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Abstract—We present eclipse attacks on Ethereum nodes
that exploit the peer-to-peer network used for neighbor
discovery. Our attacks can be launched using only two
hosts, each with a single IP address. Our eclipse attacker
monopolizes all of the victim’s incoming and outgoing
connections, thus isolating the victim from the rest of its
peers in the network. The attacker can then filter the
victim’s view of the blockchain, or co-opt the victim’s
computing power as part of more sophisticated attacks.
We argue that these eclipse-attack vulnerabilities result
from Ethereum’s adoption of the Kademlia peer-to-peer
protocol, and present countermeasures that both harden
the network against eclipse attacks and cause it to behave
differently from the traditional Kademlia protocol. Several
of our countermeasures have been incorporated in the
Ethereum geth 1.8 client released on February 14, 2018.

I. INTRODUCTION

The Ethereum cryptocurrency is currently second only
to Bitcoin in terms of market capitalization.Ethereum has
also emerged as a leading platform for raising capital
through the sale of tokens [9] hosted by Ethereum
smart contracts; at the end of 2017, there were over
20K such tokens, with a total market capitalization
of several billion USD [11]. From a technical per-
spective, Ethereum is interesting because it is so dif-
ferent from Bitcoin. Both Bitcoin and Ethereum use
proof-of-work algorithms to drive consensus, but Bit-
coin’s consensus algorithm uses the simple longest-chain
rule [35], while Ethereum’s consensus algorithm is based
on the more elaborate GHOST protocol [42] and may
eventually move to a proof-of-stake consensus [20].
Both Bitcoin and Ethereum support smart contracts, but
Bitcoin smart contracts must be written in a highly-
restrictive assembly-like language [7], while Ethereum’s
language is Turing complete [14], [18]. Both Bitcoin and
Ethereum uses a peer-to-peer network to communicate
the state of their blockchains, but Bitcoin’s network is
meant to emulate a unstructured random graph [23],
while Ethereum’s [10] is meant to emulate a structured
graph based on the Kademlia DHT [33], [16].

The paper was disclosed via Ethereum’s bug bounty program on
January 9, 2018, and then lightly updated to reflect the patching
applied to the Ethereum geth 1.8 (iceberg) client on February 18-
27, 2018. This paper was first posted online on March 1, 2018 and
last updated on March 1, 2018.

Despite the growing body of research on the security
of Ethereum’s consensus algorithm [21], [25], [26],
[42] and scripting language [18], [30], the properties of
Ethereum’s peer-to-peer network have been largely un-
explored. Nevertheless, a recent line of work [21], [37],
[23], [22] has made it clear that the security properties
of a proof-of-work blockchain rests on the security of
its underlying peer-to-peer network. Simply put, if the
peer-to-peer network partitions, causing different nodes
see different views of the blockchain, then how can
these nodes actually come to a consensus about what
the blockchain actually is?

In [23], Heilman et al. highlighted these risks by
demonstrating the first eclipse attacks on Bitcoin’s peer-
to-peer network. In an eclipse attack, the attacker com-
pletely controls its victim’s access to information, and
thus filter the victim’s view of the blockchain, or co-opt
the victim’s computing power as part of more sophisti-
cated attacks [37], [21]. In this paper, we consider eclipse
attacks where the attacker monopolizes all of the victim’s
incoming and outgoing connections, isolating the victim
from the rest of her peers in the network.

A. Why Ethereum is vulnerable to eclipse attacks

To conventional wisdom (e.g., [36]) suggests that
Ethereum’s peer-to-peer network is more resilient to
eclipse attacks that than that of Bitcoin. After all, Bit-
coin nodes make only eight outgoing connections by
default, while Ethereum nodes make thirteen outgoing
connections by default. Also, Ethereum’s peer-to-peer
network has cryptographically authenticated messages,
while Bitcoin nodes do not authenticate peer-to-peer net-
work messages; this means that the Bitcoin peer-to-peer
network is vulnerable to attacks on integrity by man-in-
the-middle attackers [23], [17] and via manipulations of
BGP, the Internet’s routing protocol [17].

We demonstrate that the conventional wisdom is false.
We present new eclipse attacks showing that, prior to
the disclosure of this work in January 2018, Ethereum’s
peer-to-peer network was significantly less secure than
that of Bitcoin. Our eclipse attackers need only control
two machines, each with only a single IP address. The
attacks are off-path—the attacker controls endhosts only,



and does not occupy a privileged position between the
victim and the rest of the Ethereum network. By contrast,
the best known off-path eclipse attacks on Bitcoin [23]
require the attacker to control hundreds of host machines,
each with a distinct IP address.1 For most Internet users,
it is far from trivial to obtain hundreds (or thousands)
of IP addresses. This is why the Bitcoin eclipse attacker
envisioned by [23] was a full-fledged botnet or Internet
Service Provider, while the BGP-hijacker Bitcoin eclipse
attacker envisioned by [17] needed access to a BGP-
speaking core Internet router. By contrast, our attacks
can be run by any kid with a machine and a script.

The key issue we exploit is that nodes in the Ethereum
network are identified by their cryptographic ECDSA
public key. Remarkably, Ethereum versions prior to
geth v1.8 allow one to run an unlimited number of
Ethereum nodes, each with a different ECDSA public
key, from the same single machine with the same single
IP address. Because generating a new ECDSA public key
is trivial—one need only run the ECDSA key generation
algorithm—our attacker can trivially create thousands
of Ethereum node IDs in seconds, without expending
significant compute resources. Our attacker therefore
generates a set of Ethereum node IDs, and then uses
a coordinated strategy to cheaply launch eclipse attacks
from two host machines, (each) with just a single IP
address. Worse yet, Ethereum nodes form connections
to peers in biased fashion (i.e., some node IDs are more
likely to become peers than others) that is easily pre-
dicted by the attacker. Therefore, our attacker carefully
selects his node IDs so that the victim is more likely
to connect to attacker node IDs, rather than legitimate
ones.

We disclosed our attacks and their countermeasures to
the Ethereum bug bounty program on January 9, 2018.
Some of our countermeasures were adopted in the geth
1.8 client; see Section V.

B. Our results

The Ethereum developers [10] state that the Ethereum
peer-to-peer network protocol is based on the Kademlia
DHT [33]. However, the design goals of the two are dra-
matically different. Kademlia provides an efficient means
for storing and finding content in a distributed peer-to-
peer network. Each item of content (e.g., a video) is
stored at small subset of peers in the network. Kademlia
ensures that each item of content can be discovered by
querying no more than a logarithmic number of nodes
in the network. By contrast, the Ethereum protocol has
just one item of content that all nodes wish to discover:
the Ethereum blockchain. The full Ethereum blockchain
is stored at each Ethereum node. As such, Ethereum’s

1Also, since the release of [23] in 2015, Bitcoin has put in counter-
measures that have significantly raised the bar for eclipse attacks.

peer-to-peer network is not needed for content discovery;
it is only used to discover new peers. This means that
Ethereum inherits most of the complicated artifacts of
the Kademlia protocol, even though it rarely uses the
key property for which Kademlia was designed .2

Exposition. Our first contribution is a detailed expo-
sition of Ethereum’s peer-to-peer network and its rela-
tionship to the Kademlia protocol. Since the network is
largely undocumented (apart from some short discussion
in [16], [3], [4]) we present a new exposition developed
by reverse engineering the code of the popular Ethereum
geth client (Section II).

Attacks. Our second contribution is two off-path eclipse
attacks and one attack by manipulating time:

Eclipse by connection monopolization (Section III). We
exploit the fact that the network connections to Ethereum
client may all be incoming, i.e., initiated by other nodes.
Thus, our attacker waits until the victim reboots (or
deliberately forces the victim to reboot by sending a
packet-of-death to the Ethereum client [15] or the host
OS [1], [2]), and then immediately initiates incoming
connections to victim from each of its attacker nodes.
The victim is eclipsed once all connection slots are
occupied by the attacker.

