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Abstract

In the problem of byzantine agreement (BA), a set of n parties wishes to agree on a value
v by jointly running a distributed protocol. The protocol is deemed secure if it achieves this
goal in spite of a malicious adversary that corrupts a certain fraction of the parties and can
make them behave in arbitrarily malicious ways. Since its first formalization by Lamport
et al. (TOPLAS ‘82), the problem of BA has been extensively studied in the literature
under many different assumptions. One common way to classify protocols for BA is by their
synchrony and network assumptions. For example, some protocols offer resilience against up
to f < n

2 many corrupted parties by assuming a synchronized, but possibly slow network,
in which parties share a global clock and messages are guaranteed to arrive after a given
time ∆. By comparison, other protocols achieve much higher efficiency and work without
these assumptions, but can tolerate only f < n

3 many corrupted parties. A natural question
is whether it is possible to combine protocols from these two regimes to achieve the “best
of both worlds”: protocols that are both efficient and robust. In this work, we answer this
question in the affirmative. Concretely, we make the following contributions:

• We give the first generic compilers that combine BA protocols under different network
and synchrony assumptions and preserve both the efficiency and robustness of their
building blocks. Our constructions are simple and rely solely on a secure signature
scheme.

• We prove that our constructions achieve optimal corruption bounds.

• Finally, we give the first efficient protocol for (binary) asynchronous byzantine agree-
ment (ABA) which tolerates adaptive corruptions and matches the communication
complexity of the best protocols in the static case.

1 Introduction

One of the most fundamental problems in distributed computing and cryptography is the prob-
lem of byzantine agreement (BA). In this problem, a set of n parties, each holding an input vi,
aims to agree on a value v by jointly running a distributed protocol. Their task is complicated
by malicious parties trying to prevent agreement by deviating from the protocol description in
arbitrary ways. Byzantine agreement has countless practical and theoretical applications. Most
commonly, it is used as a building block to design more complex systems which should satisfy
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strong consistency guarantees, e.g. databases, replicated services, or secure voting mechanisms.
The related (slightly easier) problem of broadcast (BC) also has many applications to secure
multi party computation (MPC).

Formally, a protocol for BA must satisfy the following three properties. Termination: Every
honest party Pi eventually terminates the protocol with some output v′i. Consistency: All honest
parties output the same value v′. Validity: If all honest parties input vi = v then every honest
party outputs v.

The problem of BA was first introduced in the seminal work of Lamport et al. [25] and has
since been extensively studied for almost four decades under various assumptions. Very roughly
speaking, protocols from the literature can be separated into two classes.

• Synchronous Protocols: These protocols require synchronization in the form of a global
clock shared among the parties. Protocols in the synchronous model are round-based and
crucially rely on a network that guarantees the delivery of messages within some a priori
known time bound ∆. Protocols in this regime can tolerate up to f < n

2 maliciously
corrupted parties.

• Asynchronous Protocols: This type of protocols does not require the above assumptions.
In particular, protocols in this setting achieve byzantine agreement in spite of arbitrary
(but finite) message delays. The main challenge in this setting is to distinguish between
a party whose message is merely delayed by the network and one that has “failed” (and
did not send a message at all). Asynchronous protocols for byzantine agreement (ABA)
can tolerate at most f < n

3 maliciously corrupted parties.

In order to guarantee message delivery even for remote parties that suffer from a poor connection
to the network, the parameter ∆ is chosen as an upper bound on the real network delay δ.
Typically, ∆ is chosen rather pessimistically, i.e, ∆� δ. Therefore, synchronous protocols are
usually employed whenever robust protocols with a high tolerance for corruptions are needed
and efficiency takes only second priority. On the other hand, for many applications, efficiency
is more important than robustness. In such a setting, asynchronous protocols are preferable to
their synchronous counterparts, because they do not require a priori bounds and thus parties can
take full advantage of a fast network. In line with [30], we will call protocols with this property
responsive protocols. A natural question that arises from the above discussion is whether it is
possible to combine protocols under different synchrony assumptions to obtain a hybrid protocol
with best-of-both-worlds properties in terms of robustness and efficiency.

1.1 Our Results

In this work, we present novel constructions that achieve precisely such guarantees by compiling
existing protocols under different synchrony assumptions into a new protocol that boasts the
beneficial properties of both synchronous and asynchronous protocols.

Best-of-both-worlds compilers Concretely, our generic compiler combines protocols ΠABA

and ΠSBA for asynchronous and synchronous byzantine agreement, respectively, and leads to a
hybrid protocol ΠHBA for byzantine agreement with the following properties.

• For all fAR ≤ 1
4 , if ΠABA achieves byzantine agreement, given that less than an fAR-fraction

of the parties are corrupted, then ΠHBA is responsive in the following sense: If the network
is fast and less than an fAR-fraction of the parties are corrupted, then every honest party
can produce output in ΠHBA within a time that depends only on the network delay δ. We
refer to this property as output responsiveness.

• For all fAV ≤ 1
2 , if ΠABA satisfies validity, given that less than an fAV-fraction of the parties

are corrupted, ΠHBA also satisfies validity under the same condition.
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• If ΠSBA achieves byzantine agreement in time tSBA, given that less than half of the parties
are corrupted, then ΠHBA also achieves 1

2 -consistency.

• ΠHBA is guaranteed to terminate by time tout+∆+tSBA, where tout is a time-out parameter
that can be chosen arbitrarily in ΠHBA. In particular, if tSBA = tstart +O(∆) (where tstart
is the protocol starting time), then choosing tout = O(∆) implies that ΠHBA runs in O(1)
synchronous rounds.

We present ΠHBA in section 4.1, with an informal analysis. The main properties achieved by
ΠHBA are stated in theorem 4.10. In section 4.3, we also give an alternative compiler which
leads to a responsive hybrid protocol ΠETHBA in which parties can terminate immediately after
outputting and within a time that depends only on the network delay δ. We refer to this
property simply as responsiveness. In addition, ΠETHBA satisfies the same security guarantees
as ΠHBA, but incurs a worst-case overhead in running time of O(n) synchronous rounds if either
the network is slow or too many parties are corrupted. The properties of ΠETHBA are summed
up in Theorem 4.24.

Security against adaptive adversaries Protocols obtained via our compilers preserve se-
curity guarantees against adaptive adversaries offered by the components ΠABA and ΠSBA. In
particular, the responsiveness guarantees offered by our hybrid protocols do not degrade under
adaptive corruptions. This is an important improvement over previous works such as [31] that
offer security and responsiveness only in the weaker model of mildly adaptive corruptions, which
take a short while to become active.

More generally, our protocol improves upon optimistic protocols, which immediately lose
all of their responsiveness properties under adaptive corruptions. We provide a more detailed
comparison of such protocols with ours in section 1.3.

Optimality of our construction In Section 4.2, we prove that for the parameters fAR, fAV
such that fAV ≤ 1

2(1− fAR), our compilers are optimal. Namely, no protocol ΠHBA can achieve
both output-responsiveness when less than an fAR-fraction of parties is corrupted and validity
when at least an 1

2(1− fAR)-fraction of parties is corrupted.
Since existing ΠABA protocols do not offer validity above n

3 corrupted parties, they do not give
the optimal parameters when plugged into our transformation. However, our transformation
does not require consistency of ΠABA above an fAR-fraction of corrupted parties. We make use of
this by constructing a second compiler that converts any ΠABA protocol achieving termination,
validity, and consistency for less than an fAR-fraction of corrupted parties into a new ΠABA

protocol that attains the desired properties.
Concretely, this means that the new protocol achieves termination given that less than an

fAR-fraction of parties is corrupted and validity, given that less than a 1
2(1 − fAR)-fraction is

corrupted, but may violate consistency, given that at least an fAR-fraction of parties is corrupted.
Combined with our compilers from above, we therefore show how to obtain optimal parameters
for our compilers from any given ΠABA protocol that achieves byzantine agreement, given that
less than a 1

4 -fraction of the parties is corrupted.

Communication-efficient ABA with adaptive security In Section 6, we present a novel
common coin protocol that leads to a new, highly efficient protocol for binary ABA (BABA)
which achieves security for up to f < n

3 adaptive corruptions. This protocol has an overall
communication complexity of O(n2), in line with the state-of-the-art for the best adaptively-
secure synchronous protocols. Plugging this into our best-of-both-worlds compiler, the resulting
hybrid protocol can also achieve the best of both worlds in terms of communication complexity.
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Of independent interest, our result resolves the long-standing open question of obtaining
an efficient BABA protocol that tolerates adaptive corruptions and presents a significant im-
provement over the best known solution in this setting (due to [9]), which requires O(κn4) total
communication complexity (here, κ denotes a security parameter).

1.2 Overview of Our Compiler

At a high level, our compiler uses the synchronous protocol as a slow, but robust fallback path
in case the asynchronous protocol fails to reach agreement within a reasonable amount of time.

When combining protocols for BA for different synchrony assumptions, the main technical
difficulty comes from the fact that some ‘early’ parties may obtain an output in the asynchronous
path of the protocol, while for other ‘late’ parties, either the network was running very slow or
the adversary has corrupted sufficiently many parties to control the outcome of the protocol at
will. In this case, the consistency property of the hybrid protocol demands that the output of
the ‘late’ parties be equal to the output of the ‘early’ parties. Thus, ΠHBA must ensure that
the late parties do not re-agree on a value that is inconsistent with the early parties’ output as
otherwise, it would not make any improvements over a synchronous protocol.

Here, we rely on ideas from the recent work of Pass and Shi [31]. In essence, their protocol
lets an honest party output a value v, if it sees that at least 3n

4 parties have signed it. This
makes it impossible for an adversary controlling less than n

2 parties to split the honest parties’
view, as it cannot generate sufficiently many signatures on distinct values v′, v.

On the other hand, an adversary that controls n
4 or more parties may succeed in violating

the validity property by making parties accept a message v′ 6= v in the case where every honest
party has input v to ΠHBA. To prevent this from happening, we rely on the validity property of
ΠABA: namely, we are guaranteed that as long as less than n ·fAV parties are corrupted, validity
is achieved in ΠABA. Therefore, if every honest party inputs v to ΠABA, then every honest party
that terminates its execution of ΠABA must output v.

We can use this property as follows. Every party in ΠHBA first runs ΠABA with its input
to ΠHBA. Then, it signs its output v from ΠABA and broadcasts it to everybody. It outputs
v, as soon as it obtains 3n

4 signatures on v. This ensures our ‘early output’ property (output-
responsiveness) in case sufficiently many parties are honest.

Since no honest party ever broadcasts a value other than v, no adversary controlling less
than n

2 parties can produce 3n
4 valid signatures on a value other than v. Furthermore, if at least

one honest party does output v, then it will broadcast the entire list of 3n
4 signatures to the

network. This ensures that every other honest party obtains v along with a valid proof of 3n
4

signatures.
Finally, the parties can run ΠSBA, using either their initial input or the unique value that

they have obtained together with a proof from another party. Our argument now ensures that
if every honest party has input v to ΠHBA, then every honest party will also input v to ΠSBA,
i.e., the input v of an honest party to ΠSBA is preserved by the above procedure. Therefore, by
validity of ΠSBA, every honest party outputs v and terminates the protocol.

