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Abstract

We consider the reduction loss of security reductions for non-interactive key exchange (NIKE) schemes.
Currently, no tightly secure NIKE schemes exist, and in fact Bader et al. (EUROCRYPT 2016) provide
a lower bound (of Ω(n2), where n is the number of parties an adversary interacts with) on the reduction
loss for a large class of NIKE schemes.

We offer two results: the first NIKE scheme with a reduction loss of n/2 that circumvents the lower
bound of Bader et al., but is of course still far from tightly secure. Second, we provide a generalization of
Bader et al.’s lower bound to a larger class of NIKE schemes (that also covers our NIKE scheme), with
an adapted lower bound of n/2 on the reduction loss. Hence, in that sense, the reduction for our NIKE
scheme is optimal.

1 Introduction

Tight security reductions. A security reduction relates the security of a cryptographic construction to
the difficulty to solve some assumed-to-be-hard problem. In other words, to base the security of a scheme S
on the hardness of a problem P , one has to show how to solve P given an adversary that successfully attacks
S. As one usually considers asymptotic security, both adversary and problem solver are required to have
polynomial running time and non-negligible success probability.

Many security reductions now guess where in S to embed problem P . For example, in case of a signature
scheme, the security reduction might guess in which generated signature (an instance of) P is embedded.
Asymptotically, this is fine, as an S-attacker can only ask for a polynomial number of signatures. But
when instantiating the scheme with concrete parameters, this guessing step leads to the following paradox:
Considering a number of, say, 230 signature queries (which is realistic when thinking of servers) and a security
parameter λ = 100, the concrete loss in success probability introduced by the reduction would actually be
larger than a factor of 2λ/4. When aiming at concrete security guarantees (derived from the hardness of
P ), one thus has to account for the number of expected signatures at the time of set-up, when choosing
keylengths.

This makes so called tight security reductions a desirable goal. A security reduction is regarded as tight,
if (with comparable running times) the success probability of the problem solver is close to the success
probability of the underlying attacker. More precisely, one usually requires the success probabilities to only
differ up to a small constant factor (or, for a broader notion of tightness, up to a factor linear in the security
parameter). Tight security reductions allow to choose the security parameter for concrete instantiation
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Reference |pk| model sec. loss assumption uses

Diffie–Hellman [15] 1×G HKR n2 DDH -
Ours, Sec. 3 3×G HKR n/2 DDH -
CKS08 [10] 2×G DKR 2 CDH ROM
FHKP13 [18] 1× ZN DKR n2 factoring ROM
FHKP13 [18] 2×G + 1× Zp DKR n2 DBDH asymm. pairing
Ours, Sec. 4 12×G DKR n/2 DLIN symm. pairing

Figure 1: Comparison of existing NIKE schemes. |pk| denotes the size of the public keys, measured in
numbers of group elements and exponents. “DKR” or “HKR” denote the CKS-heavy security notion from [18]
with dishonest, resp. honest key registrations. Regarding security loss, n denotes the number of honest parties
the adversary interacts with and q is the total number of queries made by the adversary. The losses of the
two constructions from [18] stems from applying a generic transformation (from the same paper) to level the
security guarantees of all compared schemes. Our construction from Section 3 is instantiated with the HPS
of Cramer–Shoup based on DDH presented in Section 3.1. We omit the second scheme from [18] since we
focus on non-interactive key registration procedures.

independently of the number of expected instantiations (or, say, generated signatures in case of a signature
scheme).

Positive and negative results on tight security. Schemes with tight security reductions could
already be constructed for a variety of cryptographic applications (such as public-key encryption [6, 29, 2,
39, 38, 21, 27, 20], identity-based encryption [11, 7, 32, 3, 24], digital signature schemes [35, 39, 38, 28, 1],
or zero-knowledge proofs [29, 21]). For public-key encryption schemes, the price to pay for an (almost) tight
reduction has been reduced to essentially only one additional group element in ciphertexts [21, 20].

On the other hand, starting with the work of Coron [12], a number of works show that certain types of
reductions are inherently non-tight (in the sense that a problem solver derived from a given adversary has
a significantly reduced success probability). For instance, [12, 33, 30, 4] prove that any “simple” reduction
for a sufficiently “structured” signature scheme must lose a factor of Ω(qsig), where qsig is the number of
adversarial signature queries. (Here, the definitions of “simple” and “structured” vary across these papers.)
Similar lower bounds exist also for specific schemes and other primitives [19, 43, 37, 17, 4]. Particularly
interesting to our case is the work of Bader et al. [4], which proves lower bounds on the reduction loss of
signature, encryption, and non-interactive key exchange schemes in the standard model.

Our focus: non-interactive key exchange. In this work, we investigate tight reductions for non-
interactive key exchange (NIKE) schemes in the two-party setting1. Intuitively, a NIKE scheme enables
any two parties Pi and Pj to compute a common shared key Kij using a public-key infrastructure only,
but without any interaction. (That is, Kij should be an efficiently computable function of Pi’s public and
Pj ’s private key, and we require Kij = Kji.) Already the original Diffie-Hellman key exchange [15] forms a
NIKE scheme (although one that only satisfies a weak form of security). However, the formal investigation
of NIKE schemes started with the work of Cash, Kiltz, and Shoup [10], with a more detailed investigation
provided in [18].

While there exist highly secure and efficient NIKE schemes (e.g., [10, 18]), currently there is no NIKE
scheme with a tight security reduction to a standard assumption (and in the standard model). We believe
that this is no coincidence: as we will detail below, the rich interdependencies among NIKE keys prevent
existing techniques to achieve tight security. Also, it might be interesting to note that the already mentioned
work of Bader et al. [4] presents a particularly strong (i.e., quadratic) lower bound of Ω(n2) on the reduction
loss of NIKE schemes, where n is the number of parties that the adversary interacts with. While the scheme
of [10] is proven only in the random oracle model (such that Bader et al.’s lower does not apply), this lower
bound applies to the scheme of [18].

1We focus on the two-party setting assuming a public key infrastructure (PKI) since this setting allows for efficient standard-
model constructions. Intuitively, stronger settings (multi-party, identity-based with/without setup) appear to require qualita-
tively stronger tools to give any construction at all, tightly secure or not. However, since any n-party NIKE can be viewed as
a 2-party NIKE by fixing n-2 identities, our lower bound trivially generalizes to multi-user NIKE schemes.
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Our results. In this work, we provide two contributions. First, we construct an efficient and modular
NIKE scheme with a reduction significantly tighter than previous reductions. Concretely, our reduction
targets the `-Linear assumption in pairing-friendly groups, and has a loss of n/2, where n is the number of
users an adversary interacts with. Thus, our scheme is the first to break (or, rather, circumvent) the lower
bound of Bader et al. [4]. As a technical tool, we also present a generic transformation that turns any mildly
secure NIKE scheme (i.e., secure only against passive adversaries) into a strongly secure one (secure against
active adversaries).

Second, we show that our security reduction is optimal, in the sense that we can generalize the result of
Bader et al. [4] to our scheme, at the price of a smaller lower bound (of precisely n/2). Our generalization
follows the high-level ideas of Bader et al. (who in turn follow Coron’s work [12]). However, unlike their result,
we even consider NIKE schemes and reductions that make nontrivial changes to the public-key infrastructure
itself. We believe that our second result points out the inherent difference between the public-key or signature
settings (in which we already have tightly secure schemes from standard assumptions), and the NIKE setting
(in which a broader range of lower bounds holds, and, to our knowledge, no tight schemes exist).

We note that in line with previous works [4, 26], our negative result does not consider schemes or
reductions in the random oracle model.

1.1 Technical overview

In order to describe our results, it will be helpful to first recall existing lower bounds results (and in particular
the result of Bader et al. [4]). This way, we will be able to detail how we circumvent these lower bounds,
and what other obstacles still block the way to a tight reduction.

A closer look on existing lower bound results. It might be interesting to see why these lower
bounds do not contradict any of the constructions mentioned above. All mentioned lower bounds use a
“meta-reduction” (cf. [9]) that turns any tight reduction into a successful problem solver (even without a
given successful adversary). To describe how a meta-reduction works, assume a reduction R that interacts
with an adversary A. Assume further that R first solves a number of problem instances for A, and then
expects A to solve a new problem instance. (For instance, in the signature setting, R might first generate
many signatures for A on messages of A’s choice, and then expect A to forge a signature for a fresh message.)
R will then try to solve its own input instance using the fresh solution provided by A.

Now a meta-reduction M runs R, and takes the place of A in an interaction with R. Intuitively, M
will try to feed R with R’s own problem solutions, and hope that R can use one of those to solve its own
input. Of course, security games generally require the adversary to generate a fresh problem solution to
avoid trivial attacks. (For instance, the standard security game for signatures [23] requires the adversary to
forge a signature for a message that has not been signed before.) Hence, M runs R twice: in the first run,
M asks R for the solutions to, say, q randomly chosen problem instances z1, . . . , zq. Then, M rewinds R,
asks for solutions to different problem instances z̃i, and submits the previously obtained solution to one zi
as fresh solution.

Of course, R may fail to convert a zi-solution into a solution to its own input sometimes (depending on
its reduction loss), and this leaves a “loophole” for R to escape the meta-reduction strategy of M . However,
a combinatorial argument of [12] shows that R must have a reduction loss of Ω(qsig) to use this loophole.

For this strategy of M , it is essential that the reduction R will “accept” a problem solution that it
has generated itself. To this end, [12, 33] require unique signatures (i.e., problem solutions), and [30, 4]
require re-randomizable signatures (so that any valid signature produced by R can be converted in a random
signature by M). However, this property is violated (in a very strong sense) by many of the tightly secure
signature schemes mentioned above (e.g., [39, 38, 28, 1]). Specifically, the corresponding (tight) reductions
find a way to produce special valid-looking signatures for an adversary that are however useless to solving a
problem instance. (Of course, these signatures are not re-randomizable or unique.)

The argument of Bader et al. for NIKE schemes. Bader et al. [4] adapt the above argument to
NIKE schemes. To describe their argument, we first recall the NIKE security experiment (according to [10]).
A NIKE adversary may request an arbitrary number n of public keys pki, and may adaptively corrupt an
arbitrary subset of them (in which case the adversary gets the corresponding secret keys ski).

2 Finally, the

2We omit additional capabilities of the adversary which are not relevant for this overview.
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adversary selects two public keys pki∗ , pkj∗ that have not been corrupted, and then must distinguish between
their shared key Ki∗,j∗ , and an independently random value.3

Now assume a reduction R that turns any NIKE adversary into a successful problem solver. This
reduction R has to be able to answer adversarial corruption queries, and come up with the corresponding
secret keys ski. Intuitively, a meta-reduction M can take the role of an adversary, and first obtain some of
these keys ski from R. Then, M can rewind R, and choose to be challenged on a shared key Ki∗,j∗ that can
be computed from one previously obtained ski.

The main difference to the signature case above is that n public keys pki give rise to O(n2) shared
keys (or, problem instances/solutions) Kij . In particular, O(n) corruptions enable M to compute O(n2)
shared keys (and thus to potentially solve a quadratic number of shared key challenges). If R turns any of
those challenge solutions into a problem solution, then M succeeds. Hence, R must fail with probability
1−O(1/n2). (Another way to view this is that the reduction’s success has to vanish with the failures of the
simulation.)

How to circumvent the NIKE lower bound. However, similar to previous works, Bader et al. assume
that any secret key (or, more generally, problem solution) output by R can be used to solve corresponding
challenges posed by R. This assumption can in fact be violated easily, e.g., by allowing many different secret
keys per public key. (That is, a secret key is not uniquely determined by a given public key and, e.g., R
may hand out different secret keys upon a corruption query.) Furthermore, different secret keys (for a given
public key) may behave differently in the computation of shared keys, and thus may not necessarily be useful
in solving a given challenge. Similar ideas are at the core of known techniques for improving tightness, in
particular in the context of corruptions [5].

While this first thought allows to circumvent the lower bound of Bader et al., its concrete implementation
is not clear at all in the context of NIKE schemes. In particular, there should be many secret keys (with
different functionality) for a given public key, but the secret keys obtained through corruptions should still
satisfy correctness (in the sense that pki and skj lead to the same shared key as ski and pkj). (We note that
this obstacle is specific to NIKE schemes, and in our opinion the main reason why obtaining tightly secure
NIKE schemes appears to be particularly difficult.)

