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Abstract. Secure search is the problem of securely retrieving from a database table (or any unsorted
array) the records matching speci�ed attributes, as in SQL �SELECT. . .WHERE. . .� queries, but where
the database and the query are encrypted. Secure search has been the leading example for practical
applications of Fully Homomorphic Encryption (FHE) since Gentry's seminal work in 2009, attaining
the desired properties of a single-round low-communication protocol with semantic security for database
and query (even during search). Nevertheless, the wide belief was that the high computational overhead
of current FHE candidates is too prohibitive in practice for secure search solutions (except for the
restricted case of searching for a uniquely identi�ed record as in SQL UNIQUE constrain and Private
Information Retrieval). This is due to the high degree Ω(m) for m the number of database records of
existing solutions, which is too slow even for moderate sizes m such as a few thousands.

We present the �rst algorithm for secure search that is realized by a polynomial of logarithmic degree
logO(1)m. We implemented our algorithm in an open source library based on HElib, and ran experiments
on Amazon's EC2 cloud with up to 100 processors. Our experiments show that we can securely search
to retrieve database records in a rate of searching in millions of database records in less than an hour
on a single machine.

We achieve our result by: (1) Designing a novel sketch that returns the �rst strictly-positive entry
in a (not necessarily sparse) array of non-negative real numbers; this sketch may be of independent
interest. (2) Suggesting a multi-ring evaluation of FHE � instead of a single ring as in prior works �
and leveraging this to achieve an exponential reduction in the degree.

1 Introduction

Storage and computation are rapidly becoming a commodity with an increasing trend of organizations and
individuals (client) to outsource storage and computation to large third-party systems often called �the cloud�
(server). Usually this requires the client to reveal its private records to the server so that the server would be
able to run the computations for the client. With e-mail, medical, �nancial and other personal information
transferring to the cloud, it is paramount to guarantee privacy on top of data availability while keeping the
correctness of the computations.

Fully Homomorphic Encryption (FHE) [39,16,17] is an encryption scheme with the special property of
enabling computing on the encrypted data, while simultaneously protecting its secrecy; see a survey in [23].
Speci�cally, FHE allows computing any algorithm on encrypted input (ciphertexts), with no decryption or
access to the secret key that would compromise secrecy, yet succeeding in returning the encryption of the
desired outcome.

Secure outsourcing of computation using FHE is conceptually simple: the client sends the ciphertext
JxK encrypting the input x and receives the ciphertext JyK encrypting the output y = f(x), where the
computation is done on the server's side requiring no further interaction with the client. This gives a single
round protocol and with low communication; speci�cally the communication complexity is proportional only
to the sizes of the input and output ciphertexts (in contrast to communication proportional to the running
time of computing f() when using prior secure multi-party computation (MPC) techniques [46,19]). The
semantic security of the underlying FHE encryption ensures that the server learns no new information on
the plaintext input and output from seeing and processing the ciphertexts.



A main challenge for designing algorithms that run on data encrypted with fully (or leveled) homomorphic
encryption (FHE) is to present their computation as a low degree polynomial f(), so that on inputs x the
algorithm's output is f(x) (see examples in [35,20,31,48,12,34,15]). Otherwise, a naive conversion resulting
in a high degree polynomial f() would typically be highly impractical for the current state-of-the-art FHE
implementations, where running time is rapidly growing with degree and the multiplicative depth of the
corresponding circuit.

Secure search using FHE has been the hallmark example for useful FHE applications since Gentry's break-
through result construction the �rst FHE candidate [16]. Use case examples are abundant: secure search for
a document matching a retrieval query in a corpus of sensitive documents, such as private emails, classi�ed
military documents, or sensitive corporate documents; secure SQL SELECT WHERE query to a database,
e.g., searching for a patient's record in a medical database based on desired attributes; secure search en-
gine; etc. In all these use cases security means that both the searched data (documents, DB, etc.) and the
search query are encrypted with semantically secure FHE, and that the data access pattern likewise reveal
no information on the searched data or query.

The secure search problem at the core of all aforementioned use case examples can be captured as
searching for an encrypted lookup value in an encrypted array (the array representing, for example, an
encrypted table/column in a relational database, or a word-by-word encryption of a document for full text
search); see Section 2 for details on the relation to the real-life use cases and further discussion. We focus
on single round protocols, where the server requires no interaction with the client beyond receiving the
encrypted input and returning the encrypted output.

De�nition 1 (Secure Search). The server holds an unsorted array of encrypted values (previously uploaded
to the server, and where the server has no access to the secret decryption key):

JarrayK = (Jx1K, . . . , JxmK)

(here and throughout this work, JmsgK denotes the ciphertext encrypting message msg; the encryption can
be any fully, or leveled, homomorphic encryption (FHE) scheme, e.g. [7]). The client sends to the server an
encrypted lookup value J`K. The server returns to the client an encrypted index and value

JyK = (JiK, JxiK)

satisfying the condition:

isMatch(xi, `) = 1

for isMatch() a predicate specifying the search condition (see discussion below on using generic predicates).
More generally, y may be a value from which the client can compute (i, xi) (decode).

We call the client e�cient if its running time is polynomial in the output length |i| = O(logm) and |xi| and
in the time to encrypt/decrypt a single ciphertext. The server is e�cient if the polynomial f(JarrayK, J`K) the
server evaluates to obtain JyK is of degree polynomial in logm and the degree of isMatch(), and of size (i.e.,
the overall number of addition and multiplication operations for computing f) polynomial in m and the size of
isMatch. The protocol is e�cient if both client and server are e�cient. (We call the client/server/protocol
ine�cient if the running time/degree/either is at least Ω(m).)

As an example consider searching for an exact match to the lookup value ` in the data array whose
entries are given in binary representation x1, . . . , xm ∈ {0, 1}t of length t bits. For this case we set isMatch

to be the equality test isMatch(xi, `) = 1 if-and-only-if xi = `, which can be realized for example by a
polynomial of degree and size O(t2) when using the equality test polynomial isEqualt in Section 3.5. So in
this case we call the server e�cient if the secure search polynomial y = f(array, `) is of degree polynomial
in logm and t and of size polynomial in m and t.
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Generic isMatch predicate. The predicate isMatch() in the De�nition 1 is a generic predicate that can be
instantiated to any desired functionality (with complexity a�ected accordingly, see Theorem 1). Moreover,
a concise speci�cation of isMatch() can typically be used, e.g., by the client providing the function's name.
For example, most generally, isMatch() can be a universal circuit and ` a full speci�cation of the predicate
de�ning the matching values. Alternatively, giving a more concrete instantiation, we can extend the search
query to provide the name for a particular isMatch() circuit to be used, chosen from a commonly known set
of options (for example, equality operator, conjunction/disjunction query, range query, similarity condition,
and so forth). Even more concretely, we can �x a particular predicate in advance, say, the equality condition
isMatch(xi, `) = 1 if-and-only-if xi = `. Looking ahead, our experiments are for the latter case; nonetheless,
our results are general and apply to any generic isMatch() condition (see Theorem 1).

Our main motivation in this paper is to answer a�rmatively the following question: Is there an e�cient

secure search protocol?

1.1 Prior Works

Prior secure search protocols su�er from one of the following shortcomings: (i) the protocol provides only
a restricted search functionality, or (ii) the protocol is ine�cient in the sense of having at least linear
dependence on the database size m for either the client's running time or the degree of the polynomial
computed by the server, or (iii) the security is weakened to leak vital search information; see details below.

Private Information Retrieval (PIR) provide a restricted search functionality, where the client's lookup value
must be a unique identi�er for at most a single record xi in array (as in SQL UNIQUE constraint). The
standard PIR settings are when this unique identi�er is the index i ∈ [m] (where here and throughout this
work we use the notation [m] = {1, . . . ,m}); the techniques however extend to any unique identi�er, i.e.,
any lookup value ` so that isMatch(xi, `) = 1 for at most a single record xi (0 otherwise). Low degree
polynomials realizing secure data retrieval for these unique identi�er settings have been shown in prior
works [16,8,14]. Speci�cally, the degree is essentially the degree of isMatch which is in turn O(logm) when
the lookup value is the unique index i ∈ [m].

We note that in cases where the server holds non-encrypted data array and only the lookup value is secret,
indexing techniques can reduce the search problem to the unique identi�er settings by transforming the data
into a table with a unique row for each lookup value ` (i.e., the number of rows is the size of the space L of
possible lookup values), and where the entries of each row ` consist of the list of all records matching ` [9,40].
However, this transformation may incur a considerable time and memory overhead, because the produced
table is of size m · |L| for |L| the number of possible lookup values (rows), compared to size m of the original
data array. This may be a considerable overhead since often |L| � m; for example, for data an encrypted
document of m = 1000 words and lookup values the |L| ≥ 170, 000 words in the English dictionary. More
importantly, this transformation assumes the data is given as plaintext (i.e., it is not encrypted), which
is not the case in secure outsourcing settings as is the focus of this work. For these non-encrypted data
settings, software and hardware implementations demonstrate a secure retrieval rate of processing millions
of records in an hour [40] (when scaling up their results to a strong 64-cores machine as in our experiments;
see Section 5).

Private set intersection (PSI). A recent work [10] following the preprint publication of our work [2] gave an
FHE based Private Set Intersection (PSI). In the PSI problem, Alice has a set X, Bob has a set Y and they
wish to compute the intersection X ∩ Y while revealing no additional information on their sets. The PSI,
while related to search, does not provide the desired output. Speci�cally, thinking of X as the lookup value
(with |X| = 1) and Y as a database column, the output only solves the decision problem of whether the
lookup value appears in the database, but without returning entire records (or handles to such records, as
in returning the corresponding row index i). Moreover, the modeling of X,Y as sets (rather than multi-sets)
implies a UNIQUE constraint on Y , and so the lookup value (X) is restricted to be a unique identi�er to
the database column Y (as in PIR).
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The natural (folklore) secure search solution for unrestricted settings (i.e., with no UNIQUE constraint)
su�ers from an ine�cient server that evaluates a degree Ω(m) polynomial (for m the number of records).
This is too slow with current FHE candidates and implementations, even for moderate size m such as a few
thousands.