Eclipse by owning the table (Section IV). Our
connection-monopolization attack can be trivially elimi-
nated by forcing Ethereum clients to make connections
that are both incoming (initiated by other nodes) and
outgoing (initiated by the client). But even if such
countermeasure was adopted, we show that Ethereum
is still vulnerable to low-resource eclipse attacks. To
that end, we present an eclipse attacker that uses a
carefully-crafted set of node identifiers to repeatedly
ping the victim. When the victim restarts, the victim
forms all thirteen of her outgoing connections to the
attacker with high probability. To complete the eclipse,
the attacker monopolizes the remaining connection slots

2In 2014, the Ethereum developers [3] wrote: “Kademlia-style
network well-formedness guarantees a low maximum hop distance to
any peer in the network and its group.” However, Ethereum rarely
requires some node a to “find” some specific other node b, so this
“well-formedness” appears to be unnecessary. The only time this
feature is used is when a one node wishes to resolve any given node ID
(i.e., ECDSA public key) to its IP address, and this seems only to be
used when the user of a node supplies statically-configured nodes to the
node’s peer-to-peer network, or if a node ID’s corresponding IP address
is missing; see Section II-G. There have been some rumblings about
“sharding”, where each Ethereum node need only store a small fraction
of the blockchain. (“... at the P2P level, ... a broadcast model is not
scalable since it requires every node to download and re-broadcast O(n)
data (every transaction that is being sent), whereas our decentralization
criterion assumes that every node only has access to O(c) resources
of all kinds.” [13], [12].) It is possible that Kademlia was chosen for
the peer-to-peer network in order to support sharding, even though
sharding has not been deployed.



with unsolicited incoming connections from attacker
node identifiers.

Attack by manipulating time (Section VI. We also
present an attack that can cause a node to be eclipsed
if it local clock is more than 20 seconds ahead of the
other nodes in the Ethereum network. Such an attack can
be accomplished e.g., by manipulating the network time
protocol (NTP) used by the host running the Ethereum
node [31], [32].

Countermeasures (Section V). Our third contribution
is set of countermeasures that can be used to prevent
these attacks. Our most important recommendation is
that Ethereum stop using ECDSA public keys as the sole
node identifier; a combination of IP address and public
key should be used instead. Beyond this, we show how to
harden Ethereum by via design decisions different from
those that are traditionally part of the Kademlia protocol.
Several of our countermeasures have been adopted in
geth v1.8, released February 14, 2018.

C. Implications of Eclipse Attacks

Given the increasing importance of Ethereum to the
global blockchain ecosystem, we think its imperative that
countermeasures preventing them be adopted as soon as
possible. Ethereum node operators should immediately
upgrade to geth v1.8. We briefly discuss the implications
of leaving these vulnerabilities unpatched.

Attacks on consensus. Eclipse attacks can be used to
co-opt a victim’s mining power and use it to attack
the blockchain’s consensus algorithm [23], [37], [21].
[21] showed how eclipse attacks can be used as part of
optimal adversarial strategies for double spending and
selfish mining.

Attacks on blockchain layer-two protocols. In a
blockchain layer-two protocol (e.g., Bitcoin’s Lightning
Network [38], Ethereum’s Radian network [8]), pairs of
users post transactions on the blockchain in order to
establish a payment channel between the two users. The
users can then pay each other using transactions that
are not posted to the blockchain; these off-blockchain
payments are fast, because they are not subject to
blockchain-related performance bottlenecks. Finally, the
payment channel is closed by posting on-blockchain
transactions that reflect the new balance of coin between
the two users. Importantly, the security of these protocols
requires that no off-blockchain payments are sent after
the payment channel is closed. Thus, an eclipse attacker
can trick his victim into the thinking the payment chan-
nel is still open, even while the non-eclipsed part of
the network sees that payment channel is closed. If the
victim is e.g., a merchant that releases goods in exchange
for off-blockchain payments, then the attacker can once
again obtain the goods without paying.

Attacks on smart contracts. Ethereum’s smart contracts
have several unique properties. For instance, smart con-
tracts can contain variables that have hold state that can
changed by transactions that are posted to the Ethereum
blockchain. [18] points out that Ethereum smart contracts
may be attackable if users see inconsistent views of the
blockchain; we point out that an eclipse attack can be
used to inject these inconsistencies.

As a simple example, consider an Ethereum smart
contract that is used to auction off a digital cat. The
contract has variable x that counts the number of bids
made on the cat. Alice might only be willing to expend
Ether to send a transaction bidding on the cat iff x < 5.
An eclipse attacker could show Alice a view of the
blockchain where x < 5, causing Alice to sign a bid
transaction T . The attacker then sends T to the non-
eclipsed portion of the network, tricking Alice into
bidding on the cat even though x > 5.

II. ETHEREUM’S PEER-TO-PEER NETWORK

This section provides details about Ethereum’s peer-
to-peer network based on the geth client. Geth is the
most popular Ethereum client.3 Our description is of
geth’s main neighbor discovery protocol, known as the
RLPx Node Discovery Protocol v4 [6], which, prior to
the disclosure of this paper and the release of geth v1.8.0
on February 14, 2018, has been largely unmodified from
that released with the very first geth client in 2015 (when
Ethereum first came online). A newer v5 version exists,
but is still considered experimental, and is currently only
used by Ethereum ‘light node’ clients. This paper uses
geth version 1.6.6, released on June 23, 2017.

A. Kademlia similarities and differences

While Ethereum’s peer-to-peer network is based [10]
on the Kademlia DHT [33], its purpose is quite different.
Kademlia is designed to be an efficient means for storing
and finding content in a distributed peer-to-peer network.
Ethereum’s peer-to-peer network is only used to discover
new peers.

In the Kademlia network, each item of content is
associated with a key (a b-bit value), and is stored
only at those peers whose node ID (a b-bit value) that
is “close” to its associated key. Kademlia’s notion of
“closeness” is given by the XOR metric, so that that
the distance between b-bit strings t and t′ is given
by their bitwise exclusive or (XOR) t

⊕
t′, interpreted

as an integer. Each Kademlia node has a datastructure
consisting of b distinct buckets, where bucket i stores
network information about k peers at distance i (from her
node ID per to the XOR metric). To look up a target item
of content associated with key t, a Kademlia node looks

3As of January 4, 2017, more the 70% of Ethereum nodes run geth,
according to Ethernodes.org.



in her buckets to find the node IDs that are “closest” to t,
and asks them to either (a) return the content associated
with t, or (b) to return some node IDs that are even
“closer” to t. This lookup process proceeds iteratively
until the key is found. The number of nodes that queried
in a lookup is logarithmic in the number of nodes in the
network; this is the key property for which the Kademlia
protocol was designed.

Ethereum uses the same XOR metric and the same
bucket data structure. However, Ethereum nodes have no
need to identify which peers store a target item of content
(since there is only ‘item of content’—the Ethereum
blockchain—that is stored by all peers). As such, lookup
is mostly used to discover new peers. (There is a small
and rare exception to this, when resolving a node ID to
its IP address. See Section II-G.) To do so, the Ethereum
node chooses a random target t, looks in her buckets to
find k = 16 node IDs closest to the target t, and asks
them each to return k node IDs from their buckets that
“closer” to the target t, resulting in up to k × k newly
discovered node IDs. From these k×k newly-discovered
node ID, the k nodes closest to the target t are then asked
to return k nodes that are even closer to t. This process
continues iteratively until no new nodes are found. In
other words, Ethereum lookup is mostly a fancy way to
populate buckets with randomly-chosen node IDs.

We now proceed with a detailed exposition of
Ethereum’s peer-to-peer network.

