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Abstract
Oblivious RAM is a well-known cryptographic primitive
to hide data access patterns. However, the best known
ORAM schemes require a logarithmic computation time
in the general case which makes it infeasible for use in
real-world applications. In practice, hiding data access
patterns should incur a constant latency per access.

In this work, we present PRO-ORAM— an ORAM
construction that achieves constant latencies per access
in a large class of applications. PRO-ORAM theoretically
and empirically guarantees this for read-only data access
patterns, wherein data is written once followed by read
requests. It makes hiding data access pattern practical
for read-only workloads, incurring sub-second computa-
tional latencies per access for data blocks of 256 KB,
over large (gigabyte-sized) datasets. PRO-ORAM sup-
ports throughputs of tens to hundreds of MBps for fetch-
ing blocks, which exceeds network bandwidth avail-
able to average users today. Our experiments suggest
that dominant factor in latency offered by PRO-ORAM
is the inherent network throughput of transferring final
blocks, rather than the computational latencies of the
protocol. At its heart, PRO-ORAM utilizes key obser-
vations enabling an aggressively parallelized algorithm
of an ORAM construction and a permutation operation,
as well as the use of trusted computing technique (SGX)
that not only provides safety but also offers the advantage
of lowering communication costs.

1 Introduction
Cloud storage services such as Dropbox [1], Google
Drive [2], Box [3] are becoming popular with millions
of users uploading Gigabytes of data everyday [4]. How-
ever, outsourcing data to untrusted cloud storage poses
several privacy and security issues [5]. Although encryp-
tion of data on the cloud guarantees data confidentiality,
it is not sufficient to protect user privacy. Research has
shown that access patterns on encrypted data leak sub-
stantial private information such as secret keys and user
queries [6,7]. One line of research to stop such inference
is the use of Oblivious RAM (ORAM) [8]. ORAM pro-
tocols continuously shuffle the encrypted data blocks to
avoid information leakage via the data access patterns.

Although a long line of research has improved the per-
formance overhead of ORAM solutions [9–14], it is still

considerably high for use in practice. Even the most effi-
cient ORAM solutions incur at least logarithmic latency
to hide read / write access patterns [10, 14, 15], which is
the established lower bound for the general case. Ide-
ally, hiding access patterns should incur a constant ac-
cess (communication) latency for the client, independent
of the size of data stored on the cloud server, and constant
computation time per access for the cloud server. To re-
duce the logarithmic access time to a constant, we inves-
tigate the problem of designing solutions to hide specific
patterns instead of the general case.

We observe that a large number of cloud-based storage
services have a read-only model of data consumption.
An application can be categorized in this model when it
offers only read operations after the initial upload (write)
of the content to the cloud. For example, services host-
ing photos (e.g., Flickr, Google Photos, Moments), mu-
sic (e.g., Itunes, Spotify), videos (e.g., NetFlix, Youtube)
and PDF documents (e.g., Dropbox, Google Drive) often
exhibit such patterns. Recently, Blass et al. have shown
that designing an efficient construction is possible for
“write-only” patterns wherein the read accesses are not
observable to the adversary (e.g. in logging or snapshot
/ sync cloud services) [16]. Inspired by such specialized
solutions, we ask whether it is possible to achieve con-
stant latency to hide read-only access patterns? As our
main contribution, we answer the above question affir-
matively for all cloud-based data hosting applications.

1.1 Approach

We propose PRO-ORAM— a practical ORAM construc-
tion for cloud-based data hosting services offering con-
stant latency for read-only accesses. The key idea to
achieve constant latencies is to decompose every request
to read a data block into two separate sub-tasks of “ac-
cess” and “shuffle” which can execute in parallel. How-
ever, simply parallelizing the access and shuffle opera-
tions is not enough to achieve constant latencies. Previ-
ous work that employs such parallelization for the gen-
eral case would incur a logarithmic slowdown even for
read-only accesses due to the inherent design of the un-
derlying ORAM protocols [17].

In designing PRO-ORAM, we make two important ob-
servations that allow us to achieve constant latency. First,
we observe that there exists a simple ORAM construc-
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tion — the square-root ORAM [8] — which can be
coupled with a secure permutation (or shuffle) [18] to
achieve idealized efficiency in the read-only model. A
naı̈ve use of this ORAM construction incurs a worst-case
overhead of O(N log2 N) to shuffle the entire memory
with N data blocks. The non-updatable nature of read-
only data allows us to parallelize the access and shuffle
operations on two separate copies of the data. This re-
sults in a de-amortized O(

√
N) latency per access.

Second, we design a secure method to distribute the
work done in each shuffle step among multiple compu-
tational units without compromising the original secu-
rity guarantees. Our construction still performs O(

√
N)

work per access but it is parallelized aggressively to ex-
ecute in a constant time. Assuming a sufficient number
of cores, PRO-ORAM distributes the total shuffling work
among O(

√
N) threads without leaking any information.

Although the total computation work is the same as in
the original shuffle algorithm, the latency reduces to a
constant for read streaks1. With these two observations,
we eliminate the expensive O(N log2 N) operation from
stalling subsequent read access requests in PRO-ORAM.
Thus, we show that a basic ORAM construction is bet-
ter for hiding read data access patterns than a complex
algorithm that is optimized to handle the general case.
Further, we present a proof for the correctness and se-
curity of PRO-ORAM. Our improved construction of the
shuffle algorithm maybe of independent interest, as it is
widely applicable beyond ORAM constructions.
PRO-ORAM can be applied opportunistically for ap-

plications that expect to perform long streaks of read
accesses intermixed with infrequent writes, incurring a
non-constant cost only on write requests. Therefore,
PRO-ORAM extends obliviousness to the case of ar-
bitrary access patterns, providing idealized efficiency
for “read-heavy” access patterns (where long streaks
of reads dominate). To reduce trust on software,
PRO-ORAM assumes the presence of a trusted hardware
(such as Intel SGX [19], Sanctum [20]) or a trusted proxy
as assumed in previous work on ORAMs [17, 21, 22].

1.2 Results

We implement PRO-ORAM prototype in C/C++ using
Intel SGX Linux SDK v1.8 containing 4184 lines of
code [23]. We evaluate PRO-ORAM using Intel SGX
simulator for varying file / block sizes and total data
sizes. Our experimental results demonstrate that the la-
tency per access observed by the user is a constant of
about 0.3 seconds to fetch a file (or block) of size 256
KB. Our empirical results show that PRO-ORAM is prac-
tical to use with a throughput ranging from 83 Mbps for
block size of 100 KB to 235 Mbps for block size of 10
MB. These results are achieved on a server with 40 cores.

1A read streak is a sequence of consecutive read operations.