In secure pattern matching works [47,13,32,11,26,21,27] the client is ine�cient.3 In these works, the server
computes an encrypted array

JindicatorK← (JisMatch(x1, `)K, . . . , JisMatch(xm, `)K)

specifying for each i ∈ [m] the (encrypted) zero/one indicator of whether record xi is a match to the lookup
value `. This encrypted vector JindicatorK is sent from the server to the client, who decrypts and scans
indicator ∈ {0, 1}m to �nd a indices of the records to be retrieved. To retrieve the records themselves, the
parties can now engage in a PIR protocol, requiring a second round of interaction. In these works, while the
server is e�cient (computes polynomials of degree deg(isMatch())), the client is not: the client's running
time is linear in the number of records Ω(m).

The searchable encryption approach takes a di�erent route of exploring the e�ciency versus security tradeo�.
The approach is to deliberately leak information on the underlying data, which is then employed in vital
ways to enable fast search and data retrieval. This approach has been extensively studied starting the
pioneering work of Song, Wagner and Perrig, IEEE S&P 2000 [42], with famous examples as CryptDB [38]
and subsequent works [37,30,29] giving practical search solutions albeit with information leakage; see a survey
in [6].

The wide belief was that secure search on FHE encrypted data cannot achieve reasonable running times.
This is because in contrast to the said low degree solutions for the case of searching for a uniquely identi�ed
record as in PIR, no low degree polynomials are known for realizing the (unrestricted) secure search problem.
Consequently, to the best of our knowledge including [41] there is no prior art implementation for secure
search on FHE encrypted data. Indeed, the folklore polynomial realizing secure search has degree Ω(m) for
m the number of records, which is too slow with current FHE candidates and implementations even for
moderate size m such as a few thousands. The common belief was that the computational overhead of FHE
is too prohibitive for secure search to be used in practice; see for example in [8,38,43,45,33,28].

1.2 Our Contribution

In this work we provide evidence that, counter to the common belief, secure search on FHE encrypted data
may be of relevance to practice. Our contributions in this work are as follow.

The �rst e�cient protocol for secure search (see Protocol 2 and Figure 2) that is applicable to large datasets
with unrestricted search functionality. Speci�cally, our protocol provides:

� E�cient client: The client's running time is proportional to the time to compute logO(1)m encryp-
tion/decryption operations plus the time to read the retrieved record (i, xi).

� E�cient server: The server evaluates a polynomial of degree logO(1)(m) · deg(isMatch) and size m ·
size(isMatch) (where we denote by deg(f) and size(f) the degree and size of the polynomial f).

� Unrestricted search functionality: The protocol is applicable to any data array and lookup value `, with
no restrictions on number of records in array that match the lookup value `.

3 Some of these works o�er alternative usage scenarios such as: obtaining a YES/NO answer on whether the lookup
value appears in the data, or returning a vector of scores on how good a match to the lookup value each data
entry is (as in Hamming or Edit distance). However, none of the suggested alternatives can return, as desired, an
e�cient and concise representation of a unique handle to the matching record (unless requiring lookup values to
be unique identi�ers, as discussed above for the PIR and PSI settings).
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� Full security: The input data array and lookup value ` are encrypted with fully, or leveled, homomorphic
encryption (FHE) achieving the strong property of semantic security both for data at rest and during
searching.

Furthermore, the protocol is single round protocol and with low-communication complexity, as is the focus
of this work. This is summarized in Theorem 1 below, with proof given in Section 4.2.

Theorem 1 (Secure Search). Protocol 2 is an e�cient secure search protocol (see De�nition 1).

In contrast, prior works either have an ine�cient client with running time is Ω(m) (see pattern matching
solutions); or an ine�cient server evaluating a polynomial of degree Ω(m) (see the natural folklore solution);
or restrict the search functionality by requiring the lookup value to be a unique identi�er to the data as in
SQL UNIQUE constraint (see PIR and PSI solutions); or compromises security (see searchable encryption
solutions). A summary of the comparison to prior works appears in Tables 1-2.

System and experimental results for secure search. We implemented our protocol into a system that runs on
Amazon's EC2 cloud on 1-100 processors (cores). Our experiments demonstrating, in support of our analysis,
that on a single 64-cores machine we can answer search queries on database with millions of entries in less
than an hour; namely, we achieve a searching rate of millions of records per hour per machine; See Figure 1
and Section 5.

Fast parallel computation. With m parallel processors, our algorithm requires only O(log logm) sequential
multiplication steps (in contrast to Ω(logm) in the folklore polynomial, even with unbounded number of
parallel processors). Our experimental results on up to 100 cores on Amazon's EC2 cloud indeed show that
performance scales almost linearly with the number of computers. So we can answer, for example, search
queries of a database of billions of entries in less than an hour, using a cluster of roughly 1000 machines; See
Section 5.

High accuracy formulas for estimating running time that allow potential users and researchers to estimate
the practical e�ciency of our system for their own cloud and databases; See Section 4.3 and Figure 1.

Open Source Library for Secure-Search with FHE based on HELib [22] is provided for the community [1], to
reproduce our experiments, to extend our results for real-world applications, and for practitioners at industry
or academy that wish to use these results for their future papers or products.

Client's time Server's degree Protocol

Secure Pattern Matching Ω(m) (logm)O(1) ine�cient

Folklore Secure Search O(logm) Ω(m) ine�cient

This Work: Secure Search (logm)O(1) (logm)O(1) e�cient

Table 1. Comparison of client, server, and protocol complexity (see De�nition 1) in works supporting unrestricted
search functionality, record retrieval, and full security.

1.3 Our Novel Techniques: First Positive Sketch (SPiRiT) and Multi-Ring FHE Evaluation

We propose a novel low degree secure search polynomial for the server to evaluate on the data array =

(array(1), . . . , array(m)) and lookup value ` to obtain, essentially, the binary representation b∗ ∈ {0, 1}1+dlogme
of the index i∗ ∈ [m] of the �rst match for ` in array (or b∗ = (0 . . . 0) if no match exists):

i∗ = min { i ∈ [m] | isMatch(array(i), `) = 1} (i∗ = 0 if no match exists).
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Protocols and Papers E�cient E�cient Supports unrestricted Retrieves Full Records per hour
Client Server search functionality record security per machine

Searchable Encryption [6,42] X N/A X X × Gb

PIR [16,8,14,9,40] X X × X X Mb

PSI [10] X X × × X Mb

Secure Pattern Matching × X X ∼ X X Kb
[47,13,32,11,21,27]

Folklore Secure Search X × X X X Kb

This work: Secure Search X X X X X Mb

Table 2. Comparison to single-round secure search protocols. 1st column lists the compared works, followed by
indications to whether: client and server are e�cient (X) or ine�cient (×) in columns 2-3; the scheme supports
unrestricted search functionality (X) or requires a unique identi�er (×) in column 4; the client's output is both index
and record (X), only an index i (∼ X), or only a YES/NO answer to whether the record exists (×), in column 5;
the scheme is fully secure (X) in the sense of attaining semantic security for the data and lookup value both at rest
and during search, as well as hiding the access pattern to the database, in column 6. Last column speci�es number
of processed records per hours per machine in reported experiments: thousands (Kb), millions (Mb), billions (Gb).

Fig. 1. Server's running time in Protocol 2 (y-axis) as a function of the number of records m in database array
(x-axis), where each entry array(i) is represented by 1 bit, 16 bits, 32 bits, 64 bits (curves). The graph depicts both
measured running times (squares), and estimated running times (curves). Measured times are in executions on a
single machine on Amazon's cloud; see Section 5. Estimated running times are based on Formula 1, Section 4.3.

The server evaluates this polynomial over encrypted inputs JarrayK, J`K and obtains encrypted output Jb∗K,
using homomorphic operations.

More precisely, the server computes and sends to the client a short list of candidates for the binary

representation b∗ ∈ {0, 1}1+dlogme of i∗. From this list of candidates we show that the client can e�ciently
decode the correct value i∗, essentially by choosing the smallest candidate; See Figure 2.

We note that to simplify the presentation we focus here on returning the index i∗ and not the value
array(i∗). Nonetheless, using standard PIR techniques and with no further interaction, the server can eas-
ily return (index,value) pairs, in which case the client can e�ciently decode to obtain the desired pair
(i∗, array(i∗)).

At a high level the polynomial we propose is composed of two main parts. In the �rst part, on input array, `
the output is a binary vector indicator ∈ {0, 1}m that indicates for each entry i ∈ [m] whether the record
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array(i) matches the lookup value `. Namely,

indicator = (isMatch(array(1), `), . . . , isMatch(array(m), `))

(we point out that here we can use any generic pattern matching polynomial isMatch() given as part of the

problem speci�cation). In the second part, we'd like to output (the binary representation b∗ ∈ {0, 1}1+dlogme
of) the �rst positive index i∗ ∈ [m]∪{0} of indicator ∈ {0, 1}m (i∗ = 0 if indicator is all zeros); namely, the
index so that

indicator(1) = . . . = indicator(i∗ − 1) = 0 and indicator(i∗) = 1.

Observe that i∗ is precisely the index of the �rst match in array for `, namely, the �rst index so that

isMatch(array(i∗), `) = 1.

The challenge is that the natural polynomial for computing this �rst positive index i∗ is of high degree
Ω(m), resulting in an ine�cient protocol. Our main technical contribution is proposing a novel way to

compute this �rst positive index i∗ via low degree polynomials of degree logO(1)m, resulting in an e�cient
protocol. For this purpose we introduce two novel techniques: SPiRiT sketch for �rst positive and multi-ring
FHE evaluation, as discussed next.

The sketch for �rst positive SPiRiTm,p, parameterized by the length m of the input vector and the modulus
p for the arithmetic operations, is a degree (p − 1)2 polynomial whose desired output in its evaluation
SPiRiTm,p(indicator) on indicator ∈ {0, 1}m is the �rst positive index of indicator. That is, the binary

representation b ∈ {0, 1}1+dlogme of the index i ∈ [m] ∪ {0} so that i ∈ [m] is the index of the �rst positive
entry of indicator, and i = 0 if no positive entry exists.

The problem is that to guarantee that the output is the �rst positive index, as desired, we require a large
modulus p = Ω(m) which result in a polynomial SPiRiTm,p of high degree Ω(m2).

To resolve this problem we suggest to replace the evaluation of SPiRiTm,p on a single large ring p = Ω(m)
by few k = o(log2m) evaluations of such polynomials but on small rings moduli p1, . . . , pk = O(log2m);
namely, we suggest evaluating in parallel k polynomials each of low degree O(log4m). From an FHE point of
view, we didn't solve the original problem of returning the desired value b∗ to the client. Instead, we return
the k values above. However, the additional time on the client side that is required to extract the desired
value i∗ from our k outputs is very fast with only a small overhead over receiving b∗ by a factor of o(log2m).