B. Node IDs.

Peers in the Ethereum network are identified by their
node IDs. A node ID is a b = 512 bit (64 byte)
cryptographic ECDSA public key. Multiple Ethereum
nodes, each with a different node ID, can be run on a
single machine that has a single IP address. It is easy to
generate an ECDSA key—one need only run the ECDSA
key generation algorithm. There is no mechanism that
checks that unique node IDs correspond to unique net-
work addresses; thus, it is possible to run an unlimited
number of nodes from the same machine with the same
IP address. This is the main vector exploited in our
attacks.

C. Network connections.

UDP connections. UDP connections are used only to
exchange information about the peer-to-peer network.
There is no limit on the number of UDP connections,
except that at most 16 UDP connections can be made
concurrently.

There are four types of UDP messages. A ping mes-
sage solicits a pong message in return. This pair of mes-
sages is used to determine whether a neighboring node
is responsive. A findnode message solicits a neighbor
messages that contains a list of 16 nodes that have been

seen by the responding node. ( A node will only respond
to a findnode request if the querying node is already in
his db, see Section II-D.)

All UDP messages are timestamped and cryptographi-
cally authenticated under the sender’s ECDSA key (aka,
the sender’s node ID). To limit replay attacks, the client
drops any UDP message whose timestamp is more
than 20 seconds older than the client’s local time. To
prevent pong messages from being sent from spoofed IP
addresses, the pong also contains the hash of the ping
to which it is responding.4

TCP connections. Meanwhile, all blockchain informa-
tion is exchanged via encrypted and authenticated TCP
connections. The total number of TCP connections at any
given time is maxpeers, which is set to 25 by default.
To eclipse a node, the attacker must continuously occupy
all maxpeers of the target’s TCP connections.

A TCP connection is outgoing if it was initiated by
the client (i.e., the client sent the TCP SYN packet) and
incoming otherwise. A client can initiate up to b 12 (1 +
maxpeers)c (13, by default) outgoing TCP connections
with other nodes. By contrast, prior to geth v1.8.0, there
was no limit on the number of unsolicited incoming TCP
connections, other than maxpeers. This means that a
client could have all maxpeers of its TCP connections
be unsolicited incoming connections, a fact we exploit
in our brute-force eclipse attack of Section III.

D. Storing network information

A client stores information about other nodes in two
data structures. The first is a long-term database, called
db, which is stored on disk and persists across client
reboots. The second is a short-term database, called
table, which contains Kademlia-like buckets [33] that
are always empty when the client reboots. The db is
used for long-term storage of network information, while
the table is used to select peers (i.e., outgoing TCP
connections), as described in Section II-G.

The db. The db is stored on disk, and contains
information about each node that the client has seen.
(A node has been seen if it responds to a ping message
sent by the client with a valid pong response.) There is
no limit to the size of the db.

Each db entry consists of a node ID, IP address, TCP
port, UDP port, time of last ping sent to the node, time of
last pong received from the node, and number of times
the node failed to respond to a findnode message. A
node’s age is the time elapsed since the time of last
pong received from the node. Each hour (starting from
time of the first successful bonding, see Section II-E),

4Unfortunately, however, prior to geth v1.8.0, geth v4 nodes did not
check this hash value. (This seems to be an implementation flaw, since
geth v5 nodes do check the hash value.)



the client runs an eviction process that removes nodes
from the db that are older than 1 day.

table. The table is always empty when the client
reboots. The table consists of 256 buckets, each of
which can hold up to k = 16 entries. Each entry records
information about another Ethereum node—specifically,
its node ID, IP address, TCP port, UDP port. Entries in
each bucket are sorted in the order in which that were
added to the bucket. When the client discovers a new
node that maps to a bucket that is already full, the client
pings the last node (i.e., oldest) in the bucket. Prior to
geth v1.8.0, if this old node fails to respond with a pong,
the new node is added to the bucket and the old node
is pushed out; otherwise, the new node is not added to
the bucket. Because ping messages are sent via UDP,
the client can still send them even if all of its available
TCP connections are in use.Nodes are also removed from
the table when they fail to respond to the client’s
findnode request more than four times. All of the above
is similar to how buckets are maintained in the Kademlia
protocol [33].

Nodes are mapped to buckets according to the
logdist function, Ethereum’s modification of the
XOR metric used in the Kademlia protocol [33]. The
logdist function measures the distance between two
node IDs as follows. First, each node ID is hashed with
SHA3 to a 256-bit value. If the r most significant bits
of the two hash values are the same, but the r + 1st bit
of the two hash values is different, then the logdist
is r. A node ID that has logdist r from client’s node
ID is mapped to bucket 256− r of the client’s table.
Crucially, the mapping from node IDs to buckets in the
table is public (so that its trivial for an adversary to
predict which node ID will map to which bucket in
a victim’s table). We exploit the public nature of this
mapping (inherited from the Kademlia protocol) in our
eclipse attack of Section IV. Indeed, in Section V we
explain why Ethereum should not make this mapping
public.

Another crucial fact affecting our eclipse attacks, is
that logdist results in a highly-skewed mapping of
nodes to buckets. The probability5 that a node will map
to bucket 256− r is

pr = 1
2r+1 (1)

Most nodes therefore map into the last few buckets, and
the vast majority of the other buckets remain empty.
Specifically, we expect half the nodes to map to Bucket
256, a quarter of nodes to Bucket 255, . . . , and only a
vanishingly-small 1

2256 -fraction of nodes map to Bucket

5This follows because SHA3 maps each node ID to a random 256-bit
string. The probability that the second string has its first r bits identical
to the first string, and its r + 1st bit different, is as in equation (1).
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Fig. 2. Time (min) it takes for each bucket to fill to its max capacity
of 16 nodes. Results shown for a 27-day old node run out of a data
center in New York from July 14 to August 10 2017.

1. A client that has inserted N nodes into its table can
expect the table to store only

E[nodes stored in table] =

256∑
i=1

max(16, N 1
2i+1 ) (2)

nodes. To put this is perspective, the table has a
capacity of 256 × 16 = 4096 nodes, but a client that
has inserted N = 25, 000 nodes into the table (i.e.,
essentially the entire Ethereum network as of August
2017) can expect the table to store only 168 nodes.
Figure 1 expands upon this point by plotting the expected
number of nodes stored in the table versus the number
of nodes the client attempted to insert into the table.6

Our experiments confirm this behavior. Figure 2
presents the time it takes to fill each bucket to its
maximum capacity, for a node we ran for 27 days out
of a datacenter in New York. We can see that bucket
245 was full after about 3.2 days while bucket 246 only
managed to completely fill for a short 2.5-day period out
of the entire 27-day lifetime of the node.

E. Populating the data structures

There are several ways to populate the db and table.

6In recognition of the fact that most of the lower-number buckets
are empty, geth v1.8.0 reduced the total number of buckets from 256
to only 17.



Boostrap nodes. When a client that is booted up for
the first time, it has an empty db, and only knows about
six hardcoded bootstrap nodes.

Bonding. The bonding process is used to populate both
the db and table, as follows. When the client bonds
with a node, the clients first checks if

1) the node exists in his db,
2) the db records zero failed responses to findnode

requests, and
3) the db records that the node has responded with

a pong within the last 24 hours.
If so, the client immediately tries to add the node to its
table. (The node is actually added to the table only
if there is space, see Section II-D). Otherwise, the client
send a ping to the node. If the node responds with a
pong, we say that bonding is successful. If bonding is
successful, the client adds/updates the node’s entry in its
db, and also tries to add the node to it’s table.7

Unsolicited pings. The client receives an unsolicited
ping from another node, the client responds with a pong
and then bonds to the node.

Lookup. The client can also discover nodes using
the iterative lookup (t) method. (This is similar to
Kademlia’s lookup; see Section II-A.)

The lookup (t) method relies on the following notion
of “closeness” to a target t, where t is a 256-bit string.
Let a and b be two node IDs, and let

dA = SHA3(a)⊕ t
dB = SHA3(b)⊕ t

where ⊕ is the bitwise XOR. Then a is “closer” to
t if dA < dB ; otherwise, b is “closer” to t. (This is
Kademlia’s XOR metric!)