Our scheme. To explain our solution, it might be easiest to first outline our scheme (which, in its basic
form, is a variation of the password-authenticated key exchange scheme of [34, 22]). Let L be a language,
and assume a hash proof system (HPS) for L with public keys hpk and secret keys hsk. We write Hhsk(x)
for hash proof of an L-instance x under key hsk. Then, public and secret keys of our NIKE scheme are of
the following form:

pk = (hpk, x) sk = (hsk, x, w),

where x ∈ L with witness w, and a HPS keypair (hpk, hsk) are randomly chosen. Given pki = (hpki, xi) and
skj = (hskj , xj , wj), the corresponding NIKE shared key is computed as Kij = Hhskj (xi) ·Hhski(xj), where
the hash value Hhski(xj) is computed from (and uniquely determined by) hpki and wj . We have correctness
in the sense Kji = Hhski(xj) ·Hhskj (xi) = Hhskj (xi) ·Hhski(xj) = Kij .

Recall that there are many HPS secret keys hsk for any given public key hpk. However, all these secret
keys act identically on any x ∈ L. Hence, in order to benefit from the non-uniqueness of hsk, a NIKE
reduction will have to switch at least one x ∈ L in a NIKE public key pki to a no-instance x /∈ L. Let us call
such a NIKE public key (with x /∈ L) “invalid”. For an invalid pki, no (full) secret key exists. This means
that our reduction must hope that no invalid pki is ever corrupted. Since a NIKE adversary may corrupt all
public keys except for the two selected challenge keys pki∗ , pkj∗ , this means that our reduction may instead
fail with probability 1− 2/n.

In other words, already with one invalid public key, our reduction has a loss of at least n/2. On the
bright side, we will present a strategy that uses precisely one invalid public key to leverage a NIKE security
reduction (with loss n/2). This reduction is of course far from tight, but it has a loss still considerably better
than the O(n2) lower bound by Bader et al., and thus is significantly tighter than previous constructions.
In a nutshell, our security proof proceeds in game hops:

3Like [4], we consider only one challenge pair of public keys (and not an arbitrary number, like the “m-CKS-heavy” notion
of [18].
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1. We start with the NIKE security game.

2. We guess one index i∗, and hope that pki∗ is one of the challenge public keys finally selected in the
adversary’s challenge. (If this is not the case, the reduction fails.) Since there are 2 challenge public
keys, this step loses a factor of n/2.

3. We choose xi∗ /∈ L. Since we may assume that pki∗ is selected as challenge, this change will not be
detectable (assuming L has a hard subset membership problem).

4. Finally, we observe that now, all keys Ki∗j (for arbitrary j) are randomized by the smoothness of the
underlying HPS. In fact, HPS smoothness implies that Ki∗j is close to uniform, even given pkj . In
particular, this holds for j = j∗ and the final challenge Ki∗j∗ .

Note that while [10] also crucially relies on HPSs, there are significant technical differences. Namely, [10]
uses hash proof systems mainly as a tool to implement a “replacement decryption method” that allows to
forget parts of the secret key. In other words, they use HPSs exclusively in “proof mode”. In contrast, for
our basic NIKE scheme we use the HPS only in “randomization mode”, i.e. to randomize shared keys.

Instantiations and variants.. Our basic scheme only requires a HPS for a language with hard subset
membership problem, and thus can be implemented efficiently from various computational assumptions (such
as the DDH [13], `-Linear [31], DCR [13], or QR [13] assumptions). However, this basic scheme satisfies only
a relatively mild form of security called “honest key registration” or “HKR” security in [18]. Hence, we also
present a general transformation that turns any mildly secure NIKE scheme into one that satisfies a stronger
form of security (dubbed “dishonest key registration” or “DKR” security in [18]). Our scheme requires a
suitable non-interactive zero-knowledge proof system, and, very loosely speaking, adapts the Naor-Yung
paradigm [41] to NIKE schemes. We finally give a concrete and optimized instance under the `-MDDH
assumption [16] (for any ` ≥ 2 in pairing-friendly groups). For details we refer to Section 4.3.

We note that we view our construction as a “first” that demonstrates how to circumvent existing lower
bounds for a particularly challenging application. We do not claim superior efficiency of our (fully secure)
scheme over existing state-of-the-art NIKE schemes, not even when taking into account the reduction loss
in the choice of group sizes. Still, Figure 1 provides an overview over existing NIKE schemes, in particular
in comparison to our scheme.

Our new lower bound. Even though it breaks the existing bound of Bader et al. [4], the reduction loss
(of O(n)) of our scheme might be a bit disappointing. Our second result shows that we can extend the
results from [4] to show that the reduction loss (at least for our scheme) is optimal. Specifically, we are able
to give new lower bounds on the tightness of NIKE reductions even for schemes with invalid public keys.

In more detail, we show that a weak validity check (on public keys) is sufficient to prove a meaningful
lower bound. Namely, we require that validity of a public key (in the sense that two valid public keys admit
only one shared key) is verifiable given that public key and one of its possible secret keys. Hence, as long as
a given public key is not corrupted, its validity may not be efficiently verifiable, and a reduction can hope
to substitute it with an invalid key. (Note that this is precisely what happens in the proof of our NIKE
scheme.)

On the other hand, this weak validity check allows us to again apply a rewinding argument as in [4].
Namely, as soon as the reduction returns a secret key on an extraction query, we can check whether the given
public key was actually valid and in this case use the obtained secret key later to compute the unique shared
key. The only case where we fail to do so is if the reduction does not return a valid secret key for a certain
public key in all rewinding attempts. But then we can simply abort with high probability, namely in case
this public key is part of the extraction queries (which happens with probability 1 − 2/n). In other words,
we prove that the best a reduction can do is to switch one public key to invalid and hope that this public
key is not part of the extraction queries. We can thus conclude that a NIKE (such as ours) that admits a
non-public validity check still suffers from a security reduction loss of at least n/2.

In Section 2 we give definitions of non-interactive key exchange and recall existing game-based security
notions, as well as the concept of hash proof systems. Further, we provide the definition of non-interactive
zero-knowledge proof of knowledge. In Section 3 we present our construction of a mildly secure NIKE with
a security reduction whose tightness significantly improves upon existing NIKEs. We further we show how
to concretely instantiate our NIKE based on DDH. In Section 4 we show how to transform a mildly secure
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NIKE into a strongly secure one, and how to tweak efficiency of this transformation when using our NIKE
construction. In Section 5 we finally prove a new lower bound for a broad class of NIKE schemes including
ours.

2 Preliminaries

Notation. Throughout the paper, λ denotes the security parameter. We say that a function is negligible
in λ if its inverse vanishes asymptotically faster than any polynomial in λ. If a probabilistic algorithm A
has running time polynomial in λ, we say that A is probabilistic polynomial time (PPT). We use y ← A(x)
to denote that y is assigned the output of A running on input x, and we write y ← A(x; r) to make the

randomness r used by a probabilistic algorithm explicit. We use y
$← X to denote sampling from a set X

uniformly at random. For n ∈ N by [n] we denote the set {1, . . . , n}. Let ε ∈ [0, 1] and X ,Y distributions.
To denote that X and Y have statistical distance at most ε, we write X ≡ε Y and say X and Y are ε-close.

To represent group elements we use the notation introduced in [16]. Namely, for a ∈ Zp, we define
[a] = aP ∈ G as the implicit representation of a in G, where the generator P should be clear from the context.
To denote a vector we define [a, b] := (ga, gb) accordingly. More generally, for a matrix A = (aij) ∈ Zn×mp

we define [A] as the implicit representation of A in G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈ Gn×m

Note that from [a] ∈ G it is hard to compute the value a if the discrete logarithm assumption holds in
G. Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute [a] · x = [ax] ∈ G and
[a] + [b] = [a+ b] ∈ G.

Definition 2.1 (Group generator). Let GGen be an algorithm that on input 1λ returns a description G =
(G, p, P ), where G are additive cyclic groups of order p for a 2λ-bit prime p with group generator P . Then
GGen is called a group generator.

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) assumption from [16]. As it is
sufficient for our purposes we restrict to matrix distributions returning matrices of dimensions (`+ 1)× `.

Definition 2.2 (Matrix distribution). Let ` ∈ N and p be a 2λ-bit prime. We call a PPT algorithm D` a

matrix distribution if it outputs matrices in Z(`+1)×`
p of full rank `.

The D`-Matrix Diffie-Hellman problem in G is to distinguish the between tuples of the form ([A], [Aw])

and ([A], [u]), for a randomly chosen A
$← D`, w

$← Z`p and u
$← Z`p.

Definition 2.3 (D`-MDDH). Let D` be a matrix distribution. We say that the D`-Matrix Diffie-Hellman
(D`-MDDH) assumption holds relative to a prime order group G, if for all PPT adversaries A,

Advmddh
A,G,G,D`

(λ) := |Pr[A(G, [A], [Aw]) = 1]

−Pr[A(G, [A], [u]) = 1]| ≤ negl(λ),

where the probabilities are taken over G := (G, P, p)← GGen(1λ), A
$← D`,w $← Z`p,u

$← Z`+1
p .

Definition 2.4 (`-Linear). For ` ∈ N and the distribution D` returning matrices of the form

A :=



a1 0 · · · 0

0 a2
. . .

...
...

. . .
. . . 0

0 · · · 0 a`
1 · · · 1 1


for a1, . . . , a`

$← Zp, we call D`-MDDH the `-Linear assumption (`-LIN).
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For ` = 1 the D1-LIN assumption equals the DDH assumption we define in the following. For ` = 2 the
D2-LIN assumption is also called DLIN (Decisional Linear) assumption.

Definition 2.5 (DDH). We say that the decisional Diffie-Hellman (DDH) assumption holds relative to a
prime order group G, if for all PPT adversaries A the advantage

Advddh
G,A(λ) : = |Pr[A(G, [a], [b], [ab]) = 1]− Pr[A(G, [a], [b], [c]]|

is negligible in λ, where the probabilities are taken over G := (G, p, P )
$← GGen(1λ), a, b, c

$← Zp.

The Kernel-Diffie-Hellman assumption D`-KMDH [40] is a natural computational analogue of the D`-
MDDH Assumption.

Definition 2.6 (D`-Kernel Diffie-Hellman assumption D`-KMDH). Let D` be a matrix distribution. We
say that the D`-Kernel Diffie-Hellman (D`-KMDH) assumption holds relative to a prime order group G if
for all PPT adversaries A,

Advkmdh
G,G,D`,A(λ) : = Pr[c>A = 0 ∧ c 6= 0 | [c]

$← A(G, [A])]

is negligible in λ, where the probabilities are taken over G := (G, p, P )← GGen(1λ), and A
$← D`.

The D`-KMDH assumption is a relaxation of the D`-MDDH assumption, a non-zero vector in the kernel
of A can be employed to test membership in the column space of A. This observation is captured in the
following lemma from [40].

Lemma 2.7. For any ` ∈ N and any matrix distribution D`, the D`-MDDH assumption implies the D`-
KMDH assumption.

Definition 2.8 (Bilinear group generator). Let GGen2 be an algorithm that on input 1λ returns a description
G = (G,GT , p, P, gT , e), where G is an additive cyclic group of order p for a 2λ-bit prime p with group
generators P and GT is a multiplicatively written cyclic group with order p and generator gT . Let further
e : G×G −→ GT be a non-degenerate mapping (that is e(P, P ) 6= 1 ) satisfying

e([a], P ) = e(P, [a]) = e(P, P )a.

Then GGen2 is called a bilinear group generator.

For a ∈ Zp we use [a]T to denote denote elements gaT .
A hash function generator is a probabilistic polynomial time algorithm H that, on input 1λ, outputs an

efficiently computable function H : {0, 1}∗ → {0, 1}λ, unless domain and co-domain are explicitly specified.
For k ∈ N and matrices A ∈ Z2k×k

p by A ∈ Zk×kp we denote the upper square matrix of A and by

A ∈ Zk×kp the lower one. For a vector a ∈ Z2k
p by a ∈ Zkp we denote the upper k entries of a and by a ∈ Zkp

the lower ones.

Definition 2.9 (Collision Resistance). We say that a hash function generator H outputs collision-resistant

functions H, if for all PPT adversaries A and H
$← H(1λ) it holds

Advcr
H,A(λ) := Pr

[
x 6= x′ ∧ H(x) = H(x′) | (x, x′)← A(1λ,H)

]
≤ negl(λ).