In real cloud deployments, the cost of a deca-core server
is about a thousand dollars [24]; so, the one-time setup
cost of buying 40 cores worth of computation seems rea-
sonable. Thus, PRO-ORAM is ideal for sharing and ac-
cessing media files (e.g., photos, videos, music) having
sizes of few hundred KB on today’s cloud platforms.
PRO-ORAM’s throughput exceeds the global average net-
work bandwidth of 7 Mbps asserting that the inherent
network latency dominates the overall access time rather
than computation latencies in PRO-ORAM [25].

Contributions. We summarize our contributions below:

• Read-only ORAM. We present PRO-ORAM— a
practical and secure read-only ORAM design for
cloud-based data hosting services. PRO-ORAM’s
design utilizes sufficient computing units equipped
with a trusted hardware primitive.
• Security Proof. We provide a security proof to guar-

antee that our PRO-ORAM construction provides
obliviousness in the read-only data model.
• Efficiency Evaluation. PRO-ORAM is highly prac-

tical with constant latency per access for fixed
block sizes and provides throughput ranging from
83 Mbps for a block size of 100 KB to 235 Mbps
for a block size of 10 MB.

2 Overview
Our main goal is to ensure two important characteristics:
a) hide read data access patterns on the cloud server; and
b) achieve constant time to access each block from the
cloud storage server.

2.1 Setting: Read-Only Cloud Services

Many applications offer data hosting services for im-
ages (e.g., Flickr, Google Photos, Moments), music (e.g.,
Itunes, Spotify), videos (e.g., NetFlix, Youtube), and
PDF documents (e.g., Dropbox, Google Drive). In these
applications, either the users (in the case of Dropbox)
or the service providers (such as NetFlix, Spotify) up-
load their data to the cloud server. Note that the cloud
provider can be different from the service provider, for
example, Netflix uses Amazon servers to host their data.
After the initial data is uploaded, users mainly perform
read requests to access the data from the cloud.

Let a data owner upload N files each having a file iden-
tifier to the cloud. A file is divided into data blocks of
size B and stored in an array on the untrusted storage
at the server. Each block is accessed using its corre-
sponding address in the storage array. To handle vari-
able length files, one can split large files into several data
blocks and maintain a file to blocks mapping table. How-
ever, for simplicity, we assume each file maps to a single
block and hence use the terms file and block interchange-
ably in this paper. When a user requests to fetch a file,
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Figure 1: Baseline setting: Cloud-provider with trusted hard-
ware and compromised software stack. User uploads data and
makes read request to the data

the corresponding data block is read from the storage ar-
ray and is sent to the user. To ensure confidentiality of
the data, all the files are encrypted using a cryptographic
key. The data is decrypted only on the user machine us-
ing the corresponding key.

2.2 Threat Model

Leakage of access patterns is a serious issue and has
been shown to leak critical private information in sev-
eral settings such as encrypted emails, databases and oth-
ers [6, 7]. In our threat model, we consider that the ad-
versary has complete access to the encrypted storage on
the cloud. An attacker can exploit the vulnerabilities in
the cloud software to gain access to the cloud infrastruc-
ture including the storage system which hosts encrypted
content [5, 26]. Hence, we consider the cloud provider
to be untrusted with a compromised software stack. The
cloud provider can trace the requests or file access pat-
terns of all the users accessing the encrypted data. We
restrict each request to only read the data from the server.
Essentially, the adversary can observe the exact address
accessed in the storage array to serve each requested file.
Along with access to the storage system, the adversary
can observe the network traffic consisting of requested
data blocks sent to each user.

Scope. Our main security goal is to guarantee oblivious-
ness i.e., hide read access patterns of users from the cloud
provider. Although we consider a compromised server,
we do not defend against a cloud provider refusing to
relay the requests to the user. Such denial of service at-
tacks are not within the scope of this work. We only
focus on leakage through address access patterns and do
not block other channels of leakage such as timing or file
length [27]. For example, an adversary can observe the
number of blocks fetched per request or the frequency
of requesting files to glean private information about the
user. However, our system can benefit from existing so-
lutions that thwart these channels using techniques such
as padding files with dummy blocks and allowing file re-

quests at fixed interval respectively [28].

2.3 Baseline: Trusted H/W in the Cloud

A well-known technique to hide data access patterns is
using Oblivious RAM (ORAM) [8]. In ORAM proto-
cols, the encrypted data blocks are obliviously shuffled
at random to unlink subsequent accesses to the same data
blocks. Standard ORAM solutions guarantee oblivious-
ness in a trusted client and an untrusted server setting. It
generally uses a private memory called stash at the client-
side to perform oblivious shuffling and re-encryption of
the encrypted data. In the best case, this results in a loga-
rithmic communication overhead between the client and
the server [10]. To reduce this overhead, previous work
has proposed the use of a trusted hardware / secure pro-
cessor [21, 22] in the cloud or a trusted proxy [17]. This
allows us to establish the private stash and a small trusted
code base (TCB) to execute the ORAM protocol in the
cloud. That is, instead of the client, the trusted com-
ponent on the cloud shuffles the encrypted data, thereby
reducing the communication overhead to a constant. Fur-
ther, the trusted component can verify the integrity of
the accessed data and protect against a malicious cloud
provider [17]. Figure 1 shows the architecture for our
baseline setting with a trusted hardware and a compro-
mised software stack on the cloud.

In this work, we consider the above cloud setup with
a trusted hardware as our baseline. Specifically, we as-
sume the cloud servers are equipped with Intel SGX-
enabled CPUs. SGX allows creating hardware-isolated
memory region called enclaves in presence of a com-
promised operating system. With enclaves, we have a
moderate size of private storage inaccessible to the un-
trusted software on the cloud. Further, we assume that
the trusted hardware at the cloud provider is untampered
and all the guarantees of SGX are preserved. We do not
consider physical or side-channel attacks on the trusted
hardware [29–33]. Defending against these attacks is
out of scope but our system can leverage any security
enhancements available in the future implementation of
SGX CPUs [34]. In practice, SGX can be replaced
with any other trusted hardware primitive available in the
next-generation cloud servers.

2.4 Solution Overview

We present a construction called PRO-ORAM— a Prac-
tical Read-Only ORAM scheme that achieves constant
computation latencies for read streaks. PRO-ORAM is
based on square-root ORAM but can be extended by fu-
ture work to other ORAM approaches. It incurs default
latency of the square-root ORAM approach in case of
write operations. Thus, one can think of PRO-ORAM
as a specialization for read streaks, promising most ef-
ficiency in applications that are read-heavy, but without
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losing compatibility in the general case.

Key Insight 1. The dominant cost in any ORAM scheme
comes from the shuffling step. In square-root ORAM,
the shuffling step is strictly performed after the access
step [8]. This allows the shuffle step to consider any
updates to the blocks from write operations. Our main
observation is that for read-only applications, the algo-
rithm need not wait for all the accesses to finish before
shuffling the entire dataset. The key advantage in the
read-only model is that the data is never modified. Thus,
we can decouple the shuffling step from the logic to dis-
patch an access. This means the shuffle step can execute
in parallel without stalling the read accesses. We give
a proof for the correctness and security of PRO-ORAM
in Section 5. Although prior work has considered paral-
lelizing the access and shuffle step [17], our observations
only apply to the read-only setting, and our specific way
achieves constant latency which was not possible before.