The lookup function uses this notion of closeness
to discover nodes as follows. First, the 16 nodes in
the table that are closest t are selected. Second, the
client queries each of these 16 nodes with a findnode
message. The findnode message contains the target t.
Upon receiving a findnode message from the client, the
other node identifies the 16 nodes “closest” to t that are
in its own table data structure, and returns these 16
nodes to the client in a neighbor message. The client
obtains information about up to 16 new nodes from
each of the 16 nodes that it queried. The client now
has information about up to 16× 16 = 256 new nodes,
and bonds with each of these 256 new nodes.

Finally, the client combines (1) the set of 16 nodes
that were queried with a findnode message, and (2)

7geth 1.8.0 modifies this behavior so that a node must be in the
table for at least 5 minutes before it is added to db. However, this
does not have a significant effect on our eclipse attacks, simply because
it’s easy for the attacker to stay online for at least 5 minutes.

the set of (up to 256) new nodes to which the client
bonded successfully. From this combined set of nodes,
it identifies the 16 nodes that are closest to the target t.
It then repeats the process with these 16 closest nodes
(querying each node (that has not been queried in a
previous iteration) with a findnode message containing
the target t, learning about up to 16 new nodes from
each node, and then identifying the 16 nodes closest to
t from the new set of 16×16+16 nodes. This continues
iteratively until the set of 16 closest nodes stabilizes (i.e.,
remains unchanged after an iteration). The 16 closest
nodes are then added to the lookup_buffer data
structure, which is a FIFO queue.

If a node fails to respond to the client’s findnode
request five times in a row (as recorded in the db), then
lookup evicts that node from the client’s table.

F. Seeding

An Ethereum client also has a seeding process. Prior
to geth v1.8.0, the seeding process could trigger in three
ways: (1) when the node reboots, (2) every hour, and (3)
if lookup () is called on an empty table.

The seeding process first checks if the table is non-
empty. If so, nothing happens. Otherwise, the client (1)
bonds to each of the six bootstrap nodes, and (2) bonds to
min(30, `) seed nodes that are randomly-selected nodes
from the db and are no more than 5 days old (where `
is the number of nodes in the db that are no more than
5 days old). When this bonding is complete, the client
runs lookup (self), where self is the SHA3 hash of
the client’s own node ID. (The use of lookup (self)
when seeding is inherited directly from Kademlia [33].
It is intended to populate other nodes’ buckets with the
client’s newly-online node ID.)

Our eclipse attack in Section IV exploits the fact that
the seeding process does nothing when the table is
non-empty.

G. Selecting peers (i.e., outgoing TCP connections)

Very roughly speaking, an Ethereum client se-
lects half of its outgoing TCP connections from its
lookup_buffer, and half from its table. More
precisely, outgoing TCP connections are established as
follows.

When an Ethereum client boots up, a task runner is
started and runs continuously. The task runner populates
the client’s db and table and creates up to b 12 (1 +
maxpeers)c (by default 13) outgoing TCP connections
to other nodes on the Ethereum network.

Task runner. The task runner has a max of 16 concurrent
tasks, along with a queue of tasks that should be run.
Whenever there are less than 16 concurrently running
tasks, the task runner runs each task in the queue,
until the maximum of 16 is reached. If the there are



still fewer than 16 concurrently running tasks, then
new tasks are created per the task-creation algorithm
below and then run. Any new tasks that have not been
run (because the maximum of 16 concurrently-running
tasks has been reached) are pushed to the task-runner
queue. There are two types of tasks: dial_task and
discover_task.

A discover_task is a call of lookup (t) where
t is a random 256-bit target string. (See Section II-E.)

A dial_task is an attempt to make a new TCP
connection, or dial, to another node. Before creating a
dial_task for a node, the task runner first runs the
following five checks: checking that the node is

1) not currently being dialed,
2) not already a connected peer,
3) not itself,
4) not blacklisted, and
5) not recently dialed.

Resolving an unknown IP. A dial_task is called
on a node ID. Typically, the client knows the IP address
associated with a node ID, and so the TCP connection
can easily be initiated. However, there are two rare cases
where the client does not know the IP address associated
with a node ID n: (1) when the node ID was statically
configured by a user (without its IP address), or (2) if the
IP address field is empty. In these rare cases, the client
uses the traditional Kademlia iterative content resolution
process to resolve the node ID n to its IP address, i.e.,
calling lookup (n). To the best of our knowledge, this
is the only place the Ethereum peer-to-peer network uses
the iterative content lookups that Kademlia was designed
to enable.

Task-creation algorithm. Initialize x as κ = b 12 (1 +
maxpeers)c (by default 13).

1) Decrement x for each outgoing peer connection
that is either (a) currently connected, or (b) cur-
rently being dialed (by a dial_task).

2) If the client has no peers, and more than 20
seconds have elapsed since the client restarted,
selects a bootstrap node (i.e., one of the six nodes
that are hardcoded in the geth code). If the five
checks listed above pass, decrement x and create
a dial_task to the selected bootstrap node.

3) Fill random_buffer, which has a capacity of
b 12 (b 12 (1 + maxpeers)c)c nodes (by default 6),
with nodes selected uniformly at random from the
table. If the random_buffer is non-empty,
overwrite any nodes in the buffer. Select the first
b 12 (x)c nodes in the buffer. Decrement x and create
a dial_task for each selected node that passes
the five checks above.

4) While x > 0, remove the first node in
the lookup_buffer, and if that node passes

the five checks above, decrement x and cre-
ate a dial_task to that node. If the size
of the lookup_buffer is less than x, and
lookup function is not running, create a new
discover_task.

III. ECLIPSE BY MONOPOLIZING CONNECTIONS.

Our first attack is simple. The client can be eclipsed
if the attacker establish maxpeers incoming TCP con-
nections (to its own adversarial nodes) before the client
has a chance to establish any outgoing TCP connections.

A. The attack.

Our attack exploits several facts. First, we use the
fact that while an Ethereum client can have at most
maxpeers TCP connections, all of these connections
can be incoming (i.e., initiated by other nodes). Second,
we use the fact that when a client reboots, it has no
incoming or outgoing connections. Third, we use the
fact that when a client reboots, it quickly starts its TCP
and UDP listeners, but then takes a long time to establish
outgoing connections.8

Therefore, our attacker creates N � maxpeers
attacker node IDs (by randomly-generating N ECDSA
keys), waits until the victim reboots, and then imme-
diately starts cycling through the N attacker node IDs,
making incoming TCP connections to the victim. The
victim is eclipsed if all its maxpeers incoming TCP
connections are occupied by the attacker before the
victim has a chance to make any outgoing connections.

Vulnerability: Reboot. As in the eclipse attacks of [23],
our attack requires the victim to reboot. There are several
reasons why a victim might reboot, including outages,
power failures, or attacks on the host OS. Software up-
dates to the geth Ethereum client also present predictable
reason to reboot. Reboots can also be elicited using
DDoS attacks that exhaust memory or bandwidth, or as a
result of a “packet of death” that crashes the host [1], [2])
or the Ethereum client (seee.g., [15]). As noted by [23],
“the bottom line is that the security of the peer-to-peer
network should not rely on 100% node uptime”.

B. Experiments.

We tested our attack on live Ethereum victim nodes.
Each victim node was instrumented and modified to send
out no node information in its neighbor messages (to
avoid polluting the production Ethereum network with
our attacker node IDs), but was otherwise unchanged
from the regular geth v1.6.6 client. This node had the
default value maxpeers = 25.

8For a DigitalOcean node running with 2GB RAM, 2 vCPU, it took
2 seconds for the TCP listener to start and then 8 more seconds before
lookup (self) was called (see Section II-F).
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Fig. 3. Time (in seconds) required to craft an attacker node that maps
to a specific bucket in the victim’s table. We report an average of
5 runs, computed on a MacBook Pro with Intel Core i5: 2.9 GHz and
16 GB RAM.

