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Abstract

O�set Public Permutation Mode (OPP) by Granger et al. is a one-pass authen-
ticated encryption scheme supporting associated data (AEAD scheme). Leveraging
an error in analysis of the scheme, a chosen plaintext attack that creates a forgery
was discovered. This attack makes no assumptions about the underlying tweakable
blockcipher while having negligible complexity requirements and high probability
of success. An implementation of the attack is also provided.
Keywords: symmetric cryptography, block cipher mode of operation, authenti-
cated encryption, forgery attack, distinguishing attack.

1 Introduction

Authenticated Encryption (AE) refers to providing both con�dentiality and authentic-
ity. These schemes are symmetric, meaning that a single key is used for both encryption
and decryption. Often it is required that such scheme supports Associated Data (also
called Header) � data whose authenticity is ensured but which are not encrypted (such
schemes are AEAD schemes). These schemes have huge practical applications, providing
a simple interface to accomplish two security goals.

In [1] a new single pass AEAD scheme named O�set Public Permutation Mode
(OPP) was published. This scheme o�ers high speed of encryption (peaking at 0.55
cycles per byte) and full paralelization. If such scheme also had a valid proof of security,
it would be very attractive for all applications.

Unfortunately, the authors of OPP made an error in their analysis. This error lead to
a chosen plaintext attack with negligible complexity requirements and high probability
of success. This attack is presented in this paper. Originally, this attack was discovered
in [2] (in Slovak). This paper completes and expands it.

2 Notation

Denote by F2n the �nite �eld of order 2n with n ≥ 1. A b-bit string X is an element
of {0, 1}b (or equivalently of the F2-vector space Fb2). The length of such string X is
denoted by |X| (for X ∈ {0, 1}b holds |X| = b). The bit string of length 0 is denoted
by ε. The concatenation of two bit strings X,Y is denoted by X‖Y . Symbol ⊕ denotes
bit-wise XOR.

Given a b-bit string X = x0‖ . . . ‖xb−1 we de�ne firstl (X) = x0‖ . . . ‖xl−1 (for 1 ≤
l ≤ b). Denote padAb (Y ) the padding function:

padAb (Y ) = Y ‖A‖0b−|Y |−|A|.

The parameters b, k, n, τ ≥ 0 denote block size, key lenght, nonce length and tag
length, respectively. In OPP it is required that n ≤ b− k − 1.
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3 Preliminaries

3.1 Tweakable Blockciphers

Let T be a set of "tweaks". A tweakable blockcipher E : {0, 1}k × T × {0, 1}b →
{0, 1}b is a function such that for every K ∈ {0, 1}k and every tweak T ∈ T func-
tion E(K,T, .) : {0, 1}b → {0, 1}b is a permutation. Inverse permutation is denoted
E−1(K,T, .).

A tweakable permutation π : T {0, 1}b → {0, 1}b is a function such that for every
T ∈ T function π(T, .) : {0, 1}b → {0, 1}b is a permutation.

Granger et al. [1] proposed Mixed tweakable pseudorandom permutation (MTPRP)
security as a security de�nition for a tweakable blockcipher. It is a middle ground be-
tween tweakable pseudorandom permutation (TPRP) notion and strong TPRP (STPRP)
notion.

• In the former, the adversary is permitted encryption queries only.

• In the latter, the adversary is also permitted decryption queries.

• In MTPRP, we utilize a partition of tweakspace, say T = T0 ∪ T1. For tweaks
in T0 the adversary can only ask encryption queries while for tweaks in T1 the
adversary can also ask decryption queries.

The goal of the adversary is to distinguish between a tweakable blockcipher with
randomly chosen key and a randomly chosen tweakable permutation. We say that E is
a secure MTPRP if the advantage:

AdvMTPRP (A) =
∣∣Pr
[
AE = 1

]
− Pr [Aπ = 1]

∣∣
is negligible for every bounded adversary A, where AE = 1 denotes that the adversary
interacted with a tweakable blockcipher with randomly chosen key and the adversary
returned it interacted with a tweakable blockcipher with an unknown key. The symbol
Aπ = 1 denotes that the adversary interacted with a randomly chosen tweakable per-
mutation and the adversary returned it interacted with a tweakable blockcipher with
an unknown key.

3.2 Nonce-based Authenticated Encryption (with Associated Data)

Denote the associated data H and the key K. OPP employs a nonce � this value
should not be repeated for a given key, although an adversary can know and predict it
(denoted N). A tag is a short string appended to the ciphertext (denoted T ). Formally,
an abstract Authenticated Encryption with Associated Data (AEAD) scheme utilizing
nonces operates as follows:

EK(N,H,M) = (C, T ),

DK(N,H,C, T ) = M/⊥.