2.1 Public key encryption

Definition 2.10 (Public key encryption). We call a tuple of PPT algorithms PKE := (KeyGen, Enc, Dec) a
public key encryption scheme if the following holds.

• KeyGen(1λ) returns a key pair (ppk, psk).
• Enc(ppk,M) returns a ciphertext C.
• Dec(psk, C) returns a message M or a special rejection symbol ⊥.
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Expind−cpa
A=(A1,A2),PKE(λ):

(ppk, psk)← PKE.KeyGen(1λ)
(M0,M1, st)← A1(1λ, ppk)

b
$← {0, 1}

C := Enc(ppk,Mb)
b? ← A2(st , C)
if b = b? output 1
else output 0

Figure 2: IND-CPA experiment.

We further require Correctness, that is for all (ppk, psk) in the range of KeyGen(1λ), for all messages M
and for all C in the range of Enc(pk,M) we require

Dec(sk, C) = 1.

Definition 2.11 (IND-CPA). Let PKE be a public key encryption scheme. We say PKE is IND-CPA secure
if for all PPT adversaries A we have that

Advind−cpa
A,PKE (λ) := |Pr[Expind−cpa

A,PKE (λ)⇒ 1]− 1/2|

is negligible in λ, where Expind−cpa
A,PKE (λ) is defined as in Figure 2 and we require |M0| = |M1|.

2.2 Hash proof systems

Definition 2.12 (Subset membership problem). We call SMP := Setup a subset membership problem, if
Setup is a PPT algorithm with the following properties.

Setup(1λ) outputs a compact (i.e. with length polynomial in λ) description (X,L,R), where L ⊂ X are sets
and R is an efficiently computable relation with

x ∈ L⇐⇒ ∃ witness w with (x,w) ∈ R.

(We say a relation R is efficiently computable if given a pair (x,w) it can be efficiently checked whether
(x,w) ∈ R.)

Further we require for all (X,L,R) in the image of Setup that it is possible to efficiently sample elements x

uniformly at random from X\L (written x
$← X \ L) and to sample elements x uniformly random from L

together with witness w (written (x,w)
$← R).

Definition 2.13 (Subset membership assumption). Let SMP be a subset membership problem. We say that
the subset membership assumption holds for SMP, if for all PPT algorithms A it holds that

Advsmp
A,SMP(λ) :=|Pr[A(1λ, (X,L,R), x) = 1|(x,w)

$← R]

− Pr[A(1λ, (X,L,R), x) = 1|x $← X \ L]|

is negligible in λ, where (X,L,R)
$← SMP.Setup(1λ).

We will employ the notion of a hash proof system based on [13].

Definition 2.14 (Hash Proof Systems (HPS)). Let SMP be a subset membership problem. We call HPS :=
Setup a hash proof system for SMP, if it is a PPT algorithm of the following form.
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Setup(1λ) first samples public parameters PPSMP := (X,L,R) ← SMP.Setup(1λ) for the underlying subset
membership problem. Further Setup chooses sets HSK,Π,HPK such that elements can be efficiently

sampled at random from HSK (denoted hsk
$← HSK). Further Setup chooses an efficiently computable

map
α : HSK −→ HPK,

a family of efficiently computable functions

H := {Hhsk : X −→ Π | hsk ∈ HSK}

and an efficiently computable map
F : R×HPK −→ Π

such that for all hsk ∈ HSK, hpk ∈ HPK with α(hsk) = hpk and for all (x,w) ∈ R we have

Hhsk(x) = F (x,w, hpk).

Finally, Setup outputs PP := (PPSMP,HSK,H, α, F ), which contains PPSMP together with the compact
(i.e. with length polynomial in λ) description of HSK,H, α and F .

We need a property of a HPS called smoothness, introduced in [13].

Definition 2.15 (Smoothness). Let SMP be a subset membership problem and HPS be a hash proof system
for SMP. We call HPS ε-smooth if for all PP := ((X,L,R),HSK,H, α, F ) in the image of HPS.Setup, the
following distributions are ε-close:(x, hpk, Hhsk(x))

∣∣∣∣∣∣
hsk

$← K
hpk := α(hsk)

x
$← X \ L

 ≡ε
(x, hpk, π)

∣∣∣∣∣∣
hsk

$← K
hpk := α(hsk)

x← X \ L, π $← Π

 .

(Recall that Π is the image set of Hhsk.) In other words, on statements x outside the language L, the output
of the private evaluation algorithms is ε-close to uniformly random even under knowledge of the public key.
Note though that this statement only holds as long as no image of Hhsk on input x ∈ X \ L is known.

2.3 Non-interactive key exchange (NIKE)

We formally define the notion of NIKE, following [10],[18] and also adopting most of their notation. A NIKE
scheme NIKE consists of three algorithms (Setup, KeyGen, SharedKey), an identity space IDS and a shared
key space K which is the output space of SharedKey.

• Setup: On input 1λ, this probabilistic algorithm outputs the system parameters PP.
• KeyGen: On input PP and an ID ID, this probabilistic algorithm outputs a tuple (pk, sk) ∈ PK× SK.
• SharedKey: On input of the public parameters PP and two identity, public key pairs (ID1, pk1), (ID2, sk2),

this deterministic algorithm outputs a shared key K12 ∈ K. We assume that K contains a failure sym-
bol ⊥.

We always require NIKE to be perfectly correct, meaning that for all corresponding key pairs (ID1, pk1, sk1),
(ID2, pk2, sk2) generated by KeyGen it holds

SharedKey(ID1, pk1, ID2, sk2) = SharedKey(ID2, pk2, ID1, sk1) 6= ⊥

Security. We quickly recall the game-based security notion from [10], called the CKS model, with its
refinements from [18]. The model is defined via adversarial queries to oracles implemented by a challenger
C. The challenger C keeps track of all honest and corrupt registered identities and their keys. We informally
describe the oracles provided to the adversary attacking a NIKE NIKE below.
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Model qregH qregC qextr qrevH qrevC qtest
DKR CKS-light 2 X - - X 1
DKR CKS X X - - X X
DKR CKS-heavy X X X X X 1
DKR m-CKS-heavy X X X X X X
HKR CKS-light 2 - - - - 1
HKR CKS X - - - - X
HKR CKS-heavy X - X X - 1
HKR m-CKS-heavy X - X X - X

Table 1: Types of queries for different security models, taken from [18], where qx denotes the maximum
number of allowed queries of the adversary to oracle Ox. X, - and n mean that an adversary is allowed to
make arbitrary, zero or n queries of this type, in an arbitrary order.

• OregH for registering an honest user. C generates a key pair using NIKE.KeyGen and hands the public
key to the adversary.

• OregC for registering a corrupt user. The adversary may introduce a public key without providing the
corresponding secret key.

• Oextr for extracting a secret key of an honest user.
• OrevH for revealing a shared key of an honest pair of users.
• OrevC for revealing a shared key between a corrupted and an honest user.
• Otest for obtaining a challenge. A provides a pair of users it wishes to be challenged upon. C then flips

a coin and replies either with their real shared key or a random one.

First, C runs PP $← NIKE.Setup(1λ) and gives PP to A. Then, the adversary may make an arbitrary

number of the above queries, in an arbitrary order. Finally, the adversary outputs a bit b̂ and wins if b̂ = b.
Note that the adversary may register each ID only once4.

To obtain different notions of CKS security, the adversary is restricted in the number of its queries.
See Table 1 for a complete list. Notions that admit OregC and OrevC queries are said to allow dishonest
key registrations, dubbed DKR. Notions that do not allow such types of queries are called with honest key
registration, or HKR for short.

In this paper, we are interested in CKS - heavy secure NIKE schemes. We provide the corresponding
security experiment in Figure 3.

Definition 2.16 (HKR- and DKR-CKS-heavy security). Let NIKE be a NIKE. We say NIKE is CKS-heavy
secure with honest key registration, or HKR-CKS-heavy secure, if for any PPT adversary A the advantage

Advhkr−cks−heavy
A,NIKE (λ) = |Pr[Exphkr−cks−heavy

A,NIKE (λ)⇒ 1]− 1/2|

is negligible in λ, where Exphkr−cks−heavy
A,NIKE is provided in Figure 2.3. Similarly, we say that NIKE is CKS-

heavy secure with dishonest key registration, or DKR-CKS-heavy secure, if for any PPT adversary A the
advantage

Advdkr−cks−heavy
A,NIKE (λ) = |Pr[Expdkr−cks−heavy

A,NIKE (λ)⇒ 1]− 1/2|

is negligible in λ.

2.4 Non-interactive zero knowledge proof of knowledge

The notion of a quasi-adaptive non-interactive zero-knowledge proof was introduced in [8]. The following
definition of non-interactive zero-knowledge is an adaptation of [21] with some differences. Note for instance,
that we consider computational zero-knowledge instead of perfect zero-knowledge. We will employ such
proofs to generically transform a NIKE which is secure in the HKR-CKS-heavy security model to a NIKE
which is secure in the DKR-CKS-heavy security model.

4In practice, this can be implemented by appending a counter to an identity string.
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Exp
[hkr|dkr]−cks−heavy
A,NIKE (λ):

PP $← NIKE.Setup(1λ)

QregH := ∅, QregC := ∅ , Qextr := ∅, Qrev := ∅

b? ← AOH, OregC(·),OrevC(·, ·)
(PP)

if b = b? ∧ ID?1, ID
?
2 /∈ Qextr

∧{ID?1, ID
?
2} /∈ Qrev

output 1
else

b′
$← {0, 1}

output b′

OregH(ID):

if (ID, ·, ·) /∈ OregC ∪QregH

(pk, sk)
$← NIKE.KeyGen(PP, ID)

QregH := QregH ∪ {(ID, pk, sk)}
return pk

else return ⊥

OregC(ID, pk):

if (ID, ·, ·) /∈ OregH ∪ OregC

QregC := QregC ∪ {(ID, pk,⊥)}
else return ⊥

Oextr(ID):
if ∃sk : (ID, pk, sk) ∈ QregH

Qextr := Qextr ∪ {ID}
return sk

else return ⊥

OrevH(ID1, ID2):
if ∃sk1, sk2 : (ID1, pk1, sk1),

(ID2, pk2, sk2) ∈ QregH

Qrev := Qrev ∪ {{ID1, ID2}}
return NIKE.SharedKey(ID1, pk1, ID2, sk2)

else return ⊥

OrevC(ID1, ID2):
if ∃sk1 : (ID1, pk1, sk1) ∈ QregH,

(ID2, pk2, ·) ∈ QregC

Qrev := Qrev ∪ {{ID1, ID2}}
return NIKE.SharedKey(ID2, pk2, ID1, sk1)

if ∃sk2 : (ID2, pk2, sk2) ∈ QregH,
(ID1, pk1, ·) ∈ QregC

Qrev := Qrev ∪ {{ID1, ID2}}
return NIKE.SharedKey(ID1, pk1, ID2, sk2)

else return ⊥

Otest(ID
?
1, ID

?
2):

b
$← {0, 1}

if ∃sk?1, sk
?
2 : (ID?1, pk

?
1, sk

?
1),

(ID?2, pk
?
2, sk

?
2) ∈ QregH

K0 = NIKE.SharedKey(ID?1, pk
?
1, ID

?
2, sk

?
2)

K1
$← K

return Kb

else return ⊥

Figure 3: Experiment for HKR and DKR CKS-heavy security of a NIKE scheme NIKE with shared key space
K. The highlighted parts only occur in the setting of dishonest key registration. The oracle Otest may only
be queried once. OH comprises the oracles OregH,OrevH,Oextr and Otest. We use · to denote an arbitrary
entry of a tuple. I.e., OregH \ {(ID, ·, ·)} denotes the set OregH without any tuple that contains ID in the first
position.
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Expuss
A,PS(λ):

(X,L,R)← SMP.Setup(1λ)

(crs, trp)
$← PS.Setup(1λ, (X,L,R))

Qsim := ∅
(x?,Π?)← AOsim(·)(1λ, crs)
if PS.Ver(crs, x?,Π?) ∧ x? /∈ L ∧ x? /∈ Qsim

output 1
else output 0

Osim(x):
Qsim := Qsim ∪ {x}
Π← PS.Sim(crs, trp, x)
return Π

Figure 4: Experiment for unbounded simulation soundness of a QANIZK.

