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Abstract. Some voting systems are reliant on external authentication
services. Others use cryptography to implement their own. We combine
digital signatures and non-interactive proofs to derive a generic construc-
tion for voting systems with their own authentication mechanisms, from
systems that rely on external authentication services. We prove that our
construction produces systems satisfying ballot secrecy and election ver-
ifiability, assuming the underlying voting system does. Moreover, we ob-
serve that works based on similar ideas provide neither ballot secrecy nor
election verifiability. Finally, we demonstrate applicability of our results
by applying our construction to the Helios voting system.

1 Introduction

An election is a decision-making procedure to choose representatives [26, 33, 20,
3]. Choices should be made freely by voters with equal influence, and this must
be ensured by voting systems [47, 28, 29]. Some voting systems rely on external
authentication services to ensure choices are made by voters. E.g., Helios [2, 30]
supports authentication via Facebook, Google and Yahoo using OAuth.1 Other
voting systems use cryptography to implement their own authentication mecha-
nisms. E.g., the voting system by Juels, Catalano & Jakobsson uses a combina-
tion of encrypted nonces and plaintext equality tests for authentication [23]. We
combine digital signatures and non-interactive proofs to derive a construction for
voting systems with their own authentication mechanisms from systems that rely
on external service providers. Our construction produces voting systems which
require less trust, since systems built upon cryptography are typically preferable
to systems trusting external service providers.

Many voting systems rely on art, rather than science, to ensure that choices
are made freely by voters with equal influence. Such systems build upon cre-
ativity and skill, rather than scientific foundations, and are typically broken in
ways that compromise free choice, e.g., [19, 48, 49, 43, 10], or permit adversaries
to unduly influence the outcome, e.g., [22, 12, 10, 46]. By contrast, we prove that

1 Meyer & Smyth describe the application of OAuth in Helios [27].



our construction produces voting systems that satisfy rigorous and precise se-
curity definitions of ballot secrecy and election verifiability that capture voters
voting freely with equal influence.2

We demonstrate applicability of our construction by deriving voting systems
with their own authentication mechanisms from Helios. Moreover, we compare
those systems to Helios-C [15, 16], a variant of Helios for two-candidate elec-
tions in which ballots are digitally signed. Our comparison reveals some subtle
distinctions and we show that Helios-C does not satisfy our security definition,
whereas our construction produces voting systems that do.

Structure. Section 2 recalls election scheme syntax. Section 3 presents our con-
struction. Section 4 proves that our construction produces systems satisfying
ballot secrecy. Section 5 proves that election verifiability is also satisfied. Sec-
tion 6 demonstrates the application of our construction to the Helios voting
system and compares the resulting systems to Helios-C. We conclude in Sec-
tion 7. Appendix A presents cryptographic primitives and associated security
definitions, and the remaining appendices recall security definitions for voting
systems and present proofs.

2 Election scheme syntax

We recall syntax by Smyth, Frink & Clarkson [40] for a class of voting systems
that consist of the following four steps. First, a tallier3 generates a key pair
and (optionally) a registrar generates credentials for voters. Secondly, each voter
constructs and casts a ballot for their vote. These ballots are recorded on a
bulletin board. Thirdly, the tallier tallies the recorded ballots and announces an
outcome, i.e., a distribution of votes. Finally, voters and other interested parties
check that the outcome corresponds to votes expressed in recorded ballots.4

Definition 1 (Election scheme [40]). An election scheme with external au-
thentication is a tuple of efficient algorithms (Setup,Vote,Tally,Verify) and an
election scheme with internal authentication is a tuple of efficient algorithms
(Setup,Register,Vote,Tally,Verify), such that:5

Setup, denoted (pk , sk ,mb,mc) ← Setup(κ), is run by the tallier. Setup takes
a security parameter κ as input and outputs a key pair pk , sk , a maximum
number of ballots mb, and a maximum number of candidates mc.

2 Quaglia & Smyth [31] provide a tutorial-style introduction to definitions of ballot
secrecy and election verifiability, and Smyth [37] provides a technical introduction.

3 Some voting systems permit the tallier’s role to be distributed amongst several tal-
liers. For simplicity, we consider only a single tallier in this paper.

4 Smyth, Frink & Clarkson use the syntax to model first-past-the-post voting systems
and Smyth shows ranked-choice voting systems can be modelled too [35].

5 Let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs
x1, . . . , xn and random coins r. Let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where
r is chosen uniformly at random. And let ← denote assignment. Moreover, let 〈x〉
denote an optional input and v[v] denote component v of vector v.



Register, denoted (pd , d) ← Register(pk , κ), is run by the registrar. It takes as
input the public key pk of the tallier and a security parameter κ, and it
outputs a credential pair (pd , d), where pd is a public credential and d is a
private credential.

Vote, denoted b← Vote(〈d〉, pk ,nc, v, κ), is run by voters. Vote takes as input a
private credential d (optional), a public key pk , some number of candidates
nc, a voter’s vote v, and a security parameter κ. The vote should be selected
from a sequence 1, . . . ,nc of candidates. Vote outputs a ballot b or error
symbol ⊥.

Tally, denoted (v, pf )← Tally(sk ,nc, bb, 〈L〉, κ), is run by the tallier. Tally takes
as input a private key sk , some number of candidates nc, a bulletin board
bb, an electoral roll L (optional), and a security parameter κ, where bb is
a set. It outputs an election outcome v and a non-interactive proof pf that
the outcome is correct. An election outcome is a vector v of length nc such
that v[v] indicates the number of votes for candidate v.

Verify, denoted s ← Verify(pk ,nc, bb, 〈L〉,v, pf , κ), is run to audit an election.
It takes as input a public key pk , some number of candidates nc, a bulletin
board bb, an electoral roll L (optional), an election outcome v, a proof pf ,
and a security parameter κ. It outputs a bit s, which is 1 if the election
verifies successfully and 0 otherwise.

Election schemes with internal authentication must always use optional inputs,
whereas election schemes with external authentication must not. Both schemes
must satisfy correctness: there exists a negligible function negl, such that for all
security parameters κ, integers nb and nc, and votes v1, . . . , vnb ∈ {1, . . . ,nc},
it holds that if v is a vector of length nc whose components are all 0, then

Pr[(pk , sk ,mb,mc)← Setup(κ);

for 1 ≤ i ≤ nb do
(pd i, di)← Register(pk , κ);
bi ← Vote(〈di〉, pk ,nc, vi, κ);
v[vi]← v[vi] + 1;

(v′, pf )← Tally(sk ,nc, {b1, . . . , bnb}, 〈{pd1, . . . , pdnb}〉, κ)
: nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1− negl(κ),

where algorithm Register is only applied for election scheme with internal au-
thentication and optional inputs are only used for election scheme with internal
authentication.

3 Our construction

Election schemes with internal authentication can be derived from schemes with
external authentication using a digital signature scheme and a non-interactive
proof system: Each voter publishes a ballot constructed using the underlying
scheme with external authentication, along with a signature on that ballot and



a proof that they constructed both the ballot and the signature. Signatures and
proofs are used to ensure that each tallied vote was cast by an authorised voter.

Our construction is formal described in Definition 3. It is parameterised by
an election scheme with external authentication, a digital signature scheme, and
a non-interactive proof system, derived from an underlying sigma protocol and
a hash function, using the Fiat-Shamir transformation.6 Hence, we denote elec-
tion schemes derived using our construction as Ext2Int(Γ,Ω,Σ,H), where the
underlying election scheme, signature scheme, sigma protocol and hash function
are Γ , Ω, Σ and H, respectively. To ensure our construction produces election
schemes with internal authentication, the non-interactive proof system must be
defined for a suitable relation, and we define such a relation as follows.

Definition 2. Given an election scheme with external authentication Γ = (Setup,
Vote,Tally,Verify) and a digital signature scheme Ω = (GenΩ ,SignΩ ,VerifyΩ), we
define binary relation R(Γ,Ω) over vectors of length 6 and vectors of length 4
such that ((pk , b, σ,nc, κ), (v, r, d , r′)) ∈ R(Γ,Ω) ⇔ b = Vote(pk ,nc, v, κ; r) ∧
σ = SignΩ(d , b; r′).

Definition 3 (Construction). Suppose Γ = (SetupΓ ,VoteΓ ,TallyΓ ,VerifyΓ )
is an election scheme with external authentication, Ω = (GenΩ ,SignΩ ,VerifyΩ)
is a digital signature scheme, Σ is a sigma protocol for a binary relation R(Γ,Ω),
andH is a hash function. Let FS(Σ,H) = (ProveΣ ,VerifyΣ). We define Ext2Int(Γ,
Ω,Σ,H) = (Setup,Register,Vote,Tally,Verify) such that:

– Setup(κ) computes (pk , sk ,mb,mc) ← SetupΓ (κ) and outputs (pk , sk ,mb,
mc).