If for given (N,H,C,T) there doesn't exist a messageM such that EK(N,H,M) = (C, T )
then the decryption algorithm outputs ⊥ indicating that such ciphertext C with tag T
is invalid given nonce N , associated data H and key K.

Following [3]: an ideal counterpart to this scheme is a random oracle that for a
plaintext of length m, a nonce and associated data returns a string of random bits of
length m+ τ , where τ is the lenght of the tag.
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Distinguishing between such an oracle and a real scheme with random key is the
goal of the adversary � denoted PRIV as in [3]. The advantage of such adversary is
de�ned as:

AdvPRIVAEAD(A) =
∣∣∣Pr
[
AAEAD = 1

]
− Pr

[
A$ = 1

]∣∣∣ .
In PRIV there are additional restrictions placed on the adversary: the adversary can
only use encryption queries and cannot repeat nonces.

Granger et al. [1] relaxed these restrictions for the OPP scheme. The adversary can
use decryption queries � a random oracle would always return ⊥ (i.e. the ciphertext
with tag are always invalid). The adversary is nonce-respecting in the following sense,
citing [1], Appendix B: "Let D be a nonce-respecting AE distinguisher against OPP,
which means that it never makes an encryption query for a nonce that was used before."
Therefore, in their setting it is possible to ask multiple decryption queries with a previ-
ously used nonce, provided that only one encryption query for a given nonce was asked.
One natural restriction was added: the adversary cannot query a text for decryption
if such text was recieved as an output of an encryption query. The advantage of an
adversary is de�ned as:

AdvGrangerAEAD (A) =
∣∣∣Pr
[
AAEAD = 1

]
− Pr

[
A$ = 1

]∣∣∣ .
Granger et al. do not claim anything else about OPP. In contrast, Rogaway de�nes

a second experiment, denoted AUTH. In AUTH, the attacker interacts with real scheme
with random key. The attacker is tasked to produce a forgery � value (N,H,C, T ). If
DK(N,H,C, T ) 6= ⊥, the attacker is successful. The advantage of such adversary is
de�ned as:

AdvAUTHAEAD (A) = Pr
[
DK(AAEAD) 6= ⊥

]
.

The adversary is restricted:

• The adversary can only ask encryption queries.

• The forgery attempt cannot be an output of an encryption query.

• The adversary is nonce-respecting: two encryption queries cannot have identical
nonce.

Note that the adversary can reuse a nonce in his forgery attempt.

4 O�set Public Permutation Mode

OPP mode de�ned in [1] utilizes tweakable blockciphers. Since the attack described in
this article does not assume anything about the tweakable blockcipher, we do not need
to concern ourselves with the details of tweakable blockcipher construction. Instead, it is
assumed that a MTPRP secure abstract tweakable blockcipher is used with tweakspace
T = T0 ∪ T1 such that (X, 0, 0, 0) ∈ T0 for all X ∈ {0, 1}b (see subsection 3.1, and
assumptions of theorem 2 in [1]). The condition of (X, 0, 0, 0) ∈ T0 for all X ∈ {0, 1}b
is satis�ed: since such tweaks are used only in one line (see line 4 in function OPPAbs

in �gure 1) � such tweaks are not used in inverse direction. There are no assumptions
about T1.

The tweaks are of the form {0, 1}b−k ×N3. Calling a tweakable blockcipher encryp-
tion on plaintext P with key K and tweak (X, i0, i1, i2) is denoted by Ei0,i1,i2K,X (P ). In

similar fashion a tweakable blockcipher decryption is denoted by Di0,i1,i2
K,X (C)

OPP mode is de�ned via algorithms OPPEnc, OPPDec and OPPAbs. Algorithms
OPPEnc and OPPAbs are used in the encryption routine OPPE, algorithms OPPDec and
OPPAbs are then used in the deryption routine OPPD.
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Function OPPEnc(K,X,M):

1 M0‖M1‖ . . . ‖Mm−1 ←M,
st. |Mi| = b, 0 ≤ |Mm−1| < b;

2 C ← ε;

3 S ← 0b
;

4 for i ∈ {0, 1, . . .m− 2} do
5 Ci ← Ei,0,1

K,X (Mi);

6 C ← C‖Ci;

7 S ← S ⊕Mi;

8 if |Mm−1| > 0 then

9 Z ← Em−1,1,1
K,X (0b);

10 Cm−1 ←
first|Mm−1|

(
pad0

b (Mm−1)⊕ Z
)
;

11 C ← C‖Cm−1;

12 S ← S ⊕ pad10
b (Mm−1);

13 return C, S

Function OPPDec(K,X,C):
1 C0‖C1‖ . . . ‖Cm−1 ← C,

st. |Ci| = b, 0 ≤ |Cm−1| < b;
2 M ← ε;