In short, we rede�ne a hard problem (that requires a single output from a large-ring polynomial) to an
easier problem that uses multiple outputs (from few small rings polynomial), in the cost of additional but
minor amount of computation on the client side.

Multi ring FHE evaluation. Our techniques of evaluating FHE over multiple rings is novel in the context of
FHE, whereas prior works model the FHE evaluation as computing an arithmetic circuit over a single ring
modulus p (namely, with gates computing addition and multiplication modulo a single p). In those single
ring arithmetic circuits all known secure search solutions have multiplicative depth Ω(logm) (where the
multiplicative depth is essentially equivalent to the logarithm of the degree of the polynomial evaluated by
the circuit), and are therefore not considered practical.

In this work we propose a multi ring FHE evaluation, that is, computing an arithmetic circuit with gates
for additions/multiplication over several ring moduli p1, . . . , pk. Our result shows that there exists a multi
ring arithmetic circuit for secure search of multiplicative depth O(log logm). This presents an exponential
improvement over the prior art; See Figure 3. We hope that this novel technique will be used in future works
to attack other computations in the context of FHE that currently have impractical solutions.

Overview of SPiRiT. Our SPiRiT sketch for �rst positive is a novel low degree polynomial we introduce
for computing the �rst positive index. This polynomial SPiRiTm,p() is parameterized by the length m of the
input vector and the modulus p for the arithmetic operations, and is de�ned to be the composition

SPiRiTm,p = S ◦ P ◦ i ◦R ◦ i ◦ T
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Fig. 2. Depicting our Secure Search Protocol 2 and the Data Upload Protocol 1. In the data upload protocol the
client, whose input is the public key and the data array, encrypts the data and sends to the server. In the secure
search protocol, the server's input is the evaluation key and the encrypted data that was previously uploaded; The
client's input is the secret key and a lookup value; A common input (in both Protocols 1-2) is the set of prime
numbers p1, . . . , pk. The client sends to the server the lookup value ` encrypted in k ciphertexts with plaintext moduli
p1, . . . , pk; where we use the notation JxKp to denote a ciphertext encrypting message x to enable homomorphic
addition and multiplication modulo p. The server evaluates, for each modulus pj , the pattern matching polynomial
isMatch on the encrypted lookup value J`Kpj and data JarrayKpj to obtain an encrypted indicator vector JindKpj .
The server then evaluates on this encrypted indicator vector our SPiRiTm,pj sketch for �rst positive to obtain a
candidate Jbpj Kpj for its �rst positive index. The server sends to the client these k candidates JbjKpj together with
the corresponding k entries in ind. The client decrypts and outputs the smallest candidate bj s.t. ind(bj) = 1.

Fig. 3. Single/Multi ring arithmetic circuit for secure search: the multiplicative depth of known single ring circuits
is exponentially higher than in our proposed multi ring circuit.

of a Sketch, Pairwise, Roots, and Tree matrices, together with an operator i(x) = isPositivep(x) for
turning integer vectors x to binary vectors accepting value 1 on entries where x is nonzero, and value 0 on
entries where x is zero.

We elaborate on the components of SPiRiTm,p and their roles. The role of i◦R◦ i◦T (indicator) �which
is not always satis�ed, see discussion below� is to return the step function u ∈ {0, 1}m accepting value 0 on
entries 1, ..., i∗−1 and value 1 on entries i∗, . . . ,m. For this purpose the tree matrix T computes the labels of
a binary tree with m leaves labeled by the entries of indicator, and where each node is labeled by the sum of
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the labels of its children. These labels are then reduced to binary values using isPositivep operator. Next,
for each i ∈ [m], the roots matrix R partitions the tree leaves 1, . . . , i according to their deepest common
ancestor whose leaves are contained in the leaves 1, . . . , i, and sums up the labels of these ancestors; see
Figure 4. The resulting values are again reduced to binary values using isPositivep operator. The pairwise
di�erence matrix P then computes the derivative of u, which in the case where u is the said step function

results in a binary vector with a single non-zero entry at index i∗. The sketch matrix S ∈ {0, 1}(1+dlogme)×m
is a standard sketch matrix for 1-sparse vectors, i.e., a matrix that given a binary vector with at most a single
non-zero entry returns the binary representation of the index of this entry (or zero if none exists). Finally, to
compute the isPositivep operator we rely on Fermat's Little Theorem: isPositivep(x1, . . . , xm′) = (xp−11

mod p, . . . , xp−1m′ mod p). The degree of SPiRiTm,p is (p− 1)2 (which can be lowered to p logm with further
optimizations; see Lemma 2).

Fig. 4. The tree representation for a length m = 8 binary vector indicator = (0, 1, 1, 1, 1, 0, 0, 1) is the full binary tree
withm leaves labeled by entries of indicator, and with internal nodes labeled by the sums of their children's labels. The
array data structure for this tree is the length 2m− 1 vector w = T · indicator = (5, 3, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1).
The pre�x sum of leaves' labels up to the j = 6th leaf from the left is v(6) = 0 + 1 + 1 + 1 + 1 + 0 = 4. More
generally, the vector of pre�x sums of indicator is v = (0, 1, 2, 3, 4, 4, 4, 5). The root matrix R has the property that
RT · indicator = Rw = v. To construct sparse R we observe that every entry of v can be computed using only
O(logm) labels; this is by summing the roots of subtrees forming a partition of the leaves in the considered pre�x.
For example, to compute the j = 6th entry v(6) we sum two labels as follows: First identify all the ancestors of the
j + 1 = 7th leaf: labeled by 0, 1, 2, 5 in the �gure (colored in grey). Among these ancestors, select those who are
right children: labeled by 1 and 2 in the �gure. Finally, sum the labels of the left siblings of these selected ancestors:
labeled by 1 and 3 in the �gure (colored in green) to get the desired sum. Indeed, v(6) = 1 + 3 = 4. .

The problem we face is that on the one side, correctness requires a large modulus p = Ω(m); otherwise, we get
wrong outputs due to over�ow. For example, when using a small p� m, applying the isPositive operator
on the tree labels (i.e., computing i ◦ T (indicator)) reduces to zero all tree labels that are a multiple of p,
instead of only labels that are zero over the integers; consequently u might not be a step function, and the
output will not be the desired index i∗. On the other side, e�ciency requires a small modulus p = logO(1)m,
because the degree of SPiRiTm,p is polynomial in p.

To resolve this problem we �rst prove in our analysis a key property of SPiRiTm,p as follows.

Key Property: If the labels of the ancestors of the �rst positive leaf i∗ in the tree T (indicator) are
not multiples of p, then SPiRiTm,p(indicator) returns the binary representation of i∗; see Lemma 3,
Section 4.1.

Next, we observe that there are not too many primes p that are divisors of these labels, speci�cally, at most
log2m such primes. So by Pigeonhole principle, for any k = 1+ log2m primes p, at least one of them would
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satisfy the above condition on the ancestors of i∗. By the above key property, for this p, SPiRiTm,p(indicator)
returns the correct output. Therefore, by computing SPiRiTm,p(indicator) (in parallel) for k primes p, we
obtain a list of candidates b1, . . . , bk for the binary representation b∗ of the �rst positive index i∗, with the
guarantee that for i1, . . . , ik ∈ [m] ∪ {0} the corresponding indices:

i∗ = min
j∈[k]
{ij s.t. indicator(ij) = 1}.

The decoding algorithm on the client side is therefore to choose from the list of candidates received from
the server the smallest candidate that is veri�ed to be a match (i.e., indicator(ij) = 1). We remark that for
the purpose of this veri�cation the server in our protocol sends to the client the values indicator(ij) for all
j ∈ [k] (computed using standard PIR techniques), on top of sending the candidates bpj .

More tightly, it in fact su�ces to set k = 1 + log2m/ log logm by choosing only primes p larger than
logm. Furthermore, by the Prime Numbers Theorem, we can �nd such k = O(log2m/ log logm) primes in
a su�ciently short interval to ensure that all the primes are of magnitude O(log2m). The degree of the
SPiRiTm,p polynomials for these primes p is therefore O(p logm) = O(log3m).

In summary, we propose a new polynomial SPiRiT = (SPiRiTm,p1 , . . . ,SPiRiTm,pk) for computing a
short list of k = o(log2m) candidates for the �rst positive entry in a given non-negative length m vector.
Our analysis proves that the smallest of the veri�ed candidates is the correct solution, that is, it is the binary

representation b∗ ∈ {0, 1}1+dlogme of the �rst strictly positive entry i∗ ∈ [m] of the input vector (and it is
b∗ = 0 if no such entry exists). We call this polynomial a �sketch for �rst positive�. This sketch may be of
independent interest beyond the context of secure computation, and it is extraordinary in that unlike other
Group Testing sketches (e.g. [25]) it can be applied on non-sparse input vectors.

Technical di�culty: how to compute minimum when each ciphertext has a di�ering plaintext modulus p? We
now elaborate on the encryption we use and explain why we relay computing the minimum veri�ed candidate
to the client, instead of requesting the server to do it.

Observe that computing the minimum of k = o(log2m) values requires only a low degree polynomial,
so typically this could be accomplished e�ciently by the server. However, the guarantee of FHE schemes
is to enable given ciphertexts JxK to execute computations on the underlying plaintext x with respect to
a single ring. For example, the plaintext space could be integers and the ring operations are addition and
multiplication modulo a prime p (aka, the plaintext modulus). We denote by JxKp a ciphertext encrypting
the message x so that we can apply on it homomorphic addition and multiplication modulo p.

For some FHE candidates (e.g. [7]), given a ciphertext JxKp, it is possible to transform it to a ciphertext for
a plaintext modulus p′ which is a multiple of p (or other related primes p′). However we do not know how to
achieve such a transformation for arbitrary p′ (unless using bootstrapping, which is considered impractical).

To evaluate SPiRiTm,p on encrypted data for k distinct primes p, we therefore use FHE scheme that
allows encrypting ciphertext with respect to these moduli p (e.g. [7]), and require that each time the client
encrypts a message x she produces a tuple of k ciphertexts JxK = (JxKp1 , . . . , JxKpk) corresponding to these
k distinct primes (speci�cally, we use the smallest k primes that are larger than logm). The server then
evaluates SPiRiTm,p1 , . . . ,SPiRiTm,pk (in parallel), where each SPiRiTm,pj is evaluated on the corresponding
ciphertexts J·Kpj . The output is the resulting list of k candidates Jb1Kp1 , . . . , JbkKpk .