Key Insight 2. Our second important observation allows
us to reach our goal of constant latency. We observe
that the Melbourne Shuffle algorithm performs O(

√
N)

computation operations for each access where each op-
eration can be executed independently [18]. Hence,
the O(

√
N) computations can be performed in parallel

(multi-threaded) without breaking any security or func-
tionality of the original shuffle algorithm. This final step
provides us with a highly optimized Melbourne Shuffle
scheme which when coupled with square-root ORAM in-
curs constant computation latency per access. We fur-
ther exploit the structure of the algorithm and propose
pipelining based optimizations to improve performance
by a constant factor (Section 4.4). We remark that our
efficient version of the shuffle algorithm maybe of inde-
pendent interest and useful in other applications [18,35].

Note that PRO-ORAM is compatible with data access
patterns that have writes after read streaks, since it can
default to running a synchronous (non-parallel) shuf-
fle when a write is encountered — just as in the origi-
nal square-root ORAM. Of course, the constant latency
holds for read streaks and read-heavy applications bene-
fit from this specialized construction.

Comparison to Previous Work. The most closely re-
lated work with respect to our trust assumptions and
cloud infrastructure is ObliviStore [17]. This protocol
has the fastest performance among all other ORAM pro-
tocols when used in the cloud setting [36]. Similar
to PRO-ORAM, ObliviStore parallelizes the access and
shuffle operations using a trusted proxy for cloud-based
data storage services.

We investigate whether ObliviStore’s construction can
attain constant latency when adapted to the read-only
model. We highlight that although the high-level idea of
parallelizing ORAM protocol is similar to ours, ObliviS-

tore differs from PRO-ORAM in various aspects. Oblivi-
Store is designed to hide arbitrary read / write patterns in
the general case and hence uses a complex ORAM pro-
tocol that is optimized for bandwidth. It uses a partition-
based ORAM [9] where each partition is itself a hier-
archical ORAM [8]. This design takes O(log N) time
to access each block even if the protocol was restricted
to serve read-only requests. Hence, our observations in
the read-only model do not directly provide performance
benefits to ObliviStore’s construction. The key factor in
PRO-ORAM is that — “simple and specialized is better”
— a simple ORAM construction which is non-optimized
for the general case, is better suited for hiding read-only
data access patterns.

3 Background

In designing an efficient PRO-ORAM scheme, we select
square-root ORAM as our underlying ORAM scheme as
it allows

√
N accesses before the shuffling step. To obliv-

iously shuffle the data in parallel with the accesses, we
select the Melbourne shuffle scheme, that allows shuf-
fling of data of O(N) in O(

√
N) steps. Further, we use

Intel SGX-enabled CPU present to create enclaves with
O(
√

N) private storage. We provide a brief background
on each of these building blocks.

3.1 Square-Root ORAM

We select the square-root ORAM scheme as the un-
derlying building block in PRO-ORAM. The square-root
ORAM scheme, as proposed by Goldreich and Ostro-
vsky [8], uses N+

√
N permuted memory and a

√
N stash

memory, both of them are stored encrypted on the un-
trusted cloud storage. The permuted memory contains N
real blocks and

√
N dummy blocks arranged according

to a pseudo-random permutation π .

To access a block, the protocol first scans the entire
stash deterministically for the block. If the requested
block is found in the stash then the protocol makes a
fake access to a dummy block in the permuted mem-
ory. Otherwise, it accesses the real block from the per-
muted memory. The accessed block is then written to
the stash by re-encrypting the entire

√
N stash memory.

The key trick here is that all accesses exhibit a deter-
ministic access order to the adversarial server, namely: a
deterministic scan of the stash elements, followed by an
access to a real or dummy block in permuted memory,
followed by a final re-encrypted write and update to the
stash. After every

√
N requests, the protocol updates the

permuted memory with the stash values and obliviously
permutes (shuffles) it randomly. This shuffling step in-
curs O(N log2 N) overhead, resulting in an amortized la-
tency of O(

√
N log2 N) for each request.
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Figure 2: Overview of the Melbourne shuffle algorithm

3.2 Intel SGX

Recently, Intel proposed support for a trusted hardware
primitive called Software Guard Extensions (SGX). With
SGX, we can create isolated memory regions called en-
claves which are inaccessible to the underlying operat-
ing system or any other application. In PRO-ORAM, we
use the following two important features of Intel SGX.
PRO-ORAM can be build using any other trusted hard-
ware primitive that provides these specific features.

Enclaved Memory. SGX allows the creation of
hardware-isolated private memory region or enclaved
memory. For SGX CPUs, BIOS allocates a certain re-
gion for processor reserved memory (PRM) at the time
of boot up. The underlying CPU reserves a part of this
PRM to create enclaves. All the code and data in the
enclaved memory is inaccessible even to the privileged
software such as the OS. Thus, an adversary in our threat
model cannot access this protected memory. It guaran-
tees confidentiality of the private data within enclaves
from the adversary. The currently available implemen-
tation of SGX support 90 MB of enclaved memory. This
allows us to use a moderate amount of private storage at
the cloud provider in PRO-ORAM. Further, we can create
multiple threads within an enclave [37].

Attestation. Along with enclaved execution, SGX-
enabled CPUs support remote attestation of the software
executing within an enclave. This security features en-
ables a remote party to verify the integrity of the software
executing on an untrusted platform such as the cloud.
Further, it supports local attestation between two en-
claves executing on the same machine. These enclaves
can then establish a secure channel and communicate
with each other. One can perform such attestation of an
enclave program as described in the SGX manual [19].
Thus, SGX-enabled CPUs at the cloud provider allows
executing trusted code base (TCB) with a small amount
of private storage at the cloud provider.

3.3 Melbourne Shuffle

Melbourne shuffle is a simple and efficient randomized
oblivious shuffle algorithm [18]. Using this algorithm,
we can obliviously shuffle N data blocks with O(N) ex-
ternal memory. The data is stored at the server accord-
ing to a pseudo-random permutation. The encryption key

and the permutation key π require constant storage and
are stored in the private memory. This algorithm uses
private storage of the size O(

√
N) and incurs a commu-

nication and message complexity of O(
√

N). We use this
algorithm in PRO-ORAM to shuffle the encrypted data in
parallel to accessing data blocks using enclave memory
as the private storage.