In one experiment, we had a victim in New York,
N = 1000 attacker node IDs on two attacker machines.
One attacker was in New York (upload speed: 60Mbps)
and one was in Boston (upload speed: 22Mbps). Our
victim had been online for a day before the attack began.
We ran 50 consecutive tests. In each test we returned the
victim to its state prior to the attack, rebooted the victim,
and then launched the attack. We managed to eclipse the
victim in 49 of 50 tests. In the one test where our eclipse
attack failed, our victim made an outgoing connection to
a legitimate node.

Our next experiment tested the impact of network
latency. Our victim was in Singapore. We used two
attacker machines in New York (upload speeds ranging
from 140 kbps - 1 Mbps) and N = 1000 attacker node
IDs. Using the same methodology, we did 53 consecutive
tests, and managed to eclipse the victim in 43 of 53 tests.

C. Countermeasure

This attack requires that all of client’s connection slots
can be occupied by unsolicited incoming connections.
So, we have the following simple countermeasure:

Countermeasure 1. To stop this attack, Ethereum should
enforce an upper limit on the number of incoming TCP
connections, forcing clients to make a mix of incoming
and outgoing TCP connections.

Status: Countermeasure 1 is live as of geth 1.8.0.
There is now a configurable upper bound on incoming
connections, which defaults to b 13maxpeersc = 8.

IV. ECLIPSE BY TABLE POISONING

Ethereum nodes are still vulnerable to eclipse attacks
even if Countermeasure 1 is adopted. The following
eclipse attack succeeds with very high probability and
can be launched using only two machines, each with a
single IP address.

A. The attack.

Step 1: Craft attacker node IDs. This attack exploits
the fact that the mapping from node IDs to buckets
is public, so that a crafted attacker node ID will map
to bucket 256 − r with probability 1, while an honest
node ID is maps to bucket i with probability 1

2r+1

(see Section II-D). We therefore craft a set of attacker
node IDs (i.e., ECDSA keys) designed to fill all r
last buckets in the victim’s table. We use rejection
sampling, as follows, to create n × 16 node IDs: Let n
be the number of buckets we want to fill in the victim’s
table. For r = 0, we randomly generate a node ID
(ECDSA key), and keep it if it maps to bucket 256− r
(i.e., if it is logdist r from the victim’s node ID,
see Section II-D). We continue until we find 16 nodes
mapping to bucket 256 − r. We then increment r and
repeat until r = n− 1.

Notice that it gets harder to craft node IDs as n
increases (i.e., finding 16 nodes that map to bucket
256 − r takes expected time 16 · 2r+1). Fortunately for
the attacker, even a victim that is not under attack and
has been online for days, is likely to have a table that
contains only a few hundred nodes (Section II-D)). Thus,
our attacker only needs to craft a few hundred node IDs.
In our experiments we let n = 17 to craft a total of 272
node IDs. We can generate these 272 crafted node IDs
in under 15 minutes on a laptop (MacBook Pro i5 at
2.9 GHz with 16 GB of RAM). See also Figure 3, a
logarithmic plot of the time required to craft a single
attacker node that maps to a specific bucket.

Step 2: Insert attacker nodes into db. Now we need
to insert our crafted node IDs into the victim’s db. We
do this from a single attack machine. For each crafted
attacker node, our attack machine send a ping to the
victim. The victim will respond by bonding with attacker
node. Recall (Section II-E) that bonding to a new node
involves sending it a ping, waiting for its pong, and then
inserting the node into the db and table (if there is
space in the table). To ensure that the attacker nodes
stored in the victim’s db are not evicted because they
became too stale, our attack machine pings the victim
at least once every 24 hours. We also ensure that our
attacker machine responds to all of the victim’s ping
requests (with a pong) and findnode requests (with an
empty neighbor message).

Step 3: Reboot and eclipse the victim. As in [23]
and our attack from Section III, the final vulnerability
we leverage is reboot. A client’s table is empty upon
reboot. We then aggressively ping the victim using our
crafted attacker nodes IDs in order to fill the victim’s
table with attacker node IDs, causing the victim to
makes all κ of its outgoing TCP connections to attacker



nodes. The attacker also owns the remaining connections
slots simply by making maxpeers− κ incoming con-
nections to the victim immediately upon reboot. To do
this, we proceed as follows.

First, immediately upon reboot, our attacker machine
pings the victim for each of our crafted attacker node
IDs. This causes the victim to quickly bond with our
attacker node IDs, thus insert them into its table.
Why does bonding occur quickly? This follows because,
during bonding, the victim inserts the attacker node
directly into its table without pinging it first. This
happens because Step 2 of the attack ensured that (1)
the attacker node ID is in the victim’s db, and that the
db records (2) zero failed responses to findnode requests,
and (3) a pong response within the last 24 hours.

Next, we leverage the fact that an Ethereum client first
starts up its UDP listener (and thus, it accepts incoming
pings that trigger bonding, as just described) and then
later starts up its seeding process (Section II-F).9 How-
ever, by the time the seeding process starts, its likely that
the table already contains nodes (all of which belong
to the attacker), and so the seeding process does nothing!
Thus, none of the nodes stored in the db are moved in
the table, and our attacker node IDs do not need to
compete for space in the table with honest nodes IDs
in stored in the db. The only competition is from honest
nodes in the Ethereum network, that ping our victim and
thus cause the victim to bond to them.

The victim is eclipsed because we use a second
attacker machine to make least maxpeers−κ incoming
TCP connections to the victim immediately upon reboot.

B. Experimental results
We present the results of several experiments. In sum,

using one attack machine in Boston and one attack
machine in New York, we managed to eclipse a node
located in New York, that had been online for 33 days,
in 34/51 tests. Using the same two attack machines, we
managed to eclipse a node located in Singapore, that had
been online for 1 hour, in 44/50 tests.

33-day node experiment. We tested our attack on a
victim node (controlled by us) located in New York.
This node had been online on the Ethereum network
for 33 days before we began our attack on August 16,
2017. Our victim node was instrumented (to record stats
about the db size, when TCP connections were added
or dropped, etc.) and modified to send out no node
information in its neighbor network (to avoid polluting
the production Ethereum network with our attacker node
IDs), but was otherwise unchanged from the regular
geth v1.6.6 client. This node had the default value
maxpeers = 25.

9For a node running on a DigitalOcean node with 2GB RAM, 2
vCPU, this gap in time is about 1 second.
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Fig. 4. db size across the 33-day lifetime (ending August 16, 2017)
of the victim node in New York.

Figure 4 shows the size of the victim’s db before
we began our attack. The db stores 25,580 nodes,
i.e., almost all of the nodes in the Ethereum network.
(According to ethernodes.org, on August 16, 2017, the
Ethereum network contained a total of about 24K nodes.)

We start the attack (see Section IV-A) with Step 1
and Step 2, after which we repeatedly reboot the node
and attack it with Step 3.10We used two attack machines.
One attack machine, in Boston, had a 22 mbps upload
speed, and was charged with pinging our victims using
the 272 attacker node IDs crafted in Step 1 of the attack.
The other attack machine, in New York, had a 42 Mbps
upload speed, and was charged with making incoming
connections to our victim (for each reboot that runs Step
3 of the attack) using 1000 different attacker IDs.

We eclipsed the node (i.e., owned all maxpeers =
25 of its TCP connections) in 34 of 51 reboots (66%).
The victim did not add any seed nodes to its table
(because we prevented seeding from executing because
we inserted attacker node into the table before the
victim started up its seeding process) in 19 of 51
reboots (37%); 18 of these (94%) resulted in a successful
eclipse attack. Even when our victim did manage to seed
its table,11we still manage to own all of its outgoing
connections almost all of the time, i.e., in 49 of 51 tests
(96%). In other words, in 88% of our tests, we do indeed
manage to achieve our goal of owning the victim’s table,
and thus also owning all of its outgoing connection.

