains the hash value of a used
challenge c, the counter value associated with that challenge to indicate the number of
times this challenge can still be used before being erased, three pointers pointing to its
parent and its two children (if existing), and the color and hash value of this node; the
hash is computed over Hash(c), counter and the hash values stored in its children. The
hashes are used to prove non-existence or integrity and freshness.

Intuitively, the complete working is as follows: the software interface receives a challenge
request and sends sufficient information from the untrusted memory to the TCB for
verification. If the untrusted memory has been verified successfully and the requested
challenge has not been erased, the TCB will decrement the counter, evaluate the PUF
with that challenge, compute new hash values in the tree and update the trusted root hash
value. With the new hash values computed by the TCB, the interface will update the
untrusted memory accordingly. More details of the interaction between the untrusted part
and the TCB is provided in Appendix A, together with the pseudocodes in Appendix B.

3.2 Evaluation

The proposed architecture has been implemented assuming an “ideal” noiseless strong
PUF (we only assume adversaries with black box access and do not assume adversaries
with side channel information, hence, the attacks of [TDF+14] does not apply). Due to
the fixed length of the inputs to the hash function, we decided to build a one-way function
from AES-128 by the Davies-Meyer construction [MvOV96, AES01]. We measured the
performance of the proof of concept for challenge initialization (each challenge adds a new
node in the tree) and response extraction (all challenges are existing in the tree) separately.
Figure 3 illustrates the average and worst-case latency of serving one request with respect
to the depth of the RB-tree. We can see that the latency grows linearly with respect to the
depth of the RB tree, which shows that the complexity of search, verification and update
operations is O(lg(n)), where n is the number of nodes in the tree.
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4 Physical Erasable PUFs based on Nanotechnology and
Memristors

In this section, we investigate two physical erasable PUF realizations by exploiting unique
properties realized in nano devices. We describe two erasable PUF constructions where a
physical erase operation is irreversible and cannot be controlled by any party. We also
allow free access to arbitrarily characterize CRPs of these two erasable PUF constructions
while retaining their security properties.

First, we briefly introduce the memristor—the fundamental nano device chosen for
realizing physically erasable PUF constructions—and the nano crossbar; then we presents
two memristor and nano crossbar enabled physical erasable PUFs.

4.1 Memristors and Crossbars
A memristor is a two terminal non-volatile nano memory element. The memristor switches
between high resistance state (HRS) and low resistance state LRS by applying a relatively
large negative/positive potential difference (VSET/VRESET as shown in Fig. 4 (c)) between
the bottom electrode and top electrode, marked as ‘+’ in Fig. 4 (b). The growth and
disruption of filamentary conductive paths inside of insulating dielectrics are responsible
for this switching behavior.

The HRS and LRS are typically treated as two logic states for storing digital informa-
tion [YSS13, WS15]. To read out the logic states, a small voltage as illustrated in Fig. 4
(c) is applied and the current is sensed and compared with a reference current, if the
readout current is higher, a LRS is determined, otherwise, a HRS is determined. Notably,
for electric-field-induced bipolar switching, a small electric-field corresponding to a small
potential difference across the memristor is inadequate to move filaments to change its
resistance [YSS13]. Therefore, a small readout potential difference applied across the top
and bottom electrode will not disturb its resistance. The non-volatility of a memristor
relies on the fact that the resistance of the memristor remains unchanged when power is
turned off. The memristor is a promising NVM candidate due to its smaller footprint,
faster switching speed, higher endurance, lower power consumption and longer retention
time.

Memristors are increasingly considered to be integrated with a simple crossbar ar-
chitecture for memory applications. The two-terminal memristive device based crossbar
array offers opportunities such as 3D integration, Field Effect Transistor (FET) fabrication
compatibility, low power operation, and memory with a resistive nature rather than the
traditional capacitance-based storage. A crossbar array—see Fig. 5 (a)—comprises of
two layers of parallel electrodes that are crossed perpendicularly, they act as word-lines
and bit-lines respectively. A memristor at each crosspoint acts as a switch, which can be
programmed to the low resistance state (LRS) or high resistance state (HRS) representing
either a logic “1” or “0”.

