
CALYPSO: Private Data Management for Decentralized Ledgers
Eleftherios Kokoris-Kogias
IST Austria & Novi Research

ekokoris@ist.ac.at

Enis Ceyhun Alp
EPFL

enis.alp@epfl.ch

Linus Gasser
EPFL

linus.gasser@epfl.ch

Philipp Jovanovic
UCL

p.jovanovic@ucl.ac.uk

Ewa Syta
Trinity College

ewa.syta@trincoll.edu

Bryan Ford
EPFL

bryan.ford@epfl.ch

Abstract

Distributed ledgers provide high availability and integrity, mak-
ing them a key enabler for practical and secure computation of
distributed workloads among mutually distrustful parties. Many
practical applications also require strong confidentiality, however.
This work enhances permissioned and permissionless blockchains
with the ability to manage confidential data without forfeiting avail-
ability or decentralization. The proposed Calypso architecture ad-
dresses two orthogonal challenges confronting modern distributed
ledgers: (a) enabling the auditable management of secrets and (b)
protecting distributed computations against arbitrage attacks when
their results depend on the ordering and secrecy of inputs.

Calypso introduces on-chain secrets, a novel abstraction that
enforces atomic deposition of an auditable trace whenever users
access confidential data. Calypso provides user-controlled consent
management that ensures revocation atomicity and accountable
anonymity. To enable permissionless deployment, we introduce
an incentive scheme and provide users with the option to select
their preferred trustees. We evaluated our Calypso prototype with
a confidential document-sharing application and a decentralized
lottery. Our benchmarks show that transaction-processing latency
increases linearly in terms of security (number of trustees) and is
in the range of 0.2 to 8 seconds for 16 to 128 trustees.

1 Introduction

Blockchain or distributed ledger technology (DLT) enables the se-
cure, public exchange of digital information and assets without
trusted intermediaries, a foundation useful to many applications.
Decentralized data sharing enables data markets that promise to
put end-users back in control over how their data is shared and
used, instead of surrendering data governance to a few tech gi-
ants [53, 71]. Decentralized data sharing can facilitate cooperation
by mutually-distrustful parties, such as competing businesses or
different countries. Decentralized data sharing can increase trans-
parency of data processing, which is particularly important for
sensitive cases, such as lawful data access requests [26]. Decentral-
ized data life-cycle management allows users to implement and
use secure key-recovery mechanisms, e.g., enabling journalists to
create the digital analogue of a dead man’s switch to protect them-
selves and their sources [23]. These technologies can also be used
to guarantee fairness in lotteries [4], games [42], and trading [17].

In the above scenarios, the security of data exchange and man-
agement is crucial, particularly when the confidentiality of private
user data is at stake. However, security is not a given in current de-
centralized data-sharing applications [45, 54]. Existing approaches

either forfeit availability guarantees for private data [29] or fall back
on semi-centralized solutions for key management [6, 79], thereby
subjecting data privacy to single points of failure or compromise.

Furthermore, decentralized applications that rely on the tim-
ing of data disclosure to ensure fairness are often susceptible to
front-running attacks, in which adversaries that have early access
to proposed but not-yet-committed transaction information adapt
their strategies unfairly [24]. Front-running makes decentralized
exchanges exploitable [17, 72] or resort to centralized order-book
matching as in the 0x Project [16]. Front-running makes decentral-
ized lotteries require collateral [4] or many interactive rounds [48].
Automated front-running attacks can even hijack careful attempts
to recover from smart contract bugs [60]. Current defense mecha-
nisms are ad-hoc and difficult to deploy [18].

We introduce Calypso, a new secure data-management frame-
work that addresses the challenge of providing fair and verifiable
access to confidential information without relying on a trusted
party. To achieve this goal our system needs to address three key
challenges. First, Calypso must provide accountability for all ac-
cesses to confidential data, to ensure that data is not improperly
disclosed and to enforce proper recording of data accesses. Ideally,
such an accountability mechanism should not reveal the relation-
ship between users, instead providing anonymity to data consumers.
Second, Calypso must ensure that data owners retain control over
the data they share and allow data consumers to access data even
when their digital identities (public keys) change. In particular, Ca-
lypso should allow for flexible updates of access-control rules and
user identities, e.g., to add or revoke access rights or keys. Third,
Calypso needs to support permissionless functionality in order to
be deployable alongside existing open blockchain ecosystems. Fig-
ure 1 illustrates a typical Calypso-based data-sharing application,
itself building on a novel on-chain secrets (OCS) abstraction that
provides dynamic access control and identity management.