1.2.1 Näıve Solutions Don’t Work

One might wonder whether the same type of guarantees could also be obtained by simply
running a constant round asynchronous protocol ΠABA in the synchronous model. However, as
we sketch in section 3.1, this can actually lead to a protocol which runs in O(n) synchronous
rounds despite tolerating only f < n

3 corrupted parties.
In comparison, the protocols ΠHBA and ΠETHBA we have sketched above can tolerate up

to 1
2(1 − fAR) ≤ 3

8 corruptions, given suitable subcomponents and always run in a number of
synchronous rounds that depends on the worst case running time of ΠSBA.
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Moreover, the näıve solution does not allow for early termination, i.e., responsiveness, of the
parties. All bets are off if, say, the parties run ΠABA and terminate immediately after obtaining
output. Namely, a party that participates honestly in ΠABA is considered malicious if it does
not complete the protocol with the remaining parties that have not yet obtained output. On
the other hand, if the parties simply run ΠABA in a synchronous network then responsiveness
is immediately lost, because the time until termination now depends on the parameter ∆.

1.3 Related Work

Owing to its importance, there is a vast body of literature on the problem of byzantine agreement
and related problems. We focus here on closely related work.

1.3.1 Optimistic Protocols and Their Limitations

A common paradigm in the literature to obtain protocols with high efficiency is to take an opti-
mistic approach. Protocols of this type try to reach agreement by optimistically implementing
an efficient strategy that works as long as the adversary does not carry out a specific attack.

For example, a widely implemented strategy is to elect a leader who distributes messages
among the parties to prevent expensive all-to-all communication. As long as the leader is not
corrupted, the protocol keeps running at a very efficient rate. On the other hand, the honest
parties can use time-outs to detect when the leader becomes unavailable or acts maliciously to
prevent agreement for a prolonged period of time, and eventually switch to a new leader.

This approach has been most widely used in the related (harder) problem of state-machine-
replication (SMR) in which the parties agree instead on an ordered log of values. SMR protocols
that use this approach include for example the well known PBFT protocol due to Castro and
Liskov [15] as well as the works of [22, 3, 34, 35]. Another example of an optimistic protocol is
considered in the elegant work of [24], which makes fast progress as long as no party behaves
maliciously and switches to a pessimistic, more robust fallback mode otherwise. Interestingly,
contrary to our approach, the work of [24] considers an optimistic case with a fast synchronous
network and uses an asynchronous fallback. Another protocol that loosely fits this category is
the Algorand BA protocol by Chen et al. [16], which also optimistically relies on a leader
to reach fast agreement, but also has a fallback strategy which still guarantees agreement
within a constant number of rounds if the leader is malicious. Their protocol does not require
synchronization between the parties and merely requires that time passes at the same rate for
all of them and that the network has a bounded delay. In contrast, our compilers do rely on
a mild synchronisation between the parties (see section 3). However, their protocol requires
a 2

3 honest majority whereas our compilers lead to protocols that can tolerate even (up to) 1
2

honest majority. Aside from this, our work aims to achieve generic compilers for BA, whereas
the work of [16] presents a specific approach to achieve BA.

Optimistic protocols behave very well in the common case where corruptions occur infre-
quently or according to a fixed distribution. Indeed, these assumptions appear to be justified
for many practical applications. However, one of the most important applications of BA proto-
cols is their use as subcomponents to cryptographic protocols, which typically consider a much
more powerful adversary that can corrupt parties also in a maliciously predetermined or even
adaptive fashion. In such cases, optimistic protocols such as the above tend to fare poorly.

As an important example, BA protocols have recently enjoyed renewed interest from the
cryptographic community in the design of cryptocurrency protocols. Here, the use of optimistic
BA and SMR protocols can be somewhat problematic since an adaptive adversary can, for
example, launch a Denial-of-Service attack to prevent the parties from making progress.
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1.3.2 Comparison with Thunderella

An interesting example in this area is the recent work of Pass and Shi [31], which we have already
mentioned. In their protocol for SMR, they use a designated party called the accelerator to
stamp transactions with increasing sequence numbers and distribute them to the network. Once
a party sees a stamped transaction, it signs the transaction and broadcasts it to the network.
When a party garners 3n

4 signatures from the parties on a single transaction, it accepts it.
As long as the accelerator and at least 3n

4 parties are honest, this strategy guarantees that
per sequence number, only a single transaction is accepted by the honest parties. Moreover,
since the above steps can be carried out in a fully asynchronous manner, the above protocol has
the responsiveness property.

If the accelerator or more than n
4 parties become corrupted, the protocol uses an underlying

synchronous SMR protocol to detect that progress is no longer being made. In this case, the
parties agree to fall back to the synchronous protocol for a while, until they later restart to
run the optimistic strategy by electing a new accelerator. Importantly, their protocol tolerates
f < n

2 corruptions in its fallback mode, whereas all of the above protocols fail whenever f ≥ n
3 .

On the downside however, their protocol can easily be degraded to a slow, fully synchronous
SMR protocol by an adaptive adversary that immediately corrupts the accelerator after its
election. Thus, their protocol suffers from the same weaknesses as the aforementioned works
when confronted with an adaptive adversary. More importantly however, their approach seems
to be inherently limited to the realm of SMR protocols. Though generic transformations from
SMR to BA exist, it is unclear how their optimistic properties would translate to the case of
BA. Furthermore, these transformations are not efficient, as they require to run the the SMR
protocol for O(n) rounds in order to achieve BA even once.

1.3.3 Previous Work On Combining Asynchronous and Synchronous Protocols

In a related, but different line of work, two previous works study the question of how much initial
synchronous computation is needed to be able to switch to fully asynchronous computation af-
terwards. Concretely, the work of Beerilova et al. [4] shows that one initial round of synchronous
broadcast is enough to perform asynchronous multi-party computation against an n

2 -minority
of malicious parties. Fitzi and Nielsen [20] showed that for the case of BA (and without a
broadcast channel available during the synchronous rounds), 3f

2 −
n
2 +O(1) initial synchronous

rounds are sufficient in order to switch to fully asynchronous communication afterward (where
again f < n denotes the number of malicious parties).

2 Preliminaries and Notation

In this section, we recall some basic notation and definitions.

2.1 Notation

We denote algorithms with serif-free letters A. We use the standard probabilistic polynomial
time efficiency and negligibility notions with respect to some security parameter λ. We write
x ← S to denote that variable x is sampled uniformly at random from set S. We write
(y1, y2...) ← A(x1, x2...) to denote that algorithm A produces outputs y1, y2... when run on
inputs x1, x2... We write [n] to denote the integers {1, ..., n}.

3 Model

In this work, we consider the problem of byzantine agreement among a set of parties P1, ..., Pn.
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Definition 3.1 (Byzantine Agreement). A distributed protocol Π among n parties P1, ..., Pn
where party Pi initially holds input vi achieves byzantine agreement if the following three prop-
erties are satisfied and the randomness is taken over the coins of the honest parties.

• Validity: If for every honest party Pi, vi = v, then every honest party outputs v with
overwhelming probability.

• Consistency: Every honest party outputs the same value v with overwhelming probability.

• p-Termination: Every honest party eventually outputs some value with probability at
least p.

We consider the following setting:

• Network assumptions: We assume that the parties are connected via pairwise, reliable
channels. In particular, any message that is sent over a channel is guaranteed to arrive
after at most time ∆. For simplicity, we also assume that the channels are authentic
(this is implied by the assumption of a public key infrastructure). Other than this, the
adversary has full control over the network: It has the power to delay messages arbitrarily
up to ∆ time steps, it can reorder messages, and it can make some messages arrive multiple
times at its intended recipient.

• Synchronous Model : In our protocols, we assume that the parties are in lockstep. This
means that they proceed rounds of fixed length ∆ which they enter at most some bounded
number of (real) time steps apart. However, as shown in the recent work of Abraham et
al. [1], bounded delay and local clocks with bounded drift (i.e., difference in the clock
rates) are sufficient to achieve lockstep synchrony. For simplicity, we use the term ‘round’
and ‘time’ interchangeably (these are equivalent when clocks are globally synchronized).

• Setup assumptions: Parties initially share a public key infrastructure that is set up by a
trusted dealer before the start of the protocol. We denote by (ski, pki) the secret/public
key pair of party Pi. Throughout the following sections, we assume the existence of a
signature scheme that satisfies the standard security notion of unforgeabitliy under chosen
message attacks. We write σi ← Sign(v, ski) to denote that a party computes a signature
on v using its secret key ski. σi can in turn be verified using the corresponding public
key, pki.

• Adversarial Model : We consider a malicious, fully adaptive adversary that can corrupt
any party at any given point in time. A malicious adversary in this setting is typically
referred to in the literature as ‘byzantine’. A party corrupted in a byzantine fashion
can deviate arbitrarily from the protocol description, for example by not participating
or equivocating to different parties. Upon corruption of a party P , the adversary learns
the entire internal state of P . In particular, the adversary knows the initial state of all
parties that are corrupted at the beginning of the protocol. However, the adversary does
not know the internal state of the honest parties, which includes any secret values that
they obtain from the honest dealer at the beginning of the protocol.

As already pointed out, all entities that we consider, i.e., the adversary, the honest parties, and
the honest dealer, are assumed to be PPT algorithms.

3.1 Running Asynchronous Protocols in a Synchronous Network

Getting the most out of a fast network. It is important to note that even though messages
in our model can be delayed by at most ∆ time steps, it is possible that they arrive much faster,
i.e. within some time δ � ∆. In this case, fully synchronous protocols could run very slowly,
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since they pessimistically proceed in rounds of a priori bounded length. Therefore, when a
2n
3 majority can be ensured, it is often preferable to use an asynchronous protocol even if the

parties share a global clock.

Caveat: Asynchronous rounds might blow up. One might be tempted to say that the
asynchronous protocol would always be preferable in this case, since at worst it would devolve
to a synchronous protocol. Somewhat surprisingly, however, this argument doesn’t hold when
the network is slow. In this case, simply running an asynchronous protocol in a synchronized,
i.e., round-based fashion, may incur an overhead of O(n) synchronous rounds until every party
has terminated—even if the asynchronous protocol has O(1) (asynchronous) rounds. In ap-
pendix A.2, we sketch how this blow-up can occur if the reliable broadcast protocol of Bracha [8]
is naively run in a round-based fashion, i.e., when the parties proceed in synchronized rounds
of length ∆.

Using time outs. To mitigate this blow up in round complexity, one can use the parameter
∆ to define time-outs in our protocol. At a high level, this means that if a party has waited for
some sufficiently long time t(∆) without making progress in the asynchronous protocol, then it
can proceed with the next step. Indeed, time-outs have been used in a model that sometimes
is referred to as the partially synchronous model. Protocols in this model typically rely on a
leader (sometimes called the primary) to ensure progress. If the leader becomes unresponsive,
the protocol executes a leader replacement subprotocol called a view change protocol. The
main issue with known protocols in this model is that once the leader is known to all parties,
an adaptive adversary can immediately corrupt it and thus force the protocol to repeatedly
execute expensive view changes without making progress.