The algorithm works in two passes as shown in Fig-
ure 2. It first shuffles the given input according to a ran-
dom permutation πtemp and then shuffles the intermediate
permutation to the desired permutation of π . Each pass
of the shuffle algorithm has three phases, two distribu-
tion and a cleanup phase. The algorithm divides each
N size array into buckets of size

√
N. Further, every

4
√

N of these buckets are put together to form a chunk.
Thus, the N array is divided into total 4

√
N chunks. The

first distribution phase (dist phase1) simply puts the
data blocks into correct chunks based on the desired
permutation πtemp in the first pass and π in the second
pass. The second distribution phase (dist phase2)
is responsible for placing the data blocks into correct
buckets within each chunk. Finally, the clean up phase
(cleanup phase) arranges the data blocks in each
bucket and places them in their correct positions based
on the permutation key.

Choosing appropriate constants in the algorithm guar-
antees oblivious shuffling of N data blocks for any cho-
sen permutation value π with a very high probability.
The important point is that each of these phases can be
implemented to have a “constant” depth and operate “in-
dependently” based only on the pre-decided πtemp and π

values. This allows us to distribute the overall compu-
tation among multiple threads and parallelize the algo-
rithm. Although the total work done remains the same,
our design effectively reduces the overall execution time
to a constant. We refer readers to the original paper for
the detailed algorithm of each of these phases [18].

3.4 Encryption Algorithms

We use the standard symmetric key and public key cryp-
tographic schemes as our building blocks in PRO-ORAM.
We assume that both these schemes guarantee IND-
CPA security. The security guarantees of PRO-ORAM
depends on the assumption of using secure under-
lying cryptographic schemes. We denote by SE =
(GenSE ,EncSE ,DecSE) a symmetric key encryption
scheme where GenSE algorithm generates a key which
is used by the EncSE and DecSE algorithms to per-
form encryption and decryption respectively. PKE =
(GenPKE ,EncPKE ,DecPKE) denotes a public key encryp-
tion scheme where the GenPKE algorithm generates a
public-private key pair (Pb,Pr). The EncPKE algorithm
takes the public key Pb as input and encrypts the data
whereas the DecPKE takes the private key Pr as input and
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Figure 3: PRO-ORAM design overview with access and
shuffle enclaves operating in paralllel on active and
next array.

decrypts the corresponding ciphertext.

4 PRO-ORAM Details
Today’s cloud platforms are equipped with a large
amount of storage and computing units. In PRO-ORAM,
we leverage these resources to achieve practical perfor-
mance guarantees for hiding access patterns to read-only
data such as photos, music, videos and so on.

4.1 Design Overview

Similar to any cloud storage service, we have a setup
phase to establish user identities and upload initial data
to the cloud. We outline the setup phase for users that
directly upload their data to the cloud storage for e.g.,
Dropbox or Google Drive. However, it can be modi-
fied to accommodate applications such NetFlix, Spotify
where the initial data is uploaded by the service providers
and not the users themselves.

Initialization. Each user registers with the cloud
provider his identity uid and a public key Pbuid mapped
to their identity. Let the data structure Pub map store
this mapping on the server. The private key Pruid corre-
sponding to the public key is retained by the user. Each of
these registered users can upload their data to the server.
To upload N data blocks to the untrusted server, a data
owner first encrypts the data blocks with a symmetric
key K and then sends them to the server. The order of
these blocks during the initial upload does not affect the
security guarantees of PRO-ORAM. On receiving the en-
crypted data, the server instantiates an “access” and
a “shuffle” enclave. Next, the data owner attests the
program running within these enclaves using remote at-
testation and secretly provisions the encryption key K to
them on successful attestation.

System Overview. Figure 3 shows the overview of
PRO-ORAM design for the read-only model. PRO-ORAM
executes two enclaves called access and shuffle
in parallel on the untrusted server. Each access and
shuffle enclave has O(

√
N) private storage and cor-

Distribu(on	
	phase	I	

√N blocks 

Clean	up	
phase	

Distribu(on	
	phase	II	

Active array 

Next array 

Temp1 array Temp2 array 
√N buckets 

Figure 4: Multi-threaded Melbourne shuffle with constant la-
tency per access

responds to a set of N data blocks. These enclaves pro-
vide obliviousness guarantees to read from the N data
blocks uploaded on the server. The enclaves locally at-
test each other and establish a secure channel between
them [38]. They communicate over the secure channel to
exchange secret information such as encryption and per-
mutation keys (explained in detail in Section 4.2). The
access enclave executes the square-root ORAM and
the shuffle enclave performs the Melbourne shuffle
algorithm. However, PRO-ORAM parallelizes the func-
tioning of both these enclaves to achieve constant latency
per read request.

PRO-ORAM algorithm consists of several rounds
where each round is made of total

√
N requests from the

users. In every round, the access enclave strictly op-
erates on the permuted array of the uploaded data, which
we refer as the active array. On every request, the
access enclave fetches the requested data block ei-
ther from the active array or the private stash (simi-
lar to the square-root ORAM), re-encrypts the block and
sends it to the user. Simultaneously, the shuffle en-
clave reads data blocks in a deterministic pattern from the
active array, performs the shuffle algorithm on them
and outputs a new permuted array, which we refer as
the next array. The shuffle enclave internally dis-
tributes the work using O(

√
N) separate threads. By the

end of each round, i.e., after
√

N requests, the active
array is replaced with the next array. Thus, for serving
N data blocks, PRO-ORAM uses O(N) space on the un-
trusted server to store the active and the next array.

Parallelizing the access and shuffle enclave en-
ables PRO-ORAM to create a new permuted array while
serving requests on the active array. This design is
novel to PRO-ORAM and differs from previous ways of
parallelizing access and shuffle operations [17, 39]. The
algorithms for both the access and shuffle operations exe-
cute within SGX enclaves and are oblivious to the server.
We give a detailed proof in Section 5.
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Algorithm 1: Pseudocode for each round of
shuffle enclave

Input: active array: input data blocks ,
Kprev: previous key,
Knew: new key,
π: desired permutation,
r num: current round number
Output: next array: output permuted blocks

1 Let T1, T2, Otemp be temporary arrays;
2 Let πtemp be a random permutation;
3 Let Ktemp be a encryption key;
4 if r num == 0 then

// Add dummy blocks

5 for j from N to N +
√

N do
6 d′j← EncSE( Kprev, dummy);
7 active array = active array ∪ d′j;
8 end
9 end
// Two pass call to shuffle algorithm

10 mel shuffle(active array, T1, T2, πtemp, Kprev, Ktemp,
Otemp);

11 mel shuffle(Otemp, T1, T2, π , Ktemp, Knew, next array);

4.2 Shuffle Enclave

The shuffle enclave starts its execution one round be-
fore the access enclave. We call this as the preparation
round or round 0. The shuffle enclave uses this round
to permute the data which is uploaded by the user dur-
ing the initialization phase. The enclave permutes N en-
crypted real blocks (d′1, · · · ,d′N) along with

√
N dummy

blocks and adds them to the active array (as shown in
lines 4-9 in Algorithm 1).