– Register(pk , κ) computes (pd , d)← GenΩ(κ) and outputs (pd , (pd , d)).
– Vote(d ′, pk ,nc, v, κ) parses d ′ as (pd , d) and outputs ⊥ if parsing fails, selects

coins r and r′ uniformly at random, computes

b← VoteΓ (pk ,nc, v, κ; r);
σ ← SignΩ(d , b; r′);
τ ← ProveΣ((pk , b, σ,nc, κ), (v, r, d , r′), κ),

and outputs (pd , b, σ, τ).
– Tally(sk ,nc, bb, L, κ) computes (v, pf ) ← TallyΓ (sk , auth(bb, L),nc, κ) and

outputs (v, pf ).
– Verify(pk ,nc, bb, L,v, pf , κ) computes s ← VerifyΓ (pk , auth(bb, L),nc,v, pf ,
κ) and outputs s.

Set auth(bb, L) = {b | (pd , b, σ, τ) ∈ bb ∧ VerifyΩ(pd , b, σ) = 1 ∧ VerifyΣ((pk , b,
nc, κ), τ, κ) = 1 ∧ pd ∈ L ∧ (pd , b′, σ′, τ ′) 6∈ bb \ {(pd , b, σ, τ)} ∧ VerifyΩ(pd , b′,
σ′) = 1}.

Our construction uses function auth to ensure tallied ballots are authorised
and to discard ballots submitted under the same credential (i.e., if there is more

6 Let FS(Σ,H) denote the non-interactive proof system derived by application of the
Fiat-Shamir transformation to sigma protocol Σ and hash function H.



than one ballot submitted with a private credential, then all ballots submitted
under that credential are discarded). Since election schemes with internal au-
thentication must satisfy correctness, the underlying digital signature scheme
must ensure that key pairs are distinct. Hence, correctness of our construction
depends on security of the underlying digital signature scheme, albeit in a te-
dious manner. Since we exploit strong unforgeability of the signature scheme for
results in the following sections, we assume the same property here (to ensure
key pairs are distinct). Weaker conditions could be used for generality.

Lemma 1. Let Γ be an election scheme with external authentication, Ω be a
digital signature scheme, Σ be a sigma protocol for relation R(Γ,Ω), and H be
a random oracle. Suppose Ω satisfies strong unforgeability. We have Ext2Int(Γ,
Ω,Σ,H) is an election scheme with internal authentication.

The proof of Lemma 1 appears in Appendix B.

4 Our construction ensures ballot secrecy

We adopt the definition of ballot secrecy for election schemes with external au-
thentication (Ballot-Secrecy-Ext) by Smyth [36]. That definition appears to be
the most suitable in the literature, because it detects the largest class of at-
tacks [36, §7]. In particular, it detects attacks that arise when the adversary
controls the bulletin board or the communications channel, whereas other defi-
nitions, e.g., [7, 9, 8, 39, 13, 14, 6], fail to detect such attacks. A definition of ballot
secrecy for election schemes with internal authentication (Ballot-Secrecy-Int) can
be derived from Smyth’s definition by a natural, straightforward extension that
takes credentials into account. Both definitions are presented in Appendix C.
The definition of ballot secrecy we recall challenges an adversary, who has access
to the election outcome, to distinguish between ballots.

We can prove that our construction ensures ballot secrecy (a formal proof of
Theorem 2 appears in Appendix C), assuming the underlying election scheme
satisfies ballot secrecy and the underlying sigma protocol satisfies special sound-
ness and special honest verifier zero-knowledge.

Theorem 2. Let Γ be an election scheme with external authentication, Ω be a
digital signature scheme, Σ be a sigma protocol for relation R(Γ,Ω), and H be a
random oracle. Suppose Γ satisfies Ballot-Secrecy-Ext, Σ satisfies special sound-
ness and special honest verifier zero-knowledge, and Ω satisfies strong unforge-
ability. Election scheme with internal authentication Ext2Int(Γ,Ω,Σ,H) satisfies
Ballot-Secrecy-Int.

Proof sketch. Ballot secrecy of election scheme Ext2Int(Γ,Ω,Σ,H) follows from
secrecy of the underlying scheme Γ , because signatures and non-interactive
zero-knowledge proofs do not leak information. (Special soundness and special
honest verifier zero-knowledge suffice to ensure proof system FS(Σ,H) is zero-
knowledge [8].)



We demonstrate applicability of Theorem 2 using a construction for election
schemes from asymmetric encryption.7,8

Definition 4 (Enc2Vote [32]). Given a perfectly correct asymmetric encryption
scheme Π = (Gen,Enc,Dec) satisfying IND-CPA, election scheme with external
authentication Enc2Vote(Π) is defined as follows:

– Setup(κ) computes (pk , sk)← Gen(κ) and outputs (pk , sk , poly(κ), |m|).
– Vote(pk ,nc, v, κ) computes b← Enc(pk , v) and outputs b if 1 ≤ v ≤ nc ≤ |m|

and ⊥ otherwise.

– Tally(sk ,nc, bb, κ) initialises vector v of length nc, computes for b ∈ bb do
v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v]← v[v] + 1, and outputs (v, ε).

– Verify(pk ,nc, bb,v, pf , κ) outputs 1.

Algorithm Setup requires poly to be a polynomial function, algorithms Setup and
Vote require m = {1, . . . , |m|} to be the encryption scheme’s plaintext space, and
algorithm Tally requires ε to be a constant symbol.

Intuitively, given a non-malleable asymmetric encryption scheme Π,9 Enc2Vote(
Π) derives ballot secrecy from Π until tallying and tallying maintains ballot
secrecy by returning only the number of votes for each candidate.

Proposition 3 ([32, 36]). Let Π be an encryption scheme with perfect correct-
ness. If Π satisfies IND-PA0, then election scheme with external authentication
Enc2Vote(Π) satisfies Ballot-Secrecy-Ext.

Hence, by Theorem 2, we have the following result.

Corollary 4. Let Π be an asymmetric encryption scheme with perfect cor-
rectness, Ω be a digital signature scheme, Σ be a sigma protocol for relation
R(Enc2Vote(Π), Ω), and H be a random oracle. Suppose Π satisfies IND-PA0,
Σ satisfies special soundness and special honest verifier zero-knowledge, and
Ω satisfies strong unforgeability. Election scheme with internal authentication
Ext2Int(Enc2Vote(Π), Ω,Σ,H) satisfies Ballot-Secrecy-Int.

Clearly election scheme Enc2Vote does not satisfy universal verifiability, because
it will accept any election outcome.

7 The construction was originally presented by Bernhard et al. [7, 9, 39] in a slightly
different setting.

8 We omit a formal definition of asymmetric encryption for brevity.
9 We adopt the formal definition of comparison based non-malleability under chosen

plaintext attack, which coincides with indistinguishability under a parallel chosen-
ciphertext attack (IND-PA0) [4]. We omit formal security definitions for brevity.



5 Our construction ensures election verifiability

We adopt definitions of individual (Exp-IV-Ext) and universal (Exp-UV-Ext) ver-
ifiability for election schemes with external authentication from Smyth, Frink, &
Clarkson [40]. We also adopt their definitions of individual (Exp-IV-Int), universal
(Exp-UV-Int) and eligibility (Exp-EV-Int) verifiability for schemes with internal
authentication. Those definitions seem to be the most suitable in the literature,
because they detect the largest class of attacks. In particular, they detect collu-
sion and biasing attacks [40, §7], whereas other definitions, e.g., [23, 15, 25], fail
to detect such attacks. The definitions are presented in Appendix D.

The definitions by Smyth, Frink, & Clarkson work as follows: Individual ver-
ifiability challenges the adversary to generate a collision from algorithm Vote.
Universal verifiability challenges the adversary to concoct a scenario in which
either: Verify accepts, but the election outcome is not correct, or Tally produces
an election outcome that Verify rejects. Hence, universal verifiability requires
algorithm Verify to accept if and only if the election outcome is correct. Fi-
nally, eligibility verifiability challenges an adversary, which can corrupt voters,
to generate a valid ballot under a non-corrupt voter’s private credential.

We can prove that our construction ensures election verifiability. Individ-
ual and eligibility verifiability of Ext2Int(Γ,Ω,Σ,H) follow from security of the
underlying signature scheme, and universal verifiability follows from universal
verifiability of the underlying election scheme Γ .