Our approach. We circumvent this problem by showing a different strategy that combines
an asynchronous protocol with a synchronous one without the use of a leader. Our protocol has
the useful property that it runs at the network’s speed when more than 3n

4 of the parties are
honest but can tolerate up to 3n

8 corrupted parties while still requiring only a constant amount
of synchronous rounds. We then show in Section 4.2 that the parameters in our transformation
are optimal.

3.2 Composition of Hybrid Protocols

All our results are proven in the standalone model, as is common for works in the area of
byzantine agreement. This means that our protocols do not necessarily remain secure when
composed (sequentially or in parallel) or used without care as subcomponents within larger
protocols. In section 5, we show how to sequentially compose HBA protocols so that the
composed protocol is also responsive and secure—as long as the component HBA protocols
remain secure under composition. It remains an interesting open question to formalize the
notion of hybrid protocols for BA (in our sense) in the UC framework [13] and to prove our
compilers secure with respect to such a formalization.

4 Generic Compilers for Byzantine Agreement Protocols

In this section, we propose solutions to the byzantine agreement problem that obtain ‘best of
both worlds guarantees.’ More specifically, our protocol has the efficiency of an asynchronous
protocol if the network is fast and sufficiently many parties are honest, but preserves the worst-
case guarantees of a synchronous protocol if the network is slow or up to f < 3n

8 parties are
dishonest.
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The solution that we present generically interleaves a synchronous protocol with an asyn-
chronous one to achieve this goal. The idea is to use the synchronous protocol as a slow, but
robust fallback path in case the asynchronous protocol fails to reach agreement within a rea-
sonable amount of time. The main challenge is to ensure that if an honest party obtains an
output in the asynchronous protocol, it can directly output this value without having to wait
for the synchronous protocol to terminate–otherwise, our protocol would make no improvement
over the synchronous protocol.

We define the following properties (and abbreviations) for a byzantine agreement protocol
ΠBA.

Definition 4.1. Let ΠBA be a protocol which achieves byzantine agreement among n parties.
In the following, the probability is taken over the random coins of the honest parties and p is a
non-negligible value.

• ΠBA is said to be (p, fAT)-terminating if, with probability p, every honest party terminates
the protocol, given that less than an fAT-fraction of the parties is dishonest.

• ΠBA is said to be (p, fAR)-responsive if, with probability at least p, every honest party
terminates within some time that does not depend on ∆, given that less than an fAR-
fraction of the parties is dishonest. Note that (p, fAR)-responsiveness implies (p, fAR)-
termination.

• ΠBA is said to be (p, fAR)-output-responsive if, with probability at least p, every honest
party outputs a value within some time that does not depend on ∆, given that less than
an fAR-fraction of the parties is dishonest.

• ΠBA is said to be fAV-valid if it has the validity property, given that less than an fAV-
fraction of the parties is dishonest.

• ΠBA is said to be fAC-consistent if it has the consistency property, given that less than an
fAC-fraction of the parties are dishonest.

As a special case of our generic transform, we obtain a protocol for byzantine agreement
that is output responsive as long as less than n

4 parties are corrupted and still guarantees
termination, consistency, and validity in a constant number of synchronous rounds if less than
3n
8 of the parties are corrupted. Interestingly, termination and consistency are preserved even up

to a bound of f < n
2 corrupted parties. In other words, when less than n

4 parties are corrupted,
the time until agreement is reached depends only on the actual speed of the network and not
on some a priori established upper bound on the network delay. However, even if the network
is slow and at most 3n

8 parties are corrupted, our protocol still manages to guarantee agreement
within a constant amount of synchronous rounds. We then show that these parameters are
optimal in Section 4.2.

4.1 Output-Responsive Hybrid Byzantine Agreement

In the following, we describe our construction for Hybrid Byzantine Agreement, which we denote
as ΠHBA. Every execution of ΠHBA is parameterized by a timeout parameter, tout, which is shared
by all honest parties. Note that we specify the timeout as an absolute time to allow the parties
to start protocol execution at different times (with the restriction that they start the protocol
before tout). Allowing non-synchronized starting points is standard in the asynchronous model,
and is required for responsiveness in our sequential composition. Note that if all parties are
guaranteed to start together at some time tstart, they can define the timeout to be tout = tstart+trel

for some interval length trel.
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Definition 4.2 (Hybrid BA). We say a BA protocol ΠHBA is an (fAR, p)-output-responsive,fAV-
valid,fAC-consistent hybrid BA with running-time tHBA iff:

• ΠHBA is an (fAR, p)-output-responsive BA,

• ΠHBA is fAV-valid,

• ΠHBA is fAC-consistent,

• Every honest party executing ΠHBA(tout) is guaranteed to terminate and produce output
by time tout + tHBA.

Our ΠHBA construction makes black-box use of two subprotocols: an asynchronous protocol
for byzantine agreement, ΠABA, and a synchronous protocol for byzantine agreement, ΠSBA.
We denote the running time of ΠSBA by tSBA. For simplicity of notation, we will sometimes
use ΠHBA as a short hand notation for ΠHBA(tout) in the subsequent sections. In the following,
assume that:

• ΠABA is an asynchronous protocol for byzantine agreement that guarantees validity, con-
sistency, and p-termination if less than nfAR parties are dishonest and satisfies validity if
less than nfAV parties are dishonest.

• ΠSBA is a synchronous protocol for byzantine agreement that guarantees validity and
consistency, given that less than n

2 parties are corrupted. ΠSBA runs in time tSBA.

• Every honest party Pi starts the protocol ΠHBA at time tistart < tout.

• 1
2 > fAV ≥ fAR.

Figure 4.1 contains the view of party Pi for protocol ΠHBA.

4.1.1 Informal Description and Security Analysis

The idea of ΠHBA is as follows. Parties first run ΠABA with their input to ΠHBA. Upon obtaining
output from ΠABA, they sign it and broadcast the signature to every party. If a party Pi obtains
3n
4 signatures on any value v before time tout, then it outputs v and broadcasts v along with a

proof Li containing the signatures. (Intuitively, Li is a proof that v was a correct output of the
ΠABA.)

If a party did not terminate the ΠABA until time tout, it waits for another ∆ interval to
ensure that all messages that were sent prior to tout have been received. It then participates in
a run of ΠSBA, using either its initial input vi as input to ΠSBA or any value upon which it has
received 3n

4 valid signatures after time tout (there can only be one such value).
Since ΠABA ensures termination for nfAR < n

4 corrupted parties, the honest parties can
obtain the necessary 3n

4 signatures for termination at a speed that depends only on the actual
network delay whenever less than nfAR parties are dishonest. In this way, ΠHBA guarantees
fAR-output responsiveness.

On the other hand, if the parties do not all terminate ΠABA, it is impossible that two honest
parties output different values v′ and v, as this would imply that both of these values were
signed at least 3n

4 times. (this would lead to a contradiction, because it implies that more than
half the parties signed both values, contradicting the assumption that more than half the parties
are honest).

If at least one honest party Pi obtains such a list on a value v before time tout (and therefore
outputs v), every other honest party is ensured to receive the same list by time tout + ∆ (since
it was broadcast Pi at time tout. Therefore, in this case, all honest parties use v as their input
to ΠSBA. Validity of ΠSBA now ensures that all the parties agree on v and terminate.

10



Figure 4.1: ΠHBA(tout) protocol (view of Pi)

• Let vi denote the input of party Pi.

• Pi starts to execute ΠABA with input vi (note that parties might start the ΠABA

at different times).

• Initialize v∗ ← vi.

• Party Pi runs ΠABA until it terminates ΠABA or until time tout (whichever comes
first).

• If party Pi’s view of ΠABA has terminated with output v at time t′ < tout, it
computes a signature σi ← Sign(v, ski). It broadcasts (i, v, σi) to every party
(including itself).

• Upon, receiving at least 3n
4 valid signatures (from different parties) on a single

value v′ at time t′ < tout, Pi sets v∗ ← v′ outputs v∗ and broadcasts (i, v∗, Li),
where Li denotes a list containing these signatures. Note that this instruction
may also be triggered upon receiving a correctly formed tuple (j, vj , Lj) from
party Pj .

time tout (by shared, global clock)

• Upon receiving at least 3n
4 valid signatures (from different parties) on a single

value v′ at time t′, tout ≤ t′ ≤ tout + ∆, Pi sets v∗ ← v′ (but does not output
yet).

time tout + ∆

• At time tout + ∆, Pi participates in a run of ΠSBA, using v∗ as its input. It
outputs the output of ΠSBA (if it hasn’t output anything yet) and terminates.

If no party outputs before running ΠSBA, then consistency trivially follows from the consis-
tency of ΠSBA. Therefore, ΠHBA satisfies n

2 -consistency. What remains to show is that ΠHBA

also satisfies validity. Here, the idea is the following: If all parties initially hold v, then validity
of ΠABA ensures that every honest party either terminates ΠABA with v or does not terminate
ΠABA at all. In either case, no party will ever sign a value other than v, which ensures that
only proofs (lists of signatures) on v can be valid proofs. On the other hand, a party that never
receives a proof during the protocol (before time tout + ∆) runs ΠSBA with its initial input,
which is v. The validity of ΠHBA now follows from the validity of ΠSBA.

4.1.2 Formal Analysis: Output-Responsiveness, Validity and Consistency

Lemma 4.3. Let tSBA be the execution time of the underlying ΠSBA protocol and tistart the time
at which party i starts the ΠHBA protocol. If

• fAR ≤ 1
4 ,

• ∆ ≤ tout − tistart and

• tSBA ≤ f(n) ·∆, where f is a function that does not depend on ∆

Then ΠHBA is (p, fAR)-output responsive.

11



Proof. Suppose less than nfAR ≤ n
4 parties are dishonest. By the consistency property of ΠABA,

every honest party that outputs a value in ΠABA, outputs the same value v. Furthermore, by
the p-termination property of ΠABA, with probability at least p, every honest party eventually
delivers the value v in ΠABA.

Denote tABA the maximum (over the honest parties) of the time to execute the ΠABA protocol
(in executions where every honest party does deliver output). Note that since ΠABA is an
asynchronous protocol, tABA does not depend on ∆. We now consider two cases:

Case 1: tABA < tout − tistart. In this case, with probability at least p, every honest party in ΠABA

terminates and outputs v. Subsequently, every honest party broadcasts v along with a
valid signature. This ensures that with probability at least p, every honest party Pi obtains
at least 3n

4 valid signatures on the value v by time tABA + δ. In this case, Pi immediately
outputs v. Hence, all honest parties receive output by time tABA + δ ≤ (2 + f(n))tABA.