In each round, the enclave executes the Melbourne
shuffle algorithm with the active array as input and
the next array as output. It makes a two pass call to
the mel shuffle function (lines 10 and 11). Internally,
the function performs the three phases of dist phase1,
dist phase2 and clean up phase (lines 2, 3, 4 in Al-
gorithm 2). Each phase performs

√
N steps, where each

step fetches
√

N blocks of the input array, re-arranges
and re-encrypts them and writes to the output array.

In PRO-ORAM, we distribute this computation over
O(
√

N) threads and thus parallelize the execution of each
phase (as shown in Figure 4). Carefully selecting the hid-
den constants in O(

√
N) allows us to securely distribute

the work without compromising on the security of the
original algorithm (see Lemma 5.1 in Section 5). Each
thread re-encrypts and re-arranges only a single block in
every step of the phase and writes them back in a de-
terministic manner. The operations on each block are
independent of other blocks and have a constant depth.
The threads use the private memory within the enclave
as a stash to obliviously shuffle the blocks. However,

Algorithm 2: Parallel pseudocode for mel shuffle

function
Input: I: input data blocks ,
T1, T2: Temporary arrays,
Kprev: previous key,
Knew: new key,
π: desired permutation,
Output: O: output permuted blocks

1 Let K1, K2 be encryption keys;
// Place the blocks into correct chunks

2 dist phase1(I, π , Kprev, K1,T1):: O(
√

N) threads;
// Place the blocks in correct buckets

3 dist phase2(T1, π , K1, K2, T2):: O(
√

N) threads;
// Arrange the blocks in each bucket

4 cleanup phase(T2, π , K2, Knew):: O(
√

N) threads;

Algorithm 3: Pseudocode for Read Algorithm
Input: di: block identifier,
active array: encrypted data blocks,
request: current request number
Output: d’: encrypted block

1 Lookup in the private stash;
2 if di in stash then

// access dummy value

3 addr← π(N +request);
4 d’← active array(addr) ;

// select value from stash

5 d’← stash(di);
6 else
7 addr← π(di) ;
8 d’← active array(addr) ;
9 Write d’ to the stash;

10 end
11 return d′;

each thread reads and writes to its corresponding mem-
ory location during the shuffling step. We exploit this
property and parallelize the computation on each of these
blocks. In PRO-ORAM, we implement this approach us-
ing multi-threading with SGX enclaves. The shuffle
enclave starts O(

√
N) threads in parallel to compute the

re-encryption and rearrangement of data blocks. This re-
sults in a constant computation time per step. Thus, with
parallelization imposed in each step, the total computa-
tion time for shuffling N data blocks is O(

√
N). Hence,

the amortized computation latency per request over
√

N
requests is reduced to O(1). PRO-ORAM distributes the
total work in each shuffle step over O(

√
N) threads.

After the shuffle is completed, the next array is copied
to the active array. The shuffle enclave sends the new
keys (Knew) and permutation value (π) to the access
enclave using a secure channel established initially. The
latter enclave uses these keys to access the correct re-
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Algorithm 4: Pseudocode for each round of
access enclave

Input: di: request file identifier ,
Pub map: User id and public key mapping table ,
uid: requesting user id,
Knew: encryption key
π: permutation key
active array: permuted array
Output: response msg

1 for request from 1 to
√

N do
2 Pbuid← Pub map (uid);
3 d’← Read (di, active array, request);
4 k’← GenSE ;
5 d”← EncSE (DecSE (d’, Knew), k’);
6 key msg = EncPKE (Pbuid , k′′);
7 response msg = (d′′, key msg);
8 end

quested blocks from the active array in the next round.

4.3 Access Enclave

Unlike the shuffle enclave, the access enclave be-
gins execution from round 1. Each round accepts

√
N

read requests from the users. Before the start of each
round, the access enclave gets the permutation π and
encryption key Knew from the shuffle enclave. The
active array corresponds to data blocks shuffled and
encrypted using the keys π and Knew. For each request,
the access enclave takes as input the block identifier di
and the requesting user id uid. The enclave first confirms
that the requesting uid is a valid registered user and has
a public key corresponding to the user. On confirmation,
the enclave invokes the read function in Algorithm 3.

The algorithm to read a requested block is same as the
main logic of square-root ORAM. Algorithm 3 provides
the pseudocode for reading a data block in PRO-ORAM.
Note that, we do not store the private stash on the un-
trusted cloud storage as proposed in the original square-
root ORAM approach. Instead, the stash is maintained in
the private memory within the access enclave. The stash
is indexed using a hash table and hence can be looked
up in a constant time. The read algorithm first checks if
the requested data block is present in the private stash.
If present, the enclave accesses a dummy block from the
untrusted storage. Otherwise, it gets the address for the
requested block di using permutation π and fetches the
real block from the untrusted storage. The output of the
read algorithm is an encrypted block d′. The fetched
block is stored in the private stash.

After fetching the encrypted block d′, either from the
private stash or the active array, the access enclave
decrypts it using Knew. Algorithm 4 shows the pseu-
docode for this step. It then selects a new key k′ and
encrypts the block. The output message includes this

re-encrypted block and the encryption of k′ under pub-
lic key of the requesting user Pbuid. At the end of each
round i.e., after serving

√
N request, the access enclave

clears the private storage, permutation π and Knew. Note
that unlike the original square-root ORAM, there is no
shuffling after

√
N requests. The permuted next array

from the shuffle enclave replaces the active array.

Performance Analysis. In PRO-ORAM, the access
enclave sends only the requested block to the user. This
results in a communication overhead of O(1) with re-
spect to the requested block size. Further, the access
enclave computes i.e., re-encrypts only a single block
for each request. Thus, the computation on the server
for the access enclave is O(1). The shuffle en-
clave computes a permuted array in O(

√
N) steps. It

fetches O(
√

N) blocks for each request. Note that the
total computation performed at the server is still O(

√
N)

for each request. However, in PRO-ORAM, we par-
allelize the computation i.e, re-encryption on O(

√
N)

blocks in O(
√

N) threads. This reduces the computa-
tion time required for each step to only a single block.
Thus, the overall computation latency on the server for
the shuffle enclave is O(1) for each request.

4.4 Optimizations

We further propose optimizations to Melbourne shuffle
algorithm such that the performance can be improved by
a constant factor. Both these optimizations are possible
by exploiting the design structure of the algorithm.