Theorem 5. Let Γ be an election scheme with external authentication, Ω be
a digital signature scheme, Σ be a sigma protocol for relation R(Γ,Ω), and
H be a random oracle. Suppose Ω satisfies strong unforgeability, Σ satisfies
special soundness and special honest verifier zero-knowledge, and Γ satisfies
Exp-UV-Ext. Election scheme with internal authentication Ext2Int(Γ,Ω,Σ,H)
satisfies Exp-IV-Int, Exp-EV-Int, and Exp-UV-Int.

Proof sketch. Individual verifiability is satisfied because voters can check that
their signatures appear on the bulletin board. Universal verifiability is satisfied
because the underlying voting scheme does, and the properties of Ω and Σ ensure
only authorised ballots are tallied. And eligibility verifiability is satisfied because
anyone can check that signatures belong to registered voters.

A formal proof of Theorem 5 follows immediately from our proofs of individual,
universal and eligibility verifiability, which we defer to Appendix D (Lemmata 11,
13 & 14).

We demonstrate applicability of our results for election schemes from nonces.

Definition 5 (Nonce [40]). Election scheme with external authentication Nonce
is defined as follows:

– Setup(κ) outputs (⊥,⊥, p1(κ), p2(κ)), where p1 and p2 may be any polyno-
mial functions.

– Vote(pk ,nc, v, κ) selects a nonce r uniformly at random from Z2κ and out-
puts (r, v).



– Tally(sk ,nc, bb, κ) computes a vector v of length nc, such that v is a tally
of the votes on bb for which the nonce is in Z2κ , and outputs (v,⊥).

– Verify(pk , bb,nc,v, pf , κ) outputs 1 if (v, pf ) = Tally(⊥,nc, bb, κ), and 0
otherwise.

Intuitively, election scheme Nonce ensures verifiability because voters can use
their nonce to check that their ballot is recorded (individual verifiability) and
anyone can recompute the election outcome to check that it corresponds to votes
expressed in recorded ballots (universal verifiability).

Proposition 6 ([40]). Election scheme with external authentication Nonce sat-
isfies Exp-IV-Ext and Exp-UV-Ext.

Hence, by Theorem 5, we have the following result.

Corollary 7. Let Ω be a digital signature scheme, Σ be a sigma protocol for
relation R(Nonce, Ω), and H be a random oracle. Suppose Ω satisfies strong
unforgeability and Σ satisfies special soundness and special honest verifier zero-
knowledge. Election scheme with internal authentication Ext2Int(Nonce, Ω,Σ,H)
satisfies Exp-IV-Int, Exp-UV-Int, and Exp-EV-Int.

Clearly election scheme Nonce does not satisfy ballot secrecy.

6 Case study: A secret, verifiable election scheme with
internal authentication

Helios is an open-source, web-based electronic voting system which has been used
in binding elections. The International Association of Cryptologic Research has
used Helios annually since 2010 to elect board members [5, 21],10 the ACM used
Helios for their 2014 general election [44], the Catholic University of Louvain used
Helios to elect the university president in 2009 [2], and Princeton University has
used Helios since 2009 to elect student governments.11,12 Informally, Helios can
be modelled as the following election scheme with external authentication:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the public key
coupled with the proof.

Vote encrypts the vote, proves correct ciphertext construction and that the vote
is selected from the sequence of candidates (both in zero-knowledge), and
outputs the ciphertext coupled with the proof.

10 http://www.iacr.org/elections/, accessed 3 Apr 2013.
11 https://heliosvoting.wordpress.com/2009/10/13/helios-deployed-at-

princeton/, accessed 13 Jul 2017.
12 https://princeton.heliosvoting.org/, accessed 8 Feb 2013.



Tally proceeds as follows. First, any ballots on the bulletin board for which
proofs do not hold are discarded. Secondly, the ciphertexts in the remaining
ballots are homomorphically combined, the homomorphic combination is
decrypted to reveal the election outcome, and correctness of decryption is
proved in zero-knowledge. Finally, the election outcome and proof of correct
decryption are output.

Verify recomputes the homomorphic combination, checks the proofs, and out-
puts 1 if these checks succeed and 0 otherwise.

The original scheme [2] is known to be vulnerable to attacks against ballot
secrecy and verifiability,13 and defences against those attacks have been pro-
posed [17, 8, 39, 36]. We adopt the formal definition of a Helios variant by Smyth,
Frink & Clarkson [40], which adopts non-malleable ballots [41, 36] and uses the
Fiat–Shamir transformation with statements in hashes [8] to defend against those
attacks. Henceforth, we write Helios’16 to refer to that formalisation.

Using our construction we derive an election scheme with internal authenti-
cation from Helios’16 and prove privacy and verifiability using our results.

Theorem 8. Let Ω be a digital signature scheme, Σ be a sigma protocol for
relation R(Helios’16, Ω), and H be a random oracle. Suppose Ω satisfies strong
unforgeability and Σ satisfies special soundness and special honest verifier zero-
knowledge. Election scheme with internal authentication Ext2Int(Helios’16, Ω,Σ,
H) satisfies Ballot-Secrecy-Int, Exp-IV-Int, Exp-UV-Int, and Exp-EV-Int.

Proof. Smyth shows that Helios’16 satisfies Ballot-Secrecy-Ext [36] and Smyth,
Frink & Clarkson show that Exp-IV-Ext and Exp-UV-Ext are satisfied too [40].
Moreover, FS(Σ,H) satisfies zero-knowledge by Theorem 10. Hence, we conclude
by Theorems 2 & 5.

Comparison with Helios-C. Schemes derived from Helios using our construction
are similar to Helios-C [15, 16]. Indeed, they use ballots that include a Helios
ballot and a signature on that Helios ballot. The schemes derived by our con-
struction also include proofs of correct construction, unlike Helios-C. We will see
that this distinction is crucial to ensure ballot secrecy.

Cortier et al. [15, §5] analysed Helios-C using the definition of ballot secrecy
by Bernhard et al. [8]. That definition assumes “ballots are recorded-as-cast,
i.e., cast ballots are preserved with integrity through the ballot collection pro-
cess” [36, §7]. Unfortunately, ballot secrecy is not satisfied without this assump-
tion, because Helios-C uses malleable ballots.

Remark 9. Helios-C does not satisfy Ballot-Secrecy-Int.

Proof sketch. An adversary can observe and block a voter’s ballot,14 extract the
underlying Helios ballot, sign that ballot, and post the ballot and signature on
the bulletin board. The adversary can then exploit the relation between ballots
to recover the voter’s vote from the election outcome. (Cf. [17].)

13 Beyond secrecy and verifiability, attacks against eligibility are also known [42, 27].
14 Ballot blocking violates the recorded-as-cast assumption used in Cortier et al.’s proof.



Ext2Int(Helios’16, Ω,Σ,H) ballots extend non-malleable Helios’16 ballots with
a signature and a proof demonstrating construction of both the embedded He-
lios’16 ballot and signature, thus, Ext2Int(Helios’16, Ω,Σ,H) uses non-malleable
ballots, so it is not similarly effected.

Beyond secrecy, Smyth, Frink & Clarkson [40] have shown that Helios-C
does not satisfy Exp-UV-Int. Hence, we improve upon Helios-C by satisfying
Ballot-Secrecy-Ext and Exp-UV-Int.

Our results can also be applied to the variant of Helios that applies a mixnet to
encrypted votes and decrypts the mixed encrypted votes to reveal the outcome [1,
11], rather than homomorphically combining encrypted votes and decrypting the
homomorphic combination to reveal the outcome. Tsoukalas et al. [45] released
Zeus as a fork of Helios spliced with mixnet code to derive an implementation of
that variant, and Yingtong Li released helios-server-mixnet as an extension of
Zeus with threshold asymmetric encryption.15 We could use our construction to
derive an election scheme with internal authentication from the mixnet variant
of Helios and use our privacy and verifiability results to prove security. Since the
ideas remain the same, we do not pursue further details.