Getting back to discussing the minimum function, computing the minimum of the veri�ed of these
candidates Jb1Kp1 , . . . , JbkKpk seems to require switching the plaintext modulus to a common prime p0, which
we do not know how to accomplish e�ciently. This is why we relay computing the minimum to the client.

We remark that the fact that we encrypt each message using k ciphertexts incurs a factor k = o(log2m)
overhead on the time and space complexity in comparison to when using a hoped FHE scheme where we
could e�ciently switch between the plaintext moduli.

1.4 Extensions and Followups

Extensions to dynamic data with insert/updade/delete on top of search are straightforward. For example,
insertion simply requires the server to append another ciphertext to the end of the encrypted data array
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(note that we assume here that the size of the data is known to the server). Likewise, update are a simple
extension of PIR techniques, when given the unique index i for the record to be modi�ed. Delete can be
implemented by updating a record to a reserved �Deleted� symbol, or by updating the value or record i to
that of the last record and reducing the number of records by 1 (for cases when the dynamic size of the data
is either maintain by the client, or is not a secret and can be maintained by the server).

Extensions to multiple clients are immediate when all clients posses the secret key. For example, a group of
users and a company can share the secret key and search/upload records independently and simultaneously,
using existing db transactions locks mechanisms on un-trusted cloud. Moreover, uploading data does not
even require sharing the secret key for the FHE scheme. Instead, it su�ces for the data owner (say, the
company) to publish the public key, so that all participants can upload encrypted data.

Followup work on returning all matching database entries. In a recent work [3] following the preprint pub-
lication of this work, it is shown how to return all database entries that match the lookup value, where the
search is realized by a polynomial of degree polynomial in logm. Their complexity naturally grows with the
number of matching records, but only in terms of the client's running time and the size of the polynomial
evaluated by the server, whereas the degree of the polynomial computed by the server remains low even
when the lookup value has many returned matches.

We point out that [3] is incomparable to this work: It may be undesirable to return all matching records
if there are too many of them (as this incurs a communication and client complexity burden). Instead, our
work allows the client to retrieve the matching records one-by-one (where each search query returns a single
match as in SQL FETCH_FIRST, and repeated queries can retrieve the following matching records as in
SQL FETCH_NEXT). Moreover, combining techniques of [3] with ours we can retrieve in each query the
next s matches, for a parameter s (compared with s = 1 in this work, and s being the total number of
matches in [3]); details to appear in the full version of this work.

Followup work on reducing the k = o(log2m) client's overhead due to the multi-ring encryptions/decyptions.
Recall that the fact that we encrypt each message using k ciphertexts incurs a factor k = o(log2m) overhead
on the time and space complexity. A followup work shows how to avoid such overhead [5], albeit with
introducing a negligible probability of error.

2 Discussion of the Secure Search Problem Statement

In this section we discuss the secure search formulation of De�nition 1 to demonstrate its wide applicability
to real-life use case examples and remark on its properties.

2.1 Use case examples

The formulation in De�nition 1, despite its simplicity, captures a wide variety of real-life problems; examples
follow.

For securely searching a documents' corpus with a document-term matrix representation , the array entries
correspond to the rows of the document-term matrix (where recall that this matrix has columns corresponding
to terms, and each row indicates the terms appearing in the corresponding document), and the lookup value
speci�es the subset of matching documents, e.g., by specifying a list of terms so that the matching documents
are those including the conjunction of these terms.

For securely searching a documents' corpus with a bag-of-words representation , each array entry corresponds
to a bag-of-words representation of the corresponding document, and the lookup value speci�es the subset
of matching documents, e.g., by a regular expression for wildcard matching.
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For securely searching a database table with rows corresponding to records and columns corresponding to
their various attributes, each array entry corresponds to a database row, and the lookup value speci�es the
matching attributes, say an exact match query for a particular attribute (database column). We remark that
our experimental results address this latter use case example.

2.2 Remarks on the Secure Search De�nition

We continue with remarks on the various aspects of the secure search de�nition.

What pattern matching subroutines can be used? Importantly, to allow such a wide applicability for the
above problem formulation, our solution works with any generic speci�cation of what values xi constitute a
match to `. The speci�cation is given by a pattern matching algorithm isMatch(·, ·) that given pairs xi, `
returns 1 if they are a match and 0 otherwise (e.g. equality test, wildcard matching, conjunction/disjunction
queries, Hamming/Edit/Euclidean distance measures etc.), and our algorithm is generic in the sense we can
plug-in any such speci�cation. The overall complexity depends of course on the complexity of this isMatch()
subroutine; our experimental results are for the case of exact equality isMatch(xi, `) = 1 if-and-only-if xi is
identical `. For concreteness we focus throughout this work on the exact match case; the extension to generic
isMatch() matching algorithm is immediate.

Why return one match and not all? We focus here on applications where there may be an unlimited abun-
dance of matched values, so that returning all matches can pose an undesirable burden on the client, both
in term of the communication complexity for receiving all matches, and in terms of the computational
complexity for reading all of them. We require therefore to returning one matching value.

Which match to return? For concreteness we focus on the case of returning the index i for the �rst match
(as in SQL FETCH_FIRST). That is, we return (the binary representation of) the index

i∗ = min { i ∈ [m] | isMatch(array(i), `) = 1}

(where here, and in the rest of the paper, we assume that the minimum of an empty set is 0). We stress
nonetheless that our framework easily extends to allow the client to retrieve the matching records one-by-one
(as in SQL FETCH_NEXT); details to appear in the full version of this work.

Returning index i or record (i, xi)? For simplicity of the presentation we focus primarily on returning the
index i, because this is the challenging heart of the retrieval problem. This can trivially be extended to
returning the pair (i, xi) for xi the matched value (e.g. document, database row, etc.). This is because once
the unique index i is found, retrieving the entire value is easily solved by applying known PIR on FHE
encrypted data and index [16,8,14]. We stress that applying PIR here is done on the server side, using the
vale JiK that the server has computed, and requires no interaction with the client.

How to employ secure search in secure outsourcing scenarios? The client uploads encrypted data array to
the server at an o�ine phase; only the client knows the secret decryption key. To initiate a secure search,
the client submits an encrypted lookup value `, the server returns the encrypted result y, so that there is an
e�cient decoding algorithm to obtain from y the matching index i.

What is the complexity goal? Our primary complexity goal is to minimize the client's latency, that is, the
wait time between sending a search query and obtaining the search result. This latency accounts for both
the server's time for evaluating the search polynomial and the client's time for encryption, decryption, and
decoding of the received evaluation outcome.

Our theoretical analysis of the server's computational complexity speci�es the degree and size of the
computed polynomial (or, more precisely, the maximum degree over all polynomials computed in parallel).
This degree d corresponds to a log d upper bound on the aggregate homomorphic multiplication steps. That
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is, the multiplicative depth of the corresponding arithmetic circuit is log d. The size s is a (typically non-tight)
upper bound on the width w of this arithmetic circuit. We ignore the homomorphic addition operations,
because they are much much cheaper than homomorphic multiplications, both with respect to the error they
introduce in the context of homomorphic evaluation, and also with respect to running time.

The client's latency naturally depends on the number of parallel processors available to the server. In case
the server has w parallel processors, the client's latency is essentially the multiplicative depth log d (because
the server can employ the parallel processors to compute each layer of the circuit in unit time). In case the
server has a single processor, the client's latency is upper bounded by w log d (due to requiring O(w) time for
each of the log d layers). In general, for a server with t processors, the client's latency is essentially w

t log d.
Our experimental results on the server's complexity measure the actual running time, which accounts for

all executed operations: homomorphic additions on top of homomorphic multiplications. Moreover, most of
our experimental results are done on a single computer, so the server's time in our experiments grows with
the total number of operations, not only the log d time for aggregate multiplications.

Our analysis of the client's running shows that the decoding time is o(log2m), and the overall client's
running time is proportional to computing o(log2m) encryption and decryption operations. Note that our
theoretical analysis needs not specify the encryption/decryption times, because these are properties of the
underlying encryption scheme (where any suitable FHE can be used), and not of the search algorithm we
propose.

3 Our Secure Search Protocol

In this section we present our secure search protocol. We �rst specify the requirements in our black-box
use of fully (or, leveled) homomorphic encryption in Section 3.1; then describe the data upload protocol
in Section 3.2; then present our secure search protocol in Section 3.3 with details of the components of
SPiRiT speci�ed in Section 3.4. In Section 3.5 we specify the particular pattern matching polynomial that we
implemented for our experimental results. Finally, in Section 3.6 we discuss a randomized variant of our secure
search protocol introducing a probability of error for gaining a reduced overall number of multiplications.

3.1 Black Box Usage of Semantically Secure Fully Homomorphic Encryption (FHE)

Fully (or, leveled) homomorphic encryption (FHE) is used in this work in a black-box fashion: we require
black-box use of the standard algorithms for FHE (key generation, encryption, decryption, and evaluation),
and could use almost any FHE schemes (both public key schemes and symmetric schemes). The only re-
quirement we make on the scheme is that we can choose as a parameter the plaintext modulus to be a prime
number p of our choice, so that the homomorphic operations are addition and multiplications modulo p. This
is the case in many of the FHE candidates, for example, [7]. For security of our scheme we require that the
scheme is semantically secure.

Notations. To emphasize the plaintext modulus p we use the following notations for the standard algo-
rithms specifying an FHE scheme E = (Gen,Enc,Dec,Eval) (de�ned here for the symmetric key settings for
simplicity):

� Gen is a randomized algorithm that takes a security parameter λ as input and a prime p, and outputs a
secret key skp = (p, sk) and a evaluation key ekp = (p, ek) for plaintext modulus p, denoted:

(skp = (p, sk), ekp = (p, ek))← Gen(1λ; p).

� Enc is a randomized algorithm that takes skp and a plaintext message msg, and outputs a ciphertext
JmsgKp for plaintext modulus p, denoted:

JmsgKp ← Encskp(msg).
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� Dec is an algorithm that takes skp and a ciphertext JmsgKp as input, and outputs a plaintext msg′,
denoted:

msg′ ← Decskp(JmsgKp).

Correctness is the standard requirement that msg′ = msg.
� Eval is a (possibly randomized) algorithm takes ekp, a polynomial f(x1, . . . , xt), and a tuple of ciphertexts

(Jm1Kp, . . . , JmtKp), and outputs a ciphertext c, denoted:

c← Evalekp(f, Jm1Kp, . . . , JmtKp).