Why, then, do we sometimes fail to eclipse the victim?
This mostly occurs because honest nodes in the network
know about our victim node, and thus make incoming
connections to it (i.e., in 15 of 49 reboots) . The reason

10 Due to time/money constraints, we only had a few nodes that we
kept online for many days before launching our attacks, and so we had
to perform multiple reboots on the same node. This slightly skews our
results, because while a node is rebooted it might fail to respond to
ping and findnode requests, causing it to become less attractive in the
eyes of other nodes. During first reboot, the victim is more attractive
to other nodes in the network than during the last reboot.

11Even if the attacker does not manage to prevent seeding from
executing, there is still a high probability that the eclipse attack will
succeed. This is because our 16n attacker node IDs need only compete
for space in the table with 30 seed nodes + 6 bootstrap nodes that
are added to the table by the seeding process.



for this is as follows. Recall that there is no upper
limit on the number of incoming connections that can
be made to a node; this is what gives rise to our
connection-monopolization eclipse attack of Section III.
Meanwhile, it can take time for a node to establish its
maximum of κ outgoing connections to nodes from its
table, which is what are trying own with this attack.
In our experiments, we want to distinguish between this
“owning the table” eclipse attack and the connection-
monopolization eclipse attack of Section III. As such,
our attacker does not aggressively fill all maxpeers =
25 of the victim’s connection slots with incoming con-
nections (because this would just be the connection-
monopolization attack), and instead leaves some slots
open to allow the victim to make outgoing connections
to attacker nodes. Sometimes, while we are waiting for
outgoing connections to be made, an honest node will
sneak in with an incoming connection, thus causing our
eclipse attack to fail. Ironically, if Ethereum put a hard
limit on the number of incoming connections (Coun-
termeasure 1 that stops the connection-monopolization
attack), we could design our attacker to fill in exactly
all of the incoming connection slots, stopping honest
nodes from sneaking in their incoming connections, and
ensuring that our eclipse attack would succeed.

Young node experiment. With this experiment, we
test whether high network latency harms the success
rates of our attacks. We tested our attack on a victim
node (controlled by us) located in Signapore, that had
been online for 1 hour with a db size of 7000 nodes.
This victim was instrumented and configured in the
usual way with maxpeers = 25. As before, we used
one attack machine in Boston (with a 500kb-1mb/sec
upload speed) and one attack machine in New York
(with a 200kb-1mbps upload speed). As before, we ran
Step 1 and Step 2 of the attack, and then repeatedly
rebooted the victim and ran Step 3 each time. We
managed to eclipse the node (own all 25 of its TCP
connections) in 44/50 reboots (88%). There was only 1
reboot for which we failed to eclipse the victim because
it made an outgoing connection to an honest node. As
before, the remainder of our failed eclipse attempts (5
of 50) resulted from honest nodes sneaking in incoming
connections (while we are waiting for the victim to make
outgoing connections to attacker nodes).

C. Scaling the attack

The attack we described is tailor made for a particular
victim. Specifically, for each victim, Step 1 of the attack
creates an attacker table that contains 16n node IDs that
are crafted to fill the particular victim’s last n buckets.
This step takes some time (minutes), making it difficult
to scale this attack to run against multiple victims in the
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Fig. 5. Time (min) it takes to create a lookup table with size µ.
Computed on a MacBook Pro with specs: Intel Core i5: 2.9 GHz; 16
GB RAM

Ethereum network.12 To scale the attack to many victims,
we could instead use a lookup table, which contains
crafted node IDs that can be used to launch the attack
of Section IV-A on any victim in the Ethereum network.

The lookup table. The lookup table consists of 2µ

buckets, each of which can store 16 nodes IDs. To
populate the lookup table, randomly choose a node ID
(i.e., by generating a random ECDSA key pair), and
record the node ID in the bucket that corresponds to the
µ most significant bits of the SHA3 hash of this node
ID. Stops choosing random node IDs when each of the
2µ buckets is full.

To fill a lookup table with 2µ buckets, the expected
number of random ECDSA keys that must be chosen by
the attacker is13

2µ+4
2µ+4∑
i=1

1

i
≈ ((µ+ 4) ln 2 + 1) · 2µ+4

For hex-encoded ECDSA private keys, each of which is
64 bytes, the size of the lookup table is 2µ · 16 · 64 =
2(µ+10) bytes. For µ = 16, the storage requirement for
the lookup table is about 67MB. Figure 5 shows the time
required to create a lookup table with a size of µ.

We can use the lookup table to find 16 nodes that
map to bucket 256− r of any target victim’s table as
follows. Let t be the SHA3 hash of the target victim’s
node ID. Let t̄ be an r + 1-bit string whose r most
significant bits are the r most most significant bits of t,
and whose r+ 1st bit is the inverse of the r+ 1th bit of
t. Return the 16 nodes stored at bucket t̄.

12Indeed, the Ethereum developers are banking on this difficulty.
The Ethereum Wiki [5] states that “Overwriting the entire peer table
of a node requires significant computational effort even with relatively
low k” (where k = 16 is the number of nodes that can fit in each
bucket).

13This follows because we have a coupon collector problem with
16 · 2µ = 2µ+4 distinct coupons. See [34, page 32] for the expected
number of coupons required.



V. COUNTERMEASURES

We now present several countermeasures.

A. Rethink Node IDs.

Our first set of countermeasures makes it more diffi-
cult for the attacker to craft attacker nodes, and run them
all from a single machine with a single IP address.

Countermeasure 2. One-to-one mapping between IP
and ECDSA key. We have exploited the fact that an
unlimited number of node IDs can be created without
expending significant resources, and then run a single
machine with a single IP address.14 To remedy this, we
suggest that clients apply a strict one-to-one mapping
between ECDSA public key and IP addresses. That is,
each IP address should be associated with a unique
ECDSA public key, and vice versa. This strict mapping
should apply to nodes stored in the db, nodes stored in
the table, nodes learned from neighbor messages.

One way to achieve this is to have a separate
data structure that stores the one-to-one mapping from
ECDSA key to IP addresses. To deal with situations
where a node’s IP address changes while its ECDSA
key remains the same, the client should be able to update
the IP address associated with a given ECDSA key in
the bijectionTable. To deal with situations where
a different ECDSA key is used with a previously-seen
IP address, the client should also be able to update the
ECDSA address associated with a given IP address in
the bijectionTable.

Whenever a node is added/updated in the
table or db, the client should first update the
bijectionTable. If that node’s IP or ECDSA key
is already present in the bijectionTable, then
instead of creating a new entry in the table or db,
the existing table or db entry corresponding to that
IP or ECDSA key should be updated.

To prevent attackers from gaming the update mecha-
nisms, the client should only perform an update once the
IP address have “proved” that the IP address holds the
corresponding secret ECDSA key. To do this, the client
could send a ping request and wait for pong response,
which should be digitally-signed by the corresponding
ECDSA key.

Status: Countermeasure 2 is not implemented as de-
scribed above in geth v1.8.0, which still supports running
multiple nodes on single IP. Instead, geth v1.8.0 limits
the number of nodes in the same /24 subnet to be two
per bucket and 10 for the whole table.

Countermeasure 3. Non-public mapping from node

14Note: We caution against a solution that makes the node ID a
function of (IP address, ECDSA key) or (IP address, port, ECDSA
key), since this still allows multiple nodes to have the same IP address.

ID to bucket. A second key property exploited in
Section IV is that the mapping of node IDs to buckets
in the table is public (see Section II-D). This property
was inherited from the Kademlia protocol. In Kademlia,
the “distance” between node a and node b is reflected
in mapping of node a to a bucket in node b’s table;
iterative lookups of content become possible because
all nodes in the network use the same distance metric,
and progressively get “closer” to the content they look
up (Section II-A). Ethereum, however, has little use for
iterative lookups (Sections II-A,II-G), so there little use
for a universal “distance” between nodes.