7 Conclusion

This work was initiated by a desire to eliminate trust assumptions placed upon
the operators of external authentication services. Cortier et al. made progress
in this direction with Helios-C, which builds upon Helios by signing ballots.
We discovered that Helios-C does not satisfy ballot secrecy in the presence of
an adversary that controls the bulletin board or the communication channel,
and it is known that verifiability is not satisfied either. We realised that prov-
ing correct construction of both the Helios ballot and the signature suffices for
non-malleability. This prompted the design of our construction and led to the
accompanying security proofs that it produces voting systems satisfying ballot
secrecy and verifiability. Finally, we demonstrated the applicability of our re-
sults by applying our construction to the Helios voting system. The next step
would be to select a suitable sigma protocol and signature scheme to instantiate
our construction concretely. And an interesting and useful direction for future
work will be to consider, in general, the practical challenges of implementing our
construction efficiently.
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A Cryptographic primitives and security definitions

Definition 6 (Signature scheme (as formalized in [24])). A signature
scheme is a tuple (Gen,Sign,Verify) of probabilistic polynomial-time (PPT) al-
gorithms such that:

– Gen, denoted (pk , sk)← Gen(κ), takes a security parameter κ as input and
outputs a key pair (pk , sk).

– Sign, denoted σ ← Sign(sk ,m), takes a private key sk and message m as
input, and outputs a signature σ.

– Verify, denoted v ← Verify(pk ,m, σ), takes a public key pk , message m,
and signature σ as input, and outputs a bit v, which is 1 if the signature
successfully verifies and 0 otherwise. We assume Verify is deterministic.

Moreover, the scheme must be correct : there exists a negligible function negl,
such that for all security parameters κ and messages m, we have Pr[(pk , sk) ←
Gen(κ);σ ← Sign(sk ,m);Verify(pk ,m, σ) = 1] > 1− negl(κ).

Definition 7 (Strong unforgeability (as formalized in [40])). A signa-
ture scheme Γ = (Gen,Sign,Verify) satisfies strong unforgeability if for all PPT
adversaries A, there exists a negligible function negl, such that for all security pa-
rameters κ, we have Succ(Exp-StrongSign(Γ,A, κ)) ≤ negl(κ), where experiment
Exp-StrongSign is defined as follows:

Exp-StrongSign(Γ,A, κ) =

(pk , sk)← Gen(κ);
Msg ← ∅;
(m,σ)← AO(pk , κ);
if Verify(pk ,m, σ) = 1 ∧ (m,σ) 6∈ Msg then

return 1
else

return 0

The experiment defines an oracle O. On invocation O(m), oracle O computes a
signature σ ← Sign(sk ,m), records the request and response (m,σ) by updating
Msg to be Msg ∪ {(m,σ)}, and outputs σ.

Definition 8 (Non-interactive proof system (as formalized in [40])).
A non-interactive proof system for a relation R is a tuple of PPT algorithms
(Prove,Verify) such that:

– Prove, denoted σ ← Prove(s, w, κ), is executed by a prover to prove (s, w) ∈
R.



– Verify, denoted v ← Verify(s, σ, κ), is executed by anyone to check the
validity of a proof. We assume Verify is deterministic.

Moreover, the system must be complete: there exists a negligible function negl,
such that for all statement and witnesses (s, w) ∈ R and security parameters κ,
we have Pr[σ ← Prove(s, w, κ) : Verify(s, σ, κ) = 1] > 1− negl(κ).

Definition 9 (Fiat-Shamir transformation [18]). Given a sigma protocol
Σ = (Comm,Chal,Resp,VerifyΣ) for relation R and a hash function H, the Fiat-
Shamir transformation, denoted FS(Σ,H), is the non-interactive proof system
(Prove,Verify), defined as follows:

Prove(s, w, κ) =

(comm, t)← Comm(s, w, κ);
chal← H(comm, s);
resp← Resp(chal, t, κ);
return (comm, resp)

Verify(s, (comm, resp), κ) =

chal← H(comm, s);
return VerifyΣ(s, (comm, chal, resp), κ)

Definition 10 (Zero-knowledge (as formalized in [32])). Let ∆ = (Prove,
Verify) be a non-interactive proof system for a relation R, derived by application
of the Fiat-Shamir transformation [18] to a random oracle H and the sigma
protocol. Moreover, let S be an algorithm, A be an adversary, κ be a security
parameter, and ZK(∆,A,H,S, κ) be the following game.

ZK(∆,A,H,S, κ) =

β ←R {0, 1};
g ← AH,P(κ);
if g = β then

return 1
else

return 0

Oracle P is defined on inputs (s, w) ∈ R as follows:

– P(s, w) computes if β = 0 then σ ← Prove(s, w, κ) else σ ← S(s, κ) and
outputs σ.

And algorithm S can patch random oracleH.16 We say∆ satisfies zero-knowledge,
if there exists a probabilistic polynomial-time algorithm S, such that for all
probabilistic polynomial-time algorithm adversaries A, there exists a negligible
function negl, and for all security parameters κ, we have Succ(ZK(∆,A,H,S,
κ)) ≤ 1

2 + negl(κ). An algorithm S for which zero-knowledge holds is called a
simulator for (Prove,Verify).

16 Random oracles can be programmed or patched. We will not need the details of how
patching works, so we omit them here; see Bernhard et al. [8] for a formalisation.



Theorem 10 ([8]). Let Σ be a sigma protocol for relation R, and let H be a
random oracle. Suppose Σ satisfies special soundness and special honest verifier
zero-knowledge. Non-interactive proof system FS(Σ,H) satisfies zero-knowledge.

B Proof of Lemma 1

Let Γ = (SetupΓ ,VoteΓ ,TallyΓ ,VerifyΓ ), Ω = (GenΩ ,SignΩ ,VerifyΩ), FS(Σ,
H) = (ProveΣ ,VerifyΣ), and Ext2Int(Γ,Ω,Σ,H) = (Setup,Register,Vote,Tally,
Verify). Suppose κ is a security parameter, nb and nc are integers, and v1, . . . , vnb
∈ {1, . . . ,nc} are votes. Further suppose (pk , sk ,mb,mc) is an output of Setup(κ)
such that nb ≤ mb ∧ nc ≤ mc. By definition of Setup, we have (pk , sk ,mb,mc)
is an output of SetupΓ (κ). Suppose for each i ∈ {1, . . . ,nb} that (pd i, di) is an
output of Register(pk , κ) and bi is an output of Vote(di, pk ,nc, vi, κ). By defini-
tion of Register, we have for each i ∈ {1, . . . ,nb} that (pd i, di) is an output of
GenΩ(κ). And by definition of Vote, we have for each i ∈ {1, . . . ,nb} that bi is
a tuple (pd i, bi, σi, τi) such that bi = VoteΓ (pk ,nc, v, κ; r), σi = SignΩ(d , b; r′),
and τi is an output of ProveΣ((pk , b, σ,nc, κ), (v, r, d , r′), κ), where ri and r′i are
coins. Let bb = {b1, . . . ,bnb} and L = {pd1, . . . , pdnb}. Suppose v is the tally of
votes v1, . . . , vnb and (v′, pf ) is an output of Tally(sk ,nc, bb, L, κ). By definition
of Tally, we have (v′, pf ) is an output of TallyΓ (sk , auth(bb, L),nc, κ). It suffices
to prove b ∈ auth(bb, L) iff (pd , b, σ, τ) ∈ bb, because correctness of Γ ensures
outputs (vΓ , pf Γ ) of TallyΓ (sk , bb,nc, κ) are such that v = vΓ , with overwhelm-
ing probability. By correctness of Ω and completeness of (ProveΣ ,VerifyΣ), we
have auth(bb, L) = {b | (pd , b, σ, τ) ∈ bb ∧ (pd , b′, σ′, τ ′) 6∈ bb \ {(pd , b, σ, τ)} ∧
VerifyΩ(pd , b′, σ′) = 1}, with overwhelming probability. Moreover, since Γ sat-
isfies strong unforgeability, we have auth(bb, L) = {b | (pd , b, σ, τ) ∈ bb}, with
overwhelming probability.

C Ballot privacy: Definitions and proofs

We recall Smyth’s definition of ballot secrecy for election schemes with external
authentication (Definition 11), and present a natural, straightforward exten-
sion of that definition to capture ballot secrecy for election schemes with inter-
nal authentication (Definition 12). Our definitions both use predicate balanced
such that balanced(bb,nc, B) holds when: for all votes v ∈ {1, . . . ,nc} we have
|{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈ B}| = |{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ B}|. Intu-
itively, the definitions challenge an adversary to determine whether the left-right
oracle produces ballots for “left” or “right” inputs, by giving the adversary the
oracle’s outputs, as well as the election outcome and tallying proof. The defi-
nitions prevent the adversary from trivially distinguishing ballots by requiring
predicate balanced to hold.

Definition 11 (Ballot-Secrecy-Ext [36]). Let Γ = (Setup,Vote,Tally,Verify) be
an election scheme with external authentication, A be an adversary, κ be a
security parameter, and Ballot-Secrecy-Ext(Γ,A, κ) be the following game.



