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Abstract. NTRUEncrypt is one of the most promising candidates for
quantum-safe cryptography. In this paper, we focus on the NTRU743 paramter
set. We give a report on all known attacks against this parameter set
and show that it delivers 256 bits of security against classical attackers
and 128 bits of security against quantum attackers. We then present a
parameter-dependent optimization using a tailored hierarchy of multipli-
cation algorithms as well as the Intel AVX2 instructions, and show that
this optimization is constant-time. Our implementation is two to three
times faster than the reference implementation of NTRUEncrypt.
Keywords: Quantum-safe cryptography, NTRUEncrypt, security estima-
tion, constant-time implementation, AVX2.

1 Introduction

Quantum computers pose a significant threat to modern cryptography. The two
most widely adopted public key cryptosystems, namely, RSA [42] and Elliptic
Curve Cryptography (ECC), will be trivially breakable by sufficiently large gen-
eral purpose quantum computers using Shor’s algorithm [44]. This is sometimes
referred to as the ”Quantum Apocalypse”.

Standardization groups all over the world: NIST [16], ETSI [37], etc. are
preparing us against this quantum threat by migrating towards quantum-safe
cryptosystems (also known as post-quantum cryptograhy), i.e., cryptography
built upon problems that remain hard even with the presence of quantum com-
puters.

Among all known candidates, the NTRUEncrypt public key encryption [33]
algorithm is one of the most promising ones. It was firstly published in 1996.
In 2008 and 2010, it was standardized by IEEE [6] and ASC X9 [47]. The most
recent specification of how to implement NTRUEncrypt is available at [23]. To
date, it is the only quantum-safe public key encryption algorithm that has ever
been standardized. There are proposals to secure our day-to-day communication
using NTRUEncrypt for handshake protocols (in a hybrid mode) within TLS [5],
IKEv2 [3] and Tor network [43].

NTRUEncrypt is a lattice based encryption scheme. It bases its security on
finding unique shortest vectors for an ideal lattice with a special structure (see
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section 3.2.1 for more details). This is known as the NTRU assumption. The
idea of NTRUEncrypt has inspired many important notions/constructions, such
as ideal lattices [41], a vital improvement that makes lattice-based cryptography
practical; and fully homomorphic encryption [26], a “holy grail” for cryptogra-
phers for 30 years. In particular, there are many cryptosystems built directly
upon the NTRU assumption other than NTRUEncrypt, such as the BLISS signa-
ture scheme [21], the Falcon signature scheme [2] and the LTV fully homomorphic
encryption scheme [40].

Although the NTRU assumption remains unbroken for over 20 years of time,
the parameters derived for NTRUEncrypt in its early days are less conservative.
During the last two decades, there has been several attacks against NTRUEn-
crypt (such as [20,34]). Among them, the best known attack is the hybrid attack
due to Howgrave-Graham in 2007 [35] (although recent study suggests that we
may have over-estimated the power of a hybrid attack [46]), which resulted in a
parameter revision in 2008 [30]. For the last decade, those parameters from [30]
are somewhat stable (albeit some minor changes, for example, switching from
SHA-1 to SHA-256) and resist all cryptanalysis. The latest versions of the param-
eter sets, together with the most up-to-date security considerations, are provided
in [32], and are going through NIST post-quantum standardization process [16].
Those parameter sets are available in a reference library libntruencrypt [4]
developed by Security Innovation Inc., the owner of the patent to NTRUEncrypt.
In March 2017, Security Innovation Inc. released its NTRUEncrypt patent to the
public domain (see license statement of [4]).

In this paper, we focus on the parameter set of NTRU743 (also known as ntru-
ees743-ep1 in [23]) with a minor difference. NTRU743 is reported to deliver over
256 bits of security against classical attackers and 128 bits of security against
quantum attackers. Our parameter set is identical to NTRU743 except that we
do not use product form polynomials (see section 3).

For this parameter set, we firstly give a thorough review of all known crypt-
analysis, including hybrid attacks [36,46], lattice reduction attacks through BKZ
2.0 [17,9], subfield attacks [13,7,19,39] etc.; evaluate its security level against
those attacks, and re-affirm the mentioned security level. We note that the anal-
ysis of hybrid attacks was reported in [32]; the analysis of lattice attacks was
briefly mentioned in [31], an extend version of [32]. In this article, we re-apply
the analysis from [31], taking into account that the secret keys are in flat form vs.
product form in [32,23]; we also include an analysis of subfield attacks mentioned
above.

Our major contribution is to provide a tailored optimization for this param-
eter set. We use a combination of a vectorized index-based multiplication and a
hierarchy of fast multiplication algorithms such as Karatsuba and Toom-Cook.
Our implementation improves the polynomial multiplication by a factor of 2.23
on modern processors that support AVX2, and a factor of 1.6 on processors
that do not support AVX2. Our analysis shows that the proposed algorithm is
constant-time (whereas it is not the case for [4]). We conjecture that our imple-
mentation is also constant-time (see section 5.4).
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In [28], the authors provided an AVX2/AVX-512 based optimization for
NTRUEncrypt. It has two main contributions, both due to the usage of new
instructions: firstly, it replaces an SSE based Karatsuba algorithm with an
AVX2/AVX-512 based Karatsuba, and secondly it uses AES-NI instructions
to accelerate AES operations, which is used as the random number generation
function in NTRUEncrypt. It does not provide algorithmic optimizations as to
be shown in this work.