Definition 2.17 (QANIZK). Let SMP be a subset membership problem. Let (X,L,R) ← SMP.Setup(1λ).
A quasi adaptive non-interactive zero-knowledge proof (QANIZK) for SMP is a tuple of PPT algorithms
PS := (Setup, Gen, Ver, Sim) of the following form.
• Setup(1λ, (X,L,R)) generates a common reference string crs and a trapdoor trp. We assume (X,L,R)

to be part of the crs.
• Prove(crs, x, w) given a word x ∈ L and a witness w with R(x,w) = 1, outputs a proof Π.
• Ver(crs, x,Π) on input crs, x ∈ X and Π outputs a verdict b ∈ {0, 1}.
• Sim(crs, trp, x) given a crs with corresponding trapdoor trp and a word x ∈ X, outputs a proof Π.

Further we require the following properties to hold.

Perfect completeness: For all security parameters λ, all (X,L,R) in the image of SMP.Setup(1λ), all
(crs, trp) in the range of Setup(1λ, (X,L,R)), all words x ∈ L, all witnesses w such that R(x,w) = 1
and all Π in the range of Prove(crs, x, w) we have

Ver(crs, x,Π) = 1.

Computational zero-knowledge: For all security parameters λ, all (X,L,R) in the range of SMP.Setup(1λ),
all tuples (crs, trp) in the range of Setup(1λ, (X,L,R)), we have for all PPT adversaries A that

Advzk
A,PS(λ) :=|Pr[AOprv(·,·)(1λ, crs) = 1]− Pr[AOsim(·,·)(1λ, crs) = 1|

is negligible in λ, where both oracles on input (x,w) first check whether (x,w) ∈ R. If this is the case,
Oprv returns Prove(crs, x, w) and Osim returns Sim(crs, trp, x) (and ⊥ otherwise).

The definition of unbounded simulation soundness follows [42, 14].

Definition 2.18 (Unbounded simulation soundness). Let PS be a QANIZK for a subset membership problem
SMP. We say PS satisfies unbounded simulation soundness, if for all PPT adversaries A the advantage

Advuss
A,PS(λ) := |Pr[Expuss

A,PS(λ)⇒ 1]|

is negligible in λ, where Expuss
A,PS(λ) is provided in Figure 4.

The following definition is tailored to our purposes. We require a strong notion of proof of knowledge in
the sense that we need to be able to extract a witness while simulating proofs ourselves.

Definition 2.19 (QANIZK Proof of knowledge). Let PS′ be a QANIZK for a subset membership problem
SMP, where SMP.Setup returns tuples (X,L,R). Let Setup denote an algorithm that, on input (1λ, (X,L,R))

runs (crs, trp)
$← PS′.Setup(1λ, (X,L,R)) and outputs (crs, trp, extr) with an additional trapdoor extr. Let

Gen := PS′.Gen, Prove := PS′.Prove, Ver := PS′.Ver, Sim := PS′.Sim. Let further Extract be an algorithm
that on input (crs, extr, x,Π) returns a witness w. We say PS = (Setup, Gen, Prove, Ver, Sim, Extract) is a
QANIZK Proof of Knowledge for SMP (QANIZKPoK), if for all PPT adversaries A the advantage

Advextr
A,PS(λ) := Pr[Expextr

A,PS(λ)⇒ 1]

is negligible in λ, where Expextr
A,PS(λ) is as defined in Figure 5.
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Expextr
A,PS(λ):

(X,L,R)← SMP.Setup(1λ)

(crs, trp, extr)
$← PS.Setup(1λ, (X,L,R))

Qsim := ∅
(x?,Π?)← AOsim(·),Oextract(·,·)(1λ, crs)
w ← Oextract(x

?,Π?)
if PS.Ver(x?,Π?) = 1 ∧ (x?, w) /∈ R
∧x? /∈ Qsim

output 1
else output 0

Osim(x):
Qsim := Qsim ∪ {x}
Π← PS.Sim(crs, trp, x)
return Π

Oextract(x,Π):
if x /∈ Qsim

w ← PS.Extract(crs, extr, x,Π)
return w

else return ⊥

Figure 5: Experiment for a extraction in the presence of simulated proofs. The adversary tries to set up a
pair (x,Π) such that a witness w is not extractable from Π.

Remark 2.20. Note that extraction in the presence of simulated proofs implies unbounded simulation sound-
ness, as an adversary outputting a tuple (x,Π) with x /∈ L and PS.Ver(crs, x,Π) = 1 trivially wins the proof
of knowledge experiment.

3 Our construction

We now present a NIKE scheme that is secure in the HKR setting. Our reduction loses a factor of qregH/2,
where qregH is the number of honest users. Our scheme uses a hash proof system and its security relies on the
hardness of the underlying subset membership problem as well as the smoothness of the HPS. It is presented
in Figure 3.

Let us first elaborate on why our NIKE scheme does not fall under the impossibility result of Bader
et al. [4]. To enforce that the output of a successful NIKE attacker can always be used to solve the chal-
lenge given to the reduction, Bader et al. require that the NIKE scheme allows only public keys whose
corresponding secret keys are uniquely determined. This way, the shared key between two public keys is
uniquely determined and will be useful to solve the challenge. Moreover, the uniqueness condition has to be
efficiently checkable given only a public key. This essentially prevents a reduction from switching public keys
to “invalid” public keys that violate the uniqueness condition. Formally, Bader et al. require an efficient
algorithm PKCheck for testing uniqueness.

Our scheme does not provide such an algorithm, since essentially deciding uniqueness amounts to deciding
a subset membership problem that we assume to be hard. This way, our reduction will have a way to
indistinguishably switch one of the public keys to “invalid” by drawing it from outside the subgroup. Note
that for such an invalid public key there exist no secret key, since secret keys contain a witness for the public
key belonging to the subgroup. While this non-existence of a secret key helps us in arguing security, it also
introduces an inherent loss in our reduction; namely, our reduction has to abort whenever the adversary
wants to see the secret key corresponding to the invalid key, which occurs with probability 2/qregH and thus
results in a loss of qregH/2. We now provide a proof of security that meets exactly this loss.

Theorem 3.1. Let SMP be a subset membership problem, and let HPS be a hash proof system for SMP, such
that for all PP := (PPSMP,HSK,H, α, F ) in the range of HPS.Setup the image Π of F and all Hhsk ∈ H
is a commutative multiplicative group. If the subset membership assumption holds for SMP and if HPS is
ε-smooth with ε negligible in λ, then the NIKE scheme NIKE described in Figure 6 is a perfectly correct,
HKR-CKS-heavy secure NIKE. Further, the reduction to SMP loses a factor of qregH/2, where qregH is the
number of queries to OregH that A makes. More formally, if A is an adversary with running time tA against
the scheme in the HKR-CKS-heavy model, there exists an adversary B with running time tB ≈ tA breaking
the subset membership problem SMP such that

Advhkr−cks−heavy
A,NIKE (λ) ≤ qregH/2 · (Advsmp

B,SMP(λ) + ε)
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NIKE.Setup(1λ)

(PPSMP,HSK,H, α, F )
$← HPS.Setup(1λ)

PP := (PPSMP,HSK,H, α, F )
return PP

NIKE.SharedKey(PP, ID1, pk1, ID2, sk2)
parse PP =: (PPSMP,HSK,H, α, F )
parse pk1 =: (hpk1, x1)
parse sk2 =: (hsk2, x2, w2)
K12 := Hhsk2(x1) · F (x2, w2, hpk1)
return K12

NIKE.KeyGen(PP, ID)
parse PP =: (PPSMP,HSK,H, α, F )
parse PPSMP =: (X,L,R)

hsk
$← HSK

hpk := α(hsk)

(x,w)
$← R

pk := (hpk, x)
sk := (hsk, x, w)
return (pk, sk)

Figure 6: Our NIKE scheme. Recall that H = {Hhsk : X → Π | hsk ∈ K} is a family of functions and
F : R×HPK → Π a function (where HPK is the image of α).

Game OregH if i = i? Oextr(IDi?) OrevH({ID, IDi?}) Otest({ID, IDi?)} Explanation

G0 (x,w)
$← R ski? ski?/sk ski?/sk = Exphkr−cks−heavy

A,NIKE
G1 (x,w)

$← R ski? sk sk perfect correctness

G2 (x,w)
$← R abort sk sk qregH/2 loss

G3 x
$← X \ L abort sk sk SMP assumption

G4 x
$← X \ L abort sk K0 ← K smoothness HPS

Figure 7: Games G0 to G4 we employ to prove the NIKE presented in Figure 3 HKR-CKS-heavy secure.
From game G1 on the index i?

$← qregH is chosen ahead of time. By IDi? we denote the i?-th registered
honest user. The oracle Otest may only be queried once. In Column 4 and 5, we give the secret key employed
to compute NIKE.SharedKey. By denoting the input as a set {·} we want to indicate that we consider both
inputs pk, pki? and pki? , pk. In game G0 there is thus two possibility secret keys to be employed, depending
on the order of the input.

Proof. Perfect correctness. Let the public parameters be PP := (PPSMP,HSK,H, α, F )
$← NIKE.Setup(1λ)

and (pk1, sk1)← NIKE.KeyGen(PP, ID1), (pk2, sk2)← NIKE.KeyGen(PP, ID2). Let further pk1 =: (hpk1, x1), pk2 =:
(hpk2, x2) and sk1 =: (hsk1, x1, w1), sk2 =: (hsk2, x2, w2). As HPS is a hash proof system and as x1, x2 ∈ L,
hpk1 = α(hsk1)), hpk2 = α(hsk2)) we have

Hhsk2(x1) = F (x1, w1, hpk2) and Hhsk1(x2) = F (x2, w2, hpk1).

This yields
K12 = Hhsk2(x1) · F (x2, w2, hpk1) = Hhsk1(x2) · F (x1, w1, hpk2) = K21

as required.

CKS-heavy security. We prove that the NIKE meets CKS-heavy security with honest key registration in
a number of hybrid games. We provide an overview of the games in Figure 7. By Pr[Gi] we denote the
probability that A wins game Gi.

Game G0: The real experiment. Game G0 is the HKR-CKS-heavy experiment as presented in Figure
3, where A plays with a challenger C. We have thus

Advhkr−cks−heavy
A,NIKE (λ) = |Pr[G0]− 1/2| .

Game G1: Guess the challenge. Recall that by qregH we denote the number of OregH queries of A. From
game G1 on, an index i? ← qregH is chosen ahead of time. The final goal will be to switch the i?-th
registered honest user IDi? to invalid and hope it is part of the test query. As a first step, from game
G1 on we will make ski? redundant for OrevH and Otest queries. Namely, if A asks a query of this form
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with input (ID, IDi?) (for an arbitrary identity ID) we will compute the shared key employing sk, where
(ID, pk, sk) ∈ QregH, instead of ski? . By perfect correctness of NIKE we have

Pr[G1] = Pr[G0].

Game G2: Abort upon wrong guess. We change the winning condition of the game as follows. If IDi?
is not included in the test query of A, the experiment returns 1 with probability 1/2 and aborts. Then
it holds

Pr[G2] = Pr[G1] · 2/qregH + 1/2 · (1− 2/qregH)

= (Pr[G1]− 1/2) · 2/qregH + 1/2

and thus

Pr[G1]− 1/2 = qregH/2 · (Pr[G2]− 1/2).

Game G3: Remove the secret key. Upon receiving the i?-th register honest user query, C deviates from
the NIKE.KeyGen procedure as follows: instead of drawing (xi? , wi?)

$← R, C draws xi?
$← X \ L. Note

that this way there is no wi? such that R(xi? , wi?) = 1 and thus C cannot compute a secret key ski? .
Instead, C adds (IDi? , pki? , ski?) := (IDi? , (hpki? , xi?), (hski? ,⊥)) to QregH. A distinguisher between
both games can be turned directly into a SMP attacker B putting his challenge in the place of xi? . If
the challenge was in L, Game G2 was simulated, else it was Game G3. Observe that it is crucial here
that C does not make use of wi? anymore due to the changes made in Game 1. This yields

|Pr[G2]− Pr[G3]| ≤ Advsmp
B,SMP(λ).