Case 2: tABA ≥ tout− tistart. In this case, by the definition of tABA, at least one honest party did not
receive output before time tout. However, in any case, all honest parties are guaranteed
to terminate after the ΠSBA protocol terminates, thus the total execution time for any
honest party is bounded by

tout − tistart + ∆ + tSBA ≤ tout − tistart + ∆ + f(n) ·∆
= tout − tistart + (1 + f(n))∆

≤ (2 + f(n))(tout − tistart) ≤ (2 + f(n))tABA

Thus, in both cases, with probability at least p the time to receive output is bounded by (2 +
f(n))tABA. Since this expression does not depend on ∆, ΠHBA is (p, fAR)-output responsive.

For the remainder of the following sections, let us call a message (i, v, L) correctly formed,
if it L contains at least 3n

4 valid signatures on v from distinct parties.

Lemma 4.4. Suppose that less than a 1
2 -fraction of the parties is dishonest. If Pi and Pj

broadcast correctly formed messages (i, v, Li) and (j, v′, Lj), respectively, in ΠHBA at time t′ <
tout, then v = v′.

Proof. Let ε > 0 and suppose that n(1
2 − ε) parties are dishonest. By assumption, Li and Lj

each contain at least 3n
4 valid signatures on v and v′, respectively. This means, that Li and

Lj each contain 3n
4 − n(1

2 − ε) = n
4 + ε signatures from honest parties on v and v′, respectively

(since signatures are unforgeable). Since no honest party signs distinct messages v and v′, there
must be at least 2(n4 + ε) = n(1

2 + 2ε) many honest parties. This is a contradiction, since by
assumption, there are n(1

2 + ε) < n(1
2 + 2ε) many honest parties.

Lemma 4.5. Suppose that less than an 1
2 -fraction of the parties is dishonest and let Pi be the

first honest party that outputs v in ΠHBA at time t′ < tout. Then all honest parties output v in
ΠHBA.

Proof. Since Pi outputs v at time t′ < tout, it has sent a valid message of the form (j, v, Lj) to
all parties by time tout. Thus, all honest parties receive this message by time tout + ∆, and set
their inputs to ΠSBA to v (by lemma 4.4, no party Pk broadcasts a correctly formed message
(k, v′, Lk), s.t. v′ 6= v.). Now the validity property of ΠSBA ensures that every honest party
outputs v at the end of ΠHBA.

Corollary 4.6. ΠHBA is 1
2 -consistent.

Proof. Lemma 4.5 ensures consistency in the case where an honest party outputs at time
t′ < tout. It remains to show that consistency also holds when no honest party outputs be-
fore time tout. However, this trivially follows from the fact that now, every honest party will
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output whatever they obtain from running ΠSBA. Thus, consistency follows from the consistency
property of ΠSBA.

Lemma 4.7. Suppose that less than an fAV-fraction of the parties is dishonest and all honest
parties input v to ΠHBA. Let Pi be an honest party that outputs in ΠHBA at time t′ < tout. Then
Pi outputs v.

Proof. By validity of ΠABA, every honest party that delivers a value in ΠABA, delivers v. There-
fore, no honest party Pj broadcasts a message of the form (j, v′, σ′j), v 6= v′. This ensures that

no party can obtain a list L of 3n
4 valid signatures on a value other than v (since less than

nfAV <
n
2 parties are dishonest and signatures are unforgeable). Therefore, Pi outputs v.

Lemma 4.8. Suppose that less than an fAV-fraction of the parties is dishonest and all honest
parties input v to ΠHBA. Further, suppose that no honest party outputs in ΠHBA at time t′ < tout.
Then every honest party outputs v in ΠHBA at time tout + ∆ + tSBA.

Proof. By validity of ΠABA, every honest party that delivers a value in ΠABA, delivers v. Thus,
no honest party Pj broadcasts a message of the form (j, v′, σ′j), v 6= v′. This ensures that no

honest party will ever see 3n
4 valid signatures on a value other than v (since less than nfAV <

n
2

parties are dishonest and signatures are unforgeable). In particular, an honest party Pi will
never set v∗ to any value other than v, since v∗ is initially set to vi = v. This ensures that every
honest party inputs v to ΠSBA at time tout + ∆. Now, validity of ΠSBA guarantees that every
honest party outputs v in ΠHBA at time tout + ∆ + tSBA.

Corollary 4.9. ΠHBA is fAV-valid.

Proof. Combining lemma 4.7 with corollary 4.20, if an honest party outputs v before time tout,
then every other honest party also outputs v. This ensures validity in the case where an honest
party outputs before time tout. On the other hand, if no party outputs before this time, then
validity is ensured by lemma 4.8.

We sum up the properties of ΠHBA in the following theorem.

Theorem 4.10. Assume that:

• ΠABA is an asynchronous protocol for byzantine agreement that guarantees validity, con-
sistency, and p-termination if less than nfAR parties are dishonest and satisfies validity if
less than nfAV parties are dishonest.

• ΠSBA is a synchronous protocol for byzantine agreement that guarantees validity and con-
sistency, given that less than n

2 parties are corrupted. ΠSBA runs in time tSBA ≤ f(n)∆
for some function f(n) that does not depend on ∆.

• 1
2 > fAV ≥ fAR.

Then the following statements are true:

• If fAR ≤ 1
4 and for all Pi, tout − tistart ≥ ∆ then ΠHBA is (p, fAR)-output responsive.

• ΠHBA is 1
2 -consistent.

• ΠHBA is fAV-valid.

• ΠHBA terminates at time tout + ∆ + tSBA.

13



4.2 Optimality of ΠHBA and ΠETHBA

In this section, we show that ΠHBA and ΠETHBA (presented in the following section) achieve
optimal parameters. Concretely, we show that it is not possible to obtain a hybrid protocol
which achieves (p, fAR)-output responsiveness and fAV-validity if fAV > 1

2(1 − fAR). We also
show that it is possible to convert any protocol ΠABA which achieves binary byzantine agreement
(with p-termination) when less than fAR ≤ n

4 parties are corrupted into a protocol Πopt
BABA that

achieves (p, fAR)-termination, fAR-consistency, and 1
2(1−fAR)-validity. This transformation can

be used to transform an existing BABA protocol into a protocol that gives optimal parameters
when plugged into ΠHBA or ΠETHBA. Depending on whether (output)-responsiveness or validity
are prioritized, it is possible to set the parameters in Πopt

BABA accordingly (by setting fAR in
Πopt

BABA to the desired value). The transformation Πopt
BABA is described in Figure 4.2.

Figure 4.2: Πopt
BABA protocol (view of Pi), with parameter fAR.

1. Let bi denote the input of party Pi.

2. Pi computes a signature σi ← Sign(bi, ski) and broadcasts (i, bi, σi) to every
party (including itself).

3. Pi wait until it obtains n(1− fAR) valid messages (i.e., with a valid signature of
bi under pki) of the form (i, bi, σi) (from n(1− fAR) different parties).

4. Let b denote the majority bit among the valid messages that Pi received. Pi
broadcasts a message of the form (i, b, Li) to every party (including itself), where
the list Li contains all the valid signatures that Pi received on b.

5. Pi runs ΠABA with input b. Let b∗ denote the output of ΠABA.

6. Upon receiving a valid message of the form (j, b∗, Lj) (i.e., where Li contains at
least n(1− fAR) valid signatures on b∗ from different parties), Pi terminates the
protocol with output b∗.

Lemma 4.11. Let fAR ≤ n
4 and let ΠABA be a protocol for BABA that achieves (p, fAR)-

termination, fAR-validity, and fAR-consistency. Then protocol Πopt
BABA achieves (p, fAR)-termination,

fAR-consistency, and 1
2(1− fAR)-validity.

Proof. We proceed by proving the properties of Πopt
BABA separately.

• (p, fAR)-termination: Assume that less than an fAR fraction of the parties are corrupted.
In this case, every honest party obtains at least n(1 − fAR) valid messages of the form
(i, bi, σi) in the third step of Πopt

BABA and subsequently broadcasts a valid message of the
form (i, b, Li), where b is the majority bit it has computed from these messages. It then
runs ΠABA on the bit b. By (p, fAR)-termination and fAR-consistency of ΠABA, with
probability p, every honest party terminates ΠABA in step five the with same bit b∗ (note
that if a party does terminate ΠABA, then it terminates with b∗). By validity of ΠABA,
at least one honest party Pj has input b∗ to ΠABA and broadcasted a valid message of
the form (j, b∗, Lj) in step 4. Thus, with probability p, every honest party will eventually
obtain the message (j, b∗, Lj) and terminate. This ensures (p, fAR)-termination of Πopt

BABA.

• fAR-consistency:. Follows easily from fAR-consistency of ΠABA, since every party outputs
b only if it has previously seen b as output from ΠABA.
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• 1
2(1− fAR)-validity: Assume that every honest party inputs b to Πopt

BABA and less than an
1
2(1− fAR)-fraction of the parties is corrupted. Therefore, if any party obtains n(1− fAR)
valid messages of the form (i, bi, σi) in step three, it obtains strictly more than n

2 (1− fAR)
such messages from honest parties. The majority bit computed from these messages is b,
since by assumption, every honest party Pi has sent (i, b, σi) in step 2 (and signatures are
unforgeable). It now follows that every valid message obtained by an honest party in the
final step of the protocol must be of the form (i, b, Li). Therefore, in the final step, every
party either terminates with output b upon receiving a valid message of the form (j, b, Lj)
or does not terminate (in case it received 1− b as output from ΠABA in the previous step).

The dual-threshold structure of Πopt
BABA is reminiscent of the work of Fitzi et al. [19] who con-

sidered broadcast protocols (see section 4.3) with a two-threshold structure. In their protocols,
either validity or consistency is lost when nf1 or more parties are corrupted, but the second
property is preserved until nf2 or more parties are corrupted, where f1 < f2 and 2f1 + f2 < 1.
However, their work considers the notion of information theoretic broadcast in the synchronous
model, whereas our results consider byzantine agreement in the asynchronous model with a
computationally bounded adversary.

We now show that our construction for ΠHBA, combined with Πopt
BABA, achieves optimal

corruption bounds.

Lemma 4.12. Let ΠABA be a protocol for byzantine agreement which achieves validity, con-
sistency, and p-termination when less than an fAR-fraction of the parties are dishonest. Then
ΠABA does not satisfy validity if the fraction of corrupt parties fAV ≥ 1

2(1 − fAR). Moreover,
there exists an adversary controlling a 1

2(1 − fAR)-fraction of the parties that violates validity
and ensures p-termination for all honest parties.

Proof. Let ΠABA be a protocol for byzantine agreement that achieves validity, consistency, and
p-termination in the asynchronous setting when less than nfAR parties are dishonest. Let H
denote the set of honest parties. It suffices to show that ΠABA does not satisfy validity if exactly
n
2 (1− fAR) parties are dishonest. For this purpose, let ` > n(1− fAR) be the minimum number
of honest parties for which ΠABA is still guaranteed to terminate for all honest parties with
probability at least p.

Let S be the set of partitions of [n] into three sets, S0, S1, SX such that |SX | < n · fAR. We
define f : S×R` → {0, 1,⊥} to be a randomized function. For (S0, S1, SX) ∈ S, the distribution
of f(S0, S1, SX) is induced via ΠABA as follows.