Although compact and 3D stackable crossbar array memory structure enables storing
super high information content (SHIC) in a small area, integrating a switching memristor
into the crossbar array faces a challenge posed by sneak path (leakage) current that
prevents the correct state (LRS and HRS) readout of individual memristors in large-size
crossbars. The source of sneak-path currents is shown in Fig. 5 (a). We can see that,
besides the desired read current, there are many current paths—one such current path is
shown—flowing into the selected bit-line blurring the desired read current. Notably, the
sneak path currents need to pass through at least three cells in the array. In extreme case
shown in Fig. 5 (a), all memristors are in LRS except the selected one, we can see that
sneak path currents are dominant in this context, because the HRS/LRS ratio are always
high, eg., 100 [JKN+14].
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Figure 4: (a) Photomicrograph and cross-sectional view of fabricated memristors. (b)
RESET and SET illustration of the memristor. RESET switches the memristor from
LRS to HRS and is performed by applying a positive voltage VRESET. SET switches the
memristor from HRS to LRS and is performed by applying a negative voltage VSET. (c)
The current-voltage characteristic of a memristor we fabricated where VSET = −1.5 V and
VRESET = 2.5 V.

To enable large-size and purely passive crossbar arrays to create high density information
storage capability, there are a number of solutions that can be adopted [GKAS+16]. For
example, a memristor with self-rectifying behavior significantly suppresses the sneak path
currents. For memristors, such as that in Fig. 4, cannot suppress sneak path currents by
themselves, a one-selector-one-memristor structure (1S1M) [JKN+14] can be adopted to
greatly suppress sneak path currents while keeping the high density property of a crossbar
array. The selector can be simply treated as a special diode that exhibits two directional
volatile switching with large resistance ratio, high turn on current and steep turn on slope
as depicted in Fig. 5 (c) [JKN+14].

4.2 Random Variations
A memristor stores information as different resistance states, the resistance is readout by a
small applied voltage without disturbing its resistance. However, the readout margin—the
capability of distinguishing two logical states, ‘0’/‘1’—among different states is influenced
by resistance variations. As for memristors, the resistance variation is not only from
variations in geometry—eg. thickness, doping—determined by uncontrollable fabrication
process variations but also from cycle-to-cycle (C2C) variation due to the random locations
of filaments in the memristor—these metal filaments are formed and disrupted during
HRS/LRS reprogramming [YSS13, WS15, GRAS+16]. In other words, the HRS/LRS
resistance of a memristor varies once it is reprogrammed. As a consequence, these
undesirable variations decrease the readout margin, and hence result in performance
degradation when the memristor is used as a memory element. Therefore, device engineers
always try to mitigate such variations.

Conversely, security applications embrace truly random variations. The scaling down
to nano region provides more randomness to build physical unclonable functions. The
high information density yields more response bits from a limited area. Moreover, the
C2C variation is a unique property of memristors compared with CMOS devices. Notably,
the conductivity in HRS is dominated by the tunneling across nano-gaps, therefore, slight
location variations of nano-gaps converts to significant resistance variations in HRS. To
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Figure 5: (a) Crossbar architecture. (b) The IV-characteristic of a memristor with self-
rectifying behavior to suppress sneak path currents. (c) The IV-characteristics of a normal
memristor—as in Fig. 4 (c), a two terminal selector, and the 1S1M structure, respectively.
The 1S1M significantly suppresses the sneak path currents while still allowing the serially
connected memristor being easily programmed, hence retains the high density of the
crossbar without sacrificing the performance of the memristor.

validate the obvious C2C variation in HRS, we fabricated a number of memristors and
tested them. A 50 nm thin film of SrTiO3 is deposited on a Pt/Ti/SiO2 (50:10:300
nm) pre-patterned Si substrate using RF magnetron sputtering at room temperature,
from a stoichiometric ceramic target. Top Pt/Ti (50:10 nm) electrodes are fabricated
by three-step photolithography/lift-off processes and deposited by using electron beam
evaporation at room temperature. A detailed description of fabrication is in [NWK+15].
The photomicrograph of fabricated memristors are shown in Fig. 4 (a). The characterization
of devices was performed by pulse transient measurements using a sourcemeter (Agilent
2912A). The current-voltage characteristic of a memristor from measurements is shown in
Fig. 4 (c). From our measurements, we can easily observe C2C variations in Fig. 6, where
the memristor exhibits different resistance values after each programming cycle.