Pipelining. We observe that in the existing algorithm
(shown in Algorithm 1) the three phases execute sequen-
tially (see Figure 4). Once the dist phase1 function
generates the temp1 array, it waits until the remaining
phases complete. On the other hand, the dist phase2
and the cleanup phase functions have to wait for the
previous phase to complete before starting their execu-
tion. To eliminate this waiting time, we separate the ex-
ecution of these phases into different enclaves and exe-
cute them in a pipeline. Thus, instead of waiting for the
entire shuffle algorithm to complete, dist phase1 en-
clave generates a new temp array in every round to be
used as input by the dist phase2 enclave. Eventu-
ally, each phase enclave outputs an array in every round
to be used by the next phase enclave, thereby pipelining
the entire execution. Note that this optimization is pos-
sible because the input to the dist phase1 does not
depend on any other phase. dist phase1 enclave can
continue to use the initial uploaded data as input and gen-
erate different temp arrays based on a new permutation
value selected randomly in each round. This allows us
to continuously execute each of the phases in its own en-
clave without becoming a bottleneck on any other phase.
Thus, the overall latency is reduced by a factor of 3. This
optimization increases the external storage requirement
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by 2N to store the additional temp array.
Parallel Rounds using Multiple Enclaves. Another op-
timization is to instantiate multiple (possibly O(

√
N))

enclaves and execute each of the O(
√

N) rounds in par-
allel in these enclaves. With this optimization, the la-
tency for shuffling N data blocks reduces from O(

√
N) to

O(1). This observation is also discussed by Ohrimenko
et al. [18]. However, the main drawback in implementing
this optimization is the blow-up in the combined private
storage. As each of O(

√
N) enclaves requires private

memory of size O(
√

N), the combined private memory
is linear in the total data size O(N). Such a huge require-
ment of private storage may not be feasible even on very
high-end servers. In our work, to use this optimization
without requiring linear private storage, we propose us-
ing only a constant number of enclaves, thereby improv-
ing the performance by a constant factor.

5 Security Analysis
The observable access patterns in PRO-ORAM include
accesses made both from access and shuffle en-
clave. We first show that the shuffle enclave executes
an oblivious algorithm.

Lemma 5.1. Given an array of N data blocks, Mel-
bourne Shuffle is an oblivious algorithm and generates a
permuted array with very high probability (1−negl(N))
in O(

√
N) steps, each exchanging a message size of

O(
√

N) between a private memory of O(
√

N) and un-
trusted storage of size O(N).

This Lemma directly follows from Theorem 5.1 and
5.6 in [18]. In PRO-ORAM, the shuffle enclave exe-
cutes the Melbourne Shuffle algorithm using O(

√
N) pri-

vate storage within an enclave. Thus, from Lemma 5.1,
we get the following corollary,

Corollary 5.1. The shuffle enclave generates a
permuted array of O(N) data blocks in O(

√
N) steps

and the access patterns are oblivious to the server.

From Corollary 5.1, the access patterns of the shuffle
enclave are oblivious and the output is indistinguishable
from a pseudo-random permutation (PRP) [18].

Further, the communication between access and
shuffle enclave happens over a secure channel. This
preserves the confidentiality of the permutation and
encryption keys that shuffle enclave sends to the
access enclave at the end of each round. Thus, no in-
formation is leaked due to the interaction between these
enclaves in PRO-ORAM. Now, to prove that PRO-ORAM
guarantees obliviousness for read access patterns, we
first show that a request to the access enclave is in-
distinguishable from random for an adaptive adversary.

Let E = (Gen,Enc,Dec) be a IND-CPA secure en-
cryption scheme where Gen generates a key which is

used by the Enc and Dec algorithms to perform encryp-
tion and decryption respectively. Let λ be the security
parameter used in E . ExpPRO−ORAMAadt ,E

refers to the instanti-
ation of the experiment with PRO-ORAM, E algorithms
and adaptive adversary Aadt . This experiment captures
our security definition for read-only obliviousness. The
experiment consists of:

• Aadt creates request r = (read,di) and sends it to a
challenger C .

• The challenger selects b $←− {1,0}.

• If b= 1, then C outputs the address access patterns
to fetch di i.e., A(d1)← access (di) and encrypted
output O ′1← d′i

• If b = 0, then C outputs a random address ac-

cess pattern i.e., A(d0)
$←− {1, · · · ,N +

√
N} and

O ′0
$←− {0,1}λ

• Adversary Aadt has access to an oracle OPRO−ORAM

that issues q queries of type (read,d) both before
and after executing the challenge query r. The or-
acle outputs address access patterns to fetch d i.e.,
A(d)← access (d) .

• Aadt outputs b′ ∈ {1,0}.

• The output of the experiment is 1 if b= b′ otherwise
0. The adversary Aadt wins if ExpPOE (λ ,b′) = 1 .

Based on the experiment and its output, we define
read-only obliviousness as follows:

Definition 5.1. An algorithm satisfies read-only oblivi-
ousness iff for all PPT adversaries A , there exists a neg-
ligible function negl such that:

Pr[ExpPRO−ORAMAadt ,E
(λ ,1)= 1]−Pr[ExpPRO−ORAMAadt ,E

(λ ,0)= 1]≤ negl

(1)

Theorem 5.1. If shuffle enclave executes an obliv-
ious algorithm and E is a CPA-secure symmetric en-
cryption scheme then PRO-ORAM guarantees read-only
obliviousness as in Definition 5.1.

Proof. From Lemma 5.1, the access pattern of
shuffle enclave are data-oblivious. To prove the theo-
rem, we have to show that access pattern from access
enclave are indistinguishable to the adversary. We pro-
ceed with a succession of games as follows:

• Game0 is exactly the same as ExpPRO−ORAMAadt ,E
(λ ,1)

• Game1 replaces the O ′1 in Game0 with a random
string while other parameters are the same
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• Game2 is same as Game1 except that A(di) is
selected using a pseudorandom permutation πs :
{0,1}(N+

√
N) → {0,1}(N+

√
N) where s ← {0,1}λ

and not from the access enclave.

• Game3 is same as Game2 except that A(di) is selected
at random from the entire data array.

From above description, we have

Pr[Game0 = 1] = Pr[ExpPRO−ORAMAadt ,E
(λ ,1) = 1], (2)

For Game1, a distinguisher D1 reduces the security of
E to IND-CPA security such that:

Pr[Game0 = 1]−Pr[Game1 = 1]≤ AdvIND−CPA
D1,E

(λ ), (3)

For Game2, according to Corollary 5.1, the advantage
of a distinguisher D2 is such that:

Pr[Game1 = 1]−Pr[Game2 = 1]≤ AdvCorollary 5.1
D2,shuffle

, (4)

This is because the access enclave uses the output of
shuffle enclave to fetch the data for each request. The
access enclave runs the square-root ORAM algorithm
which selects a random address in each request. Hence,
the advantage of the distinguisher D2 depends on the cor-
rectness of the permuted output array from shuffle
enclave.