Ballot-Secrecy-Ext(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
nc ← A(pk , κ);
β ←R {0, 1};B ← ∅;
bb← AO();
(v, pf )← Tally(sk ,nc, bb, κ);
g ← A(v, pf );
if g = β ∧ balanced(bb,nc, B) ∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb then

return 1
else

return 0

Oracle O is defined as follows:17

– O(v0, v1) computes if v0, v1 ∈ {1, ...,nc} then b← Vote(pk ,nc, vβ , κ);B ←
B ∪ {(b, v0, v1)}; return b.

We say Γ satisfies Ballot-Secrecy-Ext, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Ballot-Secrecy-Ext(Γ,A, κ)) ≤ 1

2 + negl(κ).

Definition 12 (Ballot-Secrecy-Int). Let Γ = (Setup,Register,Vote,Tally,Verify)
be an election scheme with internal authentication, A be an adversary, κ be a
security parameter, and Ballot-Secrecy-Int(Γ,A, κ) be the following game.

Ballot-Secrecy-Int(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
nv ← A(pk , κ);
for 1 ≤ i ≤ nv do

(pd i, di)← Register(pk , κ);

nc ← A(pd1, . . . , pdnv );
β ←R {0, 1};B ← ∅;R← ∅;
bb← AO();
(v, pf )← Tally(sk ,nc, bb, {pd1, . . . , pdnv}, κ);
g ← A(v, pf );
if g = β ∧ balanced(bb,nc, B) ∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb then

return 1
else

return 0

Oracle O is defined as follows:

– O(i, v0, v1) computes if v0, v1 ∈ {1, ...,nc} ∧ i 6∈ R then b ← Vote(di, pk ,
nc, vβ , κ);B ← B ∪ {(b, v0, v1)};R← R ∪ {i}; return b; and

– O(i) computes if i 6∈ R then R← R ∪ {i}; return di.

We say Γ satisfies Ballot-Secrecy-Int, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Ballot-Secrecy-Int(Γ,A, κ)) ≤ 1

2 + negl(κ).

17 Oracles may access game parameters, e.g., pk .



Game Ballot-Secrecy-Int extends Ballot-Secrecy-Ext to take credentials into ac-
count. In particular, the challenger constructs nv credentials, where nv is chosen
by the adversary. These credentials are used to construct ballots and for tallying.
Public and private credentials are available to the adversary. Albeit, the oracle
will only reveal a private credential if it has not used it to construct a ballot.
Moreover, the oracle may only use a private credential to construct a ballot if it
has not revealed it nor constructed a previous ballot with it.

Proof of Theorem 2. Suppose Ballot-Secrecy-Int is not satisfied by Ext2Int(Γ,Ω,
Σ,H), i.e., there exists a adversary A such that for all negligible functions negl
there exists a security parameter κ and Succ(Ballot-Secrecy-Int(Ext2Int(Γ,Ω,Σ,
H),A, κ)) ≤ 1

2 + negl(κ). We construct an adversary B against Γ from A.
Let Γ = (SetupΓ ,VoteΓ ,TallyΓ ,VerifyΓ ), Ω = (GenΩ ,SignΩ ,VerifyΩ), FS(Σ,

H) = (ProveΣ ,VerifyΣ), and Ext2Int(Γ,Ω,Σ,H) = (Setup,Register,Vote,Tally,
Verify). By Theorem 10, non-interactive proof system (ProveΣ ,VerifyΣ) satisfies
zero-knowledge, i.e., there exists a simulator for (ProveΣ ,VerifyΣ). Let S be such
a simulator. We define B as follows:

– B(pk , κ) computes nv ← A(pk , κ); for 1 ≤ i ≤ nv do (pd i, di)← Register(pk ,
κ); nc ← A(pd1, . . . , pdnv ) and outputs nc.

– B() computes R ← ∅; bb ← AO(); bb ← auth(bb, {pd1, . . . , pdnv}) and
outputs bb, handling oracle calls from A as follows. Given an oracle call
O(i, v0, v1) such that v0, v1 ∈ {1, ...,nc} ∧ i 6∈ R, adversary B computes
b ← O(v0, v1);σ ← SignΩ(di, b); τ ← S((pk , b, σ,nc, κ), κ);R ← R ∪ {i} and
returns (pd i, b, σ, τ) toA. Moreover, given an oracle callO(i) such that i 6∈ R,
adversary B computes R← R ∪ {i} and returns di to A.

– B(v, pf ) computes g ← A(v, pf ) and outputs g.

We prove that B wins Ballot-Secrecy-Ext against Γ .
Suppose (pk , sk ,mb,mc) is an output of SetupΓ (κ) and nc is an output of

B(pk , κ). It is trivial to see that B(pk , κ) simulates A’s challenger to A. Let β be
a bit. Suppose bb is an output of B(). Since S is a simulator for (ProveΣ ,VerifyΣ),
we have B() simulates A’s challenger to A. In particular, B() simulates oracle
calls O(i, v0, v1). Indeed, adversary B computes b ← O(v0, v1);σ ← SignΩ(di,
b); τ ← S((pk , b, σ,nc, κ), κ), which, by definition of B’s oracle, is equivalent to
b ← VoteΓ (pk ,nc, vβ , κ);σ ← SignΩ(di, b); τ ← S((pk , b, σ,nc, κ), κ). And A’s
oracle computes b← Vote(di, pk ,nc, vβ , κ), i.e., b← VoteΓ (pk ,nc, vβ , κ; r);σ ←
SignΩ(di, b; r

′); τ ← ProveΣ((pk , b, σ,nc, κ), (vβ , r, di, r
′), κ), where r and r′ are

coins chosen uniformly at random. Hence, computations of b, σ and τ by B and
A’s oracle are equivalent, with overwhelming probability. Suppose (v, pf ) is an
output of TallyΓ (sk , bb,nc, κ) and g is an output of B(v, pf ). We have B(v, pf )
simulates A’s challenger to A, because outputs of TallyΓ (sk ′, auth(bb′, L),nc′,
κ′) and Tally(sk ′,nc′, bb′, L, κ′) are indistinguishable for all sk ′, bb′, L, nc′, and
κ′. Indeed, Tally computes (v′, pf ′) ← TallyΓ (sk ′, auth(bb′, L),nc′, κ′) and out-
puts (v′, pf ′). Since adversary B simulates A’s challenger, with overwhelming
probability. It follows that B determines β correctly with the same success as A



with overwhelming probability. Hence, B wins Ballot-Secrecy-Ext(Γ,A, κ), with
overwhelming probability, deriving a contradiction and concluding our proof.

D Election verifiability: Definitions and proofs

We recall definitions of individual, universal and eligibility verifiability by Smyth,
Frink & Clarkson [40], and prove that our construction ensures each of these
verifiability properties.

D.1 Individual verifiability

Definition 13 (Exp-IV-Ext [40]). Let Γ = (Setup,Vote,Tally,Verify) be an elec-
tion scheme with external authentication, A be an adversary, κ be a security
parameter, and Exp-IV-Ext(Γ,A, κ) be the following game.

Exp-IV-Ext(Γ,A, κ) =

(pk ,nc, v, v′)← A(κ);
b← Vote(pk ,nc, v, κ);
b′ ← Vote(pk ,nc, v′, κ);
if b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥ then

return 1
else

return 0

We say Γ satisfies Exp-IV-Ext, if for all probabilistic polynomial-time adversaries
A, there exists a negligible function negl, such that for all security parameters
κ, we have Succ(Exp-IV-Ext(Γ,A, κ)) ≤ negl(κ).

Definition 14 (Exp-IV-Int [40]). Let Γ = (Setup,Register,Vote,Tally,Verify)
be an election scheme with external authentication, A be an adversary, κ be a
security parameter, and Exp-IV-Int(Π,A, κ) be the following game.

Exp-IV-Int(Π,A, κ) =

(pk ,nv)← A(κ);
for 1 ≤ i ≤ nv do (pd i, di)← Register(pk , κ);
L← {pd1, . . . , pdnv};
Crpt ← ∅;
(nc, v, v′, i, j)← AC(L);
b← Vote(di, pk ,nc, v, κ);
b′ ← Vote(dj , pk ,nc, v′, κ);
if b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥ ∧ i 6= j ∧ di 6∈ Crpt ∧ dj 6∈ Crpt then

return 1
else

return 0

Oracle C is defined such that C(i) computes Crpt ← Crpt ∪ {di} and outputs
di, where 1 ≤ i ≤ nv .