Foregoing the high information density offered by crossbar arrays, the variations
introduced from process variations and C2C variations enable the physical erasable PUF
designs. In the following, we present two different erasable PUF realizations that meet the
properties of physical erasable PUFs defined in Section 2.3.

4.3 Erasable memristor SHIC-PUF (mrSHIC-PUF)
The SHIC-PUF [RJB+11] is a weak PUF in terms of the number of CRPs, but it is resilient
to modeling attacks because: i) its response bits are generated from independent entropy
sources; ii) its higher information density offered by the use of a nano crossbar array; iii)
the full characterization of all CRPs of a SHIC-PUF is prevented by intentionally slowing
down readout speed. In SHIC-PUF, a diode is employed at the crosspoint of a crossbar and
therefore cannot be reprogrammed. To enable CRPs to be erasable, a breakdown operation
is introduced to the diode to change its IV (current-voltage) characteristics [RJA11].
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Figure 6: Cycle-to-cycle (C2C) variation. The ROFF/HRS variation of an individual
memristor for 20 cycles. Data is experimentally obtained from our fabricated memristor
in Fig. 4. A factor of two in C2C variation can be observed. Note that even larger C2C
variations have been reported (Fig. 8 in [CCZ+15]).
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Figure 7: mrSPUF architecture. (a) Simplified mrSPUF architecture. All the memristors
are in the LRS/HRS state. The shaded programming control circuit comprises of the
row programming control circuitry in (b) and column programming control circuitry in
(c), which is employed to program memristors in the nanocrossbar array before it acts
as a PUF and facilitates reconfigurability of mrSPUF by subsequent reprogramming to
refresh CRPs of mrSPUF to transform it into a new PUF instance. In contrast to the
programming control circuit, the top decoder block and left analog multiplexers block,
CM-ROs and counters enables the stimulation by a challenge and the extraction of a
corresponding response. A challenge encoded as a vector of binary values (bits) is used to
provide the address bits for both the analog multiplexers block and the decoder block. (d)
CM-RO. Each current mirror starves only an inverter in the RO structure, where the bias
memristor for each current mirror, Mi, is selected from the nanocrossbar array.
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However, this erasure is only possible one-time for a given diode. In addition, the sneak
path currents are significantly increased as the rectification behavior of the diode reduces
after breakdown operation; consequently, preventing the readout of information to enable
further response evaluations.

Using one-selector-one-memristor (1S1M) structure to replace the diode in the crossbar
of the SHIC-PUF [RJB+11] realizes a memristor enabled physical erasable SHIC-PUF
(mrSHIC-PUF) by exploiting C2C variations. This PUF architecture inherits the strong
PUF property of the SHIC-PUF and further enables physically erasable individual CRPs.
The mrSHIC-PUF avoids deterioration in readability of individual memristors due to sneak
path currents after performing the erasure and further overcomes the one-time erasure
limitation in [RJA11].

To erase a single CRP, one can simply reprogram the memristor in the 1S1M structure.
For example, if the HRS resistance is treated as the entropy source to generate a response
bit, then to erase such a response, one can SET the memristor from HRS to LRS first,
then RESET it from LRS to HRS as illustrated in Fig. 4 (b). Due to the C2C variations,
the current resistance in HRS is different from the previous resistance in HRS as shown
by our measurements in Fig. 6. Consequently, a subsequent response from the same
challenge—address of the nano crossbar—becomes unpredictable even if the previous
response is known. Most notably, the erase operation is achieved by altering a physical
property of a memristor, and the erasure is irreversible.

The mrSHIC-PUF also benefits from the high density of the nano crossbar and the
intentionally slow readout speed inheriting from SHIC-PUFs. Considering a readout speed
of 100 bits/second as in [RJB+11], while allowing uninterrupted readout for an adversary,
2.3× 1010 bits of information is needed to be stored in a passive nano crossbar to ensure a
period of more than ten years to readout all CRPs. This volume of information is indeed
practical by using a high performance selector with experimentally reported selectivity of
1010 in the 1S1M structure [JKN+14]. In [JKN+14], 4Mb 1S1M nano crossbar has been
experimentally demonstrated. Under the 100 bits/second intentionally slow readout speed,
it will already take more than 11 hours to acquire all CRPs by an adversary.