For Game3, a distinguisher D3 reduces the security of
π to PRP security such that:

Pr[Game2 = 1]−Pr[Game3 = 1]≤ AdvPRP
D3,π

(λ ), (5)

Also, we have,

Pr[Game3 = 1] = Pr[ExpPRO−ORAMAadt ,E
(λ ,0) = 1], (6)

From 2, 3, 4, 5, 6 we get:

Pr[ExpPRO−ORAMAadt ,E
(λ ,1)= 1]−Pr[ExpPRO−ORAMAadt ,E

(λ ,0)= 1]≤
(7)

AdvIND−CPA
D1,E

(λ )+AdvCorollary 5.1
D2,shuffle

+AdvPRP
D3,π

(λ )

The AdvCorollary 5.1
D2,shuffle

cannot be greater than negl as
it would break the security of the underlying Melbourne
Shuffle algorithm stated in Lemma 5.1. With this, we
prove that the advantage of an adaptive adversary in dis-
tinguishing the access patterns induced by PRO-ORAM
from random is negligible. Therefore, PRO-ORAM
guarantees read-only obliviousness.

6 Implementation and Evaluation
Implementation. We have implemented our proposed
PRO-ORAM algorithm in C/C++ using Intel SGX Linux
SDK v1.8 [23]. For implementing symmetric and pub-
lic key encryption schemes, we use AES with 128-bit
keys and Elgamal cryptosystem with 2048 bit key size
respectively from the OpenSSL library [37]. We use
SHA256 as our hash function. We implement the read
logic of square-root ORAM and the parallelized shuffle
algorithm as explained in Section 4.2. We use multi-
threading with SGX enclaves to implement our parallel
execution approach for each step. The prototype contains
total 4184 lines of code measured using CLOC tool [40].
Experimental Setup & Methodology. To evaluate
PRO-ORAM, we use SGX enclaves using the Intel SGX
simulator and perform experiments on a server running
Ubuntu 16.04 with Intel(R) Xeon(R) CPU E5-2640 v4
processors running at 2.4 GHz (40 cores) and 128 GB
of RAM. As PRO-ORAM’s design uses

√
N threads, our

experimental setup of 40 cores can execute a total of
80 threads using Intel’s support for Hyper-Threading,
thereby handling requests with block-size of 256 KB for
around 1 GB of data. Operating with data of this size
is not possible with SGX in hardware mode available on
laptops due to their limited processing capacity (8 cores).
However, for real cloud deployments, the cost of a deca-
core server is about a thousand dollars [24]; so, the one-
time cost of buying 40 cores worth of computation per
GB seems reasonable. To measure our results for giga-
byte sized data, we chose to run 40 cores (80 threads)
each with an SGX simulator.

As a baseline for comparisons of communication and
network latencies, we take the bandwidth link of 7 Mbps
as a representative, which is the global average based on
a recent report from Akamai [25]. We perform our evalu-
ation on varying data sizes such that the total data ranges
from 20 MB to 2 GB with block sizes (B) varying from 4
KB to 10 MB. In our experiments for parallelized shuf-
fle, as shown in Algorithm 1, we set temporary buffers as
2
√

N data blocks to ensure security guarantees. To make
full use of computation power, we utilize all 40 cores for
performing multi-threading for each distribution phase
and cleanup phase. All results are averaged over 10 runs,
reported on log-scale plots. We perform our evaluation
with the following goals:

• To validate our theoretical claim of constant com-
munication and computation latencies.
• To confirm that execution time per access in
PRO-ORAM is dependent only on the block size.
• To show that the final bottleneck is the network la-

tency, rather than computational latency.
• To show the effective throughput of PRO-ORAM for

different blocks of practical data sizes.
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(a) Execution time is constant for fixed
B = 256KB.
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(b) Execution increases with B for N.B =
1GB.
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(c) Execution time increases with B where
N = 4096.

Figure 5: Execution time for client, server, shuffle and total latency observed by user per access for fixed block size (B), fixed total
storage (N.B) and a fixed number of blocks (N)
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(a) Throughput for varying N.B where
B = 256KB.
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(b) Throughput for varying B where
N.B = 1GB.
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(c) Throughput for varying B where N =
4096.

Figure 6: Throughput of PRO-ORAM in Mbps for fixed block size (B), fixed total storage (N.B) and fixed number of blocks (N)

6.1 Results: Latency

To measure the performance, we calculate the execution
time (latency) at the user, server (i.e., access enclave)
and the amortized shuffling time of the shuffle en-
clave for each request. We point out that the client com-
putational latency, the amortized shuffle time, and the
network latency are the three factors that add up to the
overall latency observed by the user.

Impact on Latency with Increasing Storage. We mea-
sure the execution time to access a block of fixed size
B = 256KB, while increasing the total storage size from
20 MB to 2GB. The measurements are reported in Fig-
ure 5a. The dominant cost, as expected, is from the server
computation. The access and shuffle enclave each
incur a constant execution time of around 0.016 seconds
per access, irrespective of the data sizes. The client com-
putation time is constant at 0.002 seconds as the user
only decrypts a constant-size encrypted block. Overall,
these results confirm our theoretical claims of constant
latency per request, and that the latency for large data
size (in GBs) is practical (under 1 sec for 256KB blocks).

Computational vs. network bottleneck. An impor-
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Figure 7: Overhead breakdown for shuffle step for fixed block-
size B = 256

tant finding from Figure 5a is that the latency per ac-
cess observed by the user is a constant at 0.3 seconds,
within experimental error, irrespective of the total data
size. Even though the server computation cost is high,
the final latency has primary bottleneck as the network,
not PRO-ORAM’s computation. In Figure 5a, the latency
of shuffle per requested block is lesser than the network
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latency of sending a block from the server to the client
on a 7Mbps link. This finding suggests that even for 256
KB block sizes, the network latency dominates the over-
all latency observed by the user, and is likely to be the
bottleneck in an end application (e.g. streaming media)
rather than the cost of all the operations in PRO-ORAM,
including shuffling. This result suggests that PRO-ORAM
is optimized enough to compete with network latency,
making it practical to use in real applications.

Latency increase with block size. We perform three
sets of experiments keeping (a) block size constant (B),
(b) total storage size constant (N.B), and (c) number of
blocks constant (N), while varying the remaining two pa-
rameters respectively in each experiment. The results in
Figure 5b and 5c show evidence that the computational
latencies of server and client-side cost in PRO-ORAM de-
pend primarily on the block size parameter, and is unaf-
fected by the number of blocks or size of data. This is
mainly because the cost of encryption and decryption per
block increases these latencies.

6.2 Results: Throughput

We calculate throughput as the number of bits that
PRO-ORAM can serve per second. PRO-ORAM can serve
maximum

√
N blocks in the time the shuffle enclave

completes permutation of N data blocks. Thus, to calcu-
late throughput we use the following formula,

Throughput=

√
N.B

total shuffling time
(8)

Throughput increase with block size. We find that
throughput of PRO-ORAM increases with block size,
ranging from 83 Mbps (for 100KB block size) to 235
Mbps (for 10MB block size), as shown in Figure 6b.
Our experiments show that for data objects of the size
larger than few hundred KB, the throughput is almost
10x larger than the global average network bandwidth
(7Mbps). Such data object sizes are common for media
content (e.g photos, videos, music) and cache web page
content [41]. Figure 6b and Figure 6c show the through-
put measurements for increasing block sizes, keeping the
total data size and the number of blocks fixed to 1 GB
and 4096 respectively. We observe that the throughput
increases with the blocksize. If we keep the block size
fixed, the throughput is constant at almost 125 Mbps with
the increase in the total data size, as seen in Figure 6a.
Our evaluation shows that PRO-ORAM’s throughput ex-
ceeds reference throughput of 7 Mbps, re-confirming that
network latency is likely to dominate latencies than com-
putational overheads of PRO-ORAM.