We release our software to the public domain under GPL. It is available from
[48], and will be merged into the reference implementation [4].

2 Background

NTRUEncrypt works over a polynomial ring R = Zq[x]/(xN − 1) for N a prime
and q a power of 2. Other rings have also been proposed, such as NTRU-prime
[14] and NTRU over an R-LWE type ring [45]. In this paper we stick to the
original design from [33].

Elements in this ring are truncated polynomials, i.e., polynomials whose de-
grees are less than N and all their coefficients are in the range between 0 and
q − 1. Arithmetic operations between integers, and between an integer and a
polynomial, are carried out modulo q. Multiplications (and divisions) between
polynomials are carried out modulo xN − 1 modulo q.

For a polynomial a(x) = a0+a1x+a2x
2+· · ·+aN−1x

N−1, denote 〈a0, a1, a2, . . . , aN−1〉
its vector form. The i-th cyclic rotation of this vector is 〈aN−i, aN−i+1, . . . , aN , a0, a1, . . . , aN−i−1〉.
The matrix associated with a(x) over the R is an N ×N matrix whose row vec-
tors are a and its rotations.

For two polynomials a(x) and b(x), their product overR is c(x) = a(x)b(x) mod
(xN − 1) mod q. This is also known as polynomial convolution. It can be com-
puted either via polynomial multiplication, or by vector-matrix multiplication
as a times the cyclic matrix associated with b.

2.1 NTRUEncrypt

For completeness, we recall the following three algorithms (Algorithms 1-3) in
NTRUEncrypt. Here, a · operation is an integer-polynomial multiplication modulo
q. A × operation is a polynomial convolution over R, i.e., polynomial multipli-
cation modulo xN − 1 modulo q.

2.2 Operations in NTRUEncrypt

As one can see from the above 3 algorithms, the most costly parts in an NTRU-
Encrypt cryptosystem are

– Polynomial arithmetics
– Hash functions
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Table 1: A Cost Breakdown of Reference Code of NTRUEncrypt [4]

Function Total
Polynomial arithmetics Hash functions Rest
k cycles Percentage k cycles Percentage k cycles Percentage

Key generation 5424 5082 93.6% 247 4.5% 95 1.7%

Encryption 1008 780 77.4% 160 15.9% 68 6.7%

Decryption 1757 1560 88.8% 104 5.9% 93 5.3%

Algorithm 1 Key generation

Require: a parameter set, i.e., NTRU743
1: F := a random trinary polynomial with df number of 1s and df number of −1s.
2: f = p · F + 1.
3: if f is not invertible then
4: goto 1
5: end if
6: g := a random trinary polynomial with dg number of 1s and df number of −1s.
7: h = f−1 × g.
8: return public key h, secret key f , g

Polynomial operations are the core operation for NTRUEncrypt. Hash functions
are used to expand random seeds (during key generation and encryption), as well
as the binding method between public key/message and the random polynomial
(during encryption and decryption). This binding process provides unmalleabil-
ity of the ciphertext which is crucial to provide CCA-2 security.

Table 1 shows a breakdown of how much those two operations eat up the
whole computation cost for three algorithms: key generation, encryption and
decryption. It is easy to see that polynomial arithmetics take up almost 90% of
the computing resources. To this end, in order to boost the efficiency, we aim to
improve polynomial multiplications for NTRUEncrypt.

Algorithm 2 Encryption

Require: a parameter set, i.e., NTRU743
Require: message m, public key h
1: M = (m|salt)
2: seed = Hash1(M |h)
3: r := a random trinary polynomial with dr number of 1s and dr number of −1s

generated using seed
4: mask = Hash2(p · r × h)
5: return e = p · r × h + m⊕mask
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Algorithm 3 Decryption

Require: a parameter set, i.e., NTRU743
Require: ciphertext e, secret key f
1: M1 = e× f mod p
2: mask1 = Hash2(e−M1)
3: m1 = M1 ⊕mask
4: seed1 = Hash1(m1|h)
5: r1 := a random trinary polynomial with dr number of 1s and dr number of −1s

generated using seed1
6: if e == p · r1 × h + M1 then
7: return m1

8: else
9: return error

10: end if

2.3 AVX2

Advanced Vector Extensions (AVX) are extensions to the x86 instruction set
architecture for microprocessors which enable single instruction, multiple data.
AVX2 and AVX-512 expand most integer instructions to support 256-bit and
512-bit registers, respectively.

To date, AVX2 is available to almost all mainstream processors. AVX-512,
although provides more parallelism, is not as widely available. For this reason,
we use AVX2 for this implementation.

We remark that our scheme can be improved further using AVX-512 when it
becomes more available. As one shall see later in section 4.2, a smallest data unit
in our setting is a degree 31 polynomial (32 coefficients) where each coefficient
is a uint16 t unit. We currently use 2 mm256i units from AVX2 to store this
data. However, it is easy to see that this polynomial fits in a single 512-bit data
unit. Therefore, the adaptation to AVX-512 is straightforward.

Arithmetic operations on mm256i are carried out on each slot without any
interactions among the slots. We make use of the following instructions:

– mm256 add epi16: this instruction adds the packed uint16 t integers using
saturation;

– mm256 mullo epi16: this instruction multiplies the packed uint16 t inte-
gers, produces intermediate 32-bit integers, stores the 16 least significant bits
and discards the other 16 bits.

as well as a few instructions that convert between a pack of uint16 t data and
a mm256i data.

