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Abstract—Lightweight block ciphers rely on simple operations
to allow compact implementation. Thanks to its efficiency, bit
permutation has emerged as an optimal choice for state-wise
diffusion. It can be implemented by simple wiring or shifts.
However, as recently shown by Spectre and Meltdown attacks,
efficiency and security often go against each other. In this
work, we show how bit permutations introduce a side-channel
vulnerability that can be exploited to extract the secret key from
the cipher. Such vulnerabilities are specific to bit permutations
and do not occur in other state-wise diffusion alternatives.
We propose Side-Channel Assisted Differential-Plaintext Attack
(SCADPA) which targets this vulnerability in bit permutation
operation. SCADPA is experimentally demonstrated on PRESENT-
80 on an 8-bit microcontroller, with the best case key recovery
in 17 encryptions. The attack is then extended to latest bit-
permutation based cipher GIFT, allowing full key recovery in
36 encryptions. We also propose and experimentally verify an
automatic threshold method which can be easily applied to
SCADPA, allowing automation of the attack. Moreover, SCADPA
on bit permutations has other applications. Application for
reverse engineering secret sboxes in PRESENT-like proprietary
ciphers is shown. We also highlight a special case, where fixing
one vulnerability opens another one. This is shown by applying
SCADPA on some assembly level fault attack countermeasures,
rendering it less secure than unprotected implementations. Lastly,
we also provide several different attack scenarios, such as
targeting different encryption modes.

I. Introduction

The area of smart devices brings forward the question about
energy efficiency. In the past, where desktop computers were
the norm, chip manufacturers could afford to release devices
with high computational power at the expense of the power
consumption. However, this trend is changing rapidly, thanks
to shrinking size of mobile devices and emergence of Internet
of Things. Often, the raw computational power is lowered,
while keeping the battery last longer. It is therefore crucial for
the algorithm designers to develop smaller and more efficient
designs that would fit such resource-constrained devices. This
affects the area of cryptography as well, where we can see
more efficient algorithms emerge every year. Recently, NIST

has launched a call for proposal to standardize lightweight
crypto algorithms [1].

This work focuses on lightweight block ciphers which
use bit permutation based diffusion layer to achieve efficient
implementations. Common examples of such block ciphers
are PRESENT [2], which is an ISO standard, GIFT [3], etc.
Bit permutation is an interesting design choice as it has
negligible area footprint in hardware and can be implemented
with only wires [2]. Other ciphers, such as GIFT, with careful
permutation choices can be optimized for both hardware and
software implementations.

It was recently shown that through Spectre and Melt-
down [4] attacks on modern processor architectures, that
architectural optimizations for efficiency or performance can
result in a security disaster. In this paper, we bring forward
a specific vulnerability of bit permutation based diffusion
function, which can be simply exploited using side-channel.
The exploit arises from the simple structure of bit permutation
and is not easily found in diffusion functions of standard
ciphers (like MixColumns in AES). The demonstrated vul-
nerability is more serious in low-cost platforms like 8-bit
microcontrollers due to serialized execution of the algorithm.
Such design vulnerabilities further make the need of counter-
measures critical, however, lightweight and countermeasures
do not often go hand-in-hand. To resist theoretical attacks,
cipher designers add extra rounds to avoid vulnerabilities due
to simple diffusion layer. Since the proposed attack exploits
all the information in the first round, extra rounds will not add
any security.

A bit permutation layer diffuses the output bits of an
Sbox (non-linear Substitution layer) to multiple Sboxes. By
observing the numbers of affected Sboxes in a given round,
the (key-dependent) Sbox output in the previous round can be
determined, thus revealing information about the secret key.
In this paper, we present Side-Channel Assisted Differential-
Plaintext Attack (SCADPA) which exploits bit permutation
construction for secret key retrieval through observed side-



channel leakage. Here, SCADPA is chosen plaintext attack,
where the plaintexts are chosen to effectively exploit the bit-
permutation leakage. It observes the difference of propagation
through side-channel, thus revealing the differential of Sbox
output. With the knowledge of the plaintext, this differential
can be solved to reveal the corresponding key candidates.

Unlike usual side-channel attacks (SCA [5]), SCADPA is
not a statistical attack but rather a differential attack. For a
carefully chosen set of plaintexts, it observes differential on
an internal sensitive value. As we show later, these differen-
tials for bit permutation ciphers can be obtained by simply
subtracting the power measurements. Once the internal differ-
entials are known, the attack is similar to classical differential
cryptanalysis for secret key retrieval. While cryptanalysis can
be applied on a full cipher and handle high complexity, we
manage to restrict the attack to a single round, thus keeping
the complexity negligible. In some cases, multiple plaintext
pairs might be needed to determine a unique key candidate.
With the demonstrated experiments on PRESENT-80, SCADPA
can reveal the key in 17 encryptions for the best case and 65 in
the worst case. The methodology is further capable of reverse
engineering secret Sboxes in PRESENT-like ciphers with 17−46
encryptions. Further, we extend our attack on GIFT-64-128
and we show that a fault injection countermeasure based on
redundancy can be rendered less secure than an unprotected
design by SCADPA.

A. Related Works

Chosen plaintext side-channel attacks have previously been
proposed in different context. A side-channel based collision
attack [6] was proposed under chosen plaintext setting. It
detects collision in some internal value of initial rounds of
the cipher to retrieve the key. This attack was extended to
break secret AES-like ciphers [7]. Some proposed attacks
also used chosen plaintext setting to amplify power [8] or
timing [9] side-channel leakage. Apart from block ciphers,
chosen plaintexts attack were also applied to break public key
cryptography [10] and hash functions (HMAC [11]). Recently,
a chosen plaintext attack on DES third round was proposed
in [12], exploiting the Feistel structure in the design. The key
motivation of the attack was that most countermeasures protect
only corner rounds for area-security trade-off, enabling attack
on internal rounds. To the best of our knowledge, SCADPA
is the first attack proposition to exploit the diffusion function
in a block cipher.