3 S ← 0b
;

4 for i ∈ {0, 1, . . .m− 2} do
5 Mi ← Di,0,1

K,X(Ci);

6 M ←M‖Mi;

7 S ← S ⊕Mi;

8 if |Cm−1| > 0 then

9 Z ← Em−1,1,1
K,X (0b);

10 Mm−1 ←
first|Cm−1|

(
pad0

b (Cm−1)⊕ Z
)
;

11 M ←M‖Mm−1;

12 S ← S ⊕ pad10
b (Mm−1);

13 return M,S

Function OPPAbs(K,X,H, S, l):
1 H0‖H1‖ . . . ‖Hh−1 ← H,

st. |Hi| = b, 0 ≤ |Hh−1| < b;

2 S′ ← 0b
;

3 for i ∈ {0, 1, . . . h− 2} do
4 S′ ← S′ ⊕ Ei,0,0

K,X (Hi);

5 if |Hh−1| > 0 then

6 S′ ← S′ ⊕ Eh−1,1,0
K,X (pad10

b (Hh−1));

7 j ← dl/be+ 2;

8 return firstt
(
S′ ⊕ Eh−1,j,0

K,X (S)
)

Function OPPE(K,N,H,M):

1 X ← pad0
b−n−k (N);

2 C, S ←OPPEnc(K,X,M);

3 T ←OPPAbs(K,X,H, S, |M | mod b);

4 return C, T ;

Function OPPD(K,N,H,C, T):
5 X ← pad0

b−n−k (N);
6 M,S ← OPPDec(K,X,C);

7 T ′ ← OPPAbs(K,X,H, S, |M | mod b);

8 if T = T ′ then
9 return M
10 else

11 return ⊥

Figure 1: O�set Public Permutation Mode (OPP)
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5 The Attack

5.1 Description

The attack is described as a routine of an adversary � the adversary performs the
steps. Additionally, the adversary can query the encryption/decryption oracle. To
avoid complicated formalism this action is denoted as a function call. The task of the
adversary is to distinguish between a real oracle and a random oracle (see subsect. 3.2).

Algorithm 1: Routine creating a forgery using one chosen plaintext request.

Function CreateForgery(E , N,H, p):
1 M1 ← 02b+p;
2 C, T ← E(N,H,M1);
3 C1‖C2‖C3 ← C, st. |C1| = b, |C2| = b, |C3| = p;
4 return N,H,C1‖0p, T

A routine (see algorithm 1) that produces forgeries with signi�cant probability of
validity was discovered in [2]. A forgery consists of a nonce, a header and a ciphertext
with tag. This routine can be used for every valid header and valid nonce, so these are
speci�ed as the parameters of the routine. The last parameter, 1 ≤ p ≤ t, speci�es the
length of the last block used in the attack. To achieve optimal theoretical probability
of generating a valid forgery set p = 1.

Proposition 1. Let E be the oracle providing encryption routine of OPP using an ideal
tweakable blockcipher. Let N be a valid OPP nonce and let H be a valid OPP header.
Let 1 ≤ p ≤ t. Then the routine in algorithm 1 called with parameters E , N,H, p returns
a valid forgery with probability 2−p.

Proof. Denote the output of the query O = C1‖C2‖C3, T , where |C1| = |C2| = b and
|C3| = p.

This proof has three parts:

1. Showing that C1 decrypts to 0b.

2. Verifying that 0p (last block) decrypts to 0p with probability 2−p.

3. Given the last block (0p) decrypts to 0p, showing that the result of decryption is
not ⊥.

The �rst step is trivial, since the nonce and the key used are identical. Second step:
0p is decrypted by XOR-ing with p random bits (see line 10 in OPPDec in �gure 1). The
bits are random since it is assumed that the tweakable blockcipher used is ideal and the
tweak (X, 0, 1, 1) was not used when computing the query.

To show the third step, we only need to show that value S computed in OPPEnc/OPPDec
and used in OPPAbs is equal "in query" and "in forgery veri�cation". In query:

S = M1 ⊕M2 ⊕ (0)p10(0)b−p−2 = 0b ⊕ 0b ⊕ (0)p10(0)b−p−2 = (0)p10(0)b−p−2.

Given that 0p is decrypted to 0p in forgery veri�cation:

S = 0b ⊕ (0)p10(0)b−p−2 = (0)p10(0)b−p−2.

Since parameters in OPPAbs are identical "in query" and "in forgery veri�cation",
the output of OPPAbs when decrypting is equal to T . Therefore ⊥ is not returned.
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Therefore routine CreateForgery can be used to create a valid forgery with signi�-
cant probability. Therefore OPP cannot satisfy the AUTH requirement for nonce-based
AEAD schemes. However, Granger et al. do not claim that OPP satis�es this require-
ment.