The next realization of a physically erasable PUF mitigates the requirement of an
intentionally slow readout speed of a mrSHIC-PUF, which requires careful constructions
of the nano crossbar to ensure adequately slow readout speed.

4.4 Erasable mrSPUF
4.4.1 mrSPUF Architecture

The mrSPUF shown in Fig. 7 was proposed by Gao et al. [GRAS+15a]. The mrSPUF
architecture combines a nanocrossbar and current mirror controlled ring oscillators (CM-
ROs) to realize not only a strong PUF but also a reconfigurable PUF, where the variations
exploited is sourced not only from fabrication but also from programming operations
induced C2C variations. Initially, all memristors are programmed to HRS. In the mrSPUF,
2× i memristors in the same column are selected. Each selected memristor is then used to
control the current in a single current mirror and consequently to starve the current in
each inverter in the ring oscillator, to achieve a current starved ring oscillator structure
called a current mirror controlled ring oscillator (CM-RO) as illustrated in Fig. 7 (a)
and (d). Therefore, the delay time of an inverter in a CM-RO is a direct function of the
current through the memristor selected to starve it, in turn the delay time is related to
the resistance of the memristor. Consequently, the oscillation frequency of a CM-RO is a
function of i selected memristors and measured using a counter. Subsequently, a response
bit is generated by comparing the outputs from the two counters.

In general mrSPUF has two CM-ROs, each RO has i inverters, and 2× i memristors
are randomly selected to configure each CM-RO. So the total number of CRPs (NTCRP)
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Figure 8: Each memristor can be reprogrammed and exhibits the inherent C2C variations,
which makes the mrSPUF reconfigurable. All the randomly selected memristors (marked as
gray) to configure the CM-RO in mrSPUF are from the same column (shadowed column).
This feature enables a mrSPUF to act as an erasable PUF. Individual memristors selected
by a challenge corresponding to a specific response can be re-programmed. Given the
C2C variations of the memristors, reprogramming will ensure that the new resistance
in HRS/LRS is, once again, non-deterministic. Hence, the response bits determined by
comparisons of memristors’ resistance are unpredictable after reprogramming.

in this configuration is estimated as:

NTCRP =
N ×

(
M
i

)
×

(
M−i
i

)
2 = O(N ·M i · (M − i)i) (2)

where N is the number of columns, M is the number of rows. Therefore, the total number
of CRP grows exponentially in i making mrSPUF a strong PUF. According to equation 2,
one can also calculate the number of inverters in CM-RO or the nanocrossbar array size
needed based on the desired number of CRPs. For example, using a nanocrossbar array
with equal number of rows and columns (N = M = 100) and a 5-stage (i = 5) CM-RO,
we can acquire 2.1811× 1017 CRPs. Then it is estimated that it will take over 690 years
for an attacker to fully readout all possible CRPs [GRAS+15a].

The mrSPUF is initially demonstrated to be a reconfigurable PUF [GRAS+15a]. To
enable the mrSPUF to behave as a reconfigurable PUF, additional circuitry is not necessary.
A mrSPUF can be reconfigured by reprogramming all the memristors in the nanocrossbar.

4.4.2 Partial Reconfigurability

Switching the memristors selected by a challenge from the HRS state to the LRS, and
then switching it back from the LRS state to the HRS state again, using the programming
control circuitry shown in Fig. 7, will endow physical erasability to a mrSPUF. However,
the memristors selected by each challenge are not as independent as in the mrSHIC-PUF.
However, note that each challenge applied to mrSPUF only selects 2× i memristors in the
same column as visualized in Fig. 8. This feature enables the mrSPUF to act as a partially
erasable/reconfigurable PUF even if the CRPs are not totally independent of each other
because the reconfiguration of response bits extracted from one column does not influence
the response bits generated from other columns.