Reverse Engineering via Side-Channel. Side-Channel
Analysis for Reversed Engineering (SCARE) was first intro-
duced in by Novak et al. [13], who proposed a recovery of one
of the two secret Sboxes of algorithm A3/A8 used in GSM.
Rivain and Roche [14] showed how to recover an equivalent
representation of SPN cipher with a fixed first word of a round
key. The most recent article up to date, published by Clavier
et al. [15] shows a recovery of the secret cipher blocks of
AES-like ciphers by both side-channel analysis and ineffective
fault analysis.

B. Our Contribution

The contributions of this paper are as follows1:
• We identify a specific vulnerability in bit-permutation

based diffusion functions exploitable through side-
channel, and we propose a specific attack called
SCADPA, which exploits the identified vulnerability.

• We present a practical demonstration of SCADPA on a
low cost platform, using PRESENT-80 lightweight cipher
as a target algorithm.

• We provide a comprehensive analysis of SCADPA in
numerous test scenarios including application to 8-bit and
32-bit architectures.

• We further evaluate SCADPA on GIFT, a recent bit-
permutation cipher designed for optimal performance
across platforms.

• We extend SCADPA methodology to reverse engineer
secret Sbox in PRESENT-like ciphers.

• We demonstrate that redundancy-based countermeasures
against fault injection attacks, such as Internal Redun-
dancy Countermeasure [17] greatly increase the success
rate of SCADPA as compared to a standard unprotected
counterpart.

C. Organization

The rest of the paper is organized as follows. Section II
recalls basics of PRESENT-80 block cipher, followed by Sec-
tion III which describes the key methodology of SCADPA. Ex-
perimental validation of SCADPA on an 8-bit microcontroller
is presented in Section IV. Section V describes the attack
on block cipher GIFT. Extension of the attack to recovery
of secret Sboxes is provided in Section VI. Section VII
shows how SCADPA can be extended to 32-bit architectures,
with minor modifications. Some discussions are provided in
Section VIII, exploring attacks on countermeasures, different
block cipher operation modes, vulnerability of other diffusion
functions etc. Final conclusions are drawn in Section IX.

II. Background

In this part, we first provide a high-level overview of
PRESENT cipher in Section II-A. In Section II-B, we focus on
permutation layer of PRESENT, while detailing the properties
that are exploited by SCADPA.

A. PRESENT Cipher

PRESENT is a lightweight block cipher based on
Substitution-Permutation Network (SPN) [2]. Therefore, it

1This paper is an extended version of [16]. While the original paper outlines
the basic method to use Side-Channel Assisted Differential Plaintext Attacks
(SCADPA), this paper provides new methods, targets, results, and use cases.
More specifically, we add the following:
• extension of SCADPA to lightweight cipher GIFT,
• new method to reverse engineer Sboxes, with results on PRESENT and
GIFT,

• extension of SCADPA to 32-bit architectures,
• discussion on redundancy based fault countermeasures, with application

on Internal Redundancy Countermeasure [17].



consists of three operations: addRoundKey is a bit-wise xor
of the state with the round key; sBoxLayer is a nibble-
wise nonlinear substitution; pLayer is a bit permutation. The
structure of one round of the cipher is depicted in Figure 1.
PRESENT consists of 31 rounds, followed by a post-whitening
addRoundKey at the end. The variant used in our experiments,
PRESENT-80, has a secret key of size 80 bits and a block size
of 64 bits. Table I shows PRESENT Sbox that is executed on
all 16 nibbles of the PRESENT-80 state during the sBoxLayer.
The Sbox function is further denoted as S (.).

Fig. 1: Structure of one round of PRESENT-80 cipher.

TABLE I: PRESENT S-box.

x 0 1 2 3 4 5 6 7
S(x) C 5 6 B 9 0 A D

x 8 9 A B C D E F
S(x) 3 E F 8 4 7 1 2

B. Bit Permutation Properties of PRESENT-80

There are three main properties of the pLayer, resulting
from the optimal diffusion requirement, that are exploited in
the following:

1) Output of one nibble is distributed into four distinct
nibbles.

2) Input to one nibble consists of outputs from four distinct
nibbles.

3) In pLayer, the cipher state can be split into four different
groups of four nibbles, where one input group affects
exactly one output group.

Examining these properties, it can be seen that by changing
chosen four nibbles in the plaintext, it is possible to affect the
whole cipher state after the first permutation.

Figure 2 shows this behavior by changing the first and the
eighth nibble of the plaintext. The underlying implementa-
tion computes sBoxLayer nibble-wise while addRoundKey
is computed byte-wise owing to the ALU support for bit-
wise xor. This is to achieve the best speed-memory trade-off.
Similarly, in 32-bit architectures, sBoxLayer would be im-
plemented as a 4-bit or 8-bit look-up table and addRoundKey
with pLayer would be done on 32-bit words, to achieve best
speed-memory trade-off.

By observing the changing nibbles in round 2, the change in
Sbox output at round 1 can be determined. This value directly

Fig. 2: Bytes in round 2 that could be potentially affected by
changing the first and the eighth nibble of the plaintext.

depends on the secret key which can be exploited for key
retrieval. In the following, we use side-channel measurements
to observe the changed nibbles.

III. SCADPA Methodology

In this part we first explain how the SCADPA method
works in Section III-A, followed by steps to choose optimal
plaintexts for the attack in Section III-B. Next, we provide an
attack example in Section III-C. Finally, we state the attack
complexity in Section III-D. Although this section is based
on PRESENT-80, the techniques are generally applicable on
similar ciphers.

A. SCADPA Procedure

Using the information from the previous part, we propose
SCADPA. SCADPA exploits the permutation properties to
observe changed nibbles and retrieve differential at Sbox
output in round 1. The differential can be solved for key
retrieval by using a standard differential attack on non-linear
layer.

The attack steps can be summarized as follows:

Step 1: Encrypt a chosen plaintext p, by using an unknown
secret key k, denoted as Ek(p).