2.4 Constant time implementation and side channel attacks

Aside from being efficient, a major concern when designing implementations for
a cryptosystem is whether this program is constant time, i.e., the code runs
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in time independent of any secret input. This is particularly important if the
algorithm will potentially be exposed to side-channel attacks. Having a constant
time implementation means that an attacker is not likely to gain any information
on the secret input by simply observing the running time of the algorithm.

There are a few lattice-based cryptosystems that claim to have constant
time implementations, such as [10] and [14]. In the meantime, attacks have also
been proposed on some other cryptosystems (see, for example, [15] for an attack
against [21] exploiting the Gaussian look-up table) indicating that those attacks
can be practical, under some realistic assumptions.

3 Parameter set

3.1 Parameter overview

We consider a variant of the NTRU743 parameter set.

N q p df, dg, dr
743 2048 3 247

The only difference we made is switching to flat form polynomials. A flat form
trinary polynomial is a trinary polynomial f that has a fixed number of +1 and
−1 coefficients; while a product form polynomial is computed from a set of three
sparse trinary polynomials as f1 × f2 + f3 where f1, f2 and f3 are flat form
trinary polynomials.

The use of product form parameter sets was originally intended to provide
improved performance by allowing a specialized multiplication algorithm that
used knowledge of the indices of the non-zero coefficients of f ; product-form
polynomials allow the same level of security with about a third as many non-zero
indices and so promised to reduce polynomial multiplication times significantly.
However, this index-based multiplication proves to be very hard to implement
in a constant-time fashion without losing the speed benefits, so in this paper we
concentrate on other approaches of multiplication.

We work on a polynomial ring of Zq[x]/(xN − 1) for q = 2048 and N = 743.
This choice of q is motivated by fast arithmetic operations (see section 4.2.1), as
well as a low decryption failure probability.

We consider two types of polynomials over this ring, namely, flat form trinary
polynomials and random “mod q” polynomials. Multiplications between those
polynomials take up the majority of the cost of NTRUEncrypt. The goal of this
paper is to improve those multiplications.

3.2 Security estimation for NTRU743

This parameter set delivers 256 bits of security against classical computers and
128 bits of security against quantum computers. In particular we consider the
following attacks. We summarize its security estimates in Table 2.
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Table 2: A summary of security estimates
Classical security estimation 256
Quantum security estimation 128

Lattice reduction attack N/A
Search attack cost > 2289

Hybrid attack cost 2272

Decryption failure probability < 2−112

3.2.1 Lattice attacks For an NTRUEncrypt public key polynomial h, let H
be the matrix whose row vectors are the cyclic rotation of h. Then the NTRU
lattice associated with h uses a basis[

qIN 0
H IN

]
where IN is an N -dimensional identity matrix. With in this NTRU lattice, there
exist unique shortest vectors, namely, the vector form of 〈f, g〉 and its cyclic
rotations.

This attack was firstly presented in the original NTRUEncrypt paper [33]
circulated during the rump session of Crypto’96. It was later observed in [20]
that one does not necessarily need to find the exact secret key to be able to
decrypt. An attack is successful if the attacker can locate any vectors in this
lattice that are sufficiently small (such as a cyclic rotation of the secret key).

It has been shown in [24] that the ability to locate a unique shortest vector
in a lattice depends on the root Hermite factor of the lattice, which is the n-th
root of

Gaussian expected length

l2 norm of the target vector

where n is the dimension of the lattice.
Here, we give an estimation of the root Hermite factor for the proposed

parameter set. This lattice has a dimension of 2N . The Gaussian expected length

of this lattice is
√

Nq
πe , while the l2 norm of the target vectors are ‖f, g‖2 ≈√

4N/3. This gives a root Hermite factor of the lattice as(√
Nq/πe

‖f, g‖2

) 1
2N

≈ 1.0025

It is believed that current technique of BKZ 2.0 [18] is only able to find a short
vector with a root Hermite factor of 1.005 (except for the analysis from [10], see
section 3.2.4). It is safe to conclude that BKZ 2.0 is not applicable against the
proposed parameter set.

3.2.2 Search attack In the meantime, since the secret keys are trinary poly-
nomials with df number of 1s and −1s, the search space for the secret key is
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(
N
df,df

)
/N > 21158. (The factor 1/N comes from the fact that an attacker can

guess any of N cyclic rotations of the secret key, rather than just the secret key
itself.) This key space for our parameter set is considerably larger than that in
[32] due to the switch from product form polynomials to flat form polynomials.
This is sufficient even with the presence of meet-in-the-middle attacks [34] and
quantum attacks using Grover’s algorithm [27].

3.2.3 Hybrid attack The best known attack against NTRUEncrypt is the
aforementioned hybrid attack [35] which is a hybrid of a lattice attack and a
meet-in-the-middle search attack.

According to a recent evaluation [32], this attack requires 2272 operations
against NTRU743 parameter set.

3.2.4 Lattice strength analysis from “NewHope” In [10], the authors
give a conservative analysis on the cost of BKZ 2.0 reduction. As pointed out by
the authors themselves, those estimations are very optimistic about the abilities
of an attacker. In particular, unlike the analysis of BKZ 2.0 [18], where the
cost of shortest vector subroutines is estimated via the cost of enumeration with
extremely pruning [25], this analysis assumes that for large dimensional lattices
shortest vector problems can be solved very efficiently using heuristic sieving
algorithms, ignoring the sub-exponential to exponential requirement of space.