4.4.3 Security

We notice that mrSPUF produces responses in the same way as a ring oscillator PUF,
and a ring oscillator PUF can be perfectly modeled by sorting algorithms which sort the
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frequencies produced by all possible ring oscillator pairs [RSS+10]. As noted in the security
analysis in the original mrSPUF paper [GRAS+15b], an adversary with knowledge of
mrSPUF structure and full control of the PUF still have two main difficulties in modeling
a single column mrSPUF (note that each column produces independent CRPs, so this
analysis can be easily extended to a multi-column mrSPUF): firstly, an adversary is not
able to directly exploit the responses to compare the frequencies of two CM-ROs which
share any common memristor cells, because two non-overlapping groups of memristor cells
in the same column have to be selected for producing a response; secondly, even if the
adversary can somehow figure out the sorted order of the delay values corresponding to
each individual memristor cells, it still cannot always successfully predict the responses,
because knowing the order of individual delay values does not directly teach how to
compare two sums of delay values from two non-overlapping groups. A more detailed
security analysis can be found in [GRAS+15b]. The best known attack to perfectly model
a single column mrSPUF is to sort all frequencies produced by

(
M
i

)
possible ring oscillators,

which yields a worst-case CRP complexity of O(M i · i · logM) given full control of the
PUF [CLR+01, RSS+10].

In addition, even if an adversary is able to use an unknown attack to model mrSPUF,
we can still limit the modeling capacity of the adversary by reconfiguring CRPs before
each protocol invocation and after each protocol ending. In this way, what needs to be (or
has been) modeled will have been erased completely.

5 Conclusion
Motivated by the “PUF re-use model”, we investigated two ways of implementing erasable
PUFs, namely programmable logically erasable PUFs and physical erasable PUFs. The
programmable logically erasable PUF (PLayPUF) acts as an interface to deny the access
to erased CRPs. As an additional property, we gain programmability for free, which
means that users can precisely define a-priori how many times a given challenge can be
accessed in the future before erasure. The proposed physical erasable PUFs utilize the
cycle-to-cycle variation of memristors to alter one or one group of CRPs physically. Both
of them advance the current state-of-the-art in erasable PUFs research, which is crucial in
realizing secure PUF-based cryptographic protocols.

Moreover, to formalize our study and locate erasable PUFs together with other PUF
variants in the overall PUF landscape, we introduce a formal definitional framework
of PUFs, which captures the properties of strong/weak PUFs with/without state and
with/without erasability.
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(c,ctr’), ctr, 
RotInfo, VerPath

(r, NewHash) 
or Exp

Interface Trusted Computing Base

1. Receive a challenge c and a 
     counter value ctr.
2. Lookup (c,ctr’) in RB-tree or 
    insert a new node (c, ctr) if it 
    does not exist in the tree.
3. Send VerPath proving either 
    non-existence or memory 
    integrity and freshness, and 
    send rotation information 
    RotInfo if RB-tree needs to be 
    rebalanced. 

4. Verify the proof VerPath by using 
     root hash in TCB.
5. If fail, raise an exception flag Exp.
6. Otherwise, r = PUF(c), set the 
     counter of challenge c to the 
     minimum of ctr’-1 and ctr 
     and compute the new hash values 
     along the path for the modified 
     RB-tree according to RotInfo.
7. Send exception Exp, or response r 
    and new hash values NewHash 
    back to the interface. 

8. Update the hash values in RB-
    tree.
9. Output response or exception.

Figure 9: The protocol between software information and hardware TCB of a Programmable
Logically Erasable PUF.

A The Interface of a PLayPUF
Part of a PLayPUF is an interface which consists of a public part and a TCB part as
depicted in Fig. 9. We remind the reader that the TCB part consist of a tamper-resistant
and private PUF together with tamper-resistant additional circuitry which includes non-
volatile state, see Fig. 2.

When a PLayPUF receives from a user (1) a challenge c with counter ctr as input, the
PLayPUF will first use the public part of the interface circuitry to (2) lookup challenge c
in the RB tree. The authenticated tree structure of the RB tree allows the public part of
the interface to either compute a proof of non-existence of c (if c does not exists in the
tree) or a proof of integrity and freshness of the retrieved c with its current counter value
ctr′ (if c already exists in the tree). A proof V erPath consists of the hashes of the siblings
of the path from c (if it exists) or from the leaf at which the new node is inserted (if c does
not exist) to the root of the RB tree together with the values of the nodes on the path.
When such a proof is (3) transmitted and (4) received by the TCB part of the interface,
then the TCB part of the interface is able to hash all this information together in order
to reconstruct the root of the tree, which it can then verify against its own copy in its
tamper-resistant non-volatile state. If (5) verification fails or ctr′ = 0 (in case c already
exists in the tree), then either the public memory of the public interface was corrupted
or by our definition of programmable logical erasability c must be considered erased; in
either case an exception flag ⊥ is returned.