On-chain secrets addresses the first challenge by combining the
availability and confidentiality expected of data-management sys-
tems with the decentralization expected of blockchains [39, 78].
On-chain secrets combines threshold cryptography [65, 68, 70]
to hold secrets, with a blockchain to manage those secrets. The
blockchain enforces access control policies, indelibly records access
authorizations, and ensures that disclosures are atomic with respect
to all state changes potentially affecting authorization. To enable
dynamic access-control and identity management, Calypso com-
bines on-chain secrets with skipchains [38, 52], which allow one
blockchain to follow and track another efficiently. This yields the
first decentralized role-based access-control system [63], enabling
user-controlled consent management. Finally, Calypso supports

Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford

Figure 1: Auditable data sharing in Calypso

permissionless operation by building incentives around authorized
data decryption, and allows users to select groups of secret-holding
trustees based on personal preference and trust.

We implemented a prototype of Calypso in Go and evaluated it
on commodity servers. Our experiments show that on-chain secrets
scales linearly in the number of trustees (level of decentralization),
exhibiting a moderate overhead of 2 to 17 seconds for 16 to 128
trustees. Furthermore, we evaluated two Calypso-based applica-
tions: secure document sharing and zero-collateral decentralized
lottery. Our experiments use both synthetic and real-world work-
loads, and we compare Calypso to cloud-only and semi-centralized
(cloud plus blockchain) solutions. For the document-sharing ap-
plication, Calypso takes 10 to 20 (10 to 150) seconds to execute a
write (read) request for low (4 trustees) to high (256 trustees) fault
tolerance. For a realistic permissioned deployment, e.g., with 4 to
16 trustees, Calypso adds negligible overhead compared with a
semi-centralized approach. For the zero-collateral lottery, we show
that our Calypso-based solution requires only a single round to
finish, which simplifies and outperforms current state-of-the-art
solutions requiring log𝑛 rounds to support 𝑛 participants.

To summarize, this paper’s contributions are as follows.
1)We introduce Calypso, a decentralized framework for auditable
management of private data that provides threshold security guar-
antees for all three CIA properties (Section 3), ensures fairness,
enables updates to access-control rules without compromising se-
curity, and protects reader privacy.
2)We present on-chain secrets (OCS) for transparent decentralized
data management, and propose two variants for permissioned and
permissionless deployments (Section 4 and 5).
3) We demonstrate the feasibility of using Calypso to address the
data-sharing needs of real-world organizations by presenting three
concrete use cases: auditable data sharing, data life-cycle manage-
ment, and atomic data publication (Section 7). To evaluate our sys-
tem and conduct these feasibility studies, we implemented Calypso,
which was independently audited and is open-source (Section 8).
The code and a demo may be found at https://github.com/calypso-
demo/.

2 Motivation and Background

This section first motivates Calypso by describing how it enables
data-management security as well as atomic data publication. We
then summarize the main building blocks we employ.

2.1 Motivating Examples

2.1.1 Auditable Data Management: Centralized custodian systems
that provide policy-based data publication mechanisms unlock a
variety of useful data life-cycle management applications, such as
automatic publication of confidential documents when certain con-
ditions are met: e.g., legal wills or estate plans. Another example is a
digital “life insurance” policy for whistleblowers that publishes files
automatically unless the custodian regularly receives a digitally-
signed “heartbeat”message from thewhistleblower [23, 59]. Moving
to fully-decentralized custodians presents new challenges, however,
in terms of how to specify and implement data publication and
secure consent-management without fully trusting any centralized
party, and how to integrate the publication and consent functions.

To enable secure decentralized data management, Calypso uses
threshold cryptography and distributed ledger technology to pro-
tect the integrity and confidentiality of shared data, and to ensure
accountability for data accesses by generating a third-party verifi-
able audit trail for data accesses. Calypso employs an expressive
policy-control mechanism that enables atomic modification of ac-
cess rights. Data owners can revoke the access of those who have
not yet exercised their data access rights, and can know whether
and which data was accessed before revocation. Decentralized ap-
plication designers can use Calypso to achieve functionality such
as monetizing data access, or providing proofs to aid investigations
of data leaks or breaches. A representative application of this class
is the document sharing application that we present in Section 7.1.