Correctness is the requirement that decryption would return the message resulting from evaluating
(modulo p) the polynomial f() on inputs m1, . . . ,mt

Decskp(Evalekp(f, Jm1Kp, . . . , JmtKp)) = f(m1, . . . ,mt) mod p.

Semantic security implies that the resulting ciphertext c is computationally indistinguishable from a
fresh ciphertext Jf(m1, . . . ,mt)Kp.

3.2 Uploading Encrypted Data

Secure outsourcing of computation is the settings we address. For this purpose the client uploads to the server
its encrypted data. The upload protocol is simple: the clients encrypt the data and sends to the server. The
encryption is with a semantically secure FHE scheme, where for each message msg we produce a tuple of
k = 1 + log2m ciphertexts (JmsgKp1 , . . . , JmsgKpk) for plaintext modulus p1, . . . , pk, respectively, chosen to
be the �rst k primes larger than logm. For simplicity of the presentation we assume the entire data array
is uploaded in a single round; this can easily be modi�ed to incremental upload of the data. See Protocol 1.

Algorithm 1: Data Upload Protocol

Shared Input: An FHE scheme E = (Gen,Enc,Dec,Eval),
A number m of data records in array, where w.l.o.g. we assume m is a power of two,
A set P = {p1, . . . , pk} of the smallest k = 1 + log2m primes that are larger than logm.

Inputs: The client's input is a security parameter λ and array = (array(1), . . . , array(m))
The server has no input.

Outputs: The client's output is a secret key sk = (skp1 , . . . , skpk ) (for the FHE and security λ).
The server's output is the corresponding evaluation key ek = (ekp1 , . . . , ekpk ), and
the encrypted data JarrayK = (JarrayKp1 , . . . , JarrayKpk )
(where array is encrypted entry-by-entry: JarrayKp = (Jarray(1)Kp, . . . , Jarray(m)Kp)).

1. The client does the following:
� Generate keys (skp1 , ekp1)← Gen(1λ; p1), . . . , (skpk , ekpk )← Gen(1λ; pk). Denote

ek = (ekp1 , . . . , ekpk ).

� Compute for all i ∈ [m] and j ∈ [k]:

Jarray(i)Kpj ← Encskpj (array(i)).

� Send to server
ek and JarrayK = (JarrayKp1 , . . . , JarrayKpk ),

where array is encrypted entry by entry: JarrayKp = (Jarray(1)Kp, . . . , Jarray(m)Kp).
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3.3 The Secure Search Protocol

To securely search for a lookup value ` in the encrypted data JarrayK outsourced to the server, the client
encrypts ` and sends the corresponding cipehrtexts J`K to the server. The server evaluates our search poly-
nomial which is the composition of the two parts (see the overview in 1.2): �rst computing the (encrypted)
binary vector indicator with 1 in all entries of array that match ` using a generic isMatch() pattern match-
ing protocol; and next returning a short list of candidates for the the index i∗ of the �rst positive entry in
indicator using our SPiRiT sketch for �rst positive (with the corresponding record array(i∗), if so desired;
see Section 2). The client then decodes and chooses the smallest of the veri�ed candidates as the output.
Encryption of each value msg is by a tuple of k = 1 + log2m ciphertexts, one ciphertext for plaintexts
modulus p1, . . . , pk (where these moduli are chosen to be the �rst k primes larger than logm). See Protocol 2
and Figure 2 for the protocol, with details on the components of SPiRiT sketch �rst positive in Section 3.4.

Algorithm 2: Secure Search Protocol

Shared Input: An FHE scheme E = (Gen,Enc,Dec,Eval),
A power of two m denoting the number of data records in array,
A set P = {p1, . . . , pk} of the smallest k = 1 + log2m primes that are larger than logm.
A pattern matching polynomial isMatch(·, ·).

Inputs: Client's input is the secret key sk = (skp1 , . . . , skpk ) and a lookup value `.
The server's input is the corresponding evaluation key ek = (ekp1 , . . . , ekpk ), and
the encrypted data JarrayK = (JarrayKp1 , . . . , JarrayKpk ).

Outputs: The client's output is (the binary representation b∗ ∈ {0, 1}1+logm of) the index
i∗ = min { i ∈ [m] | isMatch(array(i), `)}.
The server has no output.

1. The client compute for all j ∈ [k]:
J`Kpj ← Encskpj (`).

and sends to the server
(J`Kp1 , . . . , J`Kpk ),

2. The server does the following for each j ∈ [k]:
(a) Compute

JindicatorKpj ← (isMatch(Jarray(1)Kpj , J`Kpj ), . . . , isMatch(Jarray(m)Kpj , J`Kpj )).

(b) Compute
Jbpj K← SPiRiTm,pj (JindicatorKpj )

where SPiRiTm,pj = S ◦ P ◦ i ◦R ◦ i ◦ T for S, P,R, T and i the matrices and operator speci�ed in
Section 3.4 below.

(c) Send to the client

(Jbp1K, . . . , JbpkK) and (Jindicator(bp1)Kp1 , . . . , Jindicator(bpk )Kpk )

(here we slightly abuse notation by addressing entries of indicator by the binary representation of the
indices). To compute Jindicator(bpj )Kpj the server applies standard PIR techniques, namely, evaluating on
indicator and bj the polynomial

∑m
i=1 indicator(i) · isEqual(i, bpj ); see Section 3.5.

3. The client decrypts and outputs the minimum

b∗ ← min
j∈[k]

{
bpj s.t. indicator(bj) = 1

}
.
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3.4 The Components of SPiRiT Sketch for First Positive

The heart of our secure search protocol is evaluating on a binary vector x ∈ {0, 1}m (speci�cally, the vector
indicator) our sketch for �rst positive

SPiRiTm,p = S ◦ P ◦ i ◦R ◦ i ◦ T.

In what follows we specify the components of S, P,R, T and i of SPiRiTm,p. Without loss of generality, we
assume that m is a power of 2 (otherwise we pad the input array by zero entries).

The Tree matrix T ∈ {0, 1}(2m−1)×m is a binary matrix that, after right multiplication by a length m vector
x = (x1, . . . , xm), returns the length 2m − 1 array data structure representation w = (w1, . . . , w2m−1) for
the tree representation T (x) of x, as de�ned next.

The tree representation T (x) of x is the full binary tree of depth log2m with labeled assigned to nodes
as follows: The label of the ith leftmost leaf is x(i), for every i ∈ [m]; The label of each inner node of T (x)
is de�ned recursively as the sum of the labels of its two children. The array data structure for T (x) is the
vector w = (w(1), · · · , w(2m− 1)), where w(1) is the label of the root of T (x), and for every j ∈ [m− 1] we
de�ne w(2j), w(2j + 1) respectively to be the labels of the left and right children of the node whose label is
w(j); see Fig. 4. Observe that the value w(i) is the sum of the labels of the leaves of the subtree rooted in
the tree node corresponding to array entry w(i).

The matrix T that satis�es w = Tx can be constructed by letting each row k of T corresponds to the
node u in T (x) represented by w(k), and setting this row to have 1 in every column j so that u is an ancestor
of the jth leaf (0 otherwise). We point out that T is of course constructed obliviously to the input and is
independent of x. Note that the last m entries of w are the entries of x =

(
w(m), · · · , w(2m− 1)

)
.

The Roots matrix R ∈ {0, 1}m×(2m−1) is a binary matrix with each row having O(logm) non-zero entries
that satis�es the following: its right multiplications by the tree representation w = (w(1), . . . , w(2m− 1) of
a vector x = (x(1), . . . , x(m)) returns the vector v = Rw of pre�x sums for x, namely, v(j) is the sum of
entries x(1), x(2), . . . , x(j) of x.

A naive implementation can produce these pre�x sums v usingR′ ∈ {0, 1}m×m whose ith row (1, . . . , 1, 0, . . . , 0)
consists of i ones followed by m− i zeros for every i ∈ [m]. This R′ however does not satisfy our requirement
for O(logm) non-zero entries in each row, implying that even when applies on binary vectors the result may
consist of values up to m; this in turn ruins the success of SPiRiTm,p when using small primes p� m.

To solve this issue, we implement R by summing labels of only O(logm) internal nodes of the tree
representation w of x. We next set up terminology to facilitate specifying these internal nodes. Consider a
full binary tree with m leaves T . We identify indices j ∈ [2m− 1] with nodes of the tree, where the mapping
is according to the standard array data structure de�ned above. For each node j ∈ [2m− 1],

� Ancestors(j) ⊆ [2m−1] is the set of indices corresponding to the ancestors in the tree of node j (including
j itself).

� Siblings(j) ⊆ [2m− 1] is the set of indices corresponding to the left-siblings of Ancestors(j).

We are now ready to de�ne R: Each row i of the matrix R has values 1 in all entries j ∈ Siblings(i + 1) (0
otherwise); see Fig. 4. That is,

R(i, j) =

1 if i ∈ [m] and j ∈ Siblings(i+ 1)

0 otherwise

This matrix R satis�es that properties we required above from the roots matrix: (1) each row having
O(logm) non-zero entries, and (2) v = RTx being the vector of pre�x sums of x), as formally stated in the
lemma below.
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Lemma 1 (Roots sketch). Let T ∈ {0, 1}2m−1×m and R ∈ {0, 1}m×(2m−1) be the matrices de�ned above.
Then each row of R has at most logm non-zero entries, and for every x = (x(1), . . . , x(m)), the vector
v = RTx is a length m vector so that for every j ∈ [m],

v(j) =

j∑
k=1

x(k).

The Pairwise matrix P ∈ {−1, 0, 1}m×m is a matrix whose right multiplication by a given length m vector
u = (u(1), . . . , u(m)) yields the vector t = Pu of pairwise di�erences between consecutive entries in u, i.e.,
t(j) = u(j) − u(j − 1) for every j ∈ {2, . . . ,m} and t(1) = u(1). For this purpose every row i ∈ {2, . . . ,m}
of P has the form (0, . . . ,−1, 1, · · · , 0) with 1 appearing at its i-th entry; and the �rst row is (1, 0, . . . , 0).
For example, if m = 8 and u = (0, 0, 0, 1, 1, 1, 1, 1) then t = Pu = (0, 0, 0, 1, 0, 0, 0). More generally, if u is a
binary vector that represents a step function, then t has a single non-zero entry at the step location. Indeed,
this is the usage of the Pairwise sketch in SPiRiT.