If c did not exist, then besides a proof of non-existence also (3) rotation information
is transmitted for inserting a new node (c, ctr). This rotation information is needed for
maintaining the red-black invariant of the RB tree such that its balance remains guaranteed.
It contains how many tree rotations happened (it cannot be more than two for one insertion
operation), the direction of each rotation and the position of the tree rotation, below we
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Figure 10: Insertion of a new node 4.

explain a detailed example in Fig. 10. The rotation information can be computed by the
public part of the interface as the complete RB tree is stored in its public memory; the
public interface is in charge of maintaining the balance. Of course an adversary may try
to corrupt this, but this will not have any consequences for the security/unclonability of
the PLayPUF; the red-black structure is only added for improved performance in case
of worst-case access patterns. The TCB part does not have access to the whole RB tree
and is therefore informed by the public part of the interface how to recompute the root
hash such that it corresponds to the newly balanced/rotated tree. Besides the rotation
information itself, the public part if the interface also needs to transmit a proof of integrity
and freshness of the couple of nodes on which the rotation depends (which turns out to
already be present in V eriPath). All of this is contained in RotInfo which is (3) sent to
the TCB.

If all verifies correctly in (4-5), then the TCB will (6) set c’s counter value to the
minimum of ctr and ctr′ − 1 (where ctr′ =∞ if c did not already exist), update the root
hash in TCB by using the rotation information and/or new value of the node representing
c, evaluate the PUF with this c, and (7) reply to the public interface the response r from
the PUF. In our design we also let the TCB (7) transmit the updated hash information
NewHash to the public part of the interface (which could also have computed this itself).
Next, the public interface will (8) update the RB tree in its public memory accordingly.
and (9) output the response r of the PUF to the user or simply raise an exception flag.

Example Rotation. Fig. 10 depicts an example of consecutive operations in Red-Black
Tree Insert-Fixup, see [CLR+01]. (a) A new node 4 is inserted. The dashed path in (a) is
V erPath. All of the information in nodes 5, 7, 2 and 11 are included in V erPath, together
with the hash values of nodes 8, 1 and 14, called the sibling’s hash values. In order to
verify non-existence, we need to reconstruct the root hash using V erPath and compare
with the trusted root hash stored in the TCB. In addition, we need to check whether new
node 4 is added at the correct location, which means 2 < 4 < 5, and node 5 has no left
child. Here, case 1 in [CLR+01] applies, so node 5 and 7 are recolored but the structure
remain the same. There are six possible cases in a RB tree fixup, in which only case 2, 3,
5 and 6 in [CLR+01] will rotate the structure of the tree; this example shows three cases
(the other three cases are similar in that they are mirrored versions of the three in the
example). In (b),(c) and (d), the nodes in dashed blocks are the nodes which hash values
need to be updated; the transition from (b) to (c) is a rotation and the transition from (c)
to (d) is a rotation. Note that, V erPath already provides all the information needed for
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updating these hash values. In this example, in order to compute the hash of node 2, 7
and 11 in (d), we need the hash value of node 5, which was updated in case 1 during the
transition from (a) to (b), and the hash values of nodes 1, 8 and 14, which are exactly the
sibling’s hash values that are contained in V erPath.

B Pseudocodes of PLayPUF Implementation
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Algorithm 1 RB-Tree-Interface. (Note that this code is modified based on RB-Insert
in [CLR+01]. The lines added by us are indicated by *.)
1: procedure RB-Tree-Interface(Challenge C, Counter ctr, Red-Black Tree T )
2: x = T.root
3: y = T.nil
4: z = T.nil . *
5: z.key.ch = C . *
6: i = 0 . *
7: while x 6= T.nil do
8: y = x
9: if z.key.ch < x.key.ch then
10: x = x.left
11: else if z.key.ch > x.key.ch then
12: x = x.right
13: else
14: Query.ch, Query.ctr, Query.lhash, Query.rhash = (x.key.ch, x.key.ctr,