In a bit details, the best known classical and quantum sieving algorithms have
time costs of 20.292n and 20.265n, respectively [11]. The best plausible quantum
short vector problem solver costs more than 20.2075n. In practice, sieving tends to
process much slower than enumeration techniques. Moreover, sieving algorithms
require a similar level of space complexity (exponential in n), while the space
requirement of enumeration techniques is polynomial. For this reason, we stick
to the original BKZ 2.0 analysis [18].

For the sake of completeness, in Table 3 we provide the cost of the attack
against proposed parameter sets following their analysis. It is also worth point-
ing out that even with their extremely conservative analysis, the parameter set
NTRU743 still provides roughly 128 bits of quantum security as intended.

3.2.5 Subfield attack Subfield attacks against NTRUEncrypt have been con-
sidered in [13]. It was reported in [8] that for certain ”over-stretched” NTRU
parameters, one can exploit the subfield. This attack was only applicable to the
NTRU lattices that are used to instantiate a (fully) homomorphic encryption
scheme. The author also showed that for our parameters the subfield attack will
not be successful.

3.3 Other parameter sets

It was reported in [32] that the parameter set NTRU443 also provides 128 bits of
security against quantum computers. This parameter set provides best perfor-
mance among all lattice-based public key cryptography (such as NewHope [10])
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Table 3: Lattice strength following analy-
sis in [10]

Attack mc bd
Known Known Best

ClassicaleQuantumfPlausibleg

Primala613 603 176 159 > 125

Dualb 635 600 175 159 > 124
a find the unique shortest vector in NTRU

lattice.
b find the unique shortest vector in the dual

lattice.
c the number of used samples.
d block size for BKZ 2.0.
e using the best known classical SVP solver.
f using the best known quantum SVP

solver.
g using the best plausible quantum SVP

solver.

in terms of the package size. This is crucial to modern public key infrastructures
as we tend to have plenty computation power but rather limited communication
bandwidth.

Nonetheless, we pick NTRU743 over NTRU443 to build more security mar-
gin against quantum computers. Quantum attacks, unlike classical attacks, are
much more mysterious. Although a lot of effort has been put into quantum
cryptanalysis, such as [22], much less is known about them compared to clas-
sical attacks. It is possible that there exist quantum attacks that substantially
reduce the bit complexity, as predicted in NewHope [10]. To this end, we pick
NTRU743 in this work, although we must note that NTRU443 is sufficient for
the target security level, and our optimization can be adapted to NTRU443 with
minor modifications.

4 Polynomial Multiplication for NTRU743

4.1 Algorithms under consideration

There exists several algorithms that handle polynomial multiplications.

– Schoolbook multiplication.
– Karatsuba/Toom-Cook multiplications.
– Index based multiplication.
– Fast Fourier Transform (FFT)/ Number Theoretic Transform (NTT).

In general, schoolbook multiplication is asymptotically worse than Karatsuba or
Toom-Cook multiplications. However, Karatsuba or Toom-Cook multiplications
use additional additions/subtractions to combine the results of multiplications.
Those operations cost more than the multiplications that are saved, when the
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degree is small. So for small polynomials, schoolbook multiplication usually out-
performs Karatsuba/Toom-Cook. The exact threshold varies for different pro-
cessors, but in general, for polynomial with degree less than around 32 it is okay
to use schoolbook multiplication.

The index-based multiplication is slower than Karatsuba. It is ideal for sparse
polynomials (polynomials with a lot of 0 coefficients). It also performs well when
SIMD is available.

The last option is FFT/NTT transform [29]. It is widely used for R-LWE
based schemes such as BLISS [21] and NewHope [10]. This technique requires a
special polynomial ring and is not applicable to our parameter set.

To enable NTT, one needs to work on a ring that “splits” completely - i.e.,
the modulus polynomial xN − 1 (or xN + 1 as in [10,?], for instance) has N
distinct roots modulo q. Typically, for a prime N in our parameter set, q has to
be 1487, 19319 or larger. In general, having q being a power of 2 with less than
14 bits means the modulo operation comes free due to the modern computer
structure.

To be more detailed, the choice of q = 1487 is too small which results in a
higher decryption error; while the choice of q = 19319 will reduce the overall
performance compared to our current choice q = 2048: for one side it doesn’t
fit in a single uint16 t data type, taking into account the guarding bits; on the
other side, a large q means a larger determinant of the lattice and overall a lower
lattice security/hybrid security.

4.2 Our method

Fig. 1: The structure of our tailored multiplication.

The improvement (compared to the reference code [4]) comes from (1) a
vectorized index-based multiplication for small polynomials (deg < 32) and (2)
a tailored break down using Karatsuba → Toom-4 → Toom-3 (see Figure 1).
For polynomials of degrees close to but less than 768, we reduce the degrees of
polynomial multiplication operands using:
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1. Karatsuba to break them into smaller polynomials (deg < 384),
2. Toom-4 to break polynomials (deg < 384) into polynomials (deg < 96),
3. Toom-3 to break polynomials (deg < 96) into polynomials (deg < 32),
4. vectorized index-based multiplication to perform multiplications of polyno-

mials (deg < 32).

Overall, the choice for the above selections is obtained as follows. First, we
have assumed that polynomial multiplications of degree less than 32 shares a
similar cost using AVX2, regardless of the degree. In theory it is sound because of
vectorized processing; in practice, this is also confirmed experimentally as shown
in Figure 4. As a consequence we know that for polynomials of degrees close to
but less than 768, each polynomial can be presented by 24 small polynomials of
degree < 32.