We say Γ satisfies Exp-IV-Int, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Exp-IV-Int(Π,A, κ)) ≤ negl(κ).

Lemma 11 proves that our construction ensures individual verifiability. More-
over, the assumption that the underlying signature scheme satisfies strong un-
forgeability can be replaced by the assumption that the underlying election
scheme satisfies individual verifiability (Lemma 12).

Lemma 11. Let Γ = (Setup,Register,Vote,Tally,Verify) be an election scheme
with external authentication, Ω = (Gen,Sign,Verify) be a digital signature scheme,
Σ be a sigma protocol for relation R(Γ,Ω), and H be a hash function. Suppose Ω
satisfies strong unforgeability. We have Ext2Int(Γ,Ω,Σ,H) satisfies Exp-IV-Int.

Proof. Suppose Ext2Int(Γ,Π,Σ,H) does not satisfy Exp-IV-Int. Hence, there ex-
ists a PPT adversary A, such that for all negligible functions negl, there exists a
security parameter κ and negl(κ) < Succ(Exp-IV-Int(Ext2Int(Γ,Π,Σ,H),A, κ)).
We construct the following adversary B against strong unforgeability from A:

B(pd , κ) =

(pk ,nv)← A(κ);
i∗ ←R {1, . . . ,nv};
for i ∈ {1, . . . ,nv} \ {i∗} do (pd i, di)← Register(pk , κ);

(nc, v, v′, j, k)← AC({pd1, . . . , pd i∗−1, pd , pd i∗+1, . . . , pdnv});
if i∗ = k then

(pd j , b, σ, τ)← Vote(dj , pk ,nc, v, κ);

return (σ, b);

else if i∗ = j then
(pdk, b, σ, τ)← Vote(dk, pk ,nc, v′, κ);
return (σ, b);

else
abort;

where C(i) outputs di if i 6= i∗ and aborts otherwise. We prove that B wins
strong unforgeability against Ω.

Since adversary B chooses i∗ uniformly at random and independently of
adversary A, and since A is a winning adversary, hence, does not corrupt at
least two distinct credentials, we have that B aborts with a probability upper-
bounded by nv−2

nv . Let us consider the probability that B wins, when there is no
abort. Suppose (pd , d) is an output of Gen(κ), (pk ,nv) is an output of A(κ), and
i∗ is chosen uniformly at random from {1, . . . ,nv}. Further suppose (pd i, di) is
an output of Register(pk , κ) for each i ∈ {1, . . . ,nv} \ {i∗}. It is straightforward
to see that B simulates the challenger and oracle in Exp-IV-Int to A. Suppose (nc,
v, v′, j, k) is an output of AC({pd1, . . . , pd i∗−1, pd , pd i∗+1, . . . , pdnv}). Since A is
a winning adversary, outputs of Vote(dj , pk ,nc, v, κ) and Vote(dk, pk ,nc, v′, κ)
collide with non-negligible probability. Hence, if i∗ = k, then Vote(dj , pk ,nc, v,
κ) outputs (pd j , b, σ, τ) such that σ is a signature on b with respect to private key



di∗ , otherwise (i∗ = j), Vote(dk, pk ,nc, v′, κ) outputs (pdk, b, σ, τ) such that σ is
a signature on b with respect to private key di∗ . Thus, Succ(Exp-StrongSign(Γ,
B, κ)) is at least 2

nv · Succ(Exp-IV-Int(Ext2Int(Γ,Π,Σ,H),A, κ)), which is non-
negligible.

Lemma 12. Let Γ be an election scheme with external authentication, Ω be a
digital signature scheme, Σ be a sigma protocol for relation R(Γ,Ω), and H be a
hash function. Suppose Ω satisfies strong unforgeability. If Γ satisfies Exp-IV-Ext,
then Ext2Int(Γ,Ω,Σ,H) satisfies Exp-IV-Int.

Since voters can check that their ballots appear on the bulletin board in Γ and
ballots in Ext2Int(Γ,Ω,Σ,H) embed ballots from Γ , we have voters can check
that their ballots appear on the bulletin board in Ext2Int(Γ,Ω,Σ,H) too, i.e.,
Ext2Int(Γ,Ω,Σ,H) satisfies individual verifiability. In the context of [40], Frink
proved a similar lemma and the following proof adapts his unpublished work.

Proof. Suppose Ext2Int(Γ,Π,Σ,H) does not satisfy Exp-IV-Int. Hence, there ex-
ists a PPT adversary A, such that for all negligible functions negl, there exists a
security parameter κ and negl(κ) < Succ(Exp-IV-Int(Ext2Int(Γ,Π,Σ,H),A, κ)).
We construct the following adversary B against Exp-IV-Ext from A.

B(κ) =

(pk , nV )← A(κ);
for 1 ≤ i ≤ nv do (pd i, di)← Register(pk , κ);
L← {pd1, . . . , pdnv};
(nc, v, v′, i, j)← AC(L);
return (nc, v, v′)

Adversary B responds to A’s oracle calls C(`) by outputting sk `. We prove that
B wins Exp-IV-Ext.

It is trivial to see that B simulates A’s challenger and oracle to A. Moreover,
by definition of Ext2Int(Γ,Π,Σ,H), we have ballots in Ext2Int(Γ,Π,Σ,H) embed
ballots from Γ . It follows that any collision in Ext2Int(Γ,Π,Σ,H) implies a colli-
sion in Γ . Hence, Succ(Exp-IV-Int(Ext2Int(Γ,Π,Σ,H),A, κ)) ≤ Succ(Exp-IV-Ext(
Γ,B, κ)), concluding our proof.

D.2 Universal verifiability

Election schemes with external authentication. Algorithm Verify is re-
quired to accept iff the election outcome is correct. The notion of a correct out-
come is captured using function correct-outcome, which is defined such that for
all pk , nc, bb, κ, `, and v ∈ {1, . . . ,nc}, we have correct-outcome(pk ,nc, bb, κ)[v]
= ` iff ∃=`b ∈ bb \ {⊥} : ∃r : b = Vote(pk ,nc, v, κ; r),18 and the vector
produced by correct-outcome is of length nc. Hence, component v of vector

18 Function correct-outcome uses a counting quantifier [34] denoted ∃=. Predicate
(∃=`x : P (x)) holds exactly when there are ` distinct values for x such that P (x) is
satisfied. Variable x is bound by the quantifier, whereas ` is free.



correct-outcome(pk ,nc, bb, κ) equals ` iff there exist ` ballots on the bulletin
board that are votes for candidate v. The function requires ballots to be inter-
preted for only one candidate, which can be ensured by injectivity.

Definition 15 ([40]). An election scheme with external authentication (Setup,
Vote,Tally,Verify) satisfies Injectivity, if for all security parameters κ, public
keys pk , integers nc, and votes v and v′, such that v 6= v′, we have Pr[b ←
Vote(pk ,nc, v, κ); b′ ← Vote(pk ,nc, v′, κ) : b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

The if requirement of universal verifiability is captured by Completeness,
which stipulates that election outcomes produced by algorithm Tally will actu-
ally be accepted by algorithm Verify. And the only if requirement is captured
by Soundness, which challenges an adversary to concoct a scenario in which al-
gorithm Verify accepts, but the election outcome is not correct. Combining these
definitions we can formulate universal verifiability.

Definition 16 ([40]). An election scheme with external authentication (Setup,
Vote,Tally,Verify) satisfies Completeness, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ it holds that Pr[(pk , sk ,mb,mc)← Setup(κ); (bb,nc)← A(pk , κ);
(v, pf ) ← Tally(sk ,nc, bb, κ) : |bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk ,nc, bb,v, pf ,
κ) = 1] > 1− negl(κ).

Definition 17 ([40]). An election scheme with external authentication (Setup,
Vote,Tally,Verify) satisfies Soundness, if the scheme satisfies Injectivity and for
all probabilistic polynomial-time adversaries A, there exists a negligible function
negl, such that for all security parameters κ, we have Pr[(pk ,nc, bb,v, pf ) ←
A(κ); return v 6= correct-outcome(pk ,nc, bb, κ) ∧ Verify(pk ,nc, bb,v, pf , κ) =
1] ≤ negl(κ).

Definition 18 (Exp-UV-Ext [40]). An election scheme with external authenti-
cation satisfies Exp-UV-Ext, if Injectivity, Completeness and Soundness are sat-
isfied.