x.left.key.hash, x.right.key.hash) . *
15: Return Query, ctr, NULL, i, VerPath . *
16: end if
17: VerPath[i].ch, VerPath[i].ctr, VerPath[i].shash = (x.p.key.ch, x.p.key.ctr,

x.sibling.hash) . *
18: i = i + 1 . *
19: end while
20: VerPath[i].ch, VerPath[i].ctr, VerPath[i].shash = (x.p.key.ch, x.p.key.ctr,

x.sibling.hash) . *
21: z.p = y
22: if y == T.nil then
23: T.root = z
24: else if z.key.ch < y.key.ch then
25: y.left = z
26: else
27: y.right = z
28: end if
29: z.left = T.nil
30: z.right = T.nil
31: z.color = RED
32: RotInfo ← RB-Insert-Fixup(T, z)
33: z.key.ctr = ∞ . *
34: Query.ch, Query.ctr, Query.lhash, Query.rhash = (z.key.ch, z.key.ctr,

z.left.key.hash, z.right.key.hash) . *
35: Return Query, ctr, RotInfo, i, VerPath . *
36: end procedure
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Algorithm 2 RB-Insert-Fixup. (Note that the code is modified based on RB-Insert-
Fixup in [CLR+01]. The lines added by us are indicated by *. Also, the pseudocodes of
Left-Rotate and Right-Rotate can be found in [CLR+01]).
1: procedure RB-Insert-Fixup(Red-Black Tree T, Newly Inserted Node z)
2: Initialize RotInfo.case1, RotInfo.case2, RotInfo.case3, RotInfor.case4, Rot-

Info.case5, RotInfo.case6 to 0 .
*

3: while z.p.color == RED do
4: if z.p == z.p.p.left then
5: y = z.p.p.right
6: if y.color == RED then . Case 1
7: z.p.color = BLACK
8: y.color = BLACK
9: z.p.p.color = RED
10: z = z.p.p
11: RotInfo.case1 = RotInfo.case1 + 2 . *
12: else
13: if z == z.p.right then . Case 2
14: z = z.p
15: LEFT-Rotate(T, z)
16: RotInfo.case2 = 1 . *
17: end if
18: z.p.color = BLACK . Case 3
19: z.p.p.color = RED
20: Right-Rotate(T, z.p.p)
21: RotInfo.case3 = 1 . *
22: end if
23: else
24: (same as then clause with “right” and “left” exchanged, and “Case 1, 2, 3”

replaced with “Case 4, 5, 6”)
25: end if
26: end while
27: T.root.color = BLACK
28: Return RotInfo . *
29: end procedure
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Algorithm 3 TCB
1: procedure TCB(Query Query, Counter Value ctr, Rotation Information RotInfo,

Length of Proof N, Proof VerPath, Trusted Root Hash root)
2: if Query.ctr == 0 then
3: Exp = 1
4: Return Exp, NULL, NULL
5: else
6: Exp ← Verify-Proof(N, VerPath, Query, root)
7: if Exp == 1 then . Verification failed
8: Return Exp, NULL, NULL
9: else . Passed verification
10: R ← PUF(Query.ch)
11: NewHash, root ← Update-Hash(N, VerPath, Query, ctr, RotInfo)
12: Return Exp, R, NewHash
13: end if
14: end if
15: end procedure

Algorithm 4 Verify-Proof
1: procedure Verify-Proof(Length of Proof N, Proof VerPath, Query Query, Trusted

Root Hash root)
2: if Query.ctr ==∞ then . Newly added node
3: h = 0
4: else . Existing node
5: h = Hash(Query.ch || Query.ctr || Query.lhash || Query.rhash)
6: end if
7: ch = Query.ch
8: for i← N − 1, 0 do
9: if ch < V erPath[i].ch then
10: h = Hash(V erPath[i].ch || V erPath[i].ctr || h || V erPath[i].shash)
11: else
12: h = Hash(V erPath[i].ch || V erPath[i].ctr || V erPath[i].shash || h)
13: end if
14: ch = V erPath[i].ch
15: end for
16: if h == root then
17: Exp = 0
18: else
19: Exp = 1
20: end if
21: Return Exp
22: end procedure