Next we need to determine the hierarchy to process those 24 small polyno-
mials. Karatsuba splits one polynomial into two polynomials using 3 multiplica-
tions; Toom-3 splits each polynomial into 3 polynomials using 5 multiplications;
and Toom-4 splits each polynomial into 4 polynomials using 7 multiplications.
Hence, it is natural that we use a combination of Karatsuba→Toom-4→Toom-3
to achieve a total of 24 polynomials with 105 multiplications.

We have also tested the following cases:

– Karatsuba only: this is basically the reference implementation in [4]. we
provide more details on comparison in subsection 5.3.1.

– Toom-4→Toom-4→Karatsuba: in this option each polynomial is broken into
32 small polynomials of degree < 24, and result into 147 multiplications of
small polynomials.

– Toom-3 only: in this option each polynomial is broken into 27 small polyno-
mials of degree< 29, and result into 125 multiplications of small polynomials.

Our suggested hierarchy out-performs all three cases in terms of the number of
multiplications.

Nevertheless, we note that we did not test the case of Karatsuba→Toom-
3→Toom-4; in theory there shouldn’t be any performance difference between
this option and our choice as the underlying number of multiplications (105)
remains the same.

In the following, we will give more details of our proposed method.

4.2.1 Data types and instructions We make use of two types of data,
namely uint16 t and mm256i. We use mm256i to handle 16 slots of uint16 t data.
A degree N − 1 polynomial can be stored with N uint16 t units or dN16e
mm256i units. In the following we briefly describe arithmetic operations on

uint16 t data. We omit the details for mm256i correspondents, as they are
merely a parallel version of those for uint16 t data.

Recall that all coefficients of our polynomials are integers modulo q = 211.
That is, we can store each coefficient with a uint16 t type. For intermediate
values during computations, we do not care for overflows during additions, sub-
tractions and multiplications, as overflown bits will be ”mod out” once we lift the
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polynomial back to Rq. In particular, when multiplying two uint16 t elements,
we only need to compute the lower 16 bits of the product; the higher 16 bits will
be mod out, thus, have no effect on the final result.

In a bit more details, for two 16-bit integers a and b, suppose their product
c is expressed by c0 + 216c1, i.e., c0 and c1 are the lower/higher 16 bits of c,
respectively, then, from a × b = c0 + 216c1 we obtain a × b ≡ c0 mod q for
q = 211. This also holds for polynomial multiplications over the ring: a(x) ×
b(x) ≡ c0(x) mod q.

Notice that this may not be true when a division is performed. It may not
be very straightforward to see why division is required in a polynomial multi-
plication. This is due to the Karatsuba/Toom algorithms (see section 4.2.3 for
more details).

Considering three 16-bit integers a, b and d, suppose we need to compute
(a× b)/d mod q. For simplicity, assumes that d divides ab = c0 + 216c1. Then we
only have ab/d ≡ c0/d mod q for d equal a small power of 2. For other choices
of d this equation no longer holds.

Since our q has only one prime factor, 2, any odd integer is co-prime with q.
Therefore, when divided by an odd integer d, one can always multiply its inverse
modulo q (or mod 216 as we are working with 16-bit integers). And from previous
argument we know that this multiplication can be carried out error free.

For a division with a divisor in the form of 2d1 ∗d2 where d2 is an odd integer,
we perform the above strategy for the division-by-d2 operation. We only carry
out a division when the divisor is a power of 2. Since in our algorithm divisions
are always exact, i.e., they do not result into any reminders. We can perform
those exact divisions by simply shifting each uint16 t to the right.

As such, we are only concerned with the lower 16 bits of the product, which
implies that we can always store (intermediate) polynomials with uint16 t and
mm256i types.

4.2.2 Index based multiplication with AVX2 We use an index-based
multiplication for polynomials of degrees less than 32. This algorithm inputs
a base polynomial and an index polynomial, and outputs a result polynomial
whose degree is less than 64 (see Algorithm 4).

That is, the base input polynomial a can be stored within 2 mm256i units;
during the execution, we need 3 mm256i units to store t ; the result polynomial
r can be stored within 4 mm256i units. For each coefficient in the index poly-
nomial, we shift the base polynomial; multiply it by this coefficient (and discard
the higher 16 bits) and add the product to the result.

Note that we have used 3 mm256i units for t. An alternative solution is to
use a buffer of 4N uint16 t units, and dynamically load/write the buffer from
and to 2 mm256i units that hold this intermediate results. This can reduce the
number of mm256i units from 3 to 2 (and consequently reduces the number
of vectorized multiplications and additions required, see below). However, as
we have observed in our implementation, reading and writing from memory for
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Algorithm 4 Index based multiplication

Require: a(x) = a0 + a1x + a2x
2 + · · ·+ a31x

31

Require: b(x) = b0 + b1x + b2x + · · ·+ b31x
31

1: t = 〈0, . . . , 0, a0, a1, a2, . . . , a31〉 with dimension 63;
2: r = b0t;
3: for i in (1, 31) do
4: t = Left shift(t) ;
5: r+ = bit
6: end for
7: return r

mm256i units is in fact more costly than vectorized multiplication and additions.
Therefore we use 3 mm256i units for the intermediate polynomials.