Election schemes with internal authentication. Function correct-outcome
is now modified to tally only authorised ballots: let function correct-outcome
now be defined such that for all pk , nc, bb, M , κ, `, and v ∈ {1, . . . ,nc}, we
have correct-outcome(pk ,nc, bb,M, κ)[v] = ` iff ∃=`b ∈ authorized(pk ,nc, (bb \
{⊥}),M, κ) : ∃d , r : b = Vote(d , pk ,nc, v, κ; r). A ballot is authorised if it
is constructed with a private credential from M , and that private credential
was not used to construct any other ballot on bb. Let authorized be defined
as follows: authorized(pk ,nc, bb,M, κ) = {b : b ∈ bb ∧ ∃pd , d , v, r : b =
Vote(d , pk ,nc, v, κ; r) ∧ (pd , d) ∈ M ∧ ¬∃b′, v′, r′ : b′ ∈ (bb \ {b}) ∧ b′ =
Vote(d , pk ,nc, v′, κ; r′)}.

Definition 19 ([40]). An election scheme with internal authentication (Setup,
Register,Vote,Tally,Verify) satisfies Injectivity, if for all security parameters κ,



public keys pk , integers nc, and votes v and v′, such that v 6= v′, we have
Pr[(pd , d)← Register(pk , κ); (pd ′, d ′)← Register(pk , κ); b← Vote(d , pk ,nc, v, κ);
b′ ← Vote(d ′, pk ,nc, v′, κ) : b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Definition 20 ([40]). An election scheme with internal authentication (Setup,
Register,Vote,Tally,Verify) satisfies Completeness, if for all probabilistic polyno-
mial-time adversaries A, there exists a negligible function negl, such that for all
security parameters κ, we have Pr[(pk , sk ,mb,mc) ← Setup(κ); nv ← A(pk , κ);
for 1 ≤ i ≤ nv do (pd i, di) ← Register(pk , κ); L ← {pd1, . . . , pdnv};M ←
{(pd1, d1), . . . , (pdnv , dnv )}; (bb,nc) ← A(M); (v, pf ) ← Tally(sk ,nc, bb, L, κ) :
|bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk ,nc, bb, L,v, pf , κ) = 1] > 1− negl(κ).

Definition 21 ([40]). An election scheme with internal authentication (Setup,
Register,Vote,Tally,Verify) satisfies Soundness, if the scheme satisfies Injectiv-
ity and for all probabilistic polynomial-time adversaries A, there exists a neg-
ligible function negl, such that for all security parameters κ, we have Pr[(pk ,
nv) ← A(κ); for 1 ≤ i ≤ nv do (pd i, di) ← Register(pk , κ); L ← {pd1, . . . ,
pdnv};M ← {(pd1, d1), . . . , (pdnv , dnv )}; (bb,nc,v, pf ) ← A(M); return v 6=
correct-outcome(pk ,nc, bb,M, κ) ∧ Verify(pk ,nc, bb, L,v, pf , κ) = 1] ≤ negl(κ).

Definition 22 (Exp-UV-Int [40]). An election scheme with internal authentica-
tion satisfies Exp-UV-Int, if Injectivity, Completeness and Soundness are satisfied.

Our construction ensures universal verifiability. We prove that our con-
struction ensures Injectivity, Completeness, and Soundness.

Lemma 13. Let Γ = (SetupΓ ,VoteΓ ,TallyΓ ,VerifyΓ ) be an election scheme with
external authentication, Ω = (GenΩ ,SignΩ ,VerifyΩ) be a perfectly correct digi-
tal signature scheme, Σ be a sigma protocol for relation R(Γ,Ω), and H be a
random oracle. Moreover, let FS(Σ,H) = (ProveΣ ,VerifyΣ). Suppose Γ satis-
fies Exp-UV-Ext, Ω satisfies strong unforgeabilityand Σ satisfies perfect special
soundness and special honest verifier zero-knowledge. Election scheme with in-
ternal authentication Ext2Int(Γ,Ω,Σ,H) = (Setup,Register,Vote,Tally,Verify)
satisfies Exp-UV-Int.

Proof. We prove that Ext2Int(Γ,Ω,Σ,H) satisfies Injectivity, Completeness and
Soundness:

Injectivity. Algorithm Vote outputs ballots (pd , b, σ, τ) such that b is an output
of VoteΓ . Hence, injectivity of Ext2Int(Γ,Ω,Σ,H) follows from Injectivity of Γ ,
because injectivity guarantees that b is distinct from other ballots output by
VoteΓ .

Completeness. We prove that Ext2Int(Γ,Ω,Σ,H) satisfies Completeness by con-
tradiction. Suppose Ext2Int(Γ,Ω,Σ,H) does not satisfy Completeness, i.e., there
exists an adversary A such that for all negligible functions negl there exists a
security parameter κ and the probability defined in Definition 20 is less or equal



to negl(κ). We use A to construct an adversary B that breaks Completeness of
Γ .

B(κ) =

(pk , sk ,mb,mc)← Setup(κ);
nv ← A(pk , κ);
for 1 ≤ i ≤ nv do

(pd i, di)← Register(pk , κ);

L = {pd1, . . . , pdnv};
M ← {(pd1, d1), . . . , (pdnv , dnv )};
(bb,nc)← A(M);
return (auth(bb, L),nc)

We prove that B breaks Completeness of Γ .
Suppose (pk , sk ,mb,mc) is an output of Setup(κ), nv is an output ofA(pk , κ),

and (pd1, d1), . . . , (pdnv , dnv ) are outputs of Register(pk , κ). Let L = {pd1, . . . ,
pdnv} and M = {(pd1, d1), . . . , (pdnv , dnv )}. Suppose (bb,nc) is an output of
A(M). Further suppose (auth(bb, L),nc) is an output of B(κ). Suppose (v, pf )
is the output of Tally(sk ,nc, bb, L, κ). By definition, this is the output of TallyΓ (
sk , auth(bb, L),nc, κ).

Since A is a winning adversary, we have Verify(pk ,nc, bb, L,v, pf , κ) = 1 with
probability less or equal to 1 − negl(κ). By definition, Verify’s output coincides
with the output of VerifyΓ (pk , auth(bb, L),nc,v, pf , κ), which will, by the above,
be equal to 1 with probability less or equal to 1 − negl(κ), meaning that Com-
pleteness of Γ does not hold. Thereby deriving a contradiction and concluding
our proof.

Soundness. We prove that Ext2Int(Γ,Ω,Σ,H) satisfies Soundness by contradic-
tion. Suppose Ext2Int(Γ,Ω,Σ,H) does not satisfy Soundness, i.e., there exists
an adversary A such that for all negligible functions negl there exists a security
parameter κ and the probability defined in Definition 21 is greater than negl(κ).
We use A to construct an adversary B that wins the Soundness game against Γ .

B(κ) =

(pk ,nv)← A(κ);
for 1 ≤ i ≤ nv do

(pd i, di)← Register(pk , κ);

L = {pd1, . . . , pdnv};
M ← {(pd1, d1), . . . , (pdnv , dnv )};
(bb,nc,v, pf )← A(M);
return (pk ,nc, auth(bb, L),v, pf )

We prove that B wins the Soundness game against Γ .
Suppose (pk ,nv) is an output of A(κ) and (pd1, d1), . . . , (pdnv , dnv ) are out-

puts of Register(pk , κ). Let L = {pd1, . . . , pdnv} and M = {(pd1, d1), . . . , (pdnv ,
dnv )}. Suppose (bb,nc,v, pf ) is an output of A(M). Further suppose (pk ,nc,
auth(bb, L),v, pf ) is an output of B(κ). Since A is a winning adversary, we have



Verify(pk ,nc, bb, L,v, pf , κ) = 1, with non-negligible probability. By inspection
of algorithm Verify, we have Verify(pk ,nc, bb, L,v, pf , κ) = 1 implies VerifyΓ (pk ,
auth(bb, L),nc,v, pf , κ) = 1. Hence, it remains to show v 6= correct-outcome(pk ,
nc, auth(bb, L), κ), with probability greater than negl(κ).

By definition of function correct-outcome, we have v is a vector of length nc
such that

correct-outcome(pk ,nc, auth(bb, L), κ)[v] = `

⇔ ∃=`b ∈ auth(bb, L) \ {⊥} : ∃r : b = Vote(pk ,nc, v, κ; r)

Since A is a winning adversary, it suffices to derive

⇔ ∃=`b ∈ authorized(pk ,nc, (bb \ {⊥}),M, κ)

: ∃d , r : b = Vote(d , pk ,nc, v, κ; r) (1)

Let set auth∗(pk ,nc, bb,M, κ) = {b∗|(pd , b∗, σ, τ) ∈ authorized(pk ,nc, bb,M, κ)}.
To prove (1), it suffices to show auth(bb, L)\{⊥} = auth∗(pk ,nc, bb,M, κ)\{⊥},
since this would imply that correct-outcome is computed on sets of corresponding
ballots in both the external and internal authentication setting.