• Parties in S0 have input 0, parties in S1 have input 1.

• The messages of parties in SX in ΠABA are indefinitely delayed.

• Once every honest party in S0 ∪ S1 has output a value, all messages from parties in SX
are delivered.

• The output of f is defined as v, if every honest party terminates ΠABA with output v and
as ⊥ otherwise.

Note that by fAR-consistency of ΠABA, every honest party outputs the same value v or
does not terminate ΠABA. Since v cannot depend on messages from parties in SX , the output
distribution of f is always well defined for these inputs. Furthermore, observe that by p-
termination of ΠABA, Pr {f(S0, S1, SX) 6= ⊥} ≥ p.

For every partition S̄ = (S0, S1, SX) ∈ S, we can construct an adversary AS̄ that corrupts
at most max (|S0|, |S1|) parties and a set of inputs to the honest. We show in the following how
this results in a violation of validity.
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1. Let b be a bit such that Pr {f(S0, S1, SX) = b} ≥ p
2 (this must hold for either b = 0 or

b = 1).

2. Let the parties in SX have input 1− b.

3. AS̄ corrupts the parties in Sb, and instructs them to behave honestly.

By our definition of f , in an execution of the ΠABA protocol in the presence of AS̄ , the honest
parties output b with probability at least p

2 . However, this is a violation of validity since all
honest parties have input 1− b and p

2 is non-negligible.
To compute the optimal parameters for the attack, we need to find a partition that minimizes

max (|S0|, |S1|). This happens when n− |SX | is minimized and |S0| = |S1| = 1
2(n− |SX |).

In a protocol that’s valid as long as less than an fAV-fraction of the parties are corrupted,
validity should hold for every number of parties n as long as less than n · fAV parties are
corrupted. Thus, to show validity is violated we can pick n such that (1 − fAR) divides n,
n− |SX | = n(1− fAR) and n− |SX | is even.

Then |S0| = |S1| = n · 1
2(1− fAR).

n− |SX | ≥ n(1− fAR) , so we can always set |SX | such that n− |SX | = bn(1− fAR)c+ 1 ≤
n(1− fAR) + 1 When n− |SX | is odd, then we can split almost evenly, so in any case

max (|S0|, |S1|) ≤
⌈

1

2
(n− |SX |)

⌉
≤ 1

2
(n− |SX |) + 1 (4.1)

≤ 1

2
(n(1− fAR) + 1) + 1 =

n

2
(1− fAR) +

3

2
. (4.2)

Corollary 4.13. If ΠHBA is both (p, fAR)-responsive and fAV-valid, then fAV <
1
2(1− fAR).

Proof. We prove the statement by contradiction. Thus, assume that ΠHBA is both (p, fAR)-
responsive and fAV-valid. Assume further that fAV ≥ 1

2(1− fAR). We show that either (p, fAR)-
responsiveness or fAV-validity must be violated in this case. To see this, note that ΠHBA is
also an asynchronous BA protocol when less than an fAR fraction of the parties are corrupted
and tout = ∞ (since in this case ΠHBA guarantees early termination for all honest parties with
probability at least p). Thus, by lemma 4.12, when tout = ∞, ΠHBA either violates (p, fAR)-
termination or fAV-validity. However, setting tout =∞ is equivalent to reducing the real network
delays to 0 (or arbitrarily close). Thus, if ΠHBA must violate either (p, fAR)-responsiveness (if
it violates termination when tout =∞) or fAV-validity otherwise.

ABA with probabilistic termination In both of our compilers, the termination property
of ΠABA may be probabilistic, i.e., parties may (all) terminate only with some probability p. In
this case, the responsiveness properties for ΠHBA are achieved also with probability p, whereas
validity, consistency, and termination of ΠHBA are preserved.

It is not known how to obtain an ΠABA protocol which terminates for all parties with
overwhelming probability, given an ΠABA protocol which terminates only with some constant
probability p. Because of this, such protocols have not received much (if any) attention in the
literature. However, since termination is one of the hardest properties to achieve in an ABA
protocol, it may be much easier to design highly efficient protocols for ΠABA which terminate
only with some non-negligible (or constant) probability.

Combined with our compilers, this may lead to very efficient tradeoffs between responsiveness
properties and communication efficiency. To the best of our knowledge, this presents the first
clear motivation for designing ABA protocols which are not guaranteed to terminate with
overwhelming probability.
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4.3 A Protocol With Early Termination Support

In this section, we present a second variant of our compiler which offers early termination, i.e,
responsiveness, under the same conditions in which ΠHBA achieves early output. As we will
see, our protocol incurs an overhead of O(n) synchronous in the worst case. We first define the
notion of broadcast.

Definition 4.14 (Broadcast). A distributed protocol Π among n parties P1, ..., Pn where a
designated sender Ps initially holds input v achieves broadcast if the following two properties
are satisfied at the end of the protocol.

• Termination: Every honest party terminates the protocol.

• Validity: If Ps is honest upon terminating, every honest party outputs v.

• Consistency: Every honest party outputs the same value v′.

For this subsection, we make use of an additional protocol ΠSBC which has the following
properties:

• ΠSBC achieves broadcast with honest termination validity for any number f < n of dis-
honest parties.

• In the first round of ΠSBC, only the sender sends a message.

• The sender in ΠSBC terminates directly after sending its first message.

• The protocol is secure against a rushing adversary (who receives all messages sent in a
round before sending its own messages).

The variant of the classical Dolev-Strong protocol [18] that appears in the thesis of Ku-
maresan [23] satisfies the aforementioned properties. It was shown in [21] that any broadcast
protocol with the above properties runs in O(f) rounds in the worst-case. We note that if ΠSBC

is meant to be executed at tout, the sender can send its first message at any time t′ ≤ tout,
since this message will be received by all honest parties by the end of the first round, and ΠSBC

is secure against a rushing adversary. Moreover, the sender can terminate immediately after
sending its message, since ΠSBC specifies that the sender terminates after sending a message in
the first round.

Definition 4.15 (All-to-All Broadcast). A distributed protocol Π among n parties P1, ..., Pn
where party Pi holds input vi and all parties output a vector ~o = (o1, . . . , on) achieves all-to-all
broadcast if the following properties are satisfied.

• Termination: Every honest party terminates the protocol.

• Validity: If Pi is honest on terminating, the output vector of every honest party that did
not terminate before giving output satisfies oi = vi.

• Consistency: Every honest party that did not terminate early outputs the same vector
value ~o.

In the following, we will denote Πpar
SBC as the parallel composition of n independent executions

of the protocol ΠSBC at time step tout, where for execution i (denoted as Πi
SBC), Pi acts as the

sender. We will denote the output of Πpar
SBC as an n-tuple (v1, ..., vn), where vi denotes the

output of the ith run of ΠSBC. In Supplementary Material A.1, we prove the UC-Security for
any number t < n of malicious parties for Kumaresan’s variant of the Dolev-Strong protocol
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ΠDS,t
SBC with early termination for the sender. By the UC composition theorem, this easily implies

that Πpar
SBC satisfies definition 4.15.

We now argue that the sender Pi in execution i may send its first message at any time
t′ ≤ tout and terminate right afterward in Πpar

SBC, without compromising its security properties.

Let Πpar-ea-S
SBC be the protocol Πpar

SBC in which a subset of honest parties {Pi}i∈S abort (without
output) after sending their first message.

Lemma 4.16. For every S ⊆ [n], Πpar-ea-S
SBC satisfies definition 4.15.

Proof. Let H be the set of all honest parties. To satisfy validity, note that for all i ∈ H,
the output of all honest parties in Πi

SBC is guaranteed to be vi even when Pi terminates after
sending its first message (by the validity of ΠSBC and the composition theorem). Thus, validity
(according to definition 4.15) is guaranteed for Πpar-ea-S

SBC for any set S. Within any of the

remaining executions of ΠSBC within Πpar
SBC. Note that in Πj

SBC, j 6= i, party Pi will be counted
as a malicious party if it terminates after its first message. However, since ΠSBC tolerates any
number of malicious parties t < n, all parties in H \S (i.e., all honest parties that give output)
are guaranteed to have consistent output on Πj

SBC. Thus, by the composition theorem, Πpar-ea-S
SBC

is consistent according to definition 4.15.

We are now ready to present our second transformation ΠETHBA which is depicted in Fig-
ure 4.3.

Figure 4.3: ΠETHBA protocol (view of Pi)

• Let vi denote the input of Pi

• Pi starts to execution of ΠABA with input vi.

• Initialize v∗ ← vi.

• Party Pi runs ΠABA until it terminates or until time tout (whichever comes first).

• If party Pi’s view of ΠABA has terminated with output v at time t′ < tout, it
computes a signature σi ← Sign(v, ski). It broadcasts (i, v, σi) to every party
(including itself).

• Upon, receiving at least 3n
4 valid signatures (from different parties) on a single

value v′ at time t′ < tout, Pi sets v∗ ← v′, outputs v∗ and broadcasts (i, v∗, Li) in
Πpar

SBC, where Li denotes a list containing these signatures. Then it terminates.

time tout + ∆ + tSBC (by shared, global clock)

• At time tout + ∆ + tSBC, if Pi has not terminated and it receives a valid message
(j, v, Lj) over Πpar

SBC, it outputs v and terminates. Otherwise, it participates in a
run of ΠSBA, using v∗ as its input. It outputs the output of ΠSBA and terminates.

Lemma 4.17. Let tistart denote the starting time of party Pi. If

• fAR ≤ 1
4 ,

• for all honest parties Pi, tout − tistart ≥ ∆ and

• tSBA ≤ f(n)∆.
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then ΠETHBA is (p, fAR)-responsive.

Proof. Suppose less than nfAR ≤ n
4 parties are dishonest. By the consistency property of ΠABA,

every honest party that outputs a value in ΠABA, outputs the same value v. Furthermore, by
the p-termination property of ΠABA, with probability at least p, every honest party eventually
delivers the value v in ΠABA

Denote tiABA the time it took Pi to execute the ΠABA protocol and tABA = maxi t
i
ABA the

maximum (over the honest parties) of the time to execute the ΠABA protocol (in executions where
every honest party does deliver output). Note that since ΠABA is an asynchronous protocol,
tABA does not depend on ∆. As in lemma 4.3, we consider two cases:

Case 1: For all honest Pi, t
i
ABA < tout− tistart. In this case, with probability at least p, every honest

party in ΠABA terminates and outputs v. Subsequently, every honest party broadcasts v
along with a valid signature. This ensures that with probability at least p, every honest
party Pi obtains at least 3n

4 valid signatures on the value v by time tABA + δ. In this case,
Pi immediately outputs v and broadcasts a message of the form (i, v, Li) to every party
via Πpar

SBC. Then, it terminates. Hence, all honest parties receive output and terminate by
time tABA + δ ≤ (2 + n+ f(n))tABA.