2.1.2 Atomic Data Publication: Security and fairness requirements
significantly change when an application is deployed in a Byzantine,
decentralized environment as opposed to a traditional, centralized
setting. For example, an attacker can readily exploit early access
to information to gain unfair advantage over honest participants
through front-running [17, 66, 72]. Such attacks can affect decen-
tralized applications such as lotteries [4], poker games [42], or
exchanges [17]. In Calypso, inputs from the participants (e.g., lot-
tery randomness, trading bids, game moves) remain confidential
up to a barrier point that is expressed by specific rules in a policy.
After the barrier point, information is published and the computed
result is atomically disclosed to every interested party: e.g., which
trades were successful at which prices, or the lottery winner. Con-
sequently, Calypso resolves the tension between decentralization,
fairness, and availability and provides a secure decentralized foun-
dation for fair data disclosure. A representative application of this
class is the zero-collateral lottery that we present in Section 7.3.

2.2 Blockchains and Skipchains

A blockchain is a distributed, append-only, tamper-evident log
composed of blocks linked together via cryptographic hashes. Many
decentralized applications build on blockchains [3, 22, 51]. Calypso
does not attempt to innovate on this front and instead aims to be
deployable alongside any blockchain or state-machine replication

https://github.com/calypso-demo/
https://github.com/calypso-demo/

CALYPSO: Private Data Management for Decentralized Ledgers

system [13]1 that supports programmability and custom validation
through some form of smart contracts [2, 74, 78].

Skipchains [52] track configuration changes of a decentralized
authority or cothority [73] by using each block as a representation of
all the public keys necessary to authenticate the next block. When
a cothority’s configuration evolves, it creates a new block with the
new set of public keys and signs it with the old set of public keys,
delegating trust to the new set. This signature is a forward link [38]
that clients follow to get up-to-date with the current authoritative
group. In Section 4.3, we define identity and policy skipchains to
track changes to the participants’ identities and to datamanagement
policies governing their secrets, efficiently. Our construction is a
simple extension of skipchains to support federated groups and
enable expressive consent management.

2.3 Threshold Cryptosystems

A (𝑡, 𝑛)-secret sharing scheme [9, 68] enables a dealer to share a
secret 𝑠 among 𝑛 trustees such that any subset of 𝑡 trustees can
coordinate to reconstruct 𝑠 , whereas any smaller subset learns no
information about 𝑠 . (𝑡, 𝑛)-secret sharing can thus offer resilience
against up to 𝑡−1 malicious participants, or𝑛−𝑡 offline participants,
or both. Simple secret sharing schemes assume an honest dealer,
however, leaving a single point of compromise. Verifiable secret
sharing or VSS [27] solves this issue by enabling the trustees to
check the shares they received from the dealer for consistency. Pub-
licly verifiable secret sharing or PVSS [65] further allows external
third parties, and not just recipients of shares, to verify all shares.

In distributed key generation or DKG [30, 36, 41], a set of 𝑛
trustees create a collective private-public key pair (sk, pk) without
a trusted dealer. Each trustee first acts as a VSS dealer, then the
trustees combine their shared secrets. Each trustee 𝑖 obtains a share
sk𝑖 of a joint secret key sk and a joint public key pk. Unlike regular
VSS, no individual trustee learns anything about sk, and at least
𝑡 trustees would have to collude to recover sk. After the DKG
setup, trustees can use threshold protocols [76], including threshold
encryption [70] or threshold signing [10, 69], in which at least 𝑡
trustees collaborate while tolerating up to 𝑛 − 𝑡 availability failures.
This work uses threshold encryption to enable clients to place
sensitive data into the custody of the trustees by encrypting the
data using their joint public key pk.

3 Overview of CALYPSO

This section first uses two strawman solutions to illustrate the
challenges a secure decentralized data-management system faces
and how interconnected and fragile such a system’s properties are,
especially in a Byzantine environment. Based on these lessons we
then summarize the system’s goals and design, shown in Figure 1.

3.1 Strawman Data Management Protocols

Consider an application where Wanda is the operator of a paid
service that provides asynchronous access to information about
stock orders, and Ron is a customer. This application requires au-
ditability, the main property we have set out to achieve. This means
that Wanda should be able to audit the fact that Ron accessed the

1Directly inheriting their BFT properties.

information and claim payment. At the same time, Ron should re-
ceive the stock information once he has paid the service fee even
if Wanda is dishonest, i.e., wants to steal the money and reveal
nothing. Next, we present two strawman protocols and show that
they provide auditability but not the other desirable properties.
3.1.1 Strawman I: The Trusted Custodian The first strawman as-
sumes a simple trusted custodian. Wanda sends her information
to the custodian, specifying that Ron can read the information if
he pays the required fee. Wanda then publicly announces this on
Bitcoin, which serves as both a public bulletin board and a payment
processor. Ron sees the on-chain announcement, pays the fee in
Bitcoin, then shows the transaction to the custodian, who in turn
releases the information encrypted under Ron’s public key.