Game G4: Randomize the test query. C changes the answer to the query Otest(IDi? , ID)5 by drawing

K0
$← K, where K = Π is the image of the hash functions of the HPS. To analyze the distinguishing

advantage, note that in the former game it holds that K0 = NIKE.SharedKey(IDi? , pki? , ID, sk) =
Hhsk(xi?) · F (x,w, hpki?) with (ID, pk, sk) = (ID, (hpk, x), (hsk, w)) ∈ QregH and (IDi? , pki? , ski?) =

(IDi? , (hpki? , xi?), (hski? ,⊥)) ∈ QregH. The two distributions (xi? , hpk, Hhsk(xi?)), (xi? , hpk, r
$← Π) are

ε-close by the ε-smoothness of the HPS, and thus K0 was already statistically close to the uniform
distribution over Π in Game G3. We thus have

|Pr[G3]− Pr[G4]| ≤ ε.

We now show that the advantage of A playing the CKS-heavy game is negligible. We repeatedly use
a folklore technique - add zero, then apply the triangle inequality - to go through all the above games
until Game G4, for which the winning probability of A is 1/2 since its view does not depend on the
challenge bit.

Advhkr−cks−heavy
A,NIKE (λ) = |Pr[G0]− 1/2| = |Pr[G1]− 1/2|
= qregH/2 · |Pr[G2]− Pr[G3] + Pr[G3]− 1/2|
≤ qregH/2 · |Pr[G3]− Pr[G4] + Pr[G4]− 1/2|+ qregH/2 ·Advsmp

B,SMP(λ)

≤ qregH/2 · |Pr[G4]− 1/2|+ qregH/2 · (Advsmp
B,SMP(λ) + ε)

= qregH/2 · (Advsmp
B,SMP(λ) + ε)

5Note that, starting with Game G2, i? is always one of the inputs to Otest.
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Remark 3.2. A variant of our NIKE can be obtained if there is a total ordering < on all identities. Then,
the shared key of ID1, ID2 can be computed as the hash of the statement provided by the smaller identity.
More formally, we modify NIKE.SharedKey as follows:

NIKE.SharedKey(ID1, pk1, ID2, sk2) : = Hhsk2(x1)

= F (x1, w1, hpk2) =:NIKE.SharedKey(ID2, pk2, ID1, sk1),

where ID1 < ID2. The only change in the proof of security is that in game G2 the challenger aborts if the
guessed i? is not the smallest identity contained in the test query. This yields a reduction loss of qregH.

3.1 Instantiating our construction

Definition 3.3 (D`-MDDH as subset membership problem). Let GGen be a group generator. We define
the following SMP based on DDH via the following algorithm Setup: on input 1λ the algorithm Setup first

samples a group G := (G, p, P ) ← GGen(1λ). Further, Setup draws an A
$← D` at random. It defines the

sets as

X := G`+1,

L := 〈[A]〉 = {[x] ∈ G`+1 | ∃w ∈ Z`p : [x] = [A] ·w} and

R := {([x],w) ∈ G`+1 × Z`p | [x] = [A] ·w}.

Setup finally returns (G, p, P ) and [A] as a compact description of X,L and R. It is easy to see that under
D`-MDDH the subset membership assumption holds for SMP. For ` = 1 the language L is the so-called
Diffie-Hellman language.

Definition 3.4 (HPS for D`-MDDH). Let SMP the subset membership problem based on D`-MDDH as
presented in Definition 3.3. Following [13] we present a HPS HPS for SMP. Given a group description
G := (G, p, P ) and a matrix [A], Setup defines HSK := Z`+1

p , Π := G, HPK := G. Further Setup defines

α : Z`+1
p → G1×`, hsk 7→ hsk> · [A],

Hhsk : G`+1 → G, [x] 7→ hsk> · [x]

F : G`+1 × Z`p ×G1×` → G, ([x],w, [hpk]) 7→ [hpk] ·w.

This defines a HPS, as for all hsk ∈ Z`+1
p , [hpk] = α(hsk), [x] = [A] ·w ∈ L we have

Hhsk([x]) = hsk> · [x] = hsk> · [A] ·w = [hpk] ·w
= F ([x],w, [hpk]).

Lemma 3.5. The HPS presented in Definition 3.4 is ε-smooth for ε = 0.

Proof. Let A⊥ ∈ Z(`+1)×`
p such that (A⊥)> ·A = 0. Then for any hsk ∈ G`+1,k ∈ Z`p we have

α(hsk + k ·A⊥) = α(hsk) + k · (A⊥)> ·A = α(hsk).

Further, note that the distributions {hsk | hsk ← Z`+1
p } and {hsk + k · a⊥ | hsk ← Z`+1

p ,k ← Z`p} are
equivalent. This yields{

([x], [hpk], Hhsk([x]))
∣∣∣∣∣ hsk

$← K,
[hpk] := α(hsk), [x]

$← X \ L

}

≡
{

([x], [hpk], Hhsk+k·A⊥([x]))
∣∣∣∣∣ hsk

$← K,k $← Z`p,
[hpk] := α(hsk), [x]

$← X \ L

}

=

{
([x], [hpk], Hhsk([x]) + k · (A⊥)> · [x]︸ ︷︷ ︸

6=0

)
∣∣∣∣∣ hsk

$← K,k $← Z`p,
[hpk] := α(hsk), [x]

$← X \ L

}

≡
{

([x], [hpk], π)
∣∣∣∣∣ hsk

$← K, π $← G,
[hpk] := α(hsk), [x]

$← X \ L

}
.
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NIKEdkr.Setup(1λ)

PP ← NIKE.Setup(1λ)
PPPS ← PS.Setup(1λ, (XNIKE, LNIKE, RNIKE))
parse PPPS := (crs, trp, extr)
PPdkr := (PP, crs)
return PPdkr

NIKEdkr.SharedKey(PPdkr, ID1, pk1, ID2, sk2)
parse PPdkr =: (PP, crs)
parse pk1 =: (pk′1,Π

′
1)

if PS.Ver(crs, ID1, pk
′
1,Π

′
1) = 1

return NIKE.SharedKey(ID1, pk
′
1, ID2, sk2)

else return ⊥

NIKEdkr.KeyGen(PPdkr, ID)
parse PPdkr =: (PP, crs)
r ←Rrand

(pk, sk)← NIKE.KeyGen(PP, ID; r)
Π← PS.Prove(crs, ID, pk, sk, r)
return ((pk,Π), sk)

Figure 8: A generic transformation from HKR-CKS-heavy security to DKR-CKS-heavy security.
(XNIKE, LNIKE, RNIKE) is defined as in Remark 4.1.

Remark 3.6. As the keyspace of the hash proof system HPS presented in Definition 3.4 is HSK := Z`+1
p ,

membership in HSK is efficiently checkable provided p (which is part of the public parameters returned by
HPS.Setup).

4 Security against dishonest key generation

In this section we want to show how to achieve CKS-heavy security for our scheme allowing dishonest key
registrations. That is the adversary is allowed to dishonestly register keys and ask for shared keys where one
of the public keys is registered dishonestly.

4.1 A generic transformation

We begin by showing how to generically transform a HKR-CKS-heavy secure NIKE into a DKR-CKS-heavy
secure NIKE. To this purpose, we first show how to obtain an SMP from a NIKE.

Remark 4.1. Every NIKE induces a SMP as follows. Let NIKE be a NIKE with public key space PK and
secret key space SK and randomness space Rrand. Then we define an SMP SMPNIKE as follows. On input 1λ,
SMPNIKE.Setup generates PP ← NIKE.Setup(1λ) and sets

XNIKE := IDS × PK,
LNIKE := {(ID, pk) ∈ X | ∃sk, r : (pk, sk) = NIKE.KeyGen(PP, ID; r)} and

RNIKE := {(ID, pk, sk, r) | (pk, sk) = NIKE.KeyGen(PP, ID; r)}.

Theorem 4.2. If NIKE is a perfectly correct, HKR-CKS-heavy secure NIKE and PS is an QANIZKPoK
for the SMP SMPNIKE, then the NIKEdkr presented in Figure 8 with algorithms NIKEdkr.Setup, NIKEdkr.KeyGen,
NIKEdkr.SharedKey is perfectly correct and secure in the DKR-CKS-heavy model. More precisely, if A is an
adversary on NIKEdkr with running time tA, there exists adversaries B,B1,B2 with running times tB ≈ tB1 ≈
tB2 ≈ tA such that

Advdkr−cks−heavy
A,NIKEdkr (λ) ≤Advzk

B,PS(λ) + Advextr
B1,PS(λ) + Advhkr−cks−heavy

B2,NIKE
(λ).

Proof. Perfect correctness directly follows from the perfect correctness of the underlying NIKE together with
the perfect completeness of PS. To prove security, we proceed via a series of games. By Pr[Gi] we denote
the probability that A wins game Gi.
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Game OregH(ID) OregC(ID, pk,Π) OrevC(·, ·) Explanation

G0 PS.Prove(ID, pk, sk; r) ⊥ honest = Expdkr−cks−heavy
A,NIKE

G1 PS.Sim(trp, ID, pk) ⊥ honest PS comp. ZK

G2 PS.Sim(trp, ID, pk) PS.Extract(extr, ID, pk,Π) honest PS PoK

G3 PS.Sim(trp, ID, pk) PS.Extract(extr, ID, pk,Π) corrupted NIKE perf. corr.

Figure 9: Games G0 to G3. Column “OregH(ID)” gives an overview which algorithm is employed for proving
that a public key is computed correctly on a honest key registration query. The column “OregC(ID, pk,Π)”
indicates the pair (ID, pk, ·) registered on a corrupt key query. The column “OrevC(·, ·)” indicates whether
the secret key of the honest or the corrupted identity is used to compute the shared key. The last column
finally gives an explanation on the indistinguishability of games. We assume PS.Prove, PS.Sim, PS.Extract2

to have access to crs without stating it as an input.

Game G0: Game G0 is the DKR-CKS-heavy security experiment. We thus have

Advdkr−cks−heavy
A,NIKEdkr (λ) = |Pr[G0]− 1/2|.

Game G1: We change the oracleOregH. Instead of honestly generating a proof Π← PS.Prove(crs, ID, pk, sk; r)
we simulate Π ← PS.Sim(crs, trp, ID, pk). By the computational zero-knowledge of PS there exists an
adversary B with tB ≈ tA and

|Pr[G0]− Pr[G1]| ≤ Advzk
B,PS(λ).

(The adversary B obtains 1λ, crs, generates PP ← NIKE.Setup(1λ) and forwards (PP, crs) to A. To
generate a proof for a public key pk obtained as (pk, sk) ← NIKE.KeyGen(PP, ID; r) it employs its
proof generating oracle on input (ID, pk, sk, r). If the oracle was a PS.Prove(·, ·) oracle B simulates G0,
otherwise G1. For verifying proofs crs is sufficient.)

Game G2: We change the behaviour of the oracle OregC. On input (ID, pk,Π), the oracle employs the
knowledge extractor PS.Extract(crs, extr, ID, pk,Π) to extract (sk, r) corresponding to (ID, pk) and to
register (ID, pk, sk) in QregC. If

bad := PS.Ver(crs, ID, pk,Π) = 1 ∧ (ID, pk, sk, r) /∈ RNIKE

occurs, we abort. If bad does not occur, G1 is distributed exactly as G2, since none of the extracted
secret keys is used. On the other hand, an adversary A playing in G2 causing bad can be directly
turned into an adversary B1 winning the proof of knowledge experiment, with running time tB1

≈ tA.
Note that bad meets the winning conditions of the PoK experiment, as (ID, pk) /∈ Qsim is guaranteed
by OregC rejecting already honestly registered identities. This yields

|Pr[G1]− Pr[G2]| ≤ Advextr
B1,PS(λ).

Game G3: We now let OrevC compute shared keys with the extracted secret keys. Due to the perfect
correctness of NIKEdkr, we have

Pr[G2] = Pr[G3].

We can now reduce the HKR-CKS-heavy security of NIKE to the altered DKR-CKS-heavy experi-
ment as described in Game G3. To this end, we assume an adversary A winning game G3 and
show how to construct an HKR-CKS-heavy adversary B2. On input PP, B2 sets up (crs, trp, extr) ←
PS.Extract(1λ, (XNIKE, LNIKE, RNIKE)) and forwards (PP, crs) to A. Further B2 maintains a set QregH :=
∅ and a set QregC := ∅. We next consider oracle queries.