The Sketch matrix S ∈ {0, 1}(1+logm)×m
is a matrix whose right multiplication by a binary vector

t = (0, · · · , 0, 1, 0, · · · , 0) ∈ {0, 1}m with a single non-zero entry in its jth coordinate yields the binary

representation y = St ∈ {0, 1}1+logm
of j ∈ [m] (and y = 01+logm if t is the all zeros vector). (Note that

1 + logm output bits are necessary to represent the said m + 1 distinct events.) This sketch matrix S can
be easily implemented by setting each column j = {1, . . . ,m} to be the binary representation of j.

The isPositive operator i() for a prime p, denoted isPositivep(·) (or i(·) in short, when p is clear from the

context), gets as input an integer vector v = (v1, . . . , vm′), and returns a binary vector u ∈ {0, 1}m
′
where,

for every j ∈ [m′], we have u(j) = 0 if and only if v(j) is a multiple of p. This is achieved using Fermat's
Little Theorem:

isPositivep(v(1), . . . , v(m
′)) = (v(1)p−1 mod p, . . . , v(m′)p−1 mod p).

A crucial issue �that we handle via our multi ring FHE evaluation technique� is that, unlike the matrices
S, P,R, T that require from us no multiplication operations (speci�cally, we compute the matrix vector
multiplication using only addition operations, this is by summing the subset of vector entries, or their
negation, speci�ed by the non-zero entries of the matrix), the degree of the polynomial xp−1 that is used in
isPositivep is p− 1 imposing the requirement that we use only small moduli p.

3.5 The Secure Pattern Matching in our Implementations and Experimental Results

Recall that to securely search for an encrypted lookup value ` in an encrypted data array = (array(1), . . . , array(m)),
the server �rst computes the encrypted binary vector:

indicator = (isMatch(array(1), `), . . . , isMatch(array(m), `)) .

Our protocol is generic in the sense that we could plug here any pattern matching polynomial isMatch().
Naturally, in order to implement our protocol and produce experimental results we must run our protocol

on some concrete isMatch() polynomial. The concrete implementation for isMatch used in our experiments
is the equality test, returning isMatch(array(i), `) = 1 if-and-only-if array(i) = `. We assume the input is
given, as standard, in binary representation, and where encryption is bit-by-bit. Denoting by p the plaintext
modulus we use and by a, b ∈ {0, 1}t the patterns whose equality we wish to determine, the equality test we
implemented is de�ned by:

isEqualt (a, b) =
∏
j∈[t]

(
1− (aj − bj)2

)
mod p.
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The degree of this test is 2t. This is degree is independent from the number of entries in the data array, and
depends only on the binary representation length t for each entry. This should be interpreted as one possible
example for a pattern matching polynomial that can be plugged in to our secure search protocol.

We remark that the above equality test di�ers from the standard equality test used when the plaintext
modulus is p = 2 (speci�cally,

∏
j∈[t](1+aj+bj) mod 2), as is necessitated by working with higher modulus

p > 2.

3.6 Monte Carlo Secure Search Protocol

In this section we brie�y discuss a variant of Protocol 2 introducing a probability of error for saving a factor
Õ(log2m) in the overall number of multiplications.

The randomized protocol is similar to Protocol 2 except for working over a single random j ∈ [k], instead
of the repetition over all j ∈ [k] in Protocol 2. We set the parameter k to control the success probability.

Speci�cally, the success probability is set to 1 − δ by taking k = 1
δ ·

log2m
logm . The success analysis simply

follows by observing that the randomized protocol succeed whenever the sampled prime pj is �good� (see

De�nition 3, Section 4.1), which happens with probability 1 − δ by our upper bound log2m
logm on the number

bad primes (see proof of Claim 4) and the choice of k. This success probability can be ampli�ed via parallel
repetition, as standard. The complexity saving is due to avoiding k repetitions. The degree growth is by a
factor of 1

δ log(1/δ), which is O(1) for any δ = O(1).

4 Analysis of our Secure Search Protocol

In this section we analyze our secure search Protocol 2. First we prove Theorem 1 showing this protocol
is an e�cient secure search protocol; see Sections 4.1-4.2. Next we present Formula 1 specifying a concrete
running time estimation for the protocol; see Section 4.3.

Elaborating on the former, we �rst analyze the complexity and correctness of SPiRiTm,p; see Lemma 2
and 3 in Section 4.1. Then we employ this analysis to prove the correctness and complexity of our Protocol 2;
see Theorems 2 and 3 in Section 4.2. The security of Protocol 2 follows immediately by observing that the
server processes only semantically secure ciphertexts; this is standard, details omitted.

4.1 Analysis of SPiRiT Sketch for First Positive

In this section we analyze the complexity and correctness of SPiRiTm,p; see Lemmas 2-3. We begin with the
complexity analysis.

Lemma 2 (SPiRiTm,p complexity). SPiRiTm,p : {0, 1}m → {0, 1}1+logm
is a polynomial of degree O(p2)

that can be evaluated using O(m log p) multiplications. The degree of SPiRiT can be reduced to O(p logm)
with implementation optimizations.

Proof. Computing the matrix-vector products when multiplying by S, P,R, T can be done using only addi-
tions/subtraction and no multiplications whatsoever, because their entries values in {−1, 0, 1} correspond to
summing subsets of the vector's entries (or their negation). So this part of the computation adds nothing to
the degree or to the total number of multiplication.

The degree in each applications of the isPositivep operator is p − 1, and since we compute it twice
the total degree is (p − 1)2 (where we use here the standard fact that degrees multiply when composing
polynomials).

Computing isPositivep for a single entry requires only log p multiplications, when using repeated squar-
ing. Since we apply isPositivep on a total of (2m − 1) +m = O(m) entries, we get that the total number
of multiplications is O(m log p).

The optimizations for reducing the degree to p logm are by introducing the following optimization in
evaluating u = i ◦ R(w′) on w = i ◦ T (indicator): Instead of evaluating the degree p polynomial that sums
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up label in the roots as speci�ed by R and reduces them to binary using isPositivep, we directly compute
the OR of these roots labels. The latter gives an identical result to the former, but with a polynomial of
degree proportional to the number of roots logm, rather than to the modulus p. ut

We next analyze the correctness of SPiRiTm,p, showing a su�cient condition for its success.

De�nition 2 (First positive index). Let x = (x1, . . . , xm) ∈ [0,∞)m be a vector of m non-negative
entries. The �rst positive index of x is the smallest index i∗ ∈ [m] satisfying that xi∗ > 0, or i∗ = 0 if
x = (0, . . . , 0).

De�nition 3 (good p).We call a prime number p good for x ∈ {0, 1}m if for i∗ ∈ [m]∪{0} the �rst positive
index of x the following condition holds: for all nodes j ∈ Ancestors(i∗) with non-zero labels Tx(j) 6= 0 in
the tree representation of x, their label Tx(j) is not a multiple of p.

Lemma 3 (SPiRiTm,p correctness). Let p be a prime, m a power of 2, x ∈ {0, 1}m, i∗ ∈ [m]∪{0} the �rst
positive index of x. If p is good for x, then bp ← SPiRiTm,p(x) is the binary representation b∗ ∈ {0, 1}1+logm

of i∗.

Proof. The case i∗ = 0 is trivial: it is immediate to verify that when evaluated on x = (0, . . . , 0), bp ←
SPiRiTm,p(x) is the zero vector bp = (0, . . . , 0), as the matrix-vector products and application of isPositivep
operator all evaluates to 0.

For the case i∗ ∈ [m], we prove the following. If p is good, then bp ← SPiRiTm,p(x) is the binary
representation of i∗. Denote

u = i ◦R ◦ i ◦ T (x).

It is easy to verify that if u = (0, . . . , 0, 1, . . . , 1) is a step function with i∗ its �rst non-zero, then SPu is the
binary representation of i∗; see Claim 1. We next show that indeed this is the form of u, when p is good.
Showing that u(1) = . . . = u(i∗ − 1) = 0 is simple; see Claim 2. The challenging part is to show that, if p is
good, then u(i∗) = . . . = u(m) = 1, as argued below. Put together we conclude that, if p is good, then bp is
the binary representation i∗.

Claim 1. If u = (0, . . . , 0, 1 . . . , 1) accepting values 1 starting from its i∗-th entry, then (SP · u mod p) is
the binary representation of i∗.

Proof. Multiplying u by the pairwise di�erence matrix P ∈ {−1, 0, 1}m×m returns the binary vector t = Pu
mod p in {0, 1}m de�ned by t(k) = u(k) − u(k − 1) (for u(0) = 0). This vector accepts value t(i∗) = 1 and

values t(i) = 0 elsewhere. Multiplying t by the sketch S ∈ {0, 1}(1+logm)×m
returns the binary vector y = St

mod p in {0, 1}1+logm
specifying the binary representation of i∗. We conclude that (SP · u mod p) is the

binary representation of i∗. ut

Claim 2. u(1) = . . . = u(i∗ − 1) = 0.

Proof. The de�nition of the tree matrix T and the roots matrix R implies that v = RTx is the vector of
pre�x sums of x; See Lemma 1. Namely,

v(j) =
∑
k∈[j]

x(k).

Clearly, these pre�x sums are zero on all entries j < i∗, as x(1) = . . . = x(i∗− 1) = 0. Computing the vector
v di�ers from computing u in that we did not apply the isPositivep operator. Observe that isPositivep
has one-sided error in the sense that for z = 0 it always holds that isPositivep(z) = 0. Therefore, the �rst
i∗ − 1 entries remain zero even when applying isPositivep on the tree representation Tx and on the roots
output RiT (x). Namely, u(1) = . . . = u(i∗ − 1) = 0. ut

Claim 3. If p is good, then u(i∗) = . . . = u(m) = 1.
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Proof. Fix j ≥ i∗. The key observation is that the intersection Ancestors(i∗) and Siblings(j+1) is non-empty:

∃k∗ ∈ Ancestors(i∗)
⋂

Siblings(j + 1).

The above holds because the left and right children vL, vR of the deepest common ancestor of i∗ and j + 1
must be the parents of i∗ and j + 1 respectively (because i∗ < j + 1), implying that vL is both an ancestor
of i∗ and a left-sibling of the ancestor vR of j + 1. Namely, vL is in the intersection of Ancestors(i∗) and
Siblings(j+1). Now, since k∗ ∈ Ancestors(i∗) = A then when summing over the integer (i.e., without reducing
modulo p),

Tx(k∗) =
∑

j s.t. k∗∈Ancestors(j)

x(j) ≥ x(i∗) ≥ 1,

implying for good p that the above holds also when reducing modulo p:

iTx(k∗) = 1 mod p.