Strawman I provides auditability, but places complete trust in
the custodian. If the custodian crashes, Ron has no guarantee of
getting the information. To avoid this risk, we need decentralization
to tolerate any single point of failure. A malicious custodian could
also give the information to Ron without payment, and without
informing Wanda or leaving any record of this disclosure. We there-
fore require confidentiality with no single point of compromise, the
third property of our system. Finally, even if the custodian does
not compromise confidentiality, he releases the information on
a first-come-first-serve basis. As a result, customers with better
connectivity can make payments faster and thereby mount front-
running attacks, on the stock market in this scenario. To protect
against such attacks, we require fair access to published data.
3.1.2 Strawman II: The Secret Sharer The obvious way to decentral-
ize data is via replication: e.g., by having 𝑛 custodians. Replication
alone worsens the confidentiality of the system however, since
we now have 𝑛 custodians who can potentially leak confidential
information. Instead, Strawman II symmetrically encrypts the infor-
mation and publishes the encryption on-chain. The encryption does
not have to be stored on-chain, but doing so guarantees high avail-
ability of the data. For confidentiality, Wanda uses (𝑡, 𝑛)-threshold
Shamir secret sharing [68] to split the encryption key between the
𝑛 custodians. As a result, if fewer than 𝑡 custodians are dishonest,
both decentralization and confidentiality may be preserved.

Although Strawman II seems to solve two of our issues, it has
critical weaknesses. One challenge is that Wanda can misbehave
during the secret-sharing step, sending invalid secret shares to the
custodians and preventing them from ever recovering any secret.
In response, we force Wanda to post consistent shares on-chain
using PVSS [65]. Now, however, an unauthorized adversary (e.g.,
Eve) might mount a replay attack. Eve can copy the consistent
shares available on-chain into a seemingly-independent new trans-
action, with Eve as the authorized reader and the payment recipient,
and trick the custodians into decrypting it without authorization.
Strawman II illustrates how fragile auditability is, and that simple
solutions can easily fail if not carefully designed.
3.1.3 Additional Properties We now mention two more desirable
properties. First, Ron and Wanda might not want their business
relationship to be publicly known. We could use a blockchain pro-
viding sender anonymity, such as Zcash [64], for payment while
hiding Ron’s identity, but we would also like receiver anonymity
to protect Wanda’s identity. Second, if Ron needs to change his
public key, he would lose access to all data authorized under the

Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford

old key. We ideally want Ron to have a dynamic self-sovereign
identity [50] that he can evolve independently and retain access
to previously-shared data. To provide all properties, we introduce
three components and transform Strawman II into Calypso:2

(1) To enable auditability of data accesses and ensure atomic data
delivery, we introduce on-chain secrets (OCS). We provide
two constructions for OCS – long-term secrets (LTS) and one-
time secrets (OTS) – in Section 4 and 5, which are suitable for
permissioned and permissionless deployment, respectively.

(2) To enable receiver anonymity, we introduce in Section 4.2
the on-chain blinded key exchange, which enables Wanda to
help Ron blind his identity, without forfeiting her right to
hold him accountable.

(3) To enable decentralized, dynamic, self-sovereign identities
and access policies, we extend skipchains and integrate them
with Calypso in Section 4.3.

3.2 System Goals

Calypso sets out to address the following primary goals.
• Auditability: All data accesses are third-party verifiable
and recorded in a tamper-resistant log.

• Decentralization: There are no single points of availability
failure or security compromise in the system.

• Confidentiality: Secrets stored on-chain can be decrypted
only by authorized clients after leaving an access record.

• Fair access:Clients are guaranteed authorized access to a se-
cret after posting a valid access request on-chain. If a barrier
point exists, authorized clients atomically get simultaneous
access after the barrier, protecting against front-running.

• Receiver anonymity:An on-chain proof-of-access log does
not identify the user unless an audit is requested.

• Dynamic self-sovereign identities: Users and organiza-
tions fully control the public keys representing their identi-
ties, and can update them verifiably and atomically.

3.3 System Model

There are four main participant roles in Calypso’s architecture:
writers who place secrets on-chain, readers who retrieve secrets, an
access-control blockchain that is responsible for logging write and
read transactions on-chain and enforcing access control for secrets,
and a secret-management committee that is responsible formanaging
and delivering secrets. The access-control blockchain and secret-
management committee can be deployed on the same set of servers
or the access-control blockchain can be an independent blockchain
(e.g., Ethereum [78]) not managed by the system administrators. In
the rest of the paper, we keep these roles separate for architectural
clarity. We will use the names Wanda and Ron to refer to a (generic)
writer and reader, respectively.