Oextract,OrevH,Otest: The adversary B2 forwards the ID(s) to its own corresponding oracles and hands
the answers back to A.
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OregH(ID): On honest register queries, B2 forwards the ID to its own oracle, on output pk simulates a
proof Π ← PS.Sim(crs, trp, ID, pk), forwards (pk,Π) to A and sets QregH := QregH \ {(ID, ·, ·)} and
QregH := QregH ∪ {(ID, pk,Π)}. (Note that for an identity ID with (ID, ·, ·) ∈ QregC, i.e., that is
already registered as dishonest ID, B2 forwards ⊥ to A.)

OregC(ID, pk,Π): On corrupt register queries, B2 checks the proof Π. If it holds PS.Ver(crs, ID, pk,Π) =
1, B2 extracts a secret sk, r corresponding to ID, pk employing its extraction oracle and sets
QregC := QregC \ {(ID, ·, ·)} and QregC := QregC ∪ {(ID, pk, sk)}. (Note that for an identity ID with
(ID, ·, ·) ∈ QregH, i.e., that is already registered as honest ID, B2 forwards ⊥ to A. )

OrevC(ID1, ID2): For dishonest reveal queries B2 checks whether exactly one of the keys was registered
honestly and the other correct (employing the sets QregH and QregC). If this is the case B2 can
employ the extracted secret key to compute the shared key.

Finally, B2 forwards the output b? of A to its own oracle. It is straightforward to see that B2 simulates
the experiment described in game G3 perfectly (refer to Figure 9 for an overview of how the game is
implemented), and that B2 wins the HKR-CKS-heavy experiment if A wins game G3.

This yields
|Pr[G3]− 1/2| ≤ Advhkr−cks−heavy

B2,NIKE
.

Altogether, we thus have

Advdkr−cks−heavy
A,NIKEdkr (λ) = |Pr[G0]− 1/2|

≤ |Pr[G1]− 1/2|+ Advzk
B,PS(λ)

≤ |Pr[G2]− 1/2|+ Advzk
B,PS(λ) + Advextr

B1,PS(λ)

= |Pr[G3]− 1/2|+ Advzk
B,PS(λ) + Advextr

B1,PS(λ)

≤ Advzk
B,PS(λ) + Advextr

B1,PS(λ) + Advhkr−cks−heavy
B2,NIKE

(λ)

4.2 Instantiating PS

Let NIKE be a NIKE with public key space PK and identity space IDS. We can instantiate PS as follows.
Let PKE be a CPA-secure encryption scheme with message space SK ×Rrand and ciphertext space Cenc. Let
SMPNIKE,PKE be the SMP that generates PP ← NIKE.Setup(1λ) and (ppk, psk)← PKE.KeyGen(1λ) and outputs
(XNIKE,PKE, LNIKE,PKE, RNIKE,PKE) as

XNIKE,PKE := ID× PK × Cenc

LNIKE,PKE := {(ID, pk, C) |∃r, sk, renc : (pk, sk)← NIKE.KeyGen(PP, ID; r),

C = Encppk(sk, r; renc)}

RNIKE,PKE := {(ID, pk,sk, r) | (pk, sk) = NIKE.KeyGen(PP, ID; r),

C = Encppk(sk, r; renc)}

Let further PS′ be an unbounded simulation-sound QANIZK for SMPNIKE,PKE (for an instantiation see [25],
for a tight instantiation see [29]). Then the proof system PS provided in Figure 10 is a QANIZK proof of
knowledge for SMPNIKE. More precisely, for every adversary A with running time tA we have adversaries
B,B1,B2 with running times tB ≈ tB1 ≈ tB2 ≈ tA and Advzk

A,PS(λ) ≤ Advzk
B,PS′(λ) + Advind−cpa

B1,PKE
(λ) and

Advextr
A,PS(λ) ≤ Advuss

B2,PS′(λ). Note though that instantiating PS′ in general requires a USS-QANIZK for
general NP-languages and thus leads to a very inefficient NIKE. We therefore provide a more efficient
transformation for our concrete scheme in the following section.

Sketch. Computational zero-knowledge. LetA be an adversary breaking the computational zero-knowledge
of PS. We proceed with the proof employing a number of hybrid games. By Pr[Gi] we denote the
probability that A wins game Gi.
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PS.Setup(1λ, (XNIKE, LNIKE, RNIKE)):

(ppk, psk)← PKE.KeyGen(1λ)
(crs′, trp′)← PS′.Setup(1λ, SMPNIKE,PKE)
crs := (crs′, ppk), trp := trp′, extr := psk
return (crs, trp, extr)

PS.Extract(crs, extr, pk,Π):

parse crs =: (crs′, ppk)
parse Π =: (C,Π′)
if PS′.Ver(crs′, (pk, C),Π′) = 0

return ⊥
sk← PKE.Dec(psk, C)
return sk

PS.Prove(crs, pk, sk; r):

parse crs =: (crs′, ppk)
draw renc
C ← Encppk(sk, r, renc)
Π′ ← PS′.Prove(crs′, (pk, C), sk; r, renc)
Π := (C,Π′)
return Π

PS.Sim(crs, trp, pk):

parse crs =: (crs′, ppk)
draw renc
C ← Encppk(0; renc)
Π′ ← PS′.Sim(crs′, trp′, (pk, C))
Π := (C,Π′)
return Π

PS.Ver(crs, pk,Π):

parse crs =: (crs′, ppk)
parse Π =: (C,Π′)
b← PS′.Ver(crs′, (pk, C),Π′)
return b

Figure 10: An unbounded simulation-sound QANIZK PPOK PS for SMPNIKE, where SMPNIKE,PKE :=
(XNIKE,PKE, LNIKE,PKE, RNIKE,PKE). Here 0 is such that |0| = |sk, r| for sk ∈ SK, r ∈ Rrand.

Game G0: This is the Zero-knowledge game where A is provided either with an oracle Oprv or with
an oracle Osim. We have

Advzk
A,PS(λ) = |Pr[G0]− 1/2|.

Game G1: We switch the proofs Π′ in Oprv(·, ·) to simulated. This yields and adversary B with
tB ≈ tA and

|Pr[G0]− Pr[G1]| ≤ Advzk
B1,PS′(λ).

Game G2: We now employ the IND-CPA security of PKE to switch the ciphertexts in Oprv(·, ·) to
encryptions of 0. This yields and adversary B1 with tB1

≈ tA and

|Pr[G1]− Pr[G2]| ≤ Advind−cpa
B1,PKE

(λ).

As now Oprv and Osim behave accordingly we have Pr[G2] = 1/2.

Proof of knowledge. Let A an adversary on the proof of knowledge game. We construct an adversary B2

on the USS of PS′ as follows. On input 1λ, crs′ the adversary B2 sets up (ppk, psk)
$← PKE.KeyGen(1λ)

itself and forwards crs := (crs′, ppk) to A. Simulation queries (ID, pk) it answers by choosing r, sk, renc
and employing its own simulation oracle on (ID, pk, C) with C ← PKE.Encppk(sk, r; renc). It forwards
C together with the reply Π′ to A. On an extraction query Oextract(ID, pk,Π) the adversary parses
Π =: (C,Π′) and returns (sk, r) ← PKE.Decpsk(C) to A. Finally, if A manages to supply a fresh
and valid tuple (ID?, pk?,Π?) where we are not able to extract a witness, by the correctness of PKE
we have (ID?, pk?, C?) /∈ L (where Π? =: (C?,Π′?) and B2 wins its own experiment by outputting
(ID?, pk?, C?,Π′?). This yields

Advextr
A,PS(λ) ≤ Advuss

B2,PS′(λ).
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4.3 An optimized transformation for our construction

Definition 4.3 (D`-MDDH as SMP with pairing). Let GGen2 be a bilinear group generator. We define
the following SMP based on DDH via the following algorithm Setup: on input 1λ the algorithm Setup first

samples a group G := (G,GT , p, P, gT , e) ← GGen2(1λ). Further, Setup draws an A
$← D` at random. It

defines the sets as

X := G`+1,

L := 〈[A]〉 = {[x] ∈ G`+1 | ∃[w] ∈ G` : [x]T = e([A], [w])} and

R := {([x], [w]) ∈ G`+1 ×G` | [x]T = e([A], [w])}.

Setup finally returns (G,GT , p, P, gT , e) and [A] as a compact description of X,L and R.

Definition 4.4 (HPS for D`-MDDH with pairings). Let SMP the subset membership problem based on D`-
MDDH with pairings as presented in Definition 4.3. It is straightforward to generalize the HPS from Defini-
tion 3.4. Given a group description G := (G,GT , p, P, gT , e) and a matrix [A], Setup defines HSK := Z`+1

p ,
Π := GT , HPK := G. Further Setup defines

α : Z`+1
p → G1×`, hsk 7→ hsk> · [A],

Hhsk : G`+1 → GT , [x] 7→ e([hsk]>, [x])

F : G`+1 ×G`p ×G1×` → GT , ([x], [w], [hpk]) 7→ e([hpk], [w]).

Correctness, smoothness and efficiently checkable membership of the key space follow straightforward from
the respective properties of the HPS defined in 3.4.

Note that in order to compute Hhsk it is sufficient to know [hsk] ∈ G`+1.

Let ` ∈ N, ` ≥ 2 and NIKE our construction given in Figure 3, where SMP is instantiated with the
SMP from Definition 4.3 and HPS with the corresponding hash proof system from Definition 4.4. Then we
define SMPopt as follows. On input 1λ, SMPopt.Setup calls SMP.Setup(1λ) to obtain [A] ∈ G(`+1)×`. Further

SMPopt.Setup chooses B
$← Z2(`+1)×(`+1)

p (if B is not invertible it resamples) and defines

Xopt := G`+1 ×G` ×G2`

and

Lopt := {([x], [hpk], [c]) ∈ Xopt |∃w, hsk, r : [x] = [A] ·w ∧ [hpk] = hsk>[A]

∧ [c] =

[
0
hsk

]
+ [B] · r}.

(We can view C := [c] as an encryption of [hsk] with randomness renc := r and employ it for extraction) .
Further, we can rewrite Lopt as

Lopt := {

 x
hpk
c

 ∈ G4`+1 | ∃

 w
hsk
r

 ∈ Z3`+2
p :

 x
hpk
c

 =


A 0 0
0 A> 0
0 0 B
0 1 B


︸ ︷︷ ︸

[Mopt]:=

·

 w
hsk
r

},

(Ropt accordingly) where 1 ∈ Z(`+1)×(`+1)
p is the identity matrix and B,B ∈ Z(`+1)×(`+1)

p denote the upper
and the lower part of B respectively. This allows us to employ a QANIZK for linear languages. We require
the QANIZK to be one-time simulation sound, that is the adversary is only allowed to query the oracle Osim

in the USS-experiment (see Figure 4) once. Roughly said, one-time simulation soundness suffices, as we only
switch one public key to invalid. We recall an instantiation of such a proof system, namely the proof system
of Kiltz and Wee [36], adapted to our setting, in Figure 11.
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PS.Setup(1λ, (Xopt, Lopt, Ropt)):

V
$← D′`

K0,K
$← Z(4`+1)×(`+1)

p

crs := ([K>0 Mopt], [K
>Mopt],

[VK>0 ], [VK>], [V])
trp := (K0,K)
return (crs, trp)

PS.Prove(crs, ID, [y],w):

parse crs =: ([K>0 Mopt], [K
>Mopt],

[VK>0 ], [VK>], [V])
τ := H(ID)
[Π] :=

(
[K>0 Mopt] + τ [K>Mopt]

)
w

return [Π]

PS.Sim(crs, trp, ID, [y]):

parse crs =: ([K>0 Mopt], [K
>Mopt],

[VK>0 ], [VK>], [V])
parse trp := (K0,K)
τ := H(ID)
[Π] := (K0 + τK)>[y]
return [Π]

PS.Ver(crs, ID, [y], [Π]):

parse crs =: ([K>0 Mopt], [K
>Mopt],

[VK>0 ], [VK>], [V])
τ := H(ID)
if e([V], [Π])

= e([VK>0 ] + τ [VK>], [y])
return 1

else return 0

Figure 11: A one-time simulation-sound QANIZK PS for SMPopt. Recall that Lopt is described via the matrix
Mopt, where H : IDS → Zp is the output of a collision-resistant hash function generator H. (Note that the
public parameters have size 15`2 + 11`+ 1 and the proofs have size `+ 1.)