Step 2: Capture the power/EM leakage of the Device Under
Test (DUT) during the second encryption round to get
the trace t.

Step 3: Choose another plaintext p′ , p that differs exactly
in one nibble at ith position. The nibble at position i
in plaintext p is denoted pi and xi = pi⊕ki. Similarly,
x′i = p′i ⊕ ki.

Step 4: Capture the leakage for Ek(p′) to get t′.
Step 5: Calculate ∆t = t − t′.
Step 6: By examining ∆t, get the Sbox output change ∆S i =

S (xi) ⊕ S (x′i ) of round 1 in the position where the
plaintext had changed.

Step 7: Calculate all possible candidates for key nibble ki such
that with input pair pi and p′i , the change determined
in Step 6 would appear.



Step 8: Repeat steps 3-7 with another p′i , taking intersection
of all the calculated key candidates, until there is just
one candidate for ki.

Step 9: Repeat steps 3-8 for all i ∈ [0, 15] to recover the whole
round key.

Step 10: Compute the remaining 16 bits of the secret key by
exhaustive search or repeating SCADPA on the next
round.

B. SCADPA Acceleration by Optimal Plaintext Choice

In order to reduce the key complexity and retrieve the secret
key with fewer number of encryptions, it is possible to change
the value of multiple nibbles in the plaintext. Based on the
permutation layer, multiple nibbles can be changed without
affecting same locations in the next round and hence, can be
analyzed independently. The optimal methodology executes
the following steps:
Step 1: Keep the record of nibbles of key that have not been

recovered (I = {0, . . . , 15})
Step 2: Start by choosing one nibble (ni ∈ I) and calculate all

possible affected nibbles at the beginning of the next
round (Ni).

Step 3: Choose another nibble (n j ∈ I, n j , ni) and check if
the affected nibbles interfere (check if Ni ∩ N j = ∅).
If true, keep n j, else, move to other nibble . Repeat,
until no nibble remaining, then update I \ {ni, n j, ...}.

Step 4: Choose plaintext set that changes only on these nibble
positions ({ni, n j, ...}).

Step 5: Repeat step 2-4, until I = ∅

Another option is to choose the pair difference in the plain-
text that could minimize the key candidate. This is dependent
on the Sbox used. In the case of PRESENT, as shown later in
Figure 3, for one plaintext pair, there could be either 2 or 4
key candidates. However, even with two plaintext pairs, there
is still slight chance on getting more than 1 key candidate.

A natural question would be – ‘how many nibbles of
PRESENT can we attack at once by using SCADPA?’ As can
be seen in Figure 2, one nibble can affect up to half of the
state at the next round addRoundKey. Nibbles 0−7 (“group 1”)
affect bytes 0, 2, 4, 6, while nibbles 8−15 (“group 2”) affect the
remaining bytes 1, 3, 5, 7. Therefore, by combining one nibble
from each group, we can retrieve two nibbles at the same time
while avoiding the interference. This knowledge can help us
to reduce the number of encryptions to half. Parallelization of
attack to two nibbles is limited by the byte-wise granularity
of addRoundKey. The following sBoxLayer with nibble-wise
granularity would allow up to 4 nibbles in parallel, however
at the cost of needed profiling.

C. Attack Example

We illustrate our method by a simple example that shows
how to recover one nibble of the round key i.e. i = 1. We fix
pi = 0x0 and p′i = 0xA. After observing the ∆t, we figure out
that ∆S i = 0x2. By knowing that ∆pi = 0xA, there can be two
candidates for ki: 0xF and 0x5. We make another experiment,
now with p′i = 0x3. By capturing another trace, we determine

∆S i = 0x6, giving us four different candidates for ki: 0xC,
0xD, 0xE, and 0xF. The only intersecting candidate is 0xF,
therefore we know that the key nibble has to be this value.
The retrieval of ∆S i from real power traces is explained in the
following section.

D. Attack Complexity

In this section, we compute the attack complexity for single
key nibble retrieval and full round key retrieval.

The single nibble retrieval complexity depends on the un-
derlying Sbox function, being the only non-linear function in
the derived differential equation. Table II shows the extended
Difference Distribution Table (DDT) for PRESENT Sbox. Input
difference to the Sbox is denoted as δ, while the output
difference is denoted as ∆. From this table, it can be observed
that one needs two input differences to uniquely identify the
Sbox input. Therefore, to fully recover the first round key with
a chosen plaintext model and one nibble recovery at a time,
the attack requires one reference trace and 32 difference traces,
resulting to 33 encryptions in total. However, the method
from Section III-B provides more optimized way to mount the
attack, with two nibbles at a time, resulting to 17 encryptions
in total.

Now, we can consider a known plaintext model which is
more relaxed requirement. As can be seen in Table III, using
a single plaintext pair ∆p′i for determining ∆S , it will yield
2 key candidates in ≈ 60% of cases and 4 candidates for the
rest. By adding additional plaintext pair, the probability of
identifying a unique key candidate ki are 94.3%, 99.5% and
100% for 2, 3 and 4 plaintext pair respectively. Since, the same
reference plaintext can be used, with 5 encryptions a unique
key candidate can be identified in worst case. The numbers
would change for an Sbox other than PRESENT, but will stay
comparable.

Figure 3 shows the complexities for different scenarios. As
mentioned previously, the best case requires 17 encryptions. In
case we can choose the optimal plaintexts but for some reason
can only recover one nibble at a time, SCADPA will require 33
encryptions. The worst case only recovers one nibble at a time
while using the conservative reduction of candidates and not
exploiting any specific Sbox properties. In this case, it will
require 4 values to reduce the key candidate to 1 per nibble.
Hence, it will require 65 encryptions.

Please note that it is also possible to make a search on
remaining candidates. For example, if we have 2 candidates
for each nibble, we can determine the value with a brute-force
search with complexity of 216. For such case, it would only
require 9 encryptions in case we target two nibbles at a time.
Similarly, operating at nibble wise granularity at the following
sBoxLayer can recover the key in 9 encryptions as well.

