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Abstract. The Deutsch-Jozsa quantum algorithm is of great importance to modern

quantum computation, but we find it is flawed. It confuses two unitary transfor-

mations: one is performed on a pure state, and the other on a superposition. In

the past decades, no constructive specification on the unitary operator performed on

involved superposition has been found, and no experimental test on the algorithm

has been practically carried out. We think it needs more constructive specifications

on the algorithm so as to confirm its correctness.
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1 Introduction

The Deutsch-Jozsa algorithm [5] is one of the first examples of a quantum algorithm that is

exponentially faster than any possible deterministic classical algorithm, which has become the

cornerstone for quantum computation and inspired Grover’s algorithm [7] and Shor’s algorithm

[13]. In this note, we want to point out that Deutsch-Jozsa algorithm did confuse two unitary

transformations: one was performed on a pure state, and the other on a superposition. So

far, no constructive specification on the essential unitary transformation performed on involved

superposition has been found. This fact renders the algorithm somewhat dubious. We think

it needs more constructive specifications on the algorithm so as to check its correctness and

physical complexity.

2 Preliminaries

A qubit is a quantum state |Ψ〉 = a|0〉+b|1〉, where the amplitudes a, b ∈ C such that |a|2+|b|2 =

1, |0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
are basis vectors of Hilbert space. Two quantum mechanical systems

are combined using tensor product. For example, a system of two qubits |Ψ〉 = a1|0〉 + a2|1〉
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and |Φ〉 = b1|0〉+ b2|1〉 can be written as

|Ψ〉|Φ〉 =

(
a1
a2

)
⊗
(
b1
b2

)
=


a1b1

a1b2

a2b1

a2b2


Its shorthand notation is |Ψ,Φ〉.

Operations on a qubit are described by 2×2 unitary matrices. Of these, the most important

is Hadamard gate H = 1√
2

[
1 1

1 −1

]
. Clearly,

H|0〉 =
1√
2

(|0〉+ |1〉), H|1〉 =
1√
2

(|0〉 − |1〉), H2|0〉 = |0〉, H2|1〉 = |1〉.

Mathematically, a unitary operator used to modulate a superposition should be written as

the product of some basic operations. To this day, at each stage of the creation of a superposition

such a program performs a unitary operation on at most three particles at once. These basic

operators are listed as follows.

Hadamard :
1√
2

[
1 1

1 −1

]
, Pauli−X :

[
0 1

1 0

]

Pauli− Y :

[
0 −i
i 0

]
, Pauli− Z :

[
1 0

0 −1

]

Phase :

[
1 0

0 i

]
, π/8 :

[
1 0

0 eiπ/4

]

controlled-NOT :


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , swap :


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



controlled− Z :


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , controlled-phase :


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i


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Toffoli :



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


, Fredkin :



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


Example 1. If the swap operator is performed on the state |01〉, then

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 |01〉 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


((

1

0

)
⊗
(

0

1

))

=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




0

1

0

0

 =


0

0

1

0

 =

(
0

1

)
⊗
(

1

0

)
= |10〉

3 Review of Deutsch-Jozsa algorithm

Let f : {0, 1}n → {0, 1} be a map with only two images 0 or 1. The Deutsch-Jozsa algorithm

needs a quantum oracle computing f(x) from x which doesn’t decohere x. It begins with the

n+ 1 bit state |0〉⊗n|1〉. That is, the first n qubits are each in the state |0〉 and the final qubit

is in the state |1〉.
A Hadamard gate is applied to each qubit to obtain the following state

|0〉⊗n|1〉 −→ 1√
2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉). (1)

Suppose that the oracle Uf : |x〉|y〉 −→ |x〉|y ⊕ f(x)〉 is available, where the notation ⊕
represents bitwise XOR. Applying the quantum oracle, it gives

1√
2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉) −→ 1√
2n+1

2n−1∑
x=0

|x〉(|f(x)〉 − |1⊕ f(x)〉). (2)

For each x, f(x) is either 0 or 1. The state can be written as 1√
2n+1

∑2n−1
x=0 (−1)f(x)|x〉(|0〉− |1〉).
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Ignoring the last qubit and applying the Hadamard gate to each of the first n qubits, it gives

1√
2n

2n−1∑
x=0

(−1)f(x)|x〉 −→ 1

2n

2n−1∑
x=0

(−1)f(x)

2n−1∑
y=0

(−1)x·y|y〉

 (3)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the bitwise product. The above new

superposition can be written as

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)f(x)(−1)x·y

]
|y〉. (4)

Then the probability of measuring the state |0〉⊗n is | 12n
∑2n−1

x=0 (−1)f(x)|2.