Theorem 4.5. Let NIKEdkr be the NIKE from Figure 8, where PS is instantiated with the PS from Figure
11. Then NIKEdkr is DKR-CKS-heavy secure under the D′`-KMDH assumption in G and the D`-MDDH
assumption in G. More formally, for every adversary A with running time tA we have adversaries B,B1,B2

with running times tB ≈ tB1
≈ tB2

≈ tA and

Advdkr−cks−heavy
A,NIKE (λ) ≤ Advkmdh

B,D′`G
(λ) +

1

p
+
qregH

2
(Advcr

B1,H(sec) + Advsmp
B2,SMP

(λ) + ε),

where ε is negligible in λ and qregH denotes the number of queries to OregH that A issues.

Sketch. By Pr[Gi] we denote the probability that A wins game Gi.

Game G0: The real experiment. Game G0 is the DKR-CKS-heavy experiment as presented in Figure
3, where A plays with a challenger C. We have thus

Advdkr−cks−heavy
A,NIKE (λ) = |Pr[G0]− 1/2| .

Game G1: Guess the challenge. The modifications are exactly as in game G1 of the proof of Theo-
rem 3.1. By perfect correctness of NIKE we have

Pr[G1] = Pr[G0].

Game G2: Recall that ski? = ([wi? ], [hski? ]). Next, we want to make [wi? ] redundant also for dishonest
reveal queries. In order to do so, for dishonest registration queries (ID, [x, hpk, c], [Π]) we will extract
[hsk] from the proof such that e([A], [hsk]) = e([hpk], [1]) and save (ID, [x, hpk, c], [Π], [hsk]) in QregC.
Whenever [x, hpk, c] ∈ Lopt we can compute

[hsk] = [c]−B ·B−1 · [c],

where [c], [c] ∈ G`+1 denote the upper and lower part of [c].

Now, on a query (ID, IDi?) to OrevC with (ID, ([x, c], [hpk]), [Π], [hsk]) ∈ QregC we compute the shared
key as

Hhski? ([x]) ·Hhsk([xi? ]) ∈ GT .

22



Note that in order to compute Hhsk([xi? ]) it is sufficient to know [hsk].

By the correctness of the hash proof system, the answers of OrevC in G2 are identical to the answers of
OrevC in G1, whenever [x, hpk, c] ∈ Lopt.

By bad we denote the event that extraction is not successful for at least one query (which is only the
case if the adversary managed to forge a proof for a statement outside the language). In this case we
return 1 with probability 1/2 and abort. Soundness of PS under D′`-KMDH yields

|Pr[G1]− Pr[G2]| ≤ Advkmdh
B,D′`G

(λ) + 1/p.

(For more details on the bound we refer to [36].)

Game G3: Abort upon wrong guess. We change the winning condition of the game as follows. If IDi?
is not included in the test query of A, the experiment returns 1 with probability 1/2 and aborts. Then
it holds

Pr[G3] = Pr[G2] · 2/qregH + 1/2 · (1− 2/qregH)

= (Pr[G2]− 1/2) · 2/qregH + 1/2

and thus

Pr[G2]− 1/2 = qregH/2 · (Pr[G3]− 1/2).

Game G4: From Game G4 on we abort if after registering IDi? honestly there is a dishonest key registration
query (ID, ·, ·) with H(ID) = H(IDi?). The collision resistance of H yields

|Pr[G3]− Pr[G4]| ≤ Advcr
B1,H(λ).

Game G5: Remove the secret key. Upon receiving the i?-th register honest user query, C deviates from
the NIKE.KeyGen procedure as follows: The challenger C draws [xi? ]

$← XSMP \ LSMP. C
A distinguisher between both games can be turned directly into a SMP attacker B putting his challenge
in the place of [xi? ]. If the challenge was in L, Game G4 was simulated, else it was Game G5. Observe
that it is crucial here that C does not make use of [wi? ] anymore due to the changes made in the
previous games. Because of the changes in game G4, we ensure that the proof [Πi? ] cannot be re-used
for a dishonest registration query.

Altogether this yields
|Pr[G4]− Pr[G5]| ≤ Advsmp

B2,SMP
(λ).

Game G6: Randomize the test query. As in CKS-heavy we can now randomize the test-query and
obtain

|Pr[G5]− Pr[G6]| ≤ ε.

Finally, G6 does not depend on the challenge bit anymore, and thus Pr[G6] = 1/2. Collecting the
advantages proves the theorem.

5 Optimality of our construction

Our NIKE scheme in Section 3 does not meet the lower bound regarding tightness proven in [4]. We can
circumvent their result since our scheme does not offer a public and efficient algorithm for checking validity
of public keys (called PKCheck in [4]): the reduction introduces invalid public keys where the statement is
not from the language. It follows from the hardness of the subset membership problem that this is not
detectable given just the public key.

This immediately raises the question whether, in this new setting without efficient and public PKCheck,
we can still obtain a lower bound for the tightness of HKR - CKS - heavy-secure NIKE schemes. We answer
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Expuf−cks−heavy
A=(A1,A2),n,NIKE(λ):

PP $← NIKE.Setup(1λ)

ID1, ..., IDn
$← IDS (all disjoint)

(pki, ski)
$← NIKE.KeyGen(PP, IDi), i = 1, ..., n

(st , {i?, j?})← A1(PP, ID1, pk1, ..., IDn, pkn)
K? ← A2(st , (ski)i∈[n]\{i?,j?})
if K? = NIKE.SharedKey(IDi? , pki? , IDj? , skj?)

then output 1
else output 0

Figure 12: Experiment for UF - CKS - heavyn security of a NIKE scheme NIKE with shared key space K, for
any n ∈ N. The set C := {i?, j?} contains the indices of the two public keys A wishes to be challenged
upon. The set [n] \ C contains all indices of the n− 2 public keys for which A learns a secret key from the
experiment.

this question in the affirmative and prove a new lower bound that meets the loss of our reduction in Section 3.
To present our result, we first give some definitions.

Since HKR - CKS - heavy security provides several oracles to the adversary which can be queried in an
arbitrary order, a reduction to HKR - CKS - heavy-security cannot be formalized as an algorithm in a short
and easy way. As done in previous impossibility results before, we thus prove our result w.r.t a weaker security
notion that is easier to present. Afterwards, we show that our result carries over to HKR - CKS - heavy-
security. Our weaker notion is called UF - CKS - heavyn

6. The security experiment is depicted in Figure 12.
Observe that the experiment provides the adversary with all but two secret keys, and thus implicitly with
all but one shared key. The adversary chooses which keys he wants to see after obtaining all public keys in
the system. The notion is further weakened by letting the number of users in the system be a fixed n ∈ N
instead of letting the adversary determine it on-the-fly (i.e., via OregH queries).

The next lemma allows us to prove a lower bound w.r.t UF - CKS - heavyn instead of HKR - CKS - heavy .
It will become crucial that the reduction is tight.

Lemma 5.1 (HKR - CKS - heavy ⇒ UF - CKS - heavyn). For every adversary A attacking UF - CKS - heavyn
in running time tA with success probability εA, there exists an adversary B attacking CKS - heavy in running
time tB ≈ tA and success probability εB = εA.

Proof. Let A = (A1,A2) be a UF - CKS - heavyn adversary. We show how to construct a HKR - CKS - heavy
adversary B.

On input PP by the challenger, the adversary B first generates random, disjoint identities ID1, ..., IDn
and calls the oracle OregH(IDi) for all i ∈ [n]. B thus obtains pk1..., pkn. Now, B runs A1(PP, pk1, ..., pkn)
and obtains a state stA and a set C := {i?, j?}. Now, for every i ∈ [n] \ C, B1 queries its oracle Oextr(IDi)
which returns a secret key ski. Next, B1 runs A2(stA, (ski)i∈[n]\C) and obtains a key K?. The adversary B
finally queries its test oracle on (IDi? , IDj?) which returns a key K. It outputs 0 if K? = K and 1 otherwise.
As we assume the shared key to be uniquely determined and as further B only queries Oextr on identities IDi
with i /∈ C we obtain εB = εA.

We recall the definition of a non-interactive complexity assumption, taken verbatim from [4], Def. 4 and
5.

Definition 5.2 (Non-interactive complexity assumption). A non-interactive complexity assumption (NICA)

N = (T, V, U) consists of three turing machines. The instance generation machine (c, w)
$← T (1λ) takes the

security parameter as input, and outputs a problem instance c and a witness w. U is a PPT machine, which
takes as input c and outputs a candidate solution s. The verification TM V takes as input (c, w) and a
candidate solution s. If V (c, w, s) = 1, then we say that s is a correct solution to the challenge c.

6We work with an even weaker notion that [4]. The main difference is that our adversary only has a secret key oracle (from
which it can compute shared keys itself), while the adversary in [4] is provided with a shared key oracle.
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Expnica
B,N=(T,U,V )(λ):

(c, w)
$← T (1λ)

s← B(c)
return V (c, w, s)

Figure 13: Security experiment for a non-interactive complexity assumption (NICA).

Definition 5.3. We say that B (t, ε)-breaks a NICA N = (T,U, V ) if B runs in time t(λ) and it holds that

|Pr[Expnica
B,N (1λ)⇒ 1]− Pr[Expnica

U,N (1λ)⇒ 1]| ≥ ε(λ),

where Expnica
B,N is the experiment defined in Figure 13 and the probability is taken over the random coins

consumed by T and the uniformly random choices in the experiment.

Now we are ready to formalize what we mean by a reduction Λ from a NICA to the UF - CKS - heavyn
security of NIKE. We closely follow the structure of [4] and similar to [12, 30, 33, 37, 4] only consider a
certain class of reductions.

Definition 5.4 (Simple reduction). We call a TM Λ a (tΛ, n, εΛ, εA)-reduction from breaking a NICA
N = (T,U, V ) to breaking the UF - CKS - heavyn security of NIKE, if Λ turns an adversary A = (A1,A2)

that runs in time tA and has advantage εA to break Expuf−cks−heavy
A,n,NIKE (as provided in Figure 12) into a TM B

that runs in time tΛ + tA and has advantage εΛ to break N (see Definition 5.3). We call Λ simple, if Λ has
only black-box access to A and executes A only once (and in particular without rewinding).

In the following we will only consider simple reductions. Note that even though this seems to restrict
the class of reductions heavily, actually most reductions (including reductions performing hybrid steps) are
simple. The security proofs of all existing NIKE schemes [15, 10, 18] we are aware of7 are simple reductions.

Since our notion of UF - CKS - heavyn-security requires only two rounds of interaction between the
adversary and the challenger, we are able to give a very compact formal description of the algorithm
Λ := (Λ1,Λ2,Λ3) as follows:

• Λ1 is a probabilistic algorithm that gets as input a (set of) NICA challenge(s) c and outputs public
parameters PP, a set of identities and public keys ID1, pk1, ..., IDn, pkn and a state st1.

• Λ2 is a deterministic algorithmn that receives as input C ⊆ [n] with |C| = 2 (else aborts) and st1 and
outputs (st2, (ski)i∈[n]\C).

• Λ3 is a deterministic algorithm that receives as input st2 and K̃ and outputs an s.

5.1 A weaker validity check

We expand the results from [4] by relaxing the assumptions on the publicly checkable validity of public
keys. Recall that [4] requires a method PKCheck allowing to efficiently verify whether a public key pk was
generated by NIKE.KeyGen(PP, ID), e.g., whether there exists a secret key sk and random coins r such that
(pk, sk) ← NIKE.KeyGen(PP, ID; r). We will only require the following notion of weak checkability of public
keys. In particular, we only require it to be checkable whether a public key is valid given a corresponding
secret key.

Definition 5.5. Let NIKE be a NIKE with secret key space SK, identity space IDS and public key space PK.
We say that NIKE satisfies weak checkability of public keys, if there exists a efficiently computable function

wPKCheck : IDS × PK × SK → {0, 1}
7Remember that we restrict to 2-party key exchange protocols in the setting where a PKI is available.
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with the following properties:

For all (pk, sk)← NIKE.KeyGen(PP, ID) we have wPKCheck(ID, pk, sk) = 1. (1)

For all (ID1, pk1, sk1), (ID1, pk1, sk
′
1), (ID2, pk2, sk2) with wPKCheck(ID1, pk1, sk1)

= wPKCheck(ID1, pk1, sk
′
1) = wPKCheck(ID2, pk2, sk2) = 1 it holds

NIKE.SharedKey(ID2, pk2, ID1, sk1) = NIKE.SharedKey(ID2, pk2, ID1, sk
′
1).