IV. Experimental Results

In this part, we show and discuss experimental results
obtained by performing SCADPA on a microcontroller imple-
mentation of PRESENT-80 cipher [2]. Sections IV-A and IV-B
provide an overview of the experimental setup and results,



TABLE II: Extended difference distribution table for PRESENT Sbox. Columns represent input difference, rows represent output
difference and entries are Sbox inputs.

∆
δ

1 2 3 4 5 6 7 8 9 a b c d e f

1 9a 36 078f 5e 1c 24bd
2 8e 34 09 5f 1d 67ab 2c
3 cdef 46 12 3b 0a 58 79
4 47 8d 35ac 0b 2f 169e
5 cdef 0145 2389 67ab
6 9b cdef 37 06 25 18 4a
7 67ab 03 8c 5d 2e 49 1f
8 17 ad 6f 4e 2389 0c 5b
9 0145 9d be 2a 7c 3f 68
a 02 56 bf 9c 7d 1a 48 3e
b 8b 27 35ac 169e 4f 0d
c 8a 26 0145 9f bc 7e 3d
d 2389 57 af 4c 1b 6d 0e
e 13 ae 24bd 6c 59 078f
f 24bd 169e 078f 35ac

TABLE III: Probability of determining key candidates.

# of plaintext pairs
# of key candidates 1 2 3 4

1 0 0.94315 0.99557 1
2 0.59948 0 0 0
3 0 0 0 0
4 0.40052 0.05685 0.00443 0
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Fig. 3: Number of traces required for recovering key nibbles
of PRESENT.

respectively. Section IV-C shows a way of automating the
recognition of the Sbox output differences.

A. Setup

As a DUT, we used a standard 8-bit microcontroller from
Atmel, ATmega328P, mounted on Arduino UNO development
board. We have measured an electromagnetic emanation with
a Langer RF-U 5-2 probe. Signal was captured with LeCroy
WaveRunner 610 Zi oscilloscope.

We have used an implementation of PRESENT-80 cipher,
where sBoxLayer is computed nibble-wise and the rest of

the operations are done byte-wise. Sampling rate was set at
500 MS/s, while the addRoundKey takes ≈7000 samples. A
difference introduced in the first round could be observed
during the second round. We chose to observe the difference at
the second addRoundKey as in our case the start of round was
easily identifiable by visual inspection of the trace. Choice of
observing the difference on addRoundKey has an advantage
and a disadvantage. The advantage being that precise profiling
was not needed as compared to locating time instants for
sBoxLayer. The disadvantage is that since addRoundKey is
done byte-wise, the observed differences are limited to byte
level. Observed differences on the following sBoxlayer can
be nibble precise, given appropriate profiling.

B. Results

To support our method, we have conducted experiments
showing the possibility of distinguishing ∆S .

Fig 4 shows differences in power consumption captured in
the second addRoundKey, by calculating ∆t. The implemen-
tation we used computes the addRoundKey in a reverse order,
therefore the difference peaks follow this order. In order to
improve signal-to-noise ratio and produce clear plots, both t
and t′ were averaged from multiple executions. Nevertheless, it
was possible to see the difference and raw traces. By observing
this difference, the output difference of sBoxLayer in round
1, i.e. ∆S i, can be clearly distinguished. Once ∆S i and ∆pi

are known, it can be used to solve the value of secret key ki,
as shown in the previous section.

C. Automatic Recognition of the Difference

If we look at Figure 4, it is obvious that determination of
differences can be automated. For this purpose, one can use
a simple algorithm that sets the threshold, enabling the sepa-
ration of interesting areas from the random noise. Following
steps can be done in order to make the automatic difference
recognition:
Step 1: Calculate the mean (µ) and the standard deviation (σ)

from the difference trace ∆t, however both traces t
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Fig. 4: Difference traces ∆t showing addRoundKey of round
2, revealing the output difference of the Sbox at round 1.
Bytes are processed in a reversed order, therefore the pattern
showing the difference also has to be reversed. Difference
between the Sbox outputs for the plots (highlighted by the
gray background) is as follows: (a) 0x01, (b) 0x02, (c) 0x0A,
and (d) 0x0F.

and t′ come from the same plaintext, i.e. there is no
difference in the Sbox output.

Step 2: Set the basic positive and negative threshold to be
r+ = µ + σ and r− = µ − σ, respectively.

Step 3: Choose n to be a multiplier of r+ and r− in a following
way: start from n = 1 and increment the value by
1 until all the points of the trace fall between the
positive and negative threshold.

Step 4: Use these values for all the measured traces to indicate
points where the difference traces cross the thresholds.

Step 5: By the density distribution of the crossing points,
together with the timing, determine ∆S .

Thresholds for ∆S =0x01 are stated in Figure 5.
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Fig. 5: Threshold that enables determination of the ∆S . Values
used for thresholding were: µ = 3.452 × 10−5, σ = 1.453 ×
10−3, n = 4.

V. SCADPA Applied on Lightweight Cipher GIFT
GIFT [3] is a lightweight block cipher, designed to improve

the efficiency and correct the weaknesses of PRESENT. Similar
to PRESENT, GIFT is based on Substitution-Permutation Net-
work (SPN), where each round is composed of substitution
layer (SubCells), permutation layer (PermBits) and key
addition (AddRoundKey). GIFT has 128-bit key and supports
either 64-bit or 128-bit plaintext. The design of 4-bit Sbox
(SubCells) and the permutation layer of GIFT is different
from PRESENT, however, the idea of SCADPA can still be
applied.

TABLE IV: GIFT SubCells.

x 0 1 2 3 4 5 6 7
S(x) 1 A 4 C 6 F 3 9

x 8 9 A B C D E F
S(x) 2 D B 7 5 0 8 E

Given the case of GIFT-64-128 (64-bit), the first 32 bits of
the input to the permutation layer will go to bytes 0, 2, 4, and
6, whereas the other half will go to the remaining bytes. In
general, the diffusion of each nibble after the SubCells can be
formulated as shown in Table V. In summary, each bit in the
nibble will go to different bytes in the subsequent round and
the order of the targeted byte is as denoted in the table. Here,
[i0, ..., i j−1]�n denotes right circular shift by n elements in the
array. In this case, SCADPA can be applied using the same
rationale as for the case of PRESENT-80, described earlier,
since the affected bytes follow the same diffusion pattern.