Case 2: There exists an honest Pi s.t. tiABA ≥ tout−tistart. In this case, at least one honest party did
not receive output before time tout. However, in any case, all honest parties are guaranteed
to terminate after the the ΠSBC and then the ΠSBA protocols terminates, thus the total
execution time for every honest party is bounded by

tout − tistart + ∆ + tSBC + tSBA ≤ tout − tistart + ∆ + n∆ + f(n) ·∆
= tout − tistart + (1 + n+ f(n))∆

≤ (2 + n+ f(n))(tout − tistart) ≤ (2 + n+ f(n))tiABA

≤ (2 + n+ f(n))tABA

Thus, in both cases, with probability at least p the total execution time is bounded by (2 +n+
f(n))tABA. Since this expression does not depend on ∆, ΠETHBA is (p, fAR)-output responsive.

Lemma 4.18. Suppose that less than n
2 parties are dishonest and suppose that the output for

every honest party in Πpar
SBC is ~x. If for some i 6= j, xi = (i, v, Li) and xj = (j, v′, Lj) are

correctly formed messages, then v′ = v.

Proof. This statement can be proved in the same way as Lemma 4.4.

Lemma 4.19. Suppose that less than n
2 parties are dishonest and let Pi be the first honest party

that terminates with output v in ΠETHBA at time t′ < tout. Then all honest parties output v in
ΠETHBA.

Proof. Since Pi terminates with output v at time t′ < tout, it broadcasts a valid message of the
form (i, v, Li) to all parties via Πpar

SBC. By the properties of Πpar
SBC, all honest parties receive this

message by time tout + ∆ + tSBC, and output v. Lastly, the value v is unique, as is ensured
by Lemma 4.18. Namely, no party Pk can ever collect sufficiently many signatures to correctly
form a message (k, v′, Lk), s.t. v′ 6= v.

Corollary 4.20. ΠETHBA is 1
2 -consistent.

Proof. Lemma 4.19 ensures consistency in the case where an honest party outputs at time
t′ < tout. It remains to show that consistency also holds when no honest party outputs before
time tout. This can be seen as follows. Either, there is a dishonest party Pi that broadcasts
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a valid message of the form (i, v, Li) at time t′ < tout via Πpar
SBC by honestly participating in

Πpar
SBC. In this case, lemma 4.18 ensures that no party Pj broadcasts a correctly formed message

(j, v′, Lj), s.t. v′ 6= v. Thus, at time tout + ∆ + tSBC, every honest party outputs v. Otherwise,
every honest party outputs the output that it obtains from running ΠSBA. Thus, consistency
follows from the consistency property of ΠSBA.

Lemma 4.21. Suppose that less than nfAV parties are dishonest and all honest parties input v
to ΠETHBA. Let Pi be an honest party that outputs in ΠETHBA at time t′ < tout. Then Pi outputs
v.

Proof. Follows analogously to the proof of lemma 4.7.

Lemma 4.22. Suppose that less than nfAV parties are dishonest and all honest parties input v
to ΠETHBA. Further, suppose that no honest party outputs in ΠETHBA at time t′ < tout. Then
every honest party outputs v in ΠETHBA at time tout + tSBC + tSBA + ∆.

Proof. By validity of ΠABA, every honest party that delivers a value in ΠABA, delivers v. Thus,
no honest party Pj signs a message of the form (j, v′, σ′j), v 6= v′. This ensures that no party

will ever see 3n
4 valid signatures on a value other than v (since less than nfAV <

n
2 parties are

dishonest). In particular, an honest party Pi will never set v∗ to any value other than v, since
v∗ is initially set to vi = v. This ensures that every honest party inputs v to ΠSBA at time
tout + tSBC + ∆, unless some dishonest party Pk broadcasts a valid message (k, v, Lk) (via an
honest participation in Πpar

SBC). In this case, every honest party is ensured to output v at time
tout + tSBC + ∆, and thus validity is guaranteed. Otherwise, validity of ΠSBA guarantees that
every honest party outputs v in ΠETHBA at time tout + tSBC + tSBA + ∆.

Corollary 4.23. ΠETHBA is fAV-valid.

Proof. Follows from lemma 4.21 and lemma 4.22 in the same way that corollary 4.9 follows from
lemma 4.7 and lemma 4.8.

Theorem 4.24. Assume that:

• ΠABA is an asynchronous protocol for byzantine agreement that guarantees validity, con-
sistency, and p-termination if less than nfAR parties are dishonest and satisfies validity if
less than nfAV parties are dishonest.

• ΠSBA is a synchronous protocol for byzantine agreement that guarantees validity and con-
sistency, given that less than n

2 parties are corrupted. ΠSBA runs in time tSBA ≤ f(n)∆
for some function f that does not depend on ∆.

• Πpar
SBC is a synchronous protocol for all-to-all byzantine broadcast that runs in time (at

most) tSBC.

• 1
2 > fAV ≥ fAR.

Then the following statements are true:

• If fAR ≤ 1
4 and for all honest Pi, tout − tistart > ∆ then ΠHBA is (p, fAR)-responsive.

• ΠETHBA is n
2 -consistent.

• ΠETHBA is fAV-valid.

• ΠETHBA terminates at time t ≤ tout + tSBC + tSBA + ∆.
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5 Sequential Composition of Hybrid BAs

In many cases, a “one-shot” execution of a BA protocol is not sufficient; for example, in a state-
machine replication protocol, we generally require many sequential executions of BA protocols,
where the inputs to each protocol can depend on the outputs of previous executions. In this
section we show how to sequentially compose multiple hybrid protocols for byzantine agreement
such that all of the properties of every individual component in the composition, in particular
output-responsivess, are preserved. We define a sequence of probabilistic protocols Π1, ...,Π` in
the following manner:

Definition 5.1 (Sequential Composition). ` protocols Π1, ...,Π` are said to be run in sequence
if there exists a set of input derivation functions {fi,r}i∈[n],r∈[`] together with a set of inputs

(v1
i , ..., v

`
i ) for each i ∈ [n] s.t.:

• Pi runs Π1 with input v1
i

• For r ∈ [`], Pi computes the input uri to Πr as uri = fi,r(v
1
i , ..., v

r−1
i , o1

i , ..., o
r−1
i ) where

oki , k < r, denotes the output of Πk.

The resulting protocol is called the sequential composition of protocols Π1, ...,Π`.

Next, we define output responsiveness for a sequential composition of protocols

Definition 5.2 (Sequential Output Responsiveness). A sequential composition Π of ` proba-
bilistic protocols Π1, ...,Π` is said to be sequentially output responsive if, for every r ∈ [`] and
i ∈ [n], if Pi is honest then the time until Pi receives the output ori in Π does not depend on ∆.

In the remainder of this section, we will study a sequential composition of ` hybrid BA
protocols. Our protocol achieving this composition is denoted as ΠSHBA.

Figure 5.1: ΠSHBA(tout) protocol (view of Pi)

• Let tsync be the execution time of the synchronous portion ΠHBA, i.e., the time
it takes to execute the remainder of ΠHBA after it times out.

• Let Πr
HBA denote instance r of ΠHBA.

• Let vri denote the input of party Pi at round r.

• For r = 1 to `, Pi repeats the following steps:

– Wait for output from Πr−1
HBA.

– Compute uri = fi,r(v
1
i , ..., v

r−1
i , o1

i , ..., o
r−1
i ) where ok, k < r denotes Pi’s

output from Πk
HBA.

– Begin execution of Πr
HBA with input uri and timeout parameter tout+r ·tsync.

Assume in the following that ΠHBA is a hybrid protocol for BA (as defined in the previous
sections) and has fAR-output responsiveness, fAV-validity, and 1

2 -consistency, where as before
fAR ≤ 1

4 and fAV ≤ 1
2(1− fAR).

Lemma 5.3. ΠSHBA is fAR-output responsive.

Proof. Note that a party runs any subprotocol Π1
HBA, ...,Π

`
HBA as soon as it finishes computing

its input. Since the input to Πk
HBA depends only on outputs of protocols Π1

HBA, ...,Π
k−1
HBA, fAR-

output responsiveness of ΠSHBA follows directly from fAR-output responsiveness of ΠHBA.
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Lemma 5.4. All honest parties start execution of Πr
HBA by time tout + r · tsync.

Proof. We argue by induction over r. Clearly, the claim holds true for r = 1, since u1
i depends

only on v1
i and can therefore be immediately computed upon start of the protocol. Now suppose

the claim holds for r−1. Then Pi can run the synchronous part of Πr−1
HBA at time tout+(r−1)tsync

and obtains or at time tout + rtsync. From this it can immediately compute vri . Therefore, uri is
well defined for every honest party by time tout + rtsync (hence it will start execution).

Correctness To argue correctness, we generalize BA consistency and validity to a sequence
of executions:

• Consistency: For every r ∈ [`], if every honest party outputs the same value ori with
overwhelming probability.

• Validity: For every r ∈ [`], if every honest party had the same input uri , then ori = uri with
overwhelming probability.

Since we assume the ΠHBA protocols remain secure under composition, these properties follow
immediately from the security of the ΠHBA protocols.

6 An Efficient Common-Coin Protocol with Adaptive Security

In this section, we present a new, efficient common-coin protocol with security against adaptive
adversaries. Coupling the BABA protocol from [29] with our common-coin protocol from Sec-
tion 6.6, we can obtain a new protocol for BABA with security against adaptive adversaries
that may corrupt at most f < n

3 parties. The message- and communication complexities of
this protocol are O(n2). Notably, this complexity matches the best known algorithms for the
static case as well as the complexity for the best known synchronous BA protocols. Therefore,
the common-coin protocol in this section is well-motivated by the generic compilers from the
previous sections. Namely, it leads to a best-of-both worlds protocol ΠHBA (or ΠETHBA) also in
terms of communication complexity. Previously, for the case of adaptive corruptions, the most
efficient solution due to [9] achieved only an impractical communication complexity of O(κn4)
(for a security parameter κ). At a technical level, our contribution consists mainly of the sim-
ple observation that the threshold signature scheme from [26] satisfies the uniqueness property
needed for the common-coin construction of Cachin et al. [11] and proving this property under
the double pairing assumption, which we state below.

BABA serves as a core building block to more complex protocols such as protocols for multi-
valued BA [17], asynchronous common subset [7, 10, 12, 28] and state-machine replication
(SMR)/atomic broadcast [15, 17, 28]. Many of the these protocols use the statically secure
BABA protocol presented in the work of Cachin et al. [11] as a subcomponent due to its low
communication complexity. This holds true in particular for the highly efficient SMR protocol
presented in [28]. Therefore, the new protocol for BABA immediately implies adaptive security
for many of the aforementioned constructions essentially ‘for free’.

6.1 Existing Protocols for Asynchronous Byzantine Agreement

The literate of existing protocols for ABA is very rich. We focus on the binary case and restrict
our discussion to solutions which handle the maximal corruption bound of n

3 corrupted parties
and require a polynomial amount of running time. Also, we focus on solutions which do not
require set up beyond the assumption of a trusted dealer who distributes public keys to the
parties before the protocol.