Thus, instead of computing the logdist between
the candidate’s node ID n and the client’s node ID (per
Section II-D), the mapping could be

logdist (s1, SHA3(n, s2))

where s1 and s2 are long-lived 256-bit secrets,
randomly-chosen when the node boots up for the first
time (as is done in Bitcoin [23]). Because the adversary
does not know the local secrets, the adversary cannot
predict what bucket its crafted node ID will land in.
Also, “salting” the SHA3 hash prevents attacks that infer
s1 (e.g., by crafting a node IDs n, attempting to insert
them into the table, and inferring whether insertion
was successful, in order to learn the first few bits of
s1). This countermeasure levels the playing field between
attacker nodes ID and legitimate nodes ID, making them
equally likely to map to a given bucket in the client’s
table.

Countermeasure 4. Make lookup (self) non-public.
Along the same line as Countermeasure 3, we recom-
mend that calls to lookup (self), where self is the
(publicly-known) SHA3 hash of the client’s own node
ID, be replaced with calls to lookup (s3), where s3 is
a secret that is chosen uniformly at random each time
lookup (self) is required.15

Status: Countermeasures 3 and 4 were not implemented
in geth v1.8.0. Both Countermeasures 3 and 4 elimi-
nate the public distance metric that Kademlia leverages
in order to allow for logarithmic lookups of content.
Currently, the Ethereum peer-to-peer network uses this
feature only in the very rare case of resolving a node
ID to its IP address (see Section II-G). Nevertheless, the
Ethereum developers decided to preserve this feature so

15Interestingly, the use of lookup (self) upon reboot comes
directly from the Kademlia protocol, where it enables a node to add
itself into other node’s tables when first coming online. Ethereum
has no need for this, since a newly-rebooted node adds herself to
other nodes’ table using a completely different process. (Specifically,
the newly-rebooted node sends an unsolicited findnode messages to a
peer (as part of lookup) and then bonds with all the nodes learn from
the neighbor response; bonding causes the newly-rebooted node to be
added to the other node’s db and table (Section II-E).



that it available for use in future versions of the Ethereum
protocol.

Since geth v1.8.0 still allows the attacker to freely
craft node IDs that land in specific buckets, the partial
implementation of Countermeasure 2 in geth v1.8.0
means that for a given victim’s table, there can be at
most 10 attacker node IDs associated with each attacker
IP address. While this improves on the situation prior
to geth v1.8.0 (where we could eclipse our victim using
just one or two IP addresses), it does not raise the bar
for attackers quite as high as we had hoped.

B. Make seeding more aggressive

The following countermeasures are designed to pre-
vent the attacker from disabling the seeding process, as
in Section IV-A.

Countermeasure 5. Always run seeding. Run the
seeding process (Section II-F) even if the table is not
empty. This way, upon reboot, the victim will always
insert node IDs from the db into its table, increas-
ing the probability that the victim establishes outgoing
connections with legitimate nodes IDs stored in its db.

Countermeasure 6. Eliminate the reboot exploitation
window. Even with Countermeasure 5 in place, an
attacker can still exploit that fact that when a client
reboots, its UDP listener starts up several seconds before
the seeding process concludes. This time window gives
the attacker an opportunity to ping the victim from
many attacker node IDs at high rate, causing the client’s
table to fill up with attacker node IDs, before the
client has a chance to insert legitimate node IDs into
the table by calling lookup (self).

Thus, we recommend that Ethereum clients disable
the bonding process to nodes learned via unsolicited
ping messages, until after lookup (self) has finished
adding nodes to the lookup_buffer. At this point,
the client will have inserted into its table up to 35
nodes (from seeding) and as well as all the nodes learned
from neighbor messages obtained during the lookup
(self) process) for a total of L nodes.

Per equation (2), the expected number of nodes
that will already be in the table is therefore∑256
i=1 max(16, L 1

2i+1 ). The attacker nodes ID can there-
fore only be inserted into the table only the after the
nodes learned from the db and neighbor messages have
already been inserted in the table.

Moreover, once the nodes learned from the db and
neighbor messages have been inserted into the table,
the task runner has already started making outgoing
connections (see Section II-G). Thus, it is more likely
that the victim will make at least one of its outgoing
connection at least of one of these nodes. This makes
eclipsing the victim, upon reboot, significantly more

challenging. This follows because the attacker must own
most of the victim’s db, and control most of the nodes
from which the victim solicits neighbor messages.

Status. Countermeasures 5 and 6 are live in geth
v1.8.0. The v1.8.0 client waits until seeding is com-
plete before bonding with an unsolicited ping. As an
additional related countermeasure, the v1.8.0 client also
runs lookup on three random targets during seeding
in order to add more legitimate nodes from the db to
the table. This prevents the attacker from inserting
its own attacker nodes ID into a nearly-empty table
during seeding (Section IV).

VI. ATTACK BY MANIPULATING TIME

We now show how manipulating the local clock
at a victim node can turns a ‘established’ node with
knowledge of the network (and is known to other geth
nodes in the network) into one that knows nothing about
the network (and is unknown to other geth nodes). Worse
yet, the victim will refuse to accept network information
learned from most honest nodes, while happily accepting
information from the attacker.

A. ’Erase’ the victim from the network

Recall from the Section II-C that Ethereum limits
replay attacks by time-stamping UDP messages; a node
will reject a UDP message if its timestamp is more
than 20 seconds old. (Note, however, that this does not
prevents replays sent within a 20 second time window.)

We exploit this timestamping as follows. We mali-
ciously change a victim’s clock so that it is more than 20
seconds in the future, by e.g., attacking NTP [31], [32].
This means that the victim will reject any honest UDP
message as expired (because, from the victim’s point of
view, the request is more 20 seconds old). This results
in two things.

(1) The victim will forget about all other nodes. This
follows because the node stop accepting pong and neigh-
bor responses from honest nodes. After a few days
of this, the victim’s db will evict all honest nodes
(because it thinks they have failed to respond with
a valid pong within the last 24 hours, Section II-D).
Moreover, the victim’s table and db will start evicting
honest nodes. This follows because each time the victim
calls lookup and thus sends findnode requests to 16
nodes in its table, the queried nodes will respond
with a neighbor’s request that the victim considers to
be expired. When this happens five times in a row for



a given honest node, the victim evicts that honest node
from it’s table (Section II-E).16

(2) Other geth nodes will forget about the victim. This
follows because the victim stops responding to ping and
findnode requests from other honest nodes (because it
thinks they have expired). Because the victim fails to
respond to ping requests (with a pong response), after
24 hours an honest geth node db will evict the victim
(if the honest node is running the peer-to-peer protocol
as described in Section II-D). Also, once the victim fails
to respond to the fifth findnode request from an honest
node, the honest node’s table will also evict the victim
(if the honest node is running the protocol as described
in Section II-E).

Note, however, that the above items (1) and (2) do not
result in an eclipse of the victim, because they have no
impact on any established (incoming or outgoing) TCP
connections made by the victim. That said, the victim is
now highly vulnerable to eclipse attacks.

B. Experiments

We began a timing attack on a geth node that had been
running in a datacenter in New York since July 14, 2017.
We began the attack 34 days later, on August 17, 2017,
and stopped the attack on September 4, 2017. During our
attack, we emulated an NTP attack [31], [32], [39] by
maliciously changing the victim’s local clock. We moved
our victim forward into the future, first by 25 seconds,
then 70 seconds, then 5 minutes, 7 minutes, 9 minutes
and finally 13 minutes, as shown in Figure 6.17

Forgetting. From Figure 6, we can see that after 3
days the number of nodes in the victim’s db drops
dramatically, from several hundred thousand down to
about a dozen. The number of nodes in the table
follows the same trend. Thus, our victim has forgotten
about all but a dozen nodes in the network, making her
more vulnerable to eclipse attacks.