One of the challenges is due to the key addition performed
in GIFT. Here, the key is separated into eight 16-bit words.
Two words are used in each round, that is, for GIFT-64-128,
there will only be 32-bit key for each round. For each round,
the key is extracted as follows: take the first two words, k0 and
k1 (referred to as U and V , respectively). At the next round,
the key is rearranged as follows:

k7||k6|| . . . ||k1||k0 ← k1 ≫ 2||k0 ≫ 12|| . . . ||k3||k2.

Here, ≫ i is an i bits right rotation within a 16-bit word.
The round keys U and V are then xor-ed with the state as
follows: b4i+1 ← b4i+1⊕ui and b4i ← b4i⊕vi, ∀i ∈ {0, ..., 15}. A
single bit (set to 1) and 6-bit round constant are also added to
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Fig. 6: The number of key nibbles retrieved by given number
of traces attacking GIFT-64-128 targeting multiple rounds.

bits 63/127 (most significant bit, depending on the version of
algorithm), 23, 19, 15, 11, 7, 3. Thus, for the attack, in each
round, only 32 bits of the key can be recovered.

TABLE V: GIFT: affected bytes after bit permutation for each
nibble.

Bits in targeted nibble i Bytes affected in next
round

[b0, b1, b2, b3]0≤i≤7 [0, 2, 4, 6]�(i mod 4)
[b0, b1, b2, b3]8≤i≤15 [1, 3, 5, 7]�(i mod 4)

In order to recover the rest of the key, the attack can then
be performed on multiple consecutive rounds. Since the first
round key has been recovered, to achieve the differential at the
next round, the attacker can just “peel off” the first round and
continue with SCADPA in the same way on the subsequent
round. To recover the whole 128-bit key, this has to be repeated
4×, or 3× with brute-forcing the last 32 key bits. In Figure 6,
we show the result of attacking GIFT-64-128. As can be seen
in the plot, 68 traces are required to recover all the 128 key bits
in case only one nibble is changed each time. In the best case,
when two nibbles are targeted at a time, the attack requires 36
traces (4 reference traces and then 32 differential traces). This
is due to the reason that for GIFT, on top of the longer key
length, with each nibble we can only recover 2 bits, compared
to 4 bits for PRESENT.

VI. Reverse Engineering of Secret Ciphers

As mentioned in the literature [15], one can still find
solutions that are using secret cipher components despite the
Kerckhoffs’ principle. Often industry and agencies would use
secret cipher for some specific applications. However, confi-
dence in security of a cipher is only developed by detailled and
lengthy analysis. This, for example, is the case of AES which
has been extensively studied for over two decades without
discovering a serious flaw. A common practice to design
secret ciphers is to take a well studied cipher and replace

an operation with a secret operation of equivalent security
properties. Replacing Sbox of a well studied cipher like AES
or PRESENT, with a secret Sbox of same cryptographic
strength as the original, results in a new secret cipher.

For a PRESENT-like cipher, each round function consists
of three operations in the following order: key addition, Sbox
and bit permutation. In this section, we extend the SCADPA
approach to recover secret components of PRESENT-like
ciphers. The assumptions for the test scenario is as follows:
• Exactly one of the substitution layer or the permutation

layer is replaced by a secret component, but not both.
• The attacker can feed chosen plaintext and observe the

output ciphertext, without the knowledge of the secret
key.

• All Sboxes are identical, which is important to keep the
design lightweight.

In Section VI-A, we demonstrate how Sbox can be recovered
using SCADPA with known bit permutation. Section VI-B
then describes how to recover bit permutation without the
assumption whether Sbox is known or not, by using a fault
injection.

A. Recovery of Secret Sbox

Let us consider a PRESENT-like cipher using a secret
Sbox, while the permutation layer is unchanged (or known).
We describe a method that can reverse engineer the secret
Sbox as well as recover the first round key with at most 46
measurements by using SCADPA – 16 for the first key nibble
and 30 for the rest (this can be optimized to 17 according
to Section III-B). Following the above notations, let S denote
the secret Sbox operation and let k0 denote the first nibble
of the first round key. The 16 measurements which use all
the possible values of p0 give us an array of Sbox output
differences, say dif, such that

dif[i] = S (k0) ⊕ S (k0 ⊕ i).

Note that in the case S (0) = 0 and k0 = 0, the array dif is the
unique solution for the secret Sbox. All the possible solutions
for the Sbox and corresponding k0 can be calculated using
Algorithm 1. Line 1 considers different values of k0 and line
2 iterates through different values of S (k0). With each fixed
pair of k0 and S (k0), an Sbox solution is uniquely determined
using dif (line 4). For each Sbox solution, there is a unique
value for the first round key using the measurement results
and SCADPA. This gives the secret Sbox as well as the secret
key used in the original encryption algorithm.

In the following, we describe the steps to reverse engineer
the Sbox in detail:
Step 1: Run SCADPA for 16 different values of the first

plaintext nibble p0.
Step 2: Run SCADPA in a normal way for the rest of the

nibbles pi; 1 ≤ i ≤ 15, i.e. with 2-3 different values of
pi.

Step 3: After recovering the differences, obtain the dif array
and run Algorithm 1.



Algorithm 1: Calculate all Sbox candidates and corre-
sponding k0

Input : dif: array of output differences
Output: ARRAY A of (Sbox,key): array of tuples of

candidate Sboxes and corresponding k0 value
1 for int k: 0 to 15 do
2 for int m: 0 to 15 do
3 for int i: 0 to 15 do
4 newSbox[i ⊕ k] = dif[i] ⊕ m;

5 A.add(newSbox,k);

6 return A;

Step 4: For each pair of Sbox and first nibble of the first round
key returned by Algorithm 1, using the information
from Step 2, we can construct a cipher. In total we
have 256 potential cipher solutions. In this way, each
candidate for Sbox will also yield a unique candidate
for the first round key.