This routine can also be used to distinguish between a random and a real oracle.
To avoid unnecessary formalism, it is assumed that the adversary is provided access to
two oracles � an encryption oracle and a decryption oracle.

Algorithm 2: Distinguishing between a real and a random oracle via forgery.

Function Distinguish(E ,D, N,H, p):
1 (N,H,F, T )←CreateForgery(E , N,H, p);
2 o← D(N,H,F, T );
3 if o = ⊥ then

4 return 0
5 else

6 return 1

In algorithm 2 we can see an example of an attacker using the ability to create
forgery to distinguish between a real and a random oracle. Again, the nonce and the
header can be chosen arbitrarily, so they are a parameter of the distinguisher.

Proposition 2. Let E ,D be either the oracle providing encryption/decryption routine
of OPP using an ideal tweakable blockcipher or corresponding random oracles. Let N be
a valid OPP nonce and let H be a valid OPP header. Let 1 ≤ p ≤ t. Then the routine
in algorithm 2 called with parameters E ,D, N,H, p has advantage greater or equal to
2−p.

Proof. To determine the advantage, we have to determine two values: the probability
that the distinguisher returns 1 when interacting with the real oracle and the probability
that the distinguisher returns 1 when interacting with the random oracle.

Starting with the latter, this probability is equal to zero. The distinguisher only
returns 1 when the decryption oracle returns a plaintext and not ⊥. Since the decryption
random oracle always returns ⊥, this case is clear.

Now for the former: given that E is a real oracle we get from proposition 1 that
routine CreateForgery produces a valid forgery with probability 2−p. This is the prob-
ability that this adversary correctly identi�es a real oracle.

To conclude the proof recall the de�nition of the advantage:

AdvGrangerAEAD (A) =
∣∣∣Pr
[
AAEAD = 1

]
− Pr

[
A$ = 1

]∣∣∣ = |2−p − 0| = 2−p.

By choosing p = 1 the advantage would be lower bounded by 0.5. Hence there
exists an adversary with signi�cant advantage. This result is in direct contradiction
with claims of Granger et al.

Moreover, if the attacker was permitted to check all options for the last block of
the ciphertext, it could produce a valid forgery with probability equal to one. This
attack would need only one encryption query and 2p decryption queries � this should
be possible within the restrictions of the experiment (see section 3.2).

There is another, perhaps more practical variant. Choose a nonce N and a header
H. Choose plaintext blocks P1, . . . , Pm such that the last (m-th) block is short and that
there exists i such that

m−1⊕
j=i

Pj = 0.
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Assume that the corresponding ciphertext is C1, . . . , Cm, T . Then to create a forgery
with high probability of validity, omit blocks i to m− 1 from the ciphertext.

5.2 Implementation

Authors of OPP provided an implementation of OPP in C on github [4]. A variation of
this attack using their code as a target is implemented in C, source code is accessible
on github [5].

Due to e�ciency reasons, all variables (key, nonce, header, plaintext, ciphertext) are
treated as a sequence of bytes, not bits. Therefore when using given implementation of
OPP the smallest nonzero last block has the length of one byte. Therefore, given one
encryption query and one decryption query, our probability of producing a valid forgery
is 1/256.

However, we are permitted to check all 256 possible options within the restrictions
of the experiment. Therefore, it is possible to distinguish between a random oracle and
a real oracle with probability equal to one. Such an attack utilizes only very small
complexity requirements. An implementation of this variant is provided � checking all
possible bytes of the last block to create a forgery.

6 Oversights in original analysis

Granger et al. noticed the similarities of OPP and O�set Code Book 3 (OCB3) by
Krovetz and Rogaway [6]. In their appendix B Granger et al. claim that bounds of
OCB3 directly apply to OPP.

This attack would not work on OCB3, because there is a subtle di�erence between
OPP and OCB3. In OCB3 the tweak used when generating the tag depends on the
length of the plaintext. The presented attack is therefore invalid, since the tweaks used
when generating the tag are di�erent. Therefore the tags would coincide with negligible
probability, whereas in this attack the tags would coincide with probability that depends
on the lenght of the last incomplete block.

Therefore the original conclusion that OPP generalizes OCB3 is invalid.

7 Conclusion

O�set Public Permutation Mode was a promising fast one-pass AEAD scheme that
is fully paralelizable. In this paper a chosen plaintext attack on OPP was presented.
Given any valid header and nonce it is possible to create a forgery with high proba-
bility of success utilizing only one encryption query, by ommiting blocks at the end of
the plaintext that sum to zero. This also means that it is possible to distinguish OPP
from a random oracle. A proof of concept implementation against OPP implementa-
tion is also provided. This attack was made possible by an incorrect assumption that
OPP generalizes OCB3. The di�erence between the two is that the tweak used in tag
generation in OPP does not depend on the ciphertext length.
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