4 Analysis of Deutsch-Jozsa algorithm

The whole process of Deutsch-Jozsa algorithm can be described as follows

| 00 · · · 0︸ ︷︷ ︸
n

〉|1〉 apply the operator H⊗(n+1)

−−−−−−−−−−−−−−−−−−−−−→ 1√
2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉)

apply the operator W−−−−−−−−−−−−−−−−−→ 1√
2n+1

2n−1∑
x=0

|x〉(|f(x)〉 − |1⊕ f(x)〉)

ignore the last qubit−−−−−−−−−−−−−−−−→
and obtain the state

1√
2n

2n−1∑
x=0

(−1)f(x)|x〉

apply the operator H⊗n

−−−−−−−−−−−−−−−−−→ 1

2n

2n−1∑
x=0

(−1)f(x)

2n−1∑
y=0

(−1)x·y|y〉


measure the state−−−−−−−−−−−−−−−−−−→

to obtain its probability
| 00 · · · 0︸ ︷︷ ︸

n

〉.

4.1 How to construct the oracle performed on a pure state

In Deutsch-Jozsa algorithm, the oracle Uf : |x〉|y〉 −→ |x〉|y ⊕ f(x)〉 must be of the form

Uf = I⊗n2 ⊗ V(1)f , or I
⊗(n−1)
2 ⊗ V(2)f , or I

⊗(n−2)
2 ⊗ V(3)f ,

where I2 is the 2 × 2 identity matrix, V(1)f is a 2 × 2 unitary matrix, V(2)f is a 4 × 4 unitary

matrix, and V(3)f is an 8× 8 unitary matrix.

Case-1: Suppose that V(1)f =

(
X1 X2

X3 X4

)
. We have

V(1)f |y〉 =

(
X1 X2

X3 X4

)
|y〉 = |y ⊕ f(x)〉
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If y = 0, then |y〉 =
(
1
0

)
. It gives

(
X1

X3

)
= |f(x)〉. Since f(x) ∈ {0, 1}, we obtain X1, X3 ∈ {0, 1}. If

y = 1, then |y〉 =
(
0
1

)
. It gives

(
X2

X4

)
= |1⊕ f(x)〉. Since f(x) ∈ {0, 1}, we obtain X2, X4 ∈ {0, 1}.

Thus, V(1)f is in the set{(
1 0

0 1

)
,

(
0 1

1 0

)
,

(
1 1

0 1

)
,

(
1 1

1 0

)
,

(
0 1

1 1

)
,

(
1 0

1 1

)}
.

Clearly, to determine the matrix V(1)f , one has to invoke the classical computational result f(x).

That means the unitary matrix V(1)f should be further specified as V(1)f(x). The notation is very

useful because it indicates the constructive specification of the involved unitary matrix. So it is

better to rewrite the oracle as

Uf(x) = I⊗n2 ⊗ V(1)f(x)
.

Note that the construction of the oracle depends essentially on the classical computational result

f(x). Besides, the oracle is performed on the pure state |x〉|y〉.
Case-2: The operator V(2)f is performed on the last two qubits. Since it keeps the state of

the first qubit and changes that of the second qubit, we know it must be of the form

controlled-NOT :


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,
[

1 0

0 1

]
⊗

[
X1 X2

X3 X4

]
=


X1 X2 0 0

X3 X4 0 0

0 0 X1 X2

0 0 X3 X4

 ,

controlled− Z :


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , controlled-phase :


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i


By the similar argument in Case-1, we know it has to invoke the classical computational result

f(x) to construct the operator I
⊗(n−1)
2 ⊗ V(2)f .

Case-3: The operator V(3)f is performed on the last three qubits. It is easy to check that

both Toffoli operator and Fredkin operator cannot generate the wanted quantum state.