Step 5: Run each of the ciphers with the given plaintext and
compare the ciphertext with the one obtained from
the original algorithm. If the ciphertexts are equal,
the Sbox value and the first round key value can be
determined.

When it comes to reverse engineering of secret Sbox used
in GIFT, the measurement part works in the same way as
explained before. However, there is an advantage for the
attacker – GIFT does not use pre-whitening key, therefore,
the input to SubCells layer in the first round is known to the
attacker. This reduces the search space from 256 to 16 in Step
3.

Obviously, in case the permutation layer is not known
to the attacker, she cannot use SCADPA. However, in the
following part, we describe a way to reverse engineer this part
of the cipher with a usage of fault injection. Since reverse
engineering the permutation does not require knowledge of
the Sbox, the attacker can first recover permutation using the
following attack and then apply SCADPA for Sbox recovery.

B. Recovery of Secret Bit Permutation

Another operation that can be secret is the bit permutation.
To successfully recover this layer, SCADPA alone is not
sufficient since it can only identify the permutation with byte
precision. This is because SCADPA is limited to initial rounds
of the cipher, whose output is not observable by the attacker.
A difference inserted at plaintext will be untraceable when
traversing all the rounds of the cipher. Therefore, to recover the
bit permutation, the difference must be inserted at later rounds.
This can be achieved by specialized equipment often used in
fault injection attacks. The attacker introduces differences in
the last round of the cipher and observes the changes in the
ciphertext. Therefore, it is similar to differential fault analysis,
but only targeting the last permutation layer of the cipher.

We assume the bit permutation is of optimal diffusion. As it
turns out, this property can be helpful in designing an efficient
reverse engineering method. More specifically, the structure

of the four Sbox groups is the same, meaning that as long as
the secret design uses optimal diffusion, it is sufficient for the
attacker to get information about one group to know the whole
permutation. Along with the initial assumptions, we assume a
fault model where the attacker can introduce bit flip faults in
the last round at the Sbox output before the permutation layer.

By flipping bits before the permutation layer, the attacker
can identify fault propagation in the ciphertext, revealing the
bit position before the permutation. She just repeats this 16×,
for the whole Sbox group and then uses this information to
identify the whole permutation layer. Note that in case the
permutation is not regular, the attacker has to flip all the bits
in the state, resulting to 64 faults.

VII. Extension of SCADPA to 32-bit Architectures
When considering the attack on 32-bit architectures, one has

to distinguish between different possibilities of implementing
the round function. In case the operations are computed on
4/8-bit blocks, the attack can be carried out in the same way as
in Section III-A. However, in case addRoundKey is computed
as xor of 32-bit blocks, the attacker gains less information
about the processed data and therefore, an updated attack
strategy has to be used. This behavior is depicted in Figure 7,
where one can easily observe that two output bits of each Sbox
go to one word while the other two bits go to another word.
In this part, we will describe the method of use for such case.

Fig. 7: PRESENT implemented on 32-bit architecture, where
addRoundKey is computed on 32-bit words. One can easily see
that from one Sbox, the output bits are split equally between
the two words.

When the attacker obtains the difference of the traces, ∆t,
she can distinguish three possible cases when observing the
addRoundKey:
• only word0 has changed, indicated by Y |N,
• only word1 has changed, indicated by N |Y ,
• both words have changed, indicated by Y |Y .

Step 6 in SCADPA procedure (Section III-A) will be changed
as follows:
Step 6: By examining ∆t, get the change of Sbox output be-

tween S (xi) and S (x′i ), which is denoted by Y(N)|Y(N)
as indicated above.



For PRESENT Sbox, the information the attacker can get is
stated in Table VI, which represents a DDT with output differ-
ence following the three cases described above. Now, she can
construct an optimal attack strategy that will require the lowest
number of traces, depending on the chosen plaintext. She
will iterate through possible combinations of input differences
until she finds a combination that yields a unique solution for
the Sbox input. To be more specific, for PRESENT Sbox, the
minimal number of input differences needed is 4. One such
combination is stated in Table VII, for differences 0x3, 0x7,
0xd, 0xe. For example, the attacker first measures the trace
for p = 0, which will serve as a reference trace. Then to attack
ith nibble of the first round key she measures the traces for
pi =0x3, 0x7, 0xd, 0xe, respectively. The four differences
between the four traces and the reference trace will uniquely
determine the input of Sbox for the first encryption, i.e. pi⊕ki.
Considering that attacker needs one reference trace and 4 other
traces per nibble, the total number of chosen plaintexts to fully
recover the round key is 65.

A. More Precise Attacker Model

Now, let us consider a more powerful attacker where she
is able to distinguish not only whether there is a change in
each of the 32-bit words, but also what is the Hamming
weight of such change. This knowledge can help her dis-
tinguish how many bits of the Sbox output were changed
and therefore, she needs lower number of encryptions to
recover the key. Let us denote this difference as ∆HW j =

HammingWeight(word j ⊕ word′j), where j ∈ 0, 1 is index of
the word. Thus for two different plaintext nibbles pi, p′i , ∆HW0

and ∆HW1 are the Hamming weights of the first and last two
bits of S (ki ⊕ pi)⊕ S (ki ⊕ p′i) respectively. Step 6 in SCADPA
procedure (Section III-A) will be changed as follows:
Step 6: By examining ∆t, get the change of Sbox output

between S (xi) and S (x′i ): ∆HW0 and ∆HW1 .
For PRESENT Sbox, Table VIII shows the DDT for this case

– columns denoting the input difference and rows denoting
∆HWi for each word. One can easily see that for such case,
the attacker only needs two difference traces on top of the
reference trace to uniquely identify the Sbox input. Therefore,
she needs 33 encryptions in total, same as the single nibble
attack described for 8-bit architecture.