28 Efficient Erasable PUFs from Programmable Logic and Memristors

Algorithm 5 Update-Hash
1: procedure Update-Hash(Length of Proof N, Proof VerPath, Query Query, Counter

Value ctr, Rotation-Information RotInfo)
2: if Query.ctr =∞ then . Newly added node
3: j = N − 1
4: else . Existing node
5: j = N − 2
6: end if
7: Query.ctr = min(Query.ctr − 1, ctr)
8: i = 0
9: NewHash[i+ +] = Hash(Query.ch || Query.ctr || Query.lhash || Query.rhash)
10: ch = Query.ch
11: if RotInfo 6= NULL then
12: while i < (RotInfo.case1 +RotInfo.case4) do . Case 1 and 4
13: (ch,NewHash, i, j)← Hash-No-Rotation(ch, V erPath,NewHash, i, j)
14: end while
15: if RotInfo.case2 == 1 then . Case 2
16: NewHash[i] = Hash(V erPath[j − 1].ch || V erPath[j − 1].ctr ||

V erPath[j − 1].shash || NewHash[i− 1])
17: NewHash[i + 1] = Hash(V erPath[j − 2].ch || V erPath[j − 2].ctr ||

V erPath[j].shash || V erPath[j − 2].shash)
18: ch,NewHash[i + 2] = V erPath[j].ch,Hash(V erPath[j].ch ||

V erPath[j].ctr || NewHash[i] || NewHash[i+ 1])
19: else if RotInfo.case3 == 1 then . Case 3
20: NewHash[i] = Hash(V erPath[j].ch || V erPath[j].ctr ||

V erPath[j].shash || NewHash[i− 1]
21: NewHash[i + 1] = Hash(V erPath[j − 2].ch || V erPath[j − 2].ctr ||

V erPath[j − 1].shash || V erPath[j − 2].shash)
22: ch,NewHash[i + 2] = V erPath[j − 1].ch,Hash(V erPath[j − 1].ch ||

V erPath[j − 1].ctr || NewHash[i− 2] || NewHash[i− 1])
23: else
24: (same as then clauses for case 2 and 3 with the order of two children’s hash

values exchanged)
25: i = i+ 3
26: j = j − 3
27: end if
28: end if
29: while j ≥ 0 do . No Fixup
30: (ch,NewHash, i, j)← Hash-No-Rotation(ch, V erPath,NewHash, i, j)
31: end while
32: root = NewHash[i− 1]
33: Return NewHash, root
34: end procedure
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Algorithm 6 Hash-No-Rotation
1: procedure Hash-No-Rotation(Challenge ch, Proof VerPath, NewHash NewHash ,

Index for NewHash i, Index for Proof j)
2: if ch < V erPath[j] then
3: ch,NewHash[i + +] = V erPath[j].ch,Hash(V erPath[j].ch ||
V erPath[j].ctr || NewHash[i− 1] || V erPath[j].shash)

4: else
5: ch,NewHash[i + +] = V erPath[j].ch,Hash(V erPath[j].ch ||
V erPath[j].ctr || V erPath[j].shash || NewHash[i− 1])

6: end if
7: j −−
8: Return ch,NewHash, i, j
9: end procedure

Algorithm 7 Update-Tree
1: procedure Update-Tree(Rotation Information RotInfo, New Hash NewHash, Newly

Inserted Node z, Counter Value ctr, Red-Black Tree T )
2: z.key.hash = NewHash[0]
3: z.key.ctr = min(ctr, z.key.ctr − 1)
4: x = z.p
5: i = 1
6: if RotInfo 6= NULL then
7: for i← 1, (RotInfo.case1 +RotInfo.case4) do . Case 1 and 4
8: x.key.hash = NewHash[i]
9: x = x.p
10: end for
11: if RotInfo.case3 == 1orRotInfo.case6 == 1 then . Case 2,3,5,6
12: x.key.hash = NewHash[i]
13: x.sibling.key.hash = NewHash[i+ 1]
14: x.p.key.hash = NewHash[i+ 2]
15: x = x.p.p
16: i = i+ 3
17: end if
18: end if
19: while x 6= T.root do
20: x.key.hash = NewHash[i+ +]
21: x = x.p
22: end while
23: end procedure
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