The access-control blockchain requires Byzantine fault-tolerant
consensus [39, 40, 43, 51]. There are many ways to implement an
access-control blockchain, e.g., as a set of permissioned servers
using BFT consensus or as an access-control smart contract on
top of a permissionless cryptocurrency. The secret-management
committee membership is fixed; it may be set up on a per-secret
basis or in a more persistent setting, as discussed in Section 5.1.

2Missing protocols and proofs are in the Appendix A

The secret-management trustees maintain their private keys and
may need to maintain additional secret state, such as private-key
shares. They do not run consensus for every transaction.

We denote the private and public key pairs of Wanda and Ron
by (sk𝑊 , pk𝑊) and (sk𝑅, pk𝑅). Analogously, we write (sk𝑖 , pk𝑖) to
refer to the key pair of trustee 𝑖 . To denote a list of elements we use
angle brackets, e.g., we write ⟨pk𝑖 ⟩ to refer to a list of public keys
pk1, . . . , pk𝑛 . We assume that there is a registration mechanism
through which writers have to register their public keys pk𝑊 on
the blockchain before they can start any secret-sharing processes.
We denote an access-control label by policy, where policy = pk𝑅 is
the simplest case with Ron being the only reader.

3.4 Threat Model

We assume the adversary is computationally bounded, secure cryp-
tographic hash functions exist, and the decisional Diffie-Hellman
assumption holds. We assume all participants verify the signa-
tures of the messages they receive and process only those correctly
signed. Calypso’s goal is to enforce access accountability, but not
application-specific data correctness, which is out of scope.

The secret-management committee consists of 𝑛 trustees, of
which 𝑓 can fail or behave maliciously. We require 𝑛 ≥ 2𝑓 + 1 and
set the secret-recovery threshold to 𝑡 = 𝑓 +1. For the access-control
blockchain we assume the relevant blockchain’s trust assumptions
hold: e.g., that at most 𝑓 of 3𝑓 + 1 validators fail or misbehave in
BFT-based consensus[39], or that less than 50% of the mining power
colludes in a proof-of-work system like Bitcoin [51]).

We assume that readers and writers do not trust each other. We
further assume that writers encrypt the correct data and share the
correct symmetric key with the secret-management committee, as
readers can release a protocol transcript and prove the misbehavior
of writers. Conversely, readers might try to get access to a secret and
later claim that they have never received it. Additionally, writers
might try to frame readers by claiming that they shared a secret
although they have never done so. Finally, the writer can define a
barrier point, an event before which no one can access the secret,
but after which anyone authorized can, ensuring fair access.

3.5 Architecture Overview

Calypso enables Wanda, the writer, to share a secret with Ron, the
reader, under a specific access-control policy. When Wanda wants
to put a secret on-chain (see Figure 1), she encrypts the secret and
sends it in a write transaction txw to the access-control blockchain.
The access-control blockchain verifies and logs txw, making the
encrypted secret available for Ron, the authorized reader. To access
a secret, Ron retrieves the secret’s ciphertext from the blockchain
and sends to the access-control blockchain a read transaction txr,
containing an authorization from Ron’s identity skipchain with
respect to the current access-control policy.

If Ron is authorized to access the secret, the access-control block-
chain logs txr. Subsequently, Ron contacts the secret-management
committee to recover the secret. The secret-management trustees
verify Ron’s request using the blockchain and check that the barrier
point (if any) has occurred. Afterwards, trustees deliver the secret
shares of the key needed to decrypt Wanda’s secret as shared in txw.
In Section 4, we show the deployed system (Section 7) that adopts
a permissioned model where trustees are externally accountable.

CALYPSO: Private Data Management for Decentralized Ledgers

Writer Reader Access-control
blockchain

Secret-
management
committee

Write transaction txw
Verify
and
log

ACK / NACK

Read transaction txr
Verify
and
log

ACK / NACK

Share request reqshare

Share reply repshare / Error Verify

Recover
and
de-
crypt

(1)

(2)

(3)

(4)

Figure 2: On-chain secrets protocol steps: (1) Write transac-

tion, (2) Read transaction, (3) Share retrieval, (4) Secret re-

construction.

In Section 5, we extend Calypso to work in a permissionless model
where clients choose the trustees on an ad-hoc basis and employ
correct incentives using the blockchain as a payment layer.