B. Reverse Engineering

Now let us consider the reverse engineering problem de-
scribed in Section VI-A for 32-bit architecture. In this case, the
array dif cannot be obtained directly. However, the attacker
can still calculate different candidates for dif using the same
amount of SCADPA measurements as detailed in Step 1 and 2
of Section VI-A. In this section, we illustrate how to achieve
this for each of the two attacker capabilities discussed above.

In case the attacker can observe the change of word0 and
word1 as described in the beginning of this section, instead
of dif, the attacker can obtain an array difYN of length 15,
such that

• difYN[i] =Y|N if the first two bits of S (k0)⊕S (k0⊕ i) are
non-zero and the second two bits of S (k0)⊕ S (k0 ⊕ i) are
zero;

• difYN[i] =N|Y if the first two bits of S (k0) ⊕ S (k0 ⊕ i)
are zero and the second two bits of S (k0) ⊕ S (k0 ⊕ i) are
non-zero;

• difYN[i] =Y|Y if the first two bits of S (k0)⊕S (k0⊕ i) are
non-zero and the second two bits of S (k0)⊕ S (k0 ⊕ i) are
non-zero.

Due to the fact that Sbox is a bijective function on F4
2, for

any Sbox S , the values S (k0)⊕S (k0⊕ i) for i = 1, 2, . . . , 15 are
always a permutation of the 15 values of 1, 2, 3, . . . , 15. Thus,
in the array difYN , we will have exactly 3 of Y |N, 3 of N |Y
and 9 of Y |Y . Furthermore, for any i, we have the following
observations:
• if difYN = Y |N, there are 3 possibilities for S (k0)⊕S (k0⊕

i): 1000, 0100, 1100;
• if difYN = N |Y , there are 3 possibilities for S (k0)⊕S (k0⊕

i): 0010, 0001, 0011;
• if difYN = Y |N, there are 9 possibilities for S (k0)⊕S (k0⊕

i): 0101, 0110, 0111, 1001, 1010, 1011, 1101, 1110, 1111.
Hence, for the array difYN , the attacker has 33×33×99 = 324

possible solutions for dif. Then she can continue with steps
3-5 as in Section VI-A. In this way, the number of ciphers she
needs to check is 324 × 28 ≈ 246. This still stays with in the
brute force complexity.

Now, we consider the case the attacker can observe Ham-
ming weight of the differences as described in Section VII-A.
Then, from the SCADPA measurements she can obtain an
array difHW of length 15, such that difHW [i] = ∆HWi0 |δHWi1 ,
where ∆HWi0 and ∆HWi1 are the Hamming weights of the first
and last two bits of S (ki)⊕S (ki⊕i) respectively. By a similar ar-
gument as above, there are respectively 4, 2, 2, 2, 2, 1, 1, 1 per-
mutations of 11, 12, 21, 10, 01, 20, 02, 22 in the array difHW .
And for each i, the possible values of S (k0) ⊕ S (k0 ⊕ i) are
respectively 4, 2, 2, 2, 2, 1, 1, 1 for 11, 12, 21, 10, 01, 20, 02, 22.
Hence, in this case, the number of ciphers the attacker needs
to check is 216 × 28 = 224.

VIII. Discussion

In this part we will first discuss how side-channel coun-
termeasures affect the successful application of SCADPA in
Section VIII-A. Section VIII-B then explains how a fault
attack countermeasure based on redundancy can increase
implementation vulnerability w.r.t. SCADPA. Next, we show
possibilities of attacking different block cipher modes of
operation in Section VIII-C. Finally, in Section VIII-D we state
alternatives for permutation layer as well as countermeasures
that prevent successful application of SCADPA.

A. Side-Channel Countermeasures

As SCADPA exploits leakage of bit permutation through
side-channel, any countermeasure which randomizes side-
channel information and/or decreases signal-to-noise ratio can
protect against such attacks. This includes both hiding [18]
and masking countermeasures [19]. However, any bias in the



TABLE VI: Extended difference distribution table for PRESENT Sbox, where the columns follow the input difference, rows
follow the change of the two output words and entries represent the Sbox inputs – w0 denotes word0, w1 denotes word1.

w0|w1
δ

1 2 3 4 5 6 7 8 9 a b c d e f

N |Y cdef 46 129a 36 8e 03478f 3b 09 05af 5e 1d 15678abc 279c 24bd
Y |N 8a 47 26 01458d 179f abcd 3567acef 4e 02389b 0c 2f 35bd 169e

Y |Y 012345 012357 03568 0134578 279a 02345
12569e

0124567
1248bd

12367 1467 234567
0349de

0146 0357
6789ab 9bcdef bcdef 9abcdef bcef 6abcd 89acdef 89bcd acdf 89abef 8aef 8acf

TABLE VII: Example of output differences for input difference
0x3, 0x7, 0xd, 0xe. White color indicates Y |N, red color
N|Y , and black color indicates both words changed – Y |Y .
Each row is unique, and therefore, enables recognition of the
Sbox input.

Input
δ

3 7 d e

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

implementation of the countermeasure can still render the
attack possible. For instance, an unbalanced implementation
of hiding will still allow to observe the difference. Similarly
for masking, ∆S would depend upon pi⊕mi⊕ p′i⊕m′i . If masks
mi,m′i are totally independent and uniformly distributed, the
attack is not possible, however with biases in the mask, the
attack can still be carried out with increased effort. Shuffling
of the order of the Sboxes and/or key additions would make
the attack harder since only the hamming weight could be
directly observed, instead of the difference value.

Nevertheless, countermeasures can incur significant over-
heads. Thus, for lightweight cryptography specially oriented
for low-cost platforms, the functions must be carefully chosen
to avoid such vulnerabilities.