4.2 Impossibility to create the oracle performed on involved superposition

The unitary operator W is performed on the superposition 1√
2n+1

∑2n−1
x=0 |x〉(|0〉− |1〉) and keeps

the states of the first n qubits. Hence, if it can be decomposed as W = I⊗n2 ⊗ Γ, where Γ is a

2× 2 unitary matrix, then by the original description of Deutsch-Jozsa algorithm and the above

analysis, we have

W = I⊗n2 ⊗ Γ = Uf(x) = I⊗n2 ⊗ Vf(x) .
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That means one has to extract a classical computational result f(x) from the superposition

1√
2n+1

2n−1∑
x=0

|x〉(|0〉 − |1〉)

in order to construct the operator W practically. Since x runs through all values 0, 1, · · · , 2n−1,

one has to measure the superposition so as to obtain a value x̂.

Once the value x̂ is measured, applying W = I⊗n2 ⊗ Vf(x̂) to 1√
2n+1

∑2n−1
x=0 |x〉(|0〉 − |1〉) will

produce the state

1√
2n+1

2n−1∑
x=0

|x〉

[
1 0

0 1

]
(|0〉 − |1〉), or

1√
2n+1

2n−1∑
x=0

|x〉

[
0 1

1 0

]
(|0〉 − |1〉),

or
1√

2n+1

2n−1∑
x=0

|x〉

[
1 1

0 1

]
(|0〉 − |1〉), or

1√
2n+1

2n−1∑
x=0

|x〉

[
1 1

1 0

]
(|0〉 − |1〉),

or
1√

2n+1

2n−1∑
x=0

|x〉

[
0 1

1 1

]
(|0〉 − |1〉), or

1√
2n+1

2n−1∑
x=0

|x〉

[
1 0

1 1

]
(|0〉 − |1〉),

instead of the wanted state 1√
2n+1

∑2n−1
x=0 |x〉(|f(x)〉 − |1⊕ f(x)〉).

Likewise, if W = I⊗n−12 ⊗Γ′, or W = I⊗n−22 ⊗Γ′′, where Γ′ is a 4× 4 unitary matrix, and Γ′′

is an 8× 8 unitary matrix, it is easy to check that both two operators cannot yield the wanted

superposition.

All in all, Deutsch and Jozsa have confused a quantum oracle performed on a pure state

with a quantum oracle performed on a superposition. So far, no constructive specification on

the essential unitary transformation performed on a superposition has been found. Besides, we

would like to stress that only the Hadamard gate H is applied to each of the first n qubits

twice. Since H2|0〉 = |0〉, we find Deutsch-Jozsa algorithm eventually produces | 00 · · · 0︸ ︷︷ ︸
n

〉|χ〉,

where χ ∈ {0, 1}. Their claim that the probability of seeing the state |0〉⊗n is∣∣∣∣∣ 1

2n

2n−1∑
x=0

(−1)f(x)

∣∣∣∣∣
2

,

is incorrect.

Notice that the analysis of Deutsch-Jozsa algorithm is just a math problem, having no

relation to any physical techniques. All arguments make no sense. It only needs to write down

such a matrix so as to cease the controversy about quantum computation.

5 Conclusion

We point out that there are some flaws in Deutsch-Jozsa algorithm. We would like to stress that

the construction of a unitary operator performed on a superposition must be compatible with
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tensor product [2], which describes the combination of two quantum systems. Some physical

experiments [4,8,10–12,14] on Shor’s algorithm are criticized for using less qubits in the second

register and other deficiencies [1, 3]. So far, the so-called quantum computers, D-wave [6] and

IBM [9], have been reported to optimize only some combinatoric problems, not to accelerate

any numerical computations. We think Deutsch-Jozsa algorithm needs more specifications so as

to facilitate the construction of wanted quantum oracle.

Acknowledgements. We thank professor J. Uhlmann for his discussions.
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[12] E. Mart́ın-López, et al.: Experimental realization of Shor’s quantum factoring algorithm using qubit
recycling. Nature Photonics. doi:10.1038/nphoton.2012.259 (2012)

[13] P. Shor: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26 (5): 1484-1509 (1997)

[14] L. Vandersypen, et al.: Experimental realization of Shor’s quantum factoring algorithm using nuclear
magnetic resonance, Nature 414 (6866): 883-887, arXiv:quant-ph/0112176 (2001)

7


	Introduction
	Preliminaries
	Review of Deutsch-Jozsa algorithm
	Analysis of Deutsch-Jozsa algorithm
	How to construct the oracle performed on a pure state
	Impossibility to create the oracle performed on involved superposition

	Conclusion