Being forgotten. Figure 6 shows the number of
peers our victim had over the lifetime of our attacks.
Interestingly, our victim still has a number of peers
even after the timing attacks occurs. A deeper look at
the data shows that the vast majority of those peers
are not running the geth client; instead, they are other
Ethereum node implementation, specifically parity and

16Even during the attack, the victim still insert the six bootstrap
nodes into its table as part of the seeding process (Section II-F).
However, any UDP messages sent by the bootstrap nodes will be
rejected as expired, causing the victim to reject all information about
other nodes in the network.

17Note that NTP has a “panic threshold” of about 16 minutes; if
a host’s local time quickly change by more than 16 mins, the NTP
daemon will panic and restart [31]. For this reason we limited the
time shifts used in our attacks to be less than 16 minutes.

0

10

20

30

1
10

100
1000

10000
100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f P
ee

rs

D
B

 S
iz

e

Time Elapsed (Days)

Chart	Title

25 70 300 420 540 780

Fig. 6. DB size (green line) and number of peer connections (blue line)
for a victim whose time has been pushed in the future. Red vertical
lines represent when victim’s time was pushed further into the future.
Number on top of the line represents the total seconds pushed into the
future. The victim came online on July 14, 2017, and the timing attack
began on August 17 and ended on September 4 2017.

Ethereum(J). Specifically, for the last 11 days of the at-
tack, a total of only 130 geth clients from unique (IP, port
number) connected to our victim, as compared to 64374
non-geth clients from unique (IP, port numbers). Beyond
this, Figure 6 there are several points in time when
victim is highly vulnerable, because she only has one
or two connected peers. Thus, our experiments indicate
that the risk of being forgotten (due to a timing attack) is
mitigated by the presence of Ethereum implementations
other than geth (i.e., (parity, Ethereum(J)).

C. Low-resource eclipse attack.

A victim of a timing attack that has (a) forgotten about
most other nodes, and (b) been forgotten by most other
nodes, is highly vulnerable to a low-cost eclipse attack
that requires very few attacker node IDs. One could
launch a version of the attack in Section IV, except
that our attacker node IDs will have their clocks set to
the same time as the victim, so that the victim accepts
their UDP messages (while continuing to reject UDP
messages from all honest nodes).

This sort of attack can circumvent most of the protec-
tions provided by our countermeasures. (1) If Counter-
measure 2 was put in place, so that it became expensive
for the attacker to create many unique node IDs, then
this approach reduces the number of node IDs that the
attacker has to create because the table is mostly
empty. (2) Our experiments (Section IV-B) indicate that
our eclipse attacks sometimes fail because honest nodes
are making incoming connections to our victim node.
However, if all honest geth nodes forget about our
victim, and thus stop making connections to him, then
the probability of a successful eclipse attack improves
significantly. (3) The timing attack causes the victim to
reject all neighbor messages from honest nodes, and
to empty out its db. This essentially eliminates the
protective value of Countermeasures 3, 4,5,6, whose role
is to fill the table with nodes from the db and neighbor
messages before the attacker has a chance to insert its
own node IDs into the table upon reboot.



D. Countermeasures

This is a simple way to address this attack.

Countermeasure 7. Use nonces. Timestamps should
be eliminated from UDP packets. Instead, each UDP
query packet (ping and findnode) should include a fresh
random nonce and the returned UDP response (pong
and neighbor) should include this nonce. (This is a
standard technique used in DNS [24], TCP [28] etc.)
This would eliminate replays of old UDP responses
and is not susceptible to time manipulation attacks,
improving on the status quo which is vulnerable to
(1) replays within the 20 second time window and
(2) our time manipulation attack. We note that nonces
can only prevent the replay of response packets (pong
and neighbor), they do not prevent replays of query
packets (ping and findnode). (This is because the nonce
is response provides protection because it is matched
against the query!)

Status. Countermeasure 7 has not been implemented in
geth v1.8.0, because it is not backwards compatible with
existing RLPx v4 packet formats.

VII. RELATED WORK

Peer-to-peer networks. There is a long line of work
on eclipse attacks, starting with the work of [40], [19],
[41]; see [44] for a survey.

Our work is most related to the prior eclipse attacks on
the Kademlia protocol [43], [29], [27]. While our eclipse
attackers have the goal of isolating a victim node from
the rest of its peers in the network, [43], [29], [27]’s
eclipse attackers wish isolate a target item of content.
This changes the structure of our attacks: our victims
are eclipsed when they reboot, while attackers in [43],
[29], [27] poison the table with attacker node IDs, in
hopes that the victim will contact the attacker when it
looks up the target item of content. That said, both our
attack of Section IV and [43], [29], [27] achieve this
by crafting a set of node IDs and using them to launch
attacks. (Interestingly, the idea of using crafted node IDs
goes back to the very first eclipse attack paper [19].)

To defend against [43]’s attacks, implementors (eMule
0.49a) adopted a three countermeasures similar to our
Countermeasure 2: (1) One IP address must not have
more than one node ID, (2) A bucket must not contain
more than two nodes from the same /24 IP address
block, (3) the whole table must not contain more
than ten nodes from the same /24 IP address block.
(Countermeasures (2) and (3) but not (1) are now live in
geth v1.8.0.) It is important to note that [27] circumvents
these countermeasures by exploiting that Kademlia’s
content discovery (lookup) process. Because this process
iteratively queries no more than a logarithmic number of

node IDs, [27]’s attack only requires a logarithmic num-
ber of IP addresses (practically, about 10 node IDs). Our
setting is different, for two reasons. First, Ethereum does
not use iterative lookups to discover content; iterative
lookups are used in the rare event that a node ID must
be resolved to its IP address (Section II-G). Thus, [27]’s
attack is less relevant. Second, while Kademlia must
have a public mapping from node IDs to buckets (in
order to enable iterative lookups of content), Ethereum
only rarely makes use of this feature. As such, our
Countermeasures 3,4 limits this vulnerability by making
the mapping from node IDs to buckets non-public;
unfortunately, however, these Countermeasures 3,4 have
not been adopted as of geth v1.8.0.

Blockchain eclipse attacks. The first eclipse attack
on a blockchain’s peer-to-peer protocol (Bitcoin) was
presented in [23], and its implications on consensus and
double-spending have been explored in e.g., [37], [21].
Meanwhile, [17] shows how Internet routing with BGP
can be used to partition Bitcoin’s peer-to-peer network;
these attacks leverage the fact that Bitcoin peer-to-peer
messages are not authenticated. Fortunately, Ethereum
does not suffer from these attacks since all peer-to-peer
messages as digitally signed. In a complementary work,
[45] consider exploiting Ethereum’s block propagation
algorithm for eclipse attacks; their attacker sends the
victim an bogus (forged) blockchain and then exploits
a flaw in the block propagation algorithm to prevent the
victim from connecting to any other peer. Our attacks are
agnostic to its block propagation algorithm, and instead
exploit Ethereum’s peer-to-peer network.

VIII. CONCLUSION

Ethereum inherits most of the complicated artifacts of
the Kademlia protocol, even though it has little use for
the key property for which Kademlia was designed (i.e.,
logarithmic content discovery). We have demonstrated
that this creates serious vulnerabilities. Specifically, we
presented eclipse attacks that can be launched by an
attacker that controls only a two machines, each with
a single IP address. To remedy this, we have suggested
a set of countermeasures that eliminates some artifacts
of the Kademlia protocol. Our countermeasures raise
the bar for eclipse attackers, by forcing them to control
thousands of IP addresses (rather than just two) in order
to successfully launch attacks. Many of our counter-
measures have been adopted in geth v1.8.0, hardening
Ethereum against the eclipse attacks presented in this
paper.
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