Comparison to Tree-based ORAM. We compare the
throughput of PRO-ORAM with the access overhead of
using the simplest and efficient PathORAM scheme with

SGX [10]. The client side operations in the origi-
nal PathORAM scheme are executed within SGX. The
throughput for PathORAM+SGX scheme decreases and
almost reaches the network latency limit (7 Mbps) with
increase in the number of blocks for fixed blocksize
of 256 KB. Thus, the server computation overhead of
O(logN) per access of PathORAM protocol becomes
a bottleneck for reasonably large data sizes (e.g., 2
GB as shown in Figure 6a). Figure 6b shows that
PathORAM’s throughput increases from 7 Mbps to 15
Mbps with a decrease in the number of blocks.

6.3 Performance Breakdown

To understand the breakdown of the source of latency
for the shuffle step, we calculate the time to perform the
cryptographic operations and ECALLs/OCALLs to copy
data in and out of memory. Such a breakdown allows
us to better understand the time consuming operations in
our system. We fix the block size to B= 256 KB and vary
the total data size. Figure 7 shows the amortized shuf-
fling time, time to perform encryption and decryption
operations and the time to invoke ECALLs/OCALLs per
access in PRO-ORAM. We observe that the dominant cost
comes from the cryptographic operations 0.014 seconds
out of the 0.016 seconds.

Enclaves by design cannot directly invoke system calls
to access untrusted memory. Each call to the outside
enclave performed using OCALL. Similarly, a function
within an enclave is invoked using an ECALL. Thus, in-
vocation of ECALLs/OCALLs is necessary to perform
multi-threading and for copying data in and out of mem-
ory. To fetch

√
N data blocks in parallel for each access,

we use asynchronous ECALLs/OCALLs in PRO-ORAM
similar to that proposed in a recent work [42]. In our
experiments, these operations require 0.002 seconds (av-
erage) for a block of size 256 KB.

7 Related Work
All previous ORAM solutions incur latency logarithmic
(or worse) in the size of accessed data for the general
case [10,13–15]. Here, we first discuss constructions for
ORAMs that guarantee constant latency per access in the
case of write-only patterns. Next, we summarize related
work with similarities in our threat model.

Write-Only ORAMs. Recently, it is shown that constant
computation and communication latency can be achieved
for applications with restricted patterns. Blass et. al
show that some applications require hiding only write-
patterns and hence proposed Write-Only ORAM in the
context of hidden volumes [16]. Their work achieves
constant latencies per write access to the data untrusted
storage. Roche et al. propose a stash-free version of this
Write-Only ORAM [43]. Further, Flat ORAM improves
over this solution using secure processors as a building
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block to perform efficient memory management [44].
ObliviSync uses the write-only ORAM idea to support
sharing of files on a Dropbox-like storage server that
support auto-sync mechanisms [28]. These works that
guarantee constant overhead for hiding write-only access
patterns inspire our work. PRO-ORAM focuses on appli-
cations that exhibit read-only patterns and achieves con-
stant latencies for such accesses.

Improvements to square-root ORAM. Although
square-root ORAM is known to have very high i.e.,
O(N log2 N) worst-case overhead, Goodrich et. al pro-
vide a construction that reduces the worst-case overhead
to O(

√
N log2 N). Instead of shuffling the entire memory

at once taking O(N log2 N) computation time, their solu-
tion de-amortizes the computation over

√
N batches each

taking O(
√

N log2 N) time after every access step. This
technique is similar to the distribution of shuffle steps
in PRO-ORAM. However, our observations for the read-
only setting allows us to execute the access and shuf-
fle steps in parallel which is not possible in their so-
lution. Ohrimenko et. al show that use of Melbourne
Shuffle combined with square-root ORAM can reduce
the worst-case computation time to O(

√
N) with the use

of O(
√

N) private memory. In PRO-ORAM, we show that
it is further possible to reduce the latency to a constant
for applications with read-heavy access patterns. Fur-
ther, Zahur et al. have shown that although square-root
ORAM has asymptotically worse results than the best
known schemes, it can be modified to achieve efficient
performance in multi-party computation as compared to
the general optimized algorithms [45]. In PRO-ORAM,
we have a similar observation where square-root ORAM
approach performs better in the read-only setting.

Solutions using Trusted Proxy. ObliviStore [17] is the
first work that uses a trusted proxy to mediate asyn-
chronous accesses to shared data blocks among multiple
users, which was later improved by TaoStore [46]. A ma-
jor differentiating point is that both ObliviStore [17] and
TaoStore [46] assume mutually trusting users that do not
collude with the server, thus operating in a weaker threat
model than ours. The key contribution in these works
is towards improving efficiency using a single ORAM
over having separate ORAMs for each user. ObliviStore
improves the efficiency of the SSS ORAM protocol [9]
by making ORAM operations asynchronous and parallel.
Similar to this work, their key idea is to avoid blocking
access requests on shuffle operations, thereby matching
the rate of access and shuffle operations using a trusted
proxy. However, their underlying approach to achieve
such parallelization largely differs from this work. Our
observations in designing PRO-ORAM are novel with re-
spect to a read-only data setting that allows us to reduce
the computation latency to a constant whereas ObliviS-

tore has O(logN) computation latency per (read/write)
access. TaoStore [46] is a more recent work that im-
proves over ObliviStore using a trusted proxy and Path-
ORAM [10] as its building block. Similar to [17], this
approach has O(logN) computation latency per access.
Solutions using Trusted Hardware. An alternate line
of work has shown the use of trusted hardware or secure
processors with the goal to improve performance, as op-
posed to our use to strengthen existing ORAM protocols
in a stronger threat model. Shroud uses trusted hardware
to guarantee private access to large-scale data in data
center [22]. ObliviAd is another system that makes use
of trusted hardware to obliviously access advertisements
from the server [21]. Moreover, both these solutions are
built on top of traditional ORAM algorithms that do not
consider colluding server and malicious users.

8 Conclusion
In this work, we provide a constant communication
and computation latency solution to hide read data ac-
cess patterns in a large class of cloud applications.
PRO-ORAM guarantees a practical performance of 0.3
seconds to access a block of 256 KB leveraging suffi-
cient storage and compute units with trusted hardware
available on today’s cloud platform. Our work demon-
strates that simple ORAM solutions are better suited to
hide read data access patterns than complex algorithms
that are optimized for arbitrary read/write accesses.
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