Now we are ready to analyze the cost of this algorithm. When the index of
coefficients for b(x) is either 0 or 16, we require 2 mm256i units to store (the
shift of) t. This results into 2 vectorized multiplications and additions for those
two indexes. For the reminder of the indexes, the intermediate polynomial t
spans over 3 mm256i units, and therefore, we need 3 vectorized multiplications
and additions for each index. In summary, if the degree of the index polynomial
is 31, then our algorithm use 94 vectorized multiplications and additions. We
also note that this algorithm is constant-time: i.e., it requires a constant number
of operations regardless of the value of a(x) and b(x), so long as the degrees of
those polynomials stay the same.

There are two alternative approaches to handle polynomial multiplications
with small degrees, namely, using a pure schoolbook multiplication, or using
Karatsuba to split into polynomials of degree less than 16, then use school-
book multiplications. As will be shown in subsection 5.2.1, on the machines that
we have tested, Karatsuba outperforms schoolbook for multiplications of degree
greater than 16. However, due to the fact that schoolbook multiplication is se-
quential therefore does not benefit from vectorization, neither algorithm is as
fast as the one that we adopt.

4.2.3 Toom-3 multiplication This algorithm handles polynomial multipli-
cations of degree less than 96. It splits each input polynomial into 3 smaller
polynomials of degree less than 32 and use index-based multiplication method
to handle multiplications between those small polynomials.

In a bit more details, each input polynomial is split into 3 parts, i.e., a(X) =
a0 + a1X + a2X

2 and b(X) = b0 + b1X + b2X
2 while the result polynomial is

denoted by c(X) = c0 + c1X + c2X
2 + c3X

3 + c4X
4 for X = x32. Note that the

degrees of ai and bi are less than 32 while the degrees of ci are less than 64.
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Then, we evaluate the polynomials at −1, 0, 1, 2 and ∞, and perform mul-
tiplications for each interpolation. That is

c(−1) = a(−1)b(−1) = (a0 − a1 + a2)(b0 − b1 + b2)

c(0) = a(0)b(0) = a0b0

c(1) = a(1)b(1) = (a0 + a1 + a2)(b0 + b1 + b2)

c(2) = a(2)b(2) = (a0 + 2a1 + 4a2)(b0 + 2b1 + 4b2)

c(∞) = a(∞)b(∞) = a2b2

Lastly we re-composite c(X) from c(−1), c(0), c(1), c(2) and c(∞) as

c0 = c(0)

c4 = c(∞)

c2 = (c(1) + c(−1))/2− c0 − c4
c3 = (c(2)− c0 − 4c2 − 16c4 − (c(1)− c(−1)))× (3−1)/2

c1 = c(1)− c0 − c2 − c3 − c4

and obtain c(x) = c0 + c1x
32 + c2x

64 + c3x
96 + c4x

128.
When implementing this algorithm, we use vectorized instructions to handle

polynomial additions, subtractions, as well as multiplications and divisions by
integers. These operations take up a small part of the whole computation. The
most consuming part of this algorithm is those 5 multiplications between polyno-
mials of degrees less than 32. We use the mentioned index-based multiplication
to handle those multiplications.

4.2.4 Toom-4 multiplication This algorithm handles polynomial multipli-
cations of degree less than 384. It splits each input polynomial into 4 small
polynomials with degree less than 96. It then requires 7 multiplications between
those small polynomials for which we apply Toom-3. Those consist the majority
of computation of this algorithm.

This algorithm is very similar to Toom-3. We evaluate the polynomials at −2,
−1, 0, 1, 2, 3 and ∞. For simplicity we omit the details of this multiplication.

4.2.5 Karatsuba multiplication This algorithm handles polynomial multi-
plications of degree less than 768. It provides the interface to the actual NTRU-
Encrypt code, where the inputs have fixed degrees of 743. The algorithm splits
each input polynomial into 2 small polynomials with degree less than 384 and
use Toom-4 to further multiply those small polynomials. It can be seen as a
variant of Toom-2 with evaluations at 0, 1 and ∞.

In a bit more details, each input polynomial is split into 2 parts, i.e., a(X) =
a0 +a1X and b(X) = b0 +b1X while the result polynomial is denoted by c(X) =
c0 + c1X + c2X

2 for X = x384. Note that the degrees of ai and bi are less than
384 while degree of ci is less than 768.
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Then, we perform the interpolation as

c(0) = a(0)b(0) = a0b0

c(1) = a(1)b(1) = (a0 + a1)(b0 + b1)

c(∞) = a(∞)b(∞) = a1b1

and obtain c(x) = c0 + c1x
384 + c2x

768.

5 Performance and Implementation

Table 4: Overall performance comparison
Reference Optimization 1+2 Optimization 1 w/ AVX2 Optimization 1 w/o AVX2

implementation[4] cycles improvement cycles improvement cycles improvement

With -O3 290,304 130,031 2.23× 166,014 1.74× 180,871 1.6×
Without -O3 1,350,080 335,223 4× 988,373 1.36× 1,158,010 1.16×

5.1 Test environment

We tested our implementation with a dual core Intel i7-6600U processor @
2.60GHz. Our operation system was Linux Ubuntu 16.04. We used gcc version
5.4.0. For simplicity, rand() is used as the source of randomness to generate
random polynomials in this test only, while a cryptographically secure random
number generator is adopted in NTRUEncrypt.

For each test shown in the rest of this section (except for the profiling result)
we repeated the test for 8,000 times. For some reasons the code ran a few times
slower than average at the first several tests, and then quickly convergent into
a stable state. We suspect it is due to the overhead to initialize AVX2 (see, for
example, [1], for AVX/SSE transition penalty). For consistency purpose, and
also for the ease of analysis, we have carefully removed those small amounts of
data.