Now, when applying the roots matrix to compute u(j), since k∗ ∈ Siblings(j+1) then the summation includes
the summand iTx(k∗) = 1 mod p, so it is strictly positive when computer over the integer. Moreover, the
sum remains strictly positive even when reducing it sum modulo p, because the sum is smaller than p (because
the sum is over at most logm values by the property that R has at most logm non-zero entries in each row,
and all these values are bits by as they are entries of iTx). We conclude therefore that

iRiTx(j) = isPositivep

 ∑
k∈Siblings(j+1)

iTx(k)

 = 1.

Namely, we've shown that u(j) = 1 for all j ≥ i∗. ut

ut

4.2 Analysis of our Secure Search Protocol 2

Consider an execution of Protocol 2 between two parties called client and server. Let the shared/client's/server's
inputs be as speci�ed there; denoted, (E,m,P = {p1, . . . , pk}), (sk, `), and (ek, JarrayK = (JarrayKp1 , . . . , JarrayKpk))
respectively. Then the following holds:

Theorem 2 (Correctness). Protocol 2 when executed by parties that follow the protocol speci�cations (i.e.,
semi-honest) terminates with no output for the server, and with client's output being the binary representation

b∗ ∈ {0, 1}1+logm
of the index of the �rst match for ` in array:

i∗ = min { i ∈ [m] | isMatch(array(i), `)} .

Proof. Recall that the client's output b is the smallest candidate bpj received from the server that is veri�ed
to have indicator(bpj ) = 1:

b← min
{
bpj s.t. indicator(bpj ) = 1

}
.

By de�nition of isMatch and indicator any b with indicator(b) = 1 is the index a matching entry, i.e., so
that isMatch(array(b), `) = 1. It remains to prove that b is the �rst match b∗. For this purpose it su�ces
to prove that b∗ ∈ {bp1 , . . . , bpk}, because if b∗ is in this set then it must be the smallest of the veri�ed
matches in this set. By Lemma 3, to prove that b∗ belongs to this set it su�ces to prove that there exists a
p ∈ {p1, . . . , pk} so that p is good for indicator. The latter follows from Pigeonhole Principle together with
bounding the number of prime divisors for the ancestors of i∗ in the tree representation of indicator; see
Claim 4.

Claim 4. There exists a prime p ∈ P = {p1, . . . , pk} that is good for indicator.
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Proof. Recall that p is good for indicator ∈ {0, 1}m if it divides non of the non-zero labels of the ancestors of
the i∗-th leaf in the tree representation T · indicator of indicator for i∗ the �rst positive index of indicator.

Observe that there are at most logm ancestors for i∗, each labeled by a number in the range {0, . . . ,m}.
Recall that all primes pj are chosen to be larger than logm, so each label has at most loglogmm =

logm/ log logm divisors in P. Taking the union over all labels we conclude that they have at most log2m/ log logm
divisors in P. Now since |P| is greater than the former, then by Pigeonhole Principle P must contain a good
p. ut

ut

Theorem 3 (Complexity). Protocol 2 is a single round protocol with communication complexity of o(log2m)
ciphertexts. The server evaluates o(log2m) polynomials (in parallel) each of degree O(log3m) · d and total

number of Õ (ms) homomorphic multiplications, for d and s the degree and total number of multiplications
of isMatch(). The client's decoding time is o(log2m), and the client's overall running time is proportional
to computing o(log2m) encryption and decryption operations.

Proof. It is straightforward to verify by inspection that Protocol 2 is a single round protocol with commu-
nication complexity of o(log2m) ciphertexts.

The server evaluates the composition of the polynomial isMatch with each of the polynomials SPiRiTm,pj
for j ∈ [k], where computation is done on encrypted data using homomorphic operations. Recall that
P = {p1, . . . , pk} consists of the �rst k = 1 + log2m/ log logm = o(log2m) primes larger than logm.

The degree of this composition is the product of the degree d of isMatch and the degree O(pj logm) of
SPiRiTpj . Assigning the upper bound

p1, . . . , pk = O(log2m)

on the magnitude of p1, . . . , pk (see Claim 5), we get that the degree is at most O(log3m) · d.
The total number of homomorphic multiplications computed by the server is the sum of that following: (1)

m · s multiplications in computing m applications of isMatch, and (2) k · O(m log p) = o(m log2 log logm)
multiplications in computing SPiRiTm,p1 , . . . ,SPiRiTm,pk (where the latter holds by the choice of k =
o(log2m and the bound p = O(logm) in Claim 5). Put together we get that the server computes a total of

Õ(ms) homomorphic multiplications.

The client's decoding algorithm simply selects the minimum of k = o(log2m) values satisfying a test
(indicator(i) = 1) that can be veri�ed in O(1) time. So the decoding time is O(k) = o(log2m).

Claim 5. p1, . . . , pk = O(log2m).

Proof. We bound the magnitude of the primes p in P. Recall that by the Prime Number Theorem (see,
e.g., in [24]) asymptotically we expect to �nd x/ lnx primes in the interval [1, x]. Thus, we expect to �nd
x

ln x −
b

ln b = Ω( x
ln x ) primes in the interval [b, x], where the last equality holds for every b = o(x). Assign

x = k ln k for k = 1+ log2m/ log logm and b = logm. For su�ciently large m there are k primes larger than
b in the interval [b, t ln t]; so all the primes in P are of magnitude at most p = O(k ln k) = O(log2m). ut

ut

4.3 Formula for Concrete Running Time

When we move from theory to implementation it is useful to have running time estimation with concrete
numbers rather than the O() notation; in this section we provide such a formula (see Formula 1).
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The formula we provide takes into account the following additional factors, beyond the algorithm: First,
the acceleration gained by employing the Smart-Vercauteren [36] SIMD (Single Instruction Multiple Data)
optimization that enables packing multiple plaintext messages in a single ciphertext. Second, the acceleration
gained by running the algorithm on a multi-core hardware, where we distribute the work in a �MapReduce-
like� fashion with processors searching in disjoint subsets of the data array.

Our formula for the concrete running time on data array of m records, each record of length t bits, is:

T (m, t) = n · 2t ·MUL+ 2n(1 + dlog2 ne) ·ADD + 2n · IsPOSITIV E , (1)

where

� n =
m

CORES · SIMD
� CORES is the number of core processors that work in parallel.
� SIMD is the number of plaintext messages that are packed in each single ciphertext. This SIMD
factor is a function of the ring size p = O(log2 n) and L = log(d + log s) = O(log2 log2 n) for d, s upper
bounds on the degree and size of evaluated polynomials; in HELib, this parameter can be read by calling
EncryptedArray::size(), see [23].

� ADD, MUL, and IsPOSITIV E are the times for computing a single addition, multiplication, and the
isPositivep operator, respectively, in the context of parameters p and L.

For example, in our system (see Section 5) on input parameters t = 1 and m = 255, 844, 736 array entries,
we have SIMD = 122 and CORES = 64 resulting in n = 32, 767 packed ciphertexts; ring size p = 17; and
measured timings of ADD = 0.123ms, MUL = 62.398ms, IsPOSITIV E = 695.690ms. See Fig. 1 for graph
of T on various m, t parameters.

See Figure 1 depicting Formula 1 for various parameters settings (t = 1, 16, 32, 64 and m ranging from
roughly 103 to 2.55 · 108). Comparison to experimentally measured running times there shows that the
formula quite accurately predicts the actual running time.

The formula was derived as follows. The summand n · 2t ·MUL accounts for computing indicator in the
protocol, where using n applications of isEqualt, each requiring 2t multiplications. Note that this assumes
the use of isEqualt equality test as the isMatch pattern matching polynomial. More generally, when using
other isMatch() polynomials, this summand should be replaced to the corresponding running time.

The summand 2n(1 + dlog2 ne) ·ADD accounts for the matrix-vector product when computing SPiRiT,
i.e., the multiplication by the matrices S, P,R, T . Importantly, we compute these products using only homo-
morphic additions, and no homomorphic multiplications. This is by observing that these matrices have values
only in {−1, 0, 1}, so that matrix-vector product can be implemented by computing sum of subsets of vector's
entries (or their negation), and with no multiplications. Furthermore, the matrices P,R are sparse, requiring
only 1 + log n additions per row; the product by the matrix T , despite not being sparse, can be computed
with using n − 1 additions: one per each internal node in the tree summing up the labels of its children;
likewise, the product by the matrix S can be computed with log n additions with further optimizations.

The summand 2n · IsPOSITIV E accounts for the applications of isPositive operator on n internal
nodes in the tree representation T · indicator and on the n entries of RiT · indicator.

5 System and Experimental Results

In this section we describe the secure search system we implemented using the secure search protocol pre-
sented in this paper. To our knowledge, this is the �rst implementation of such an FHE based secure search
system.

We implemented our protocol in an open source library based on HELib library [22] implementation
for the Brakerski-Gentry-Vaikuntanthan's FHE scheme [7] together with the Smart-Vercauteren [36] and
Gentry-Halevi-Smart [18] Single Instruction Multiple Data (SIMD) optimization. We ran experiments on
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Amazon's AWS EC2 cloud occupying up to 100 processors. Our experiments show that we can securely
retrieve records from a database, where both database and query are encrypted with FHE, achieving a rate
of searching in millions of database records in less than an hour on a single 64-cores machine. Moreover, our
experiments show that the running time reduces near-linearly with the number of cores. So, for example, we
can achieve a rate of searching in a billion of database records in roughly two hour using 100 such machines.
The system is fully open source, and all our experiments are reproducible. For details of our system and
experimental results see Sections 5.1-5.3.

5.1 System

System Overview. We implemented our secure search protocol into a system that maintains an encrypted
database that is stored on Amazon Elastic Compute Cloud (EC2) provided by Amazon Web Services (AWS).
The system gets from the client an encrypted lookup value ` to search for, and a column name array in a
database table of length m. Encrypting the column name is optional. The encryption is computed on the
client's side and can be decrypted using a secret key that is unknown to the server. The client can send the
search request through a web-browser, that can run e.g. from a smart-phone or a laptop. The system then
runs on the cloud our secure search algorithm (Step 2 in protocol 2), and returns to the client a short list
of encrypted candidates for the �rst match for ` is array. The web browser then decrypts this candidates
list on the client's machine and uses it to compute the smallest index i∗ in array that contains ` (i∗ = 0 if `
is not in array). As expected by the analysis, the decoding and decryption running time on the client side
is very fast (less than a second) and practically all the time is spent on the server's side (cloud). Database
updates can be maintained between search calls, and support multiple users that share the same security
key.