(2)

We call a secret key sk valid for (ID, pk) if wPKCheck(ID, pk, sk) = 1. We further define the language of valid
public keys

Lvalid := {(ID, pk) | ∃sk : wPKCheck(ID, pk, sk) = 1}.

Property 2 now implies that any two tuples (ID1, pk1), (ID2, pk2) ∈ Lvalid lead to a unique shared key inde-
pendently of which valid secret key is employed to compute the shared key.

Remark 5.6. Note that a NIKE for which it can be efficiently verified whether a pair (pk, sk) lies in the
image of NIKE.KeyGen(PP, ID) in particular satisfies weak checkability of public keys with

wPKCheck(ID, pk, sk) =

{
1 if ∃r : (pk, sk) = NIKE.KeyGen(PP, ID; r)

0 else
.

5.2 A lower bound on tightness

In this section we show that if a NIKE NIKE satisfies weak checkable uniqueness, then any simple reduction
from a NICA to the UF - CKS - heavyn-security of NIKE it has to inherently lose a factor of n/2 in reduction,
where n is the number of public keys. Further, we show that the NIKE NIKE presented in Figure 6 satisfies
weak checkability of public keys. Note that by definition any NIKE supporting weak checkability of public
keys is perfectly correct, that is for all (IDi, pki, ski)

$← NIKE.KeyGen(PP, IDi), i ∈ {1, 2}, we have

NIKE.SharedKey(ID1, pk1, ID2, sk2) = NIKE.SharedKey(ID2, pk2, ID1, sk1).

Theorem 5.7. Let N = (T,U, V ) be a non-interactive complexity assumption and n ∈ poly(λ). Let NIKE

be a UF - CKS - heavyn secure NIKE with shared key space K, public key space PK and secret key space SK
which satisfies weak checkability of public keys via algorithm wPKCheck. Let further evaluating wPKCheck

require time twPKCheck. Then any reduction Λ = (Λ1,Λ2,Λ3) from N to NIKE has to lose a factor n/2
assuming N is hard. More formally, for any simple (tΛ, n, εΛ, 1)-reduction from breaking the assumption N
to breaking the UF - CKS - heavyn-security of NIKE, there exists an adversary B breaking N in running time

tB ≤
n(n− 1)

2
tΛ +

n(n− 1)(n− 2)

2
twPKCheck

with success probability

εB ≥ εΛ −
2

n
.

Remark 5.8. We have εA = 1 and εB = η(λ) for a negligible function η (as N is assumed to be hard). We
can thus transform the last equation into εΛ ≤ 2

nεA + η(λ). This implies the claimed reduction loss of n/2.

Proof. We follow the proof structure of [30], [37], [4].

The hypothetical adversary. In the following we describe a hypothetical adversary A = (A1,A2).
Note that this adversary might not be efficient, but in order to prove the reduction loss of n/2 we show how
to simulate it efficiently.

A1(PP, ID1, pk1, . . . , IDn, pkn) chooses C := {i?, j?} ⊆ [n] with |C| = 2 uniformly at random. It outputs
(st , C), where st = (PP, ID1, pk1, . . . , IDn, pkn, C).

A2(st , (ski)i∈[n]\C) checks whether wPKCheck(IDi, pki, ski) = 1 for all i ∈ [n] \ C and whether (IDi, pki) ∈
Lvalid for both i ∈ C. If this is the case A2 computes a secret key skj? s.t. wPKCheck(IDj? , pkj? , skj?) = 1
and outputs K? = NIKE.SharedKey(IDi? , pki? , IDj? , skj?). Otherwise A2 outputs ⊥.
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As we have (ID, pk, sk) ∈ Runique for all (pk, sk) ← NIKE.KeyGen(PP, ID) and further NIKE.SharedKey
returns a unique key for all tuples passing wPKCheck, due to property 2 of Definition 5.5 the hypothetical
adversary always wins in the UF - CKS - heavyn experiment.

We now describe an adversary B attempting to break N = (T,U, V ). The strategy is to run the reduction
Λ = (Λ1,Λ2,Λ3) simulating A efficiently. Let c be the input of B, where (c, w) ← T (1λ). Let SK [ ],SK ?[ ]
be arrays of n entries initialized by ∅ and maintained throughout the reduction by B.

1. The adversary B runs (st1,PP, ID1, pk1, . . . , IDn, pkn)← Λ1(c).

2. The adversary B samples {i?, j?} = C? ⊂ [n] with |C?| = 2 uniformly at random.

3. For each C ⊂ [n] with |C| = 2 the adversary B runs the reduction Λ2(st1, C). Let (stC2 , (sk
C
i )i∈[n]\C)

denote the output of the respective execution. Whenever wPKCheck(IDi, pki, sk
C
i ) = 1 for an i ∈ [n] \C

the adversary sets SK [i] = skCi . If C = C?, B additionally sets SK ?[i] = skC
?

i

4. If there exists an i ∈ [n]\C? with SK ?[i] = ∅ (i.e. wPKCheck(IDi, pki, sk
C?

i ) = 0) or there exists a i ∈ C?
such that SK [i] = ∅ (i.e. wPKCheck(IDi, pki, sk

C
i ) = 0 for all C ⊆ [n] with |C| = 2) then B sets K? = ⊥.

Otherwise B computes K? = NIKE.SharedKey(IDi? , pki? , IDj? ,SK [j?]).

5. Finally, the adversary B outputs s
$← Λ3(stC

?

2 , C?,K?).

Efficiency of B. In the third step Λ2 has to be executed
(
n
2

)
= n(n−1)

2 times. Each time the validity check
has to be performed n− 2 times. For the running time of B it thus holds

tB ≤
n(n− 1)

2
tΛ +

n(n− 1)(n− 2)

2
twPKCheck.

Success probability of B. Let C? = {i?, j?} as before. Consider the following two events:

check - fails : ∃i ∈ [n] \ C? such that SK ?[i] = ∅
pk - valid : ∀i ∈ C? it holds that SK [i] 6= ∅

We first want to show that in the case of check - fails ∨ pk - valid, B simulates the hypothetical adversary A
perfectly. If check - fails occurs, then B returns ⊥. The hypothetical adversary would have returned ⊥ as
well because in this case it holds wPKCheck(IDi, pki, sk

C?

i ) = 0 for an i ∈ [n] \ C?. If pk - valid occurs, we
have (IDi, pki) ∈ Lvalid for all i ∈ [n] (as in this case for each i ∈ [n] there exists a set C ⊂ [n] such that the
reduction Λ2 provided an skCi with wPKCheck(IDi, pki, sk

C
i ) = 1 at some point). In this case the shared key

K? is unique by property 1 in Definition 5.5 and can be computed by B with the secret key SK[j?].
We summarize all other possible cases in the event

bad = ¬check - fails ∧ ¬pk - valid,

which is well-defined, as Λ2 is deterministic.
We now bound the probability that bad happens. For this, we observe that ¬pk - valid can only occur

if the event E := (∃i ∈ [n] s.t. SK[i] = ∅) occurs. As C? is chosen uniformly at random and the view of
Λ2 is independent of C?, we have i ∈ [n] \ C? with probability 1− 2/n. In this case check - fails occurs and
thus Pr[check - fails| E] ≥ 1 − 2/n. Now since ¬pk - valid ⇒ E it holds that Pr[¬check - fails ∧ ¬pk - valid] ≤
Pr[¬check - fails ∧ E] = Pr[¬check - fails|E] · Pr[E] ≤ Pr[¬check - fails|E] = 1 − Pr[check - fails|E] ≤ 2/n. We
thus obtain

Pr[bad] ≤ 2/n.

Let εB
∣∣
¬bad denote the probability of B to win under the condition that bad does not occur and εΛ

∣∣
¬bad

accordingly. We have

|εB − εΛ| ≤
∣∣εB∣∣¬bad − εΛ

∣∣
¬bad

∣∣+ Pr[bad] = Pr[bad] ≤ 2

n
.
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Remark 5.9. As shown in [4] it is straightforward to generalize Theorem 5.7 to simple (tΛ, n, εΛ, εA)-
reductions for general εA by letting the hypothetical adversary (and B respectively) toss a coin and only
return K? with probability εA.

Remark 5.10. While Theorem 5.7 establishes the impossibility of tight security reductions for a large class of
NIKE schemes, it thereby also gives a hint about how a tight NIKE scheme has to be constructed. Namely,
such a scheme has to violate the assumptions made in the theorem such as the existence of an efficient
PKCheck that, given the secret key, decides uniqueness of shared keys. More detailed, a tight NIKE scheme
needs to allow a reduction to indistinguishably switch public keys to invalid (in fact, even tightly switch many
of them in one step), such that invalid public keys admit many secret keys that lead do different shared keys.
It is an interesting open question how to construct such a scheme.

5.3 Weak checkable uniqueness of our NIKE

Lemma 5.11. If instantiated with a hash proof system HPS where membership in HSK is efficient checkable
for all sets of secret keys in the image of HPS.Setup, the NIKE NIKE presented in Figure 6 complies with
weak checkability of public keys.

Proof. Let PP := ((X,L,R),HSK,H, α, F )
$← NIKE.Setup(1λ). We define

wPKCheck(ID, (hpk, x), (hsk, x, w)) :=


1 if hsk ∈ HSK ∧ α(hsk) = hpk

∧ (x,w) ∈ R
0 else

.

We have to show that wPKCheck is efficiently computable and further that wPKCheck meets properties 1 and
2 in Definition 5.5. By prerequisites we have that membership in HSK is efficiently checkable. Further, by
definition of a hash proof system the map α and the relation R are efficiently computable. Property 1 follows
straightforward from the definition of wPKCheck. Note that actually we have equality, that is

wPKCheck(ID, pk, sk) = 1⇔ ∃r : (pk, sk) = NIKE.KeyGen(PP, ID; r).

It remains to prove prop. 2: for all (ID1, pk1, sk1), (ID1, pk1, sk
′
1), (ID2, pk2, sk2) that all pass wPKCheck

we have
NIKE.SharedKey(ID2, pk2, ID1, sk1) = NIKE.SharedKey(ID2, pk2, ID1, sk

′
1).

Let in the following pk1 =: (hpk1, x1), pk2 =: (hpk2, x2), sk1 =: (hsk1, w1), sk′1 =: (hsk′1, w
′
1) and sk2 =:

(hsk2, w2). By the properties of the hash proof system we have that for hsk1, hsk
′
1 ∈ HSK with α(hsk1) =

α(hsk′1) = hpk1 and x2 ∈ L it holds

Hhsk1(x2) = F (x2, w2, hpk) = Hhsk′1
(x2)

and for w′1 with (x1, w
′
1) ∈ R it holds

F (x1, w1, hpk2) = Hhsk2(x1) = F (x1, w
′
1, hpk2).

This yields

NIKE.SharedKey(ID2, pk2, ID1, sk1) = Hhsk1(x2)⊕ F (x1, w1, hpk2)

= Hhsk′1
(x2)⊕ F (x′1, w

′
1, hpk2)

= NIKE.SharedKey(ID2, pk2, ID1, sk
′
1).

Corollary 5.12 (Informal). The security reduction in the proof of Theorem 3.1 is optimal regarding tightness
among all simple reductions.
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Proof. Theorem 5.7 shows that simple security reductions for a NIKE admitting a weak PKCheck encounter
a loss of at least n/2. Lemma 5.11 proves that our NIKE admits such a weak PKCheck and thus from
Theorem 5.7 it follows that UF - CKS - heavyn-security of our NIKE can only be shown by a simple re-
duction if the reduction loses at least a factor of n/2. Now Lemma 5.1 shows that a UF - CKS - heavyn
adversary tightly implies a HKR - CKS - heavy adversary. Thus, any reduction with loss M from a NICA to
HKR - CKS - heavy security would imply a reduction with loss M to UF - CKS - heavyn security. It follows
that M ≥ n/2.

Remark 5.13. Since DKR-CKS-heavy security also tightly implies UF - CKS - heavyn security, our result
carries over to DKR-CKS-heavy secure NIKE schemes that comply with weak checkable uniqueness.
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