The problem of BABA was first solved independently by Ben-Or and Rabin [6, 33] (albeit,
not with optimal resilience). To circumvent the well-known impossibility for deterministic
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solutions to the BABA problem by Fischer et al. [27], they were the first to harness the power of
randomness in the form of a common coin, that is available to all parties, but is not predictable
for the adversary. Most subsequent solutions to the BABA problem use the abstraction of a
common coin.

The first (polynomial time) protocol to implement a common coin without any set-up as-
sumptions is the beautiful work by Canetti and Rabin [14]. However, their protocol uses an
expensive variant of asynchronous verifiable secret sharing (AVSS) which renders their protocol
completely impractical. Their common coin construction was subsequently improved by Abra-
ham et al. [2] and Choudhury et al. [32]. However, their solutions are still far beyond the scope
of practicality.

Cachin et al. [11] gave the first efficient solution to the BABA problem which has a commu-
nication complexity of O(n2`), where ` denotes the size of an RSA signature. Their protocol
is based on a threshold signature scheme and thus achieves security only against a bounded
adversary, whereas the protocols in [14, 2, 32] can tolerate even unbounded adversaries, given
that private channels are available for free. As already pointed out earlier, another difference
of [11] to the aforementioned protocols is that the latter tolerates only static corruptions. The
protocol’s weakness against adaptive corruptions is inherited from their common coin protocol,
which tolerates only static corruptions.

Most recently, Mostéfaoui et al. [29] gave an improvement over the protocol of [11], which
reduces the communication complexity to O(n2) when using the common coin from [11]. In
theory, their protocol could also be instantiated with the AVSS-based common coin protocols
which would improve its security to the adaptive case. We use this observation and instantiate
the common coin in their protocol with an efficient protocol that attains adaptive security and
is based on the work of [26]. In this way, we obtain the first adaptively secure BABA protocol
which runs in O(n2) communication complexity.

Using the generic transformation from [17], we immediately obtain an improved protocol
for asynchronous multivalued byzantine agreement with optimal resilience tolerating adaptive
corruptions. The communication complexity of this protocol is is O(n3).

6.2 Weak Common Coin Protocols

Definition 6.1 ((p, t)-Weak Common Coin Protocol). A (p, t)-weak common coin protocol is
a distributed protocol with a subroutine GetCoin() that takes as input a session identifier sid

and outputs a bit b ∈ {0, 1}. Furthermore, for any value of sid, it satisfies the following three
properties if at most t parties are dishonest. Here, the probability is taken over the random
coins of the honest parties.

• Termination: Once every honest party has locally called GetCoin(sid), the protocol is
guaranteed to terminate for every honest party (except with negligible probablity).

• Fairness: Every honest party outputs 0 with probability at least p and 1 with probability
at least p.

• Unpredictability: No efficient adversary can predict the outcome of GetCoin(sid) with
probability better than 1 − p + η before the first honest party calls GetCoin(sid) (where
η is a negligible function of the security parameter).

6.3 Random Oracle Model

Our results are stated in the random oracle model [5]. In this model, all hash functions are
modeled as an oracle H, which is defined in the following manner. H keeps tracks of all queries
that it answers. On input x, H first checks whether H(x) has previously been defined, i.e.,
whether it has previously answered a query on the value x. If so, it replies with H(x). If not,
it samples a value s uniformly at random in the domain of H and returns s.

23



6.4 Pairing Groups

Let G, Ĝ, and GT be cyclic groups of prime order p with generators g, ĝ, and gT , respectively.
We assume a bilinear map e : G × Ĝ → GT . For this work, we assume a type 3 setting, i.e.,
there is no efficiently computable isomorphism that maps from Ĝ to G. We use the following
hardness assumptions.

Definition 6.2 (Decision Diffie-Hellman Assumption). We say that the Decision Diffie-Hellman
Assumption (DDH) holds with respect to G, if every efficient adversary A has negligible advan-
tage in the distinguishing the distributions (g, ga, gb, gab) and (g, ga, gb, gab), where a, b, c← Z.

In the type 3 setting, we can also make the following stronger assumption, which states that
the DDH assumptions holds for both G and GT .

Definition 6.3 (Symmetric eXternal Diffie-Hellman Assumption). We say that the Symmetric
eXternal Diffie-Hellman Problem (SXDH) holds with respect to G and Ĝ, if the DDH problem
is hard in both G and Ĝ.

For convenience, we also state the so-called Double Pairing (DP) assumption, which is
implied by the DDH assumption in group GT .

Definition 6.4 (Double Pairing Assumption.). We say that the Double Pairing Assumption
(DP) holds with respect to G, Ĝ, and GT , if given (ĝz, ĝr) ← Ĝ2, every efficient algorithm A
has negligible success probability in finding a non-trivial pair (z, r) 6∈ G2 \ {(1G, 1G)} such that
e(z, ĝz)e(r, ĝr) = 1T .

6.5 Threshold Signature Schemes

In this subsection, we formally introduce (non-interactive) threshold signature schemes along
with their security properties. We implicitly assume a message space M and a signature space
S.

Definition 6.5 (Threshold Signature Scheme). Let 0 ≤ t ≤ n. A (t, n)-non-interactive thresh-
old signature scheme is a tuple of efficient algorithms

Sig = (KeyGenTS,SignTS,ShareVerifyTS,VerifyTS,CombineTS)

with the following properties.

• The randomized key generation algorithm KeyGenTS takes a security parameter λ and
outputs a tuple (sk1, ..., skn) of secret keys, a tuple (pk1, ..., pkn) of public keys, and a
special public key pk.

• The deterministic signing algorithm SignTS takes as input a secret key ski and message
m ∈M. It outputs a signature share σi on m.

• The deterministic share verification algorithm takes as input a public key pki, a signature
share σi and a tuple (i,m), where i ∈ [n]. It outputs a bit b ∈ {0, 1}, indicating whether
σi is a valid signature share on m under secret key ski. We assume correctness, i.e., for
all tuples (pk1, ...pkn) and (sk1, ..., skn) output by KeyGenTS, all m ∈ M, and all i ∈ [n],
we have that ShareVerifyTS(pki, SignTS(ski,m), i,m) = 1.

• The deterministic combining algorithm CombineTS takes as input a tuple of public keys
(pk1, ...pkn), a message m, and a list of pairs {(i, σi)}i∈S , where S ⊂ [n] is of size t+ 1. It
outputs either a signature σ on m or ⊥, if {(i, σi)}i∈S contains ill-formed signature shares.
We will omit the public keys in the input to CombineTS when we can ensure that all the
shares given as input to it are valid.
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• The deterministic verification algorithm VerifyTS takes as input a signature σ, a message
m and a special public key pk. It outputs a bit b ∈ {0, 1} indicating whether σ is a valid
signature on m. We again require correctness; for all tuples (pk1, ...pkn) and (sk1, ..., skn)
output by KeyGenTS, all m ∈M, and S ′ = {(i, σi)}i∈S , where S ⊂ [n] is of size t+ 1 and
σi = SignTS(ski,m), we have that VerifyTS(pk,CombineTS(S ′, (pk1, ...pkn),m),m) = 1.

We next state the definition of unforgeability under chosen message attacks. Our definition
is inspired by the work of [26], but instead assumes that the scheme uses a trusted dealer to
set up the public key infrastructure, rather than the parties agreeing on the structure in a fully
distributed fashion, thus emulating the trusted dealer used in our setting.

Definition 6.6 (Unforgeability Under Chosen Message Attacks). A (t, n)-non-interactive thresh-
old signature scheme satisfies unforgebility under chosen message attacks if every efficient algo-
rithm A has negligible advantage in the following game.

• The challenger computes (sk1, ..., skn, pk1, ..., pkn, pk)← KeyGenTS(λ) and gives pk1, ..., pkn, pk
to A. Throughout the game, the challenger maintains a list C ⊆ [n].

• A may ask the following two types of queries:

– Corruption Queries: A submits an index i ∈ [n] to the challenger. The challenger
returns ski and sets C = C ∪ {i}.

– Signing Queries: A submits a pair (i,m) to the challenger. The challenger computes
σi ← SignTS(ski,m) and returns σi.

• A outputs a pair (m∗, σ∗). Let S ⊂ [n] be the list of values for which A made a signing
query of the form (i,m∗). A wins if VerifyTS(pk,m∗, σ∗) = 1 and |S ∪ C| ≤ t.

For this work, we will consider the (t, n)-non-interactive threshold signature scheme from [26].
Figure 6.1 presents a simplified version of their scheme which assumes that a trusted dealer com-
putes the secret keys and public keys of the parties.

Lemma 6.7 ([26]). The scheme in Figure 6.1 provides unforgeability against chosen message
attacks in the random oracle model and under the SXDH assumption.

Lemma 6.8. Suppose that (sk1, ..., skn, pk1, ..., pkn, pk) are generated as described above. Let

m ∈ M, (h1, h2) ← H(m), and let σ = (h
−A1[0]
1 h

−A2[0]
2 , h

−B1[0]
1 h

−B2[0]
2 ). If the DP assump-

tions holds with respect to (G, Ĝ,GT ), no efficient algorithm can come up with σ′ 6= σ such that
VerifyTS(σ′,m, pk) = 1 with non-negligible probability, even when given (sk1, ..., skn, pk1, ..., pkn, pk).

Proof. Let A be an algorithm that, with non-negligible probability, on input (sk1, ..., skn, pk1, ..., pkn, pk)
outputs σ′ 6= σ such that VerifyTS(σ′,m, pk) = 1 . We show how to construct an equally effi-
cient algorithm B that breaks the DP assumption. On input ĝz, ĝr ← Ĝ, B works as follows.
It simulates KeyGenTS using the values ĝz, ĝr for its simulation. At the end of the simulation,
it gives (sk1, ..., skn, pk1, ..., pkn, pk) to A. Clearly, this simulation is perfect since the values
ĝz, ĝr are uniformly distributed and thus have the same distribution as if they were sampled in
KeyGenTS. It simulates the random oracle H to A in the straightforward way. Once A returns
σ′, B constructs a solution to the DP problem as follows. It parses σ′ as σ′ = (z′, r′). We write

σ = (z, r) = (h
−A1[0]
1 h

−A2[0]
2 , h

−B1[0]
1 h

−B2[0]
2 ). W.l.o.g. assume that z 6= z′. This implies that

z′h
A1[0]
1 h

A2[0]
2 6= 1G. On the other hand, VerifyTS(σ′,m, pk) = e(z′, ĝz)e(r

′, ĝr)
∏2
k=1 e(hk, ĝk) =

e(z′, ĝz)e(r
′, ĝr)

∏2
k=1 e(hk, ĝ

Ak[0]
z ĝ

Bk[0]
r ). Thus, expanding terms yields

VerifyTS(σ′,m, pk) = e(z′, ĝz)e(r
′, ĝr)

2∏
k=1

e(hk, ĝ
Ak[0]
z ĝBk[0]

r ) (6.1)

= e(z′h
A1[0]
1 h

A2[0]
2 , ĝz)e(r

′h
B1[0]
1 h

B2[0]
2 , ĝr) = 1T . (6.2)
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Figure 6.1: LJY Threshold Signature Scheme

• KeyGenTS(λ) : Choose bilinear groups G, Ĝ,GT of prime order p > 2λ. Sample
ĝz, ĝr ← Ĝ and values aik, bik ← Fp where i ∈ {0, ..., n} and k ∈ {1, 2}. For
k ∈ [2], set Ak[X] =

∑t
i=0 aikX

i and Bk[X] =
∑t

i=0 bikX
i. Compute ski =

{(Ak[i], Bk[i])}2k=1 and pki = (ĝ
A1[i]
z ĝ

B1[i]
r , ĝ

A2[i]
z ĝ

B2[i]
r ). Compute {ĝk}2k=1 as ĝk =

ĝ
Ak[0]
z ĝ

Bk[0]
r and set pk = (G, Ĝ,GT , p, ĝz, ĝr, ĝ1, ĝ2).