We proceed the proof as follows.

– auth∗(pk ,nc, bb,M, κ) \ {⊥} ⊆ auth(bb, L) \ {⊥}
If b∗ ∈ auth∗(pk ,nc, bb,M, κ), then b∗ 6= ⊥ and there exists b ∈ authorized(
pk ,nc, bb,M, κ) such that:
1. b ∈ bb;
2. ∃pd , d , v, r, r′, r′′ : b = (pd , b∗, σ, τ), b∗ = VoteΓ (pk ,nc, v, κ; r),
σ = SignΩ(d , b∗; r′), and τ = ProveΣ((pk , b∗, σ,nc, κ), (v, r, d , r′), κ; r′′),
which, by correctness of Ω and completeness of Σ, implies VerifyΩ(pd ,
b∗, σ) = 1 and VerifyΣ((pk , b∗,nc, κ), τ, κ)) = 1;

3. (pd , d) ∈M , which implies pd ∈ L by construction; and
4. ¬∃b′, v′, r, r′, r′′ : b′ ∈ (bb \ {b}) ∧ b′ = (pd , b∗

′
, σ′, τ ′), b∗

′
=

VoteΓ (pk ,nc, v′, κ; r), σ′ = SignΩ(d , b∗
′
; r′), and τ ′ = ProveΣ((pk , b∗

′
,

σ′,nc, κ), (v′, r, d , r′), κ; r′′), which, by correctness of Ω, implies VerifyΩ(
pd , b∗

′
, σ′) = 1.

It follows by (1)–(4) that b∗ ∈ auth∗(pk ,nc, bb,M, κ) implies b∗ ∈
auth(bb, L) \ {⊥}.

– auth(bb, L) \ {⊥} ⊆ auth∗(pk ,nc, bb,M, κ) \ {⊥}
If b∗ ∈ auth(bb, L) \ {⊥}, then b∗ 6= ⊥ such that:
1. (pd , b∗, σ, τ) ∈ bb;
2. VerifyΩ(pd , b∗, σ) = 1 and VerifyΣ((pk , b∗,nc, κ), τ, κ)) = 1, which, by the

security ofΩ andΣ, implies ∃pd , d , v, r, r′, r′′ : b∗ = VoteΓ (pk ,nc, v, κ; r),
σ = SignΩ(d , b∗; r′), and τ = ProveΣ((pk , b∗, σ,nc, κ), (v, r, d , r′), κ; r′′).
Indeed, suppose this is not true, i.e., such values do not exist. Then
(b∗, σ) and ((pk , b∗,nc, κ), τ) could be used by adversaries to break the
unforgeability property of Ω and the special soundness and special hon-
est verifier zero-knowledge property of Σ, respectively.



3. pd ∈ L, which implies (pd , d) ∈M by construction; and

4. b′ = (pd , b∗
′
, σ′, τ ′) /∈ (bb \ {(pd , b∗, σ, τ)}) ∧ VerifyΩ(pd , b∗

′
, σ′) = 1,

which implies ¬∃b′, v′, r, r′, r′′ : b′ ∈ (bb\{b})∧b′ = (pd , b∗
′
, σ′, τ ′), b∗

′
=

VoteΓ (pk ,nc, v′, κ; r), σ′ = SignΩ(d , b∗
′
; r′), and τ ′ = ProveΣ((pk , b∗

′
, σ′,

nc, κ), (v′, r, d , r′), κ; r′′), as per definition of authorized , concluding our
proof.

D.3 Eligibility verifiability

Definition 23 (Eligibility verifiability[40]). Let Γ = (Setup,Register,Vote,
Tally,Verify) be an election scheme with internal authentication, A be an ad-
versary, κ be a security parameter, and Exp-EV-Int(Π,A, κ) be the following
game.

Exp-EV-Int(Π,A, κ) =

(pk ,nv)← A(κ);
for 1 ≤ i ≤ nv do (pd i, di)← Register(pk , κ);
L← {pd1, . . . , pdnv};
Crpt ← ∅; Rvld ← ∅;
(nc, v, i, b)← AC,R(L);
if ∃r : b = Vote(di, pk ,nc, v, κ; r) ∧ b 6= ⊥ ∧ b 6∈ Rvld ∧ di 6∈ Crpt then

return 1
else

return 0

Oracle C is the same oracle as in Exp-IV-Int, and oracle R is defined such that
R(i, v,nc) computes b← Vote(di, pk ,nc, v, k); Rvld ← Rvld ∪{b} and outputs b.

We say Γ satisfies Exp-EV-Int, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Exp-EV-Int(Π,A, κ)) ≤ negl(κ).

Lemma 14. Let Γ = (SetupΓ ,VoteΓ ,TallyΓ ,VerifyΓ ) be an election scheme
with external authentication, Ω = (GenΩ ,SignΩ ,VerifyΩ) be a digital signa-
ture scheme, Σ be a sigma protocol for relation R(Γ,Ω), and H be a hash
function. Suppose Σ satisfies special soundness and special honest verifier zero-
knowledge, and Ω satisfies strong unforgeability. Election scheme with internal
authentication Ext2Int(Γ,Ω,Σ,H) = (Setup,Register,Vote,Tally,Verify) satisfies
Exp-EV-Int.

Proof. Suppose Ext2Int(Γ,Ω,Σ,H) does not satisfy Exp-EV-Int, i.e., there exists
an adversary A such that for all negligible functions negl there exists a secu-
rity parameter κ and Succ(Exp-EV-Int(Π,A, κ)) > negl(κ). We construct the
following adversary B against the strong unforgeability of Ω from A.



B(pd , κ) =

(pk ,nv)← A(κ);
i∗ ←R {1, ...,nv};
for i ∈ {1, ...,nv} \ {i∗} do (pd i, di)← Register(pk , κ);
Rvld ← ∅; Crpt ← ∅;
(nc, v, i, b)← AC,R({pd1, . . . , pd i∗−1, pd , pd i∗+1, . . . , pdnv});
if b[1] = pd then

return (b[2], b[3]);
else

abort;

where oracle calls are handled as follows:

– C(i) computes Crpt ← Crpt ∪ {di} and returns di, if i 6= i∗ and aborts
otherwise.

– R(i, v,nc) distinguishes two cases: If i = i∗, then B computes b ← VoteΓ (
pk ,nc, v, κ);σ ← O(b); τ ← S((pk , b, σ,nc, κ), κ), computes Rvld ← Rvld ∪
{(pd , b, σ, τ)}, and returns (pd , b, σ, τ), where S is a simulator for FS(Σ,H)
that exists by Theorem 10. Otherwise, B computes b← Vote(di, pk ,nc, v, κ),
Rvld ← Rvld ∪ {b} and returns b.

We prove that B wins the strong unforgeability game against Ω.
Let κ be a security parameter. Suppose (pd , d) is an output of Gen(κ) and

(pk ,nv) is an output of A(κ). Let i∗ be an integer chosen uniformaly at ran-
dom from {1, ...,nv}. Suppose (pd i, di) is an output of Register(pk , κ), for each
i ∈ {1, ...,nv} \ {i∗}. Let us consider an execution of A({pd1, . . . , pd i∗−1, pd ,
pd i∗+1, . . . , pdnv}). Let (nc, v, i, b) be the output of A. By definition of algorithm
Register, it is trivial to see that B simulates A’s challenger to A. Moreover, B
simulates oracle C to A, except when B aborts. Furthermore, B simulates oracle
R to A as well. In particular, simulator S produces proofs that are indistinguish-
able from proofs constructed by non-interactive proof system FS(Σ,H).

We denote by Good the event that i = i∗. Now, let us assess B’s probability
not to abort, to determine the success probability of B. Since A is not allowed to
corrupt the credential it finally outputs (as A is a winning adversary, di /∈ Crpt
must hold), a sufficient condition for B not to be asked for the unknown private
credential di is to be lucky when drawing i∗ ← {1, ...,nv} at random and have
event Good occurring.

This is the case with probability Pr[Good] = 1
nv since the choice of i∗ is

completely independent of A’s view. Therefore we have

Succ(Exp-EV-Int(Π,A, κ)) ≤ nv · Succ(Exp-StrongSign(Ω,B, k)),

thereby concluding our proof.
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