B. Internal Redundancy Countermeasure

Recently, a software countermeasure against fault attacks,
called Internal Redundancy Countermeasure (IRC) [17], was
proposed. IRC utilizes a redundancy within an instruction
to protect against simple data faults and instructions skips.
To do this, data blocks, together with reference blocks are
duplicated and concatenated within one instruction, as can be
seen in Figure 8. While the data blocks contain user data
that is being encrypted, the reference blocks are protecting
against instruction skips, and are not interesting for the attacker
since their value is known. The proposal was aimed at 32-bit

Fig. 8: Block concatenation for Internal Redundancy Counter-
measure (IRC).

Fig. 9: Construction of four redundant blocks out of one 32-bit
block according to IRC.

architectures, leading to four blocks of 8-bits per instruction.
Therefore, one 32-bit data block is split into four 32-bit
redundant blocks, as stated in Figure 9.

Such countermeasure therefore effectively transforms a 32-
bit implementation into an 8-bit one in the view of SCADPA
methodology. Splitting the data to smaller chunks means they
can be analyzed separately in the same way as in the case
of 8-bit implementation stated in Section III-A. In case of
PRESENT, it means that the difference in addRoundKey will
be distinguishable according to Figure 2.

This behavior can be seen in Figure 10, which shows the
difference between the unprotected implementation and IRC
protected implementation of PRESENT on 32-bit architectures.
According to results from Section VII, this requires 65 traces
in total for unprotected 32-bit implementation. However, only
17 traces will be required in case of the IRC protected
implementation. This is a common example where fixing one
vulnerability open doors for other vulnerabilities.

C. Attack on Different Modes of Operation

Few block cipher operation mode are well oriented towards
plaintext selection of SCADPA. When it comes to Counter



TABLE VIII: Extended difference distribution table for PRESENT Sbox, where the columns follow the input difference and
rows follow the Hamming weight of the two output words.

δHW0 |δHW1

δ
1 2 3 4 5 6 7 8 9 a b c d e f

0|1 9a 36 8e 03478f 09 5f 5e 1d 167abc 2c 24bd
1|0 47 8d 17 ad 356acf 4e 02389b 0c 2f 5b 169e
1|1 0145 029bcdef 56cdef 0134579bdf 9bce 06 25 2a 18 23789d 17ac 34678abf 3e 468a
0|2 cdef 46 12 3b 0a 58 79
2|0 8a 26 0145 9f bc 7e 3d
1|2 67ab 038b 8c 27 35ac 1569de 4f 2e 049d 1f
2|1 2389 1357 ae af 4c 24bd 16bc 6d 59 0e 078f
2|2 24bd 169e 078f 35ac
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Fig. 10: Number of nibbles recovered for unprotected imple-
mentation and for the one protected with IRC for different
number of traces.
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Fig. 11: Counter (CTR) mode of operation (encryption) [20].

(CTR) mode (Figure 11), the input to the encryption algorithm
consists of a nonce and a counter. While the nonce is a
random number, counter normally increases by 1 after each
block. While the nonce stays fixed, the incrementing counter
satisfies the chosen plaintext criteria of SCADPA as discussed
in Section III. The attack allows to recover few nibbles directly
affected by the counter in the first round. For the remaining
nibbles, chosen nonce or attack on second round can be carried
out in a similar way.

On the other hand, when targeting Cipher Block Chaining
(CBC) mode, one has to aim at the decryption module
(Figure 12). This comes from the property of CBC where
the plaintext is first xor-ed with the IV (first block) or with
ciphertext from the previous block. In this case, chosen-
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Fig. 12: Cipher Block Chaining (CBC) mode of operation
(decryption) [20].

plaintext attack changes to chosen-ciphertext, without the
knowledge of plaintext. The same hold for Propagating Cipher
Block Chaining (PCBC) mode.

D. Alternatives for Diffusion Layer

Certain diffusion function do not offer vulnerabilities that
are exploited by SCADPA in bit permutation. AES [21], the
NIST standard for symmetric key cryptography, is a relevant
example. AES encrypts 128-bit data block with a 128/192/256
bits secret key in 10/12/14 rounds. The data is organised in
a 4 × 4 matrix of bytes called state and the round function is
applied upon it. A round comprises of four operations i.e.
SubBytes (SB), ShiftRows (SR), MixColumns (MC) and
AddRoundKeys (ARK). SB is a 8 × 8 non-linear table look
up and ARK is the round key addition. We concentrate on
diffusion functions i.e. SR and MC. SR applies a cyclic shift
on the rows (1, 2, 3, 4) with offsets (0, 1, 2, 3). MC operates
on four bytes of each column of the state. The four bytes are
combined using an invertible linear transformation. When a
difference is inserted at the input, irrespective of its value, the
difference is always propagated on all four bytes, preventing
∆S leakage. This is illustrated in Figure 13.

Recent trends show that it is possible to design a lightweight
cipher with similar diffusion function and not only rely on
bit permutations. SKINNY [22], PRINCE [23] are common
examples. Other ultra-lightweight ciphers like SIMON and
SPECK [24], use several bit shifts applied to a partial interme-
diate state to provide the diffusion. Furthermore, only a binary
operation is used to provide non-linearity. Both operations
combined would prevent a successful application of SCADPA.

IX. Conclusions
In this paper, we identify a vulnerability in bit permutation

based lightweight ciphers (PRESENT, GIFT, etc) and develop a
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Fig. 13: Difference Diffusion in AES.

side-channel assisted methodology called SCADPA to exploit
it. With a practical case study on low-cost microcontroller
running PRESENT-80, we were able to practically recover the
secret key with as low as 17 encryptions and an exhaustive
search with complexity of 216. In case of GIFT, the number
of encryptions in the best case was 36. We extend the method-
ology to enable the recovery of secret Sboxes in PRESENT-like
ciphers. We further discuss how the application of redundancy-
based fault attack countermeasures increases success rates of
SCADPA. Several attacker models are presented, with different
complexities of retrieving the key. To avoid the presented
attacks, usage of more complex yet low-cost diffusion function
is encouraged.

In the future work, it would be interesting to look at pos-
sibilities of exploiting different side-channel countermeasures.
Especially, if randomness in masking is biased or the leakage
characteristics of hiding are not uniform.
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