4 Permissioned Deployment

In this section, we introduce Calypso’s components and show
how they achieve our goals. First, we introduce long-terms secrets,
which provides auditable access-control and fair data-access in a
permissioned setting utilizing well-defined sets of trustees for all
clients. Second, we describe howWanda can help Ron obfuscate his
identity but still be able to deanonymize him in case of misbehavior.
Finally, we describe skipchain-based identity and access management,
which adds dynamic access control for Wanda and self-sovereign
identity management for the public part of Ron’s identity.

In both approaches, thewriter can either encrypt the data directly
or use a symmetric key and offload the storage of the symmetrically-
encrypted data to a decentralized storage service such as IPFS [7].
If the encrypted secret is not on chain, the reader should ensure to
obtain it (e.g., by asking the writer to send it to him directly)3 prior
to requesting access in order to preserve decentralization.

4.1 Long-Term Secrets

To illustrate the challenges that long-term secrets address, we revisit
the design of Strawman II, which uses PVSS to share secrets veri-
fiably. While PVSS prevents Wanda from distributing bad shares,
it still requires her to involve the trustees in every transaction she
creates, and causes the size of each transaction to grow linearly in
the number of trustees (one share per trustee).

To resolve these challenges, long-term secrets leverages the fact
that the group of trustees is well-defined and persists over a period
of time. Trustees generate a shared private-public key pair with a
one-time DKG setup. Afterwards, Wanda uses threshold ElGamal
encryption [19] to protect a symmetric key that is used to encrypt
her secret. We make this transaction non-interactive with a zero-
knowledge proof of correct encryption [14]. Overall this reduces
the size of a write transaction from 𝑂 (𝑛) to 𝑂 (1).

3He can ask the writer to send it to him directly, e.g., if IPFS is
unresponsive.

Next, Wanda must bind the secret shares to Ron’s identity to
prevent unauthorized reads by Eve. We do so by binding a policy
to a ciphertext of the zero-knowledge proofs [46, 70].

Finally, we reduce Ron’s overheads further by enabling him to
delegate the verification and reconstruction of the 𝑂 (𝑛) key shares
to some trustee who Ron trusts only for liveness. This trustee does
not obtain access to the secret itself, and Ron can always detect
any misbehavior, and choose another trustee or finish the process
himself. The full protocol is in the Appendix A.

4.1.1 Evolution of Secret-Management Committee: The secret-man-
agement committee is expected to persist over a longer period of
time while maintaining security and availability. During its lifetime
a number of issues can arise. First, trustees can join and leave
the committee, causing churn. Second, even if the secret-manage-
ment committee members do not change, the private shares of the
servers should be refreshed regularly (e.g., every month) to provide
backward secrecy. Third, the collective key pair should be rotated
periodically (e.g., once every year) for additional protection in case
the threat model is violated, e.g., trustees do not delete their old key
shares after a refresh or an adversary obtains more than 𝑡 shares.

We address the first two issues by periodically running a re-
sharing protocol that updates the private key shares but keeps the
shared public key unchanged, which is crucial to avoid the need to
re-encrypt all data under a new public key [77]. This step does not
affect the availability of the system, which is particularly important
when it comes to churn. More concretely, the re-sharing protocol
is not, and does not need to be, triggered by members joining, as
long-term secrets operates in a permissioned setting that requires
approval of a new member. Hence, these joins are not “ad-hoc” or
unexpected and the protocol can tolerate a threshold of members
being temporarily or permanently unavailable.

Lastly, when the secret-management committee wants to rotate
the threshold key pair completely, Calypso needs to collectively
re-encrypt each individual secret under the new shared public key.
To achieve this, we use translation certificates [35] that allow re-
encryption of secrets without the involvement of their writers and
without revealing the underlying secrets to any individual trustee.

4.2 On-chain Blinded Key Exchange

In our protocols so far, Wanda includes Ron’s public key in a secret’s
policy to mark him as the authorized reader. Once Wanda’s write
transaction is logged, everyone knows that she has shared a secret
with Ron. Correspondingly, once Ron’s read transaction is logged,
everyone knows that he has obtained the secret. While this property
is desirable for some deployment scenarios we envision, certain
applications may benefit from concealing the reader’s identity.

We introduce an on-chain blinded key exchange protocol, an
extension that can be applied to both on-chain secrets protocols.
This protocol allows the writer to conceal the intended reader’s
identity in the write transaction and to generate a blinded public
key for the reader to use in his read transaction. The corresponding
private key can only be calculated by the reader. The signature
under this private key is sufficient for the writer to prove that the
intended reader created the read transaction. The protocol achieves
our goal of receiver anonymity, and works as follows:

Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford

(1) Public Key Blinding. Wanda generates a random blinding
factor 𝑏 and uses it to calculate a blinded version of Ron’s
public key pk

𝑅
from pk𝑅 .