• SignTS(ski,m): Compute (h1, h2) ← H(m) ∈ G2. Use ski = {(Ak[i], Bk[i])}2k=1

to compute (zi, ri) ∈ G2 as zi =
∏2
k=1 h

−Ak[i]
k , ri =

∏2
k=1 h

−Bk[i]
k

• ShareVerifyTS(pki,m, σi) : Parse σi as σi = (zi, ri) and pki as pki = (v̂1,i, v̂2,i).
Compute (h1, h2)← H(m) ∈ G2. Return 1 if e(zi, ĝz)e(ri, ĝr)

∏2
k=1 e(hk, v̂k,i) =

1T .

• CombineTS(m, pk1, ..., pkn, {(i, σi)}i∈S) : For each pair (i, σi), run
ShareVerifyTS(pki,m, σi). Return ⊥ if |S| ≤ t + 1 or for less than t + 1 values
of i, ShareVerifyTS(pki,m, σi) = 0. Otherwise, parse σi as σi = (zi, ri) ∈ G2 and

compute (z, r) = (
∏
i∈S z

∆i,S(0)
i ,

∏
i∈S r

∆i,S [])
i ) by using Lagrange interpolation

in the exponent, i.e., ∆i,S denotes the Lagrange polynomial corresponding to
party i ∈ S. Return (z, r).

• VerifyTS(pk,m, σ) : Parse σ as σ = (z, r) ∈ G2. Compute (h1, h2)← H(m) ∈ G2

and return 1 iff e(z, ĝz)e(r, ĝr)e(h1, ĝ1)e(h2, ĝ2) = 1T .

Thus, (z′h
A1[0]
1 h

A2[0]
2 , r′h

B1[0]
1 h

B2[0]
2 ) is a solution to the DP problem.

6.6 Putting Things Together: The Common-Coin Protocol

We use the common coin protocol by Cachin et al [11]. The idea of their protocol is very simple.
All parties share each others’ public keys from the (t, n)-threshold signature scheme described
in Figure 6.1. To produce a common coin on sid, every party Pi produces locally a signature
share σi = SignTS(sid, ski) and broadcasts it. Once Pi obtains t + 1 valid signature shares on
sid, it uses CombineTS to combine them into signature σ. By lemma 6.8, the DP assumption
assures that any set of t+ 1 shares uniquely determines σ. The parties can now use the random
oracle H ′ : GT → {0, 1} to convert the signature into an unbiased and unpredictable bit b. The
coin-tossing protocol is described in Protocol 1.

Lemma 6.9. For t < 1
2 , Protocol 1 is a (1

2 , t)-weak common coin protocol under the DP as-
sumption.

Proof. We prove that Protocol 1 satisfies termination, fairness, and unpredictability. The ter-
mination property is easily seen to be true; since t < n

2 , once every honest party has broadcast
its share σi on sid, every party will eventually receive t+ 1 valid signature shares and thus will
terminate the protocol. Fairness is ensured by Lemma 6.8, which can be seen as follows. It is
clear that if every honest party obtains the same signature σ on sid by combining shares via
CombineTS, then H ′(σ) is a random bit, where the randomness is over the random coins that
determine the secret keys of the honest parties. On the other hand, any efficient adversary that
can make two honest parties combine their shares to distinct signatures σ and σ′ can clearly be
used to break the DP assumption by Lemma 6.8. It remains to argue about unpredictability.
This property is ensured by Lemma 6.7. Namely, any (unbounded) adversary has negligible
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Protocol 1 Common coin protocol CoinToss from [11]

1: procedure KeyGenCoin(λ) // Execute only once
2: (sk1, ..., skn, pk1, ..., pkn, pk)← KeyGenTS(λ)
3: for all i ∈ [n] do
4: Send (pk1, ..., pkn, pk, ski) to Pi
5: end for
6: end procedure
7:

8: procedure GetCoin(sid) // For party Pi
9: σi ← SignTS(ski, sid)

10: Broadcast σi
11: upon receiving a set S of t+ 1 valid signature shares on sid

12: Compute σ ← CombineTS(pk, sid, S)
13: return H ′(σ)
14: end procedure

advantage in predicting the value of H ′(σ) if it does not query H ′ on σ. However, for any
efficient adversary that controls at most t parties, Lemma 6.7 ensures that it is computationally
infeasible to come up with the value of σ given sid, before the first honest party Pi broadcasts
its signature share σi = SignTS(ski, sid) and if the SXDH assumption holds. This concludes
the proof.
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A Supplementary Material

A.1 UC Security of Dolev-Strong Protocol With Early Termination

Figure A.1: Functionality Fwbc from [23]

Fwbc interacts with an adversary S and a set of parties {P1, ..., Pn} and a designated
sender Ps.

1. upon receiving (bcast, sid, v) from Ps, send (bcast, sid, Ps, v) to S.

2. upon receiving v′ from S:

• If Ps is corrupted, broadcast (bcast, sid, Ps, v
′).

• Otherwise, broadcast (bcast, sid, Ps, v).

Lemma A.1. For t < n dishonest parties, ΠDS,t
SBC securely realizes Fwbc in the Fsig-hybrid model,

where signatures are replaced by calls to Fsig.
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Protocol 2 Dolev-Strong protocol ΠDS,t
SBC [18] for synchronous byzantine broadcast, adapted

from [23]

Let v be the input of dealer Ps and let pki, ski denote the public/secret key of party i. We say
that a set SET is r-valid for a value v′, if it contains at least r valid signatures from distinct
parties on v′. Finally, denote by σvi a (valid) signature on v under public key pki.

1: Broadcast (v, σs). Output v and terminate. // Only Ps
2: Set ACCi = SETi = ∅. // Every party Pi
3: For rounds r = 1, ..., t :
4: upon receiving (v′, SET) from Pj , if SET is r-valid, set ACCi ← ACCi ∪ {v′}, SETi ←

SETi ∪ SET.
5: If a value v′ was newly added to ACCi in round r − 1, broadcast (v′,SETi ∪ {σv

′
i }.

6: In round t+ 1:
7: if ACCi = {v′} for some v′ then
8: return v′

9: end if
10: Let v′ denote the first element in lexicographic order of ACCi
11: return v′

Proof. (sketch) Let A be an adversary that interacts with the parties running the protocol

ΠDS,t
SBC in the Fsig-hybrid model. We construct a simulator S that runs in the idealized model

and interacts with Fwbc. We show that no efficient environment Z can distinguish whether it
is interacting with A and the parties running ΠDS,t

SBC in the Fsig-hybrid model or S interacting
with dummy parties and accessing Fwbc. S acts as follows.

1. S waits until either Ps is corrupted or it receives (bcast, sid, Ps, v) from Fwbc.

2. S simulates the honest parties in ΠDS,t
SBC . This is easily seen to be possible, because ΠDS,t

SBC is
deterministic and S knows the inputs of Ps (which is the only party with input). Namely,
either Ps is corrupted in which case S knows the input of Ps or Ps is honest, and we have
argued that S learns the input of Ps from Fwbc. Lastly Fsig can efficiently be simulated.

3. If A wishes to corrupt some party Pi, S corrupts Pi and simulates Pi’s internal state to
A. Again, this can be done efficiently, because ΠDS,t

SBC is deterministic and parties’ internal
states are public.

4. Upon completing the simulation of the protocol, suppose that some honest party Pi out-
puts v′ in the simulation of ΠDS,t

SBC . S now sends v′ to Fwbc and terminates.

This simulation is perfect, since S knows the inputs of all honest parties. Secondly, by the
consistency property of ΠDS,t

SBC , every honest party outputs v′ at the end of the simulation of

ΠDS,t
SBC . Furthermore, by honest termination validity of ΠDS,t

SBC , v′ = v in the simulation of ΠDS,t
SBC if

Ps was not corrupt upon terminating. Therefore, the parties in the ideal world will output the
same as the parties in the real world.

A.2 Bracha’s Protocol in the Synchronous Model

Consider the reliable broadcast protocol by Bracha [8] depicted in Protocol 3. This protocol
runs in a constant number of asynchronous rounds, but we describe in the following an attack
strategy of a malicious sender that causes the protocol to run in Ω(n) synchronous rounds until
every party terminates, when the protocol is translated to the synchronous setting naively.

The parties proceed to run the protocol in synchronized rounds of length ∆. In the first
round, the sender Ps broadcasts (send,m) to dn+t+1

2 e − 1 honest parties. Thus, after ∆ time,
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Protocol 3 Protocol RBC for reliable broadcast [8] with sender Ps and input m.

1: Broadcast message (send,m) // For party Ps only
2: upon receiving a message (send,m) from Ps
3: Broadcast message (echo,m)
4: upon receiving dn+t+1

2 e messages (echo,m), if ready message was not previously sent:
5: Broadcast (ready,m)
6: upon receiving t+ 1 messages (ready,m), if ready message was not previously sent:
7: Broadcast (ready,m)
8: upon receiving 2t+ 1 messages (ready,m):
9: Output m and terminate

each of these honest parties receives (send,m) and in turn broadcast a total of dn+t+1
2 e − 1

(echo,m) messages in the second round. Let P1, ..., Pt+1 denote some set of t honest parties. In
the second round Ps, sends an additional (echo,m) exclusively to the party Pt+1. Thus, Pt+1

broadcast (ready,m) at the end of the second round as the only honest party to do so. At the
end of round two, the adversary also sends t (ready,m) messages to Pt, t− 1 such messages to
Pt−1,..., and one such message to P1. It sends nothing to the other honest parties. Thus, Pt
broadcast (ready,m) at the end of the third round, having now received a total of t+1 messages
of the form (ready,m). This in turn causes party Pt−1 to receive a total of t+1 ready messages
by the end of the fourth round. Continuing this argument, P1 receives t + 1 ready messages
by the end of round 2 + t and in turn broadcasts (ready,m). Now, every remaining honest
party has received t+ 1 ready messages by the end of round 3 + t and broadcasts (ready,m).
Thus, by the end of round 4 + t, every honest party has received 2t + 1 ready messages, and
the protocol finally terminates.
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