5.2 Performance

Now we are ready to present an overview of the performance. Karatsuba uses 3
calls to Toom-4. Each Toom-4 uses 7 calls to Toom-3. Each Toom-3 uses 5 calls to
index-based multiplication. In the end, we require 105 calls to the index-based
multiplication algorithm. This is displayed in Figure ?? 1. Our profiling tool
shows that those index-based multiplications takes up almost 90% of the total
cost of computation. So it is crucial to show that those vectorized index-based
multiplications are faster than schoolbook multiplications.

1 The cycles shown in the profiling tool is not consistent with the implementation result
shown in Table 4 or Figure 6, etc. This is because the profiling tool is essentially a
virtual machine, and therefore incurs a different running time.
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__memmove_avx_unaligned
91 112

__mm256i_toom4__mm256i_toom3(u...
838 041

__mm256i_toom3__mm256i_SB(unsi...
781 875

781 875
21 x

__m256i_grade_school_mul_32(un...
751 047

751 047
105 x

91 112
3 254 x

__mm256i_karatsuba__mm256_toom...
850 318

838 041
3 x

Fig. 2: Call graph. First row, i.e, 838 041, is the cycles; second row, i.e., 3 x, is
the number of calls to the subroutine.

5.2.1 Performance of index-based multiplications In this section we
show the performance of our vectorized index-based multiplications algorithm,
and compare it with the following two methods:

– schoolbook multiplication
– Karatsuba then schoolbook multiplication

It is interesting to see that our algorithm starts to perform better than Karat-
suba or schoolbook multiplication when the degree of input polynomial is around
18 to 20. For our target degree 31, our algorithm is almost twice faster than
Karatsuba plus schoolbook multiplication, almost three times faster than a pure
schoolbook multiplication.

5.2.2 Overall performance We have presented two optimizations in this
paper, namely,

– a tailored breakdown of multiplications, and
– an index-based multiplication for small degree polynomials.
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We show in Table 4 a performance comparison of our algorithm compared to
the reference implementation of [4].

”optimization 1+2” uses both optimizations mentioned.
”optimization 1 with AVX2” is a method where only the first optimization is

used. We use AVX2 to accelerate the breaking down. This result gives a overall
performance of the scheme when constant-time implementation is required.

”optimization 1 without AVX2” is a method where only the first optimization
is used and no vectorized operations are implemented for this optimization. This
gives a best comparison to the original Karatsuba implementation as how good
our tailored breaking down is.

In summery, on a modern CPU with AVX2 instructions, our implementation
is 2.23 times better than the reference implementation in [4]. On a CPU without
AVX2 instructions, our implementation is 1.6 times faster than [4].

5.3 Comparison

5.3.1 Comparison with reference code[4] The reference implementation
uses Karatsuba to break a degree 743 multiplication into many polynomial mul-
tiplications whose degrees are no greater than d743/32e − 1 = 23. That is, there
are log2(32) = 5 recursive calls, where each loop incurs 3 multiplications. Overall
there are 35 = 243 multiplications using schoolbook multiplications.

In comparison, we use 105 multiplications of degree 31 polynomials. Assum-
ing a degree 31 polynomial multiplication takes roughly same time using index-
based multiplication or schoolbook multiplication (indeed, our index-based so-
lution is a bit faster than schoolbook, see Figure 4), we gain an improvement of
around 243/105 ≈ 2.3. This is correctly observed in Table 4.

5.3.2 Comparison with other lattice-based cryptosystems We also give
a rough comparison with other lattice based cryptosystems, namely the New
Hope key exchange algorithm [9] and the NTRU-prime key encapsulation algo-
rithm [14].
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Note that Algorithm 2 and 3 in NTRUEncrypt provide a CCA-2 secure en-
cryption algorithm which is stronger than the CPA secure key exchange as in
New Hope [9]. Therefore, to deliver a fair comparison we present the cost of
polynomial multiplications for all three algorithms.

It was reported in [14] that the multiplications takes 50k cycles for NTRU-
prime with Toom-7 and 40k for NewHope with NTT; both are quite better than
130k cycles reported in this paper. We believe that the advantage is due to the
fact that both implementations use assembly code for AVX2; while our code is
written in C for more compatibility. Knowing that our code already improves 2.3
times over the reference implementation of [4]; and that we adopted a similar
approach as [14] in terms of optimization, we are confident that our code could
deliver a similar performance with assembly.

Nevertheless, although it is not directly related to the contribution of this
work, it is worth mentioning that NTRUEncrypt with parameter set NTRU743 de-
livers a smaller throughput when used in key exchanges/encapsulations.

5.4 Constant-time algorithm/implementation

We have carefully designed our polynomial multiplication algorithm. Our algo-
rithm does not have conditional branches, memory accesses or compiler opti-
mizations regarding secret data. And all secret data are only used as operands
of constant-time arithmetic operations.

For NTRU743 polynomials, our hierarchical multiplication uses same number
of index-based multiplications. For AVX2 enabled processors, our index-based
multiplications are also constant-time. For processors that does not support
AVX2 instructions, our algorithm can still be made constant-time, so long as
the subroutine that handles small polynomial multiplication is constant-time.