Hardware. Our system is generic but in this section discuss how we evaluate it with server running on
Amazon's AWS cloud, and client running on a home computer. For the server we use one of the standard
suggested grids of EC2 x1.32xlarge servers. Such a server has 128 2.4 GHz Intel Xeon E5-2676 v3 (Haswell)
cores (that are also common in standard laptop), 1,952 GigaByte of RAM, and 2× 1.9TB SSD disk. For the
client use a personal computer with Intel(R) Core(TM) i7-4790 CPU at 3.60GHz, 4 cores, and 16GB RAM.

Open Software. The algorithms were implemented in C++. HELib library [22] was used for the underlying
FHE scheme, including its usage of SIMD (Single Instruction Multiple Data) technique. The source of our
system is open under the GNU v3 license and can be found in [1].

Security. Our system and all the experiments below use a security key of 80 bits of security. This setting
can be easily changed by the client.

5.2 Experiments

Data. We ran the system on a lookup value ` and a lengthm array, where values ` and array(1), . . . , array(m)
are in binary representation of length t bits. We ran experiments on binary representation lengths tested
for both the case t = 1 and t = 64 bits, and on a roughly doubling number of records m starting with
m = 90, 048 and reaching to m = 41, 408, 640 records for the case t = 64 and m = 511, 697, 280 for the case
t = 1. In case t = 1, array is a vector of all zeroes except for a random index. In case t = 64, array is a
vector of m random 64-bits entries.

Let us elaborate on the choice of the number of records m for our experiments. The values m were
determined by taking doubling numbers of ciphertexts n and letting m be n · SIMD · CORE for SIMD
the number of messages packed in each ciphertext and CORES = 64 the number of cores in the machine on
which we ran our experiments. This SIMD parameter is determined by the context parameters of number of
levels L and prime p. The SIMD factor we used was not very high, ranging from 122 to 444; in particular
SIMD = 122 (respectively, 158) on our high-end result on number of records m ≈ 500, 000, 000 and t = 1
(respectively, m ≈ 40, 000, 000 and t = 64).
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We remark that we did not attempt to optimized the SIMD factor: by slight modi�cation of L, p it is
often possible to reach much higher SIMD factors, say, 1000 or 2000; this is expected to yield a speedup by
factor of roughly 10 over our reported results.

Experiments. We ran our secure search algorithm (Step 2 in Protocol 2), running on the server the proba-
bilistic version in which a single p is chosen; see Section 3.6. The experiments address the data as speci�ed
above (binary representation length for data elements t ∈ {1, 64}, and number of records m ranging approxi-
mate from 105 to 1

2 ·10
9). In case t = 64 the server �rst compares ` to each entry of array by calling isEqualt

for producing the vector indicator ∈ {0, 1}m on which the server applies the SPiRiT sketch for �rst positive
to return the index of the �rst match for ` in array. In case t = 1 the �rst above step is degenerated, and
the experiment measures performance of SPiRiT sketch for �rst positive.

5.3 Results

Our experimental results on a single machine on the cloud are summarized in Table 3 and Figure 1; and
results on up to 100 machines in Figure 6.

The client's running time (i.e., the time for encryption, decryption and decoding) was very fast: under 30ms
for the randomized variant of our protocol, and under a second for the deterministic variant; experiments
are on our old personal computer (see Hardware speci�cation in Section 5.1).

Elaborating on the former, the time for processing a single ciphertext on a single core was under 30ms, so
this is the client's time in our randomized variant with no ampli�cation. For our deterministic protocol, the
number of parallel ciphertexts k (the length of the list of candidates) was under 110 in all our experiments.
For example, for m = 511, 697, 280 records we had SIMD = 122 implying the records are packed in
n′ = m/SIMD = 4, 194, 240 ciphertexts and so k = 1 + log22(n

′)/ log2 log2(n
′) = 1 + 222/ log2 22 < 110.

Partitioning the work between the 4 cores on the client's computed, leads at most 28 ciphertexts to be
processed per core, and an overall time of essentially 28× 30ms = 840ms. Namely, the client's running time
was under a second, in both the randomized and the deterministic variants of our secure search protocol. So
the server's time is essentially the overall running time of the protocol.

The server's running time on a single machine (with hardware as speci�ed in Section 5.1) depends on the
size parameters m and t, but not on the actual entries of array or the desired lookup value `. This is because
the server computes on encrypted data, and is therefore oblivious to the data content. Our experiments
demonstrate the following server's running times on a single machine; see Table 3 and Figures 1,5 for details.

� For 64-bits records (t = 64), our system can search in a data array of approximatelym = 100, 000 records
in a minute. Similarly, our system can search in approximately m = 4, 000, 000 (m = 40, 000, 000) records
in an hour (a day).

� For 1-bits records (t = 1), i.e., when isolating the time for our SPiRiT sketch for �rst positive, our system
can search in a data array of approximately m = 100, 000 records in less than a second. Similarly, our
system can search in approximately m = 40, 000, 000 (m = 500, 000, 000) records in an hour (a day).

Scalability: Server's running time on parallel machines. In a parallel computation on multiple machines we
can have machines that are almost independent (�embarrassingly parallel� [44]). To use s servers we split the
data evenly among them, where each server stores and searches n/s of the entries. The split is in consecutive
chunks (elements 1, . . . , n/s for �rst server, elements (n/s) + 1, . . . , 2n/s for second server, and so forth).
The output is then taken to be the output of the �rst server who returned a non empty output i∗ 6= 0.
The running time on each machine was almost identical (including the non-smooth steps; see below) and
the running time decreases linearly when we add more machines (cores) to the cloud, as expected. So, for
example, using 100 machines we could search 1,000,000,000 (a billion) 64-bits records in roughly two hours;
see Figure 6.
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number of records m SPiRiT time Search time

90,048 0.7 sec 1 min

192,960 2 sec 2 min

196,416 14 sec 7 min

399,168 33 sec 14 min

2,048,256 2 min 33 min

4,112,640 4 min 66 min

14,520,576 8 min 2.3 hours

19,641,600 17 min 4.6 hours

20,699,264 35 min 14.4 hours

41,408,640 1.25 hours 26.7 hours

63,955,328 2.6 hours

127,918,464 5.5 hours

255,844,736 11.7 hours

511,697,280 22.5 hours

Table 3. Server's running time on a single machine on Amazon's cloud for growing database array size (left column)
over encrypted database. Middle column shows the running times for SPiRiT sketch for �rst positive of length m
binary array (t = 1). Right column shows the running times for secure search in a length m array of 64-bits records
(t = 64).

Fig. 5. SPiRiT running time as a function of the number of records. Number of records ranged from m = 90, 047 to
m = 511, 697, 280 in roughly doubling values; measured running times started at under a second (0.7sec) and reached
up to under a day (22.5 hours).

Storage, I/O, and RAM. Our experiments with HELib show that a single ciphertext takes about 10KB to
store, for a total of 3TByte for 300 million database entries when t = 1, or 6.4TByte for 10 million entries
entries when t = 64. With SSD disk prices getting lower, these amount of data are feasible to be stored on
SSD, which are signi�cantly faster than regular disks. Also, since reading data from a disk requires very little
CPU, data can be read from multiple threads from multiple disks in parallel and be made ready for a primary
CPU intensive thread. We also measured the RAM requirements. During secure search evaluation RAM
requirements were a few GigaBytes, typically not exceeding 3Gb; this is because we uploaded ciphertexts
from drive as needed, never requiring to simultaneously hold many ciphertexts in RAM. For generating the
evaluation key in various contexts of the multiplicative depth L and the plaintext modulus p we saw that
RAM requirements were typically around 4Gb, with some peaks reaching towards 8Gb; see Figure 7.

Comparison to theoretical analysis. Theorem 3 show that the degree of our secure search protocol is the
degree of SPiRiT times the degree of the used pattern matching subroutine, and that the degree of SPiRiT is
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Fig. 6. Left: Server's running time (minutes) for computing SPiRiT on a million records using 1-10 cores (bars);
compared with running time reduction by a factor of 1/#cores (curve). Right: Server's running time (hours) for
computing Secure Search on a billion records using 1-100 cores (bars); compared with running time reduction by
a factor of 1/#cores (curve). Note that we gain more than a factor 1/#cores speedup, because splitting the data
decreases the overall degree.

Fig. 7. RAM requirements for the evaluation key as a function of the multiplicative depth L (x-axis), averaged over
the plaintext modulus values p = 5, 7, 11, 13, 17, 19, 23, 29, 257, 1249, 4241, 16519, 64091 (curve and std error bars);
demonstrating that RAM requirements are typically around 4Gb, with peaks reaching towards 8Gb.

poly-logarithmic in the number of records. The multiplicative depth of SPiRiT (i.e., log of its degree) is there-
fore doubly logarithmic in the number of records: O(log logm). This is demonstrated by the multiplicative
depth as measured in our experiments; see Figure 8.

Why the curves are not smooth? Each of the curves in Fig. 1 has 4�5 non-continuous increasing steps.
These are not artifacts or noise. They occur every time whenever there is an increase in the number of
primes numbers |P| used in Protocol 2. Recall that the cardinality |P| grows as a function of the number of
records m (see there), a�ecting the ring size p that are used by the SPiRiT sketch, which in turn increases
the depth of the polynomial realizing isPositivep, and consequently the overall server's running time.

6 Conclusions

In this work we present the �rst secure search protocol on FHE encrypted lookup value and searched data,
achieving all the following: (1) e�cient communication consisting of a single round with communication
volume proportional to the lookup value and search outcome; (2) e�cient client with running time polynomial
in the size of the retrieved records; (3) e�cient server evaluating a polynomial of degree poly-logarithmic in
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Fig. 8. The graph shows SPiRiT's multiplicative depth (equivalently: log of the degree, or the number of levels
parameter L in HElib) as a function of the number of ciphertexts n = m/SIMD for holding the data array (for m
the number of records). By our analysis we expect the depth to be O(log logn).

the number of records in the searched database; (4) guaranteeing the semantic security for the lookup value
and database both at rest and during search. We implemented our protocol in an open source library based
on HELib implementation for the Brakerski-Gentry-Vaikuntanthan's FHE scheme, and ran experiments on
Amazon's AWS EC2 cloud. Our experiments show that we can search in a rate of millions of records per
hour per machine. This is counter to the wide prior belief on the FHE's computational overhead being too
prohibitive for secure search implementations.
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