(2) Write Transaction. Wanda creates txw with the following
modifications. Wanda encrypts 𝑏 under pk𝑅 to enable Ron
to calculate the blinded version of his public key. Then, she
uses pk

𝑅
instead of pk𝑅 in the policy. After txw is logged,

she notifies Ron on a separate, secure channel about txw and
sends him 𝐻 (pk𝑅) as a fingerprint, which Ron uses to verify
that Wanda used the correct (unblinded) encryption key.

(3) Read Transaction. To read Wanda’s secret, Ron first retrieves
𝑏 using his secret key sk𝑅 . Then, he computes sk

𝑅
= 𝑏 sk𝑅

and uses this blinded private key to sign his txr anonymously.
(4) Auditing. If Wanda wants to prove that Ron generated the txr,

she can release 𝑏. Then, anyone can unblind Ron’s public
key pk𝑅 = pk−𝑏

𝑅
, verify the signature on the transaction

and confirm that only Ron could have correctly signed the
transaction, as he is the only one who could calculate sk

𝑅
.

4.3 Identity and Access Management

The above protocols do not yet offer dynamic access control or
dynamic self-sovereign identities, only static public keys and access
policies. In practice, participants may need to change or add public
keys, to revoke a compromised private key, or to grant access to a
new device. Similarly, it should be possible to change access polices
in order to grant, update, or revoke resource access, and to define
access-control rules for both individual identities and groups of
users. Finally, an access-control system with the above properties
should prevent freeze attacks [62] and race conditions.

To support dynamic self-sovereign identities, we build on role-
based access control or RBAC [63]. RBAC policies evolve dynam-
ically depending on the role of users, but traditionally rely on
a central manager to assign roles. To address this challenge, the
skipchain-based identity and access management (SIAM) subsystem
of Calypso provides the following properties: (1) it supports iden-
tities for both individual users and groups; (2) it enables users to
announce updates to resource access keys and policies; and (3) it
prevents time-of-check-to-time-of-use (TOCTTOU) races by mak-
ing data accesses atomic with respect to access policy updates.

We achieve the first two goals of SIAM by using skipchains [52]
to encode individual identities and role memberships. As a result,
our system is the first decentralized instantiation of RBAC. We
use three types of skipchains in Calypso, as shown in Figure 3.
Personal identity skipchains store the public keys that individual
users control [38]. A user can have a number of public keys that
may be used for accessing resources from different devices, for
example. Federated identity skipchains specify identities and public
keys of a collective identity that encompasses users with the same
role (e.g., part of the same group), such as employees of a company,
members of a research lab, etc. They are recursive to provide scaling
and ease of use. Resource policy skipchains track access rights of
identities, personal or federated, to resources and enable dynamic
access-control based on the role of each user. In addition to listing
federated identities and their public keys, policy skipchains include
access-control rules to enforce fine-grained update conditions.

id: idRon
admin: pk1 ∧ pk2

service: pklab, pkdoc

id: idRon
admin: pk1 ∧ pk2

service: pklab, pkdoc
pkssh

sigsk1∧sk2

hash

id: idLab
admin: idRon

members: idRon, idEve

id: idLab
admin: idRon

members: idRon, idEve,
idAna

sigsklab

hash

id: idPaper
admin: idRon

access: idRon

id: idPaper
admin: idRon ∨ idAna

access: idLab

sigskdoc

hash

Personal identity skipchain

Federated identity skipchain

Resource policy skipchain

Figure 3: First, Ron updates his personal skipchain idRon
to include pkssh. He then uses sklab to extend the federated

skipchain idlab to add idAna as a member. Finally, he adds

idAna as an admin and idlab as authorized readers to the pol-

icy skipchain idpaper by using skdoc.

With SIAM, Ron can evolve the id𝑅 skipchain arbitrarily, e.g.,
rotate existing access keys or add new devices, and still retain access
to the encrypted resource. Similarly, Wanda can set up a resource
policy skipchain id𝑃 she is in charge of and include id𝑅 as non-
administrative members. Then, Wanda would use policy = id𝑃 in
txw seamlessly authorizing Ron to access the respective resource.
Later Wanda can decide to revoke that resource, for anyone who
has not yet accessed it, by setting policy = ∅.

Finally, SIAM can bemade compatible with blinded key exchange
(Section 4.2) as follows. After Ron receives a notification from
Wanda about a new transaction, he checks via the received fin-
gerprint 𝐻 (pk𝑅) that Wanda used his latest key. If not, Ron replies
with an out-of-date error asking Wanda to re-do the encryption
with his latest key, which she can look up via id𝑅 .