Thus we claim that our algorithm is a constant-time algorithm. If the pro-
cessor (and the compiler) always carries out the same operation with the same
latency, we will achieve a constant-time implementation. We remark that this
assumption may not always be true. As a counter-example, there are cache miss-
ing attack, which exploit the timing difference of fetching data from memory and
cache. See [38] for another counter-example of a non-constant implementation
(and subsequently, a timing attack) for Curve25519 [12], which is a constant-time
algorithm.

In order to show that our implementation is constant-time in practice, we
tested out algorithm for the following three scenarios:

1. Fix same input polynomials a and b, and record the running time for our
algorithm;

2. Fix one of the input polynomials, polynomial a, and record the running time
for different b-s (the degree of b remains the same)

3. Choose different polynomial a and b, and record the running time.

The following tests are performed on an Intel Xeon E5-2640 v3 processor.
For a more reliable computing power, we did the following system configura-
tions: 1) we disabled power management and Intel SpeedStep Technology, and
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Table 5: Statistical Analysis of 10,000 Measurements (in cycles)
Implementation Mean SD SD/Mean

C -O3
187,834 605 0.0032
187,825 603 0.0032
187,817 600 0.0032

C -O0
1,500,030 5,547 0.0037
1,500,094 5,607 0.0037
1,500,135 5,400 0.0036

AVX2 -O3
115,434 2,123 0.0184
115,392 1,347 0.0117
115,503 2,939 0.0254

AVX2 -O0
313,507 2,912 0.0093
313,461 2,055 0.0066
313,547 3,074 0.0098

configured the CPU cores to run at a fixed 2.6 GHz frequency; 2) we disabled
hyper-threading of the core on which we took measurements, 3) we configured the
system to handle all interrupts but timer interrupts on the other cores. We did
not adjust any settings concerning data or instruction cache behaviors. There-
fore, the only differences between our testing environment and a typical/default
one are CPU frequency, interruptions and interference from the other thread on
the same core. None of these differences affect the constant-time behavior since
they do not make an attacker capable of distinguishing the secret data from the
other operand in a polynomial multiplication.

We repeat 10,000 measurements (in cycles) of all three scenarios for our C and
AVX2 implementations with -O3 and plot them in Figure 6 and 8, respectively.
We observed: 1) two identical executions do not have the same execution time;
and 2) there are periodic high measurements causing approximately 3,000 cycles
delay, in Figure 6 around 192,000 cycles and in Figure 8 around 118,000 cycles.
We believe that the former is caused by conditional branches (based on non-
secret data) and that the latter is caused by system timer interrupts which
cannot be disabled. We zoom-in to examine the first 1,000 measurements of
each implementation and provide Figure 7 and 9. By observation, none of the
plots shows any difference among three scenarios. We also provide statistical
values (mean and standard deviation (SD)) for a wider range of implementations.
In Table 5 we analyze 10,000 measurements of four implementations: C and
AVX2 with -O0 and -O3. The only noticeable difference is among the SDs of
three scenarios in AVX2 implementations. The largest difference of SD-over-
mean ratios is only 1.5%.

When we fully unroll the for loops in schoolbook multiplications (since we
know the their number of iterations is 32 for N = 743), the variance/SD de-
creases. From Table 5, for the C implementation with -O3, the compiler opti-
mize our code with aggressive loop unrolling, we can see a decrease in variance.
We do not observe the same influence of optimization in AVX2 implementations
because variance/SD is largely affected by timer interrupts, see Figure 8.
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After all, the performance of our polynomial multiplications are quite con-
sistent among all three scenarios. None of the issues mentioned above that cause
non-constant execution time are related to secret date.

A minor concern one may have is on the constant offset for a minor portion
of the data, eg. 192k cycles vs 188k cycles as in Figure 6. We argue that this
phenomenon indeed suggests that the extra delay is due to the processor delay
rather than secret-key related operations. Since we used different secret key for
each new tests, intuitively speaking, if the delay was due to the secret key, then
it should vary and appear pseudorandom or center-limited, as opposite to our
result.

Hence, we conclude that our algorithm/implementation is constant-time.

Fig. 4: 10,000 measurements of C implementation with level 3 optimization (-O3)

Fig. 5: 1,000 measurements of C implementation with level 3 optimization (-O3)

6 Future work

We conclude this paper by identifying a few future works. In this paper we pre-
sented a tailored optimization for NTRUEncrypt with parameter set NTRU743.
A potential future work is to use the same design methodology to optimize
NTRUEncrypt with other parameter sets, such as NTRU443.

Another potential future work is to perform a more through analysis of the
implementation at the assembly level, to identify the reason for the small potion
of constant delay in our testing result.
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Fig. 6: 10,000 measurements of AVX2 implementation with level 3 optimization
(-O3)

Fig. 7: 1,000 measurements of AVX2 implementation with level 3 optimization
(-O3)

In addition, due to NIST’s recent call for proposal of quantum-safe cryptog-
raphy [16], we expect to see more lattice based cryptography implementations.
It is interesting to investigate if the method in this paper is compatible with
those schemes, especially those whose modulus is a power of 2.

Last but not least, as we mentioned before, our implementation can be mi-
grant to AVX-512 with minimum modification. It remains interesting to see how
much our implementation can be improved with such a migration.
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7. Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-

stretched NTRU assumptions - cryptanalysis of some FHE and graded encoding
schemes. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceed-
ings, Part I, pages 153–178, 2016.

21

https://github.com/NTRUOpenSourceProject/ntru-crypto
https://github.com/NTRUOpenSourceProject/ntru-crypto
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