Ensuring Atomicity: A final challenge for adapting RBAC in our
setting is to guarantee atomicity of events, such as changing an
identity (e.g., to exclude someone and to later grant additional access
rights). For example, Wanda, an administrator of the sales group,
decides that Ron should leave the group and no longer be able to
perform actions on behalf of the group. To do so, she removes Ron’s
identity skipchain from the federated skipchain of the sales group.
Later on, however, Wanda may grant all employees access to the
new corporate strategy plan. In a naive asynchronous access-control
system, where it can take time for policy changes to propagate and
for old cached credentials to expire (e.g., as in OAuth2 [32]), there
is a significant time window where Ron could access the shared
document because he can still convince others that he belongs to
the sales group until all his cached credentials have expired.

Calypso’s design uses the blockchain to timestamp the latest
skipchain versions, and skipchain changes are serialized together
on-chain with the txw and txr that records and authorizes any
data access. In the above example where Ron’s access revocation is
committed before Wanda’s access grant, Ron is unable to give the
secret-management committee a correct, timestamped txr proving
access at any time, and thus cannot read the document.

CALYPSO: Private Data Management for Decentralized Ledgers

5 Permissionless Deployment

This section introduces one-time secrets, an on-chain secrets pro-
tocol more suitable for a permissionless environment. One-time
secrets does not assume the existence of a predefined set of trustees.
Instead, it allows clients to choose the particular set of servers that
will hold their secret and the secret recovery threshold. This flexi-
bility comes at a cost, as transaction size is linear in the number of
trustees, but the protocol remains non-interactive and the trustees
can be stateless. Lastly, we show how to incentivize the trustees
using the underlying cryptocurrency blockchain for payments.

5.1 One-Time Secrets

In one-time secrets, Wanda, the writer, first prepares a secret she
wants to share along with a policy that lists the id𝑅 skipchain of
the intended reader(s). She then runs PVSS [65] for her personal
choice of secret-management committee members and uses the
secret that was generated during PVSS as the symmetric key. To
prevent against the replay attacks discussed in Strawman II, we
bind the secret shares to the policy by deriving the base point of
the PVSS consistency proofs from the policy. This may be done
securely using Elligator maps [8]. See the Appendix D for details
and an analysis of recommended group size based on Wanda’s
perception of how many adversarial nodes might collude.

Finally, Wanda sends txw to the access-control blockchain to
log the secret and its access policy. Reading is similar to long-term
secrets except for reconstruction, which is done by Ron.
Advantages and Shortcomings: One-time secrets does not require
a setup phase among the secret-management members, e.g., to
generate a shared private-public key pair. It also enables the use of
a different, ad-hoc secret-management committee for each secret,
without requiring the servers to maintain any protocol state.

One-time secrets has a few disadvantages, however. First, it
incurs high PVSS setup and share reconstruction costs: Wanda
needs to evaluate the secret-sharing polynomial at 𝑛 points, and
create𝑛 encrypted shares and NIZK proofs, along with 𝑡 polynomial
commitments. SCRAPE [12] can reduce the cost of verifying PVSS
shares, but the cost remains linear in 𝑛. Second, the transaction
size increases linearly with the secret-management committee size,
as the secret-management trustees are stateless. This means that
the txw must contain the encrypted shares, NIZK proofs and the
polynomial commitments. Lastly, one-time secrets shares are bound
to the initial set of trustees, so the secret-management committee
cannot be changed without re-encrypting the secret.
5.2 Incentives

When deploying Calypso in a permissionless network, it is natural
to question the trustees’ motivation to participate. We envision a
system where the trustees are service providers who establish their
reputation to be selected by the users. For this reason, they lock
collateral in order to participate. In the Appendix D we analyze
the incentives assuming the trustees have locked collateral for one
transaction. We expect, however, that the trustees provide more
liquidity and Wanda is asking for collateral proportional to the
value of her data when she creates a write transaction.

In this setting, we explore the best strategy for Ron andWanda as-
suming that the trustees will act rationally.We assume thatWanda’s
data have some intrinsic value 𝑣 , which Ron is willing to pay.Wanda

will decide on a fraction 𝑎 < 1, which is the fraction of 𝑣 that the
trustees will receive in exchange for protecting the secret. We have
two challenges to solve: First, trustees might receive payment and
do nothing. Second, trustees might accept a bribe and give Ron the
data without waiting for a transaction on-chain.

To prevent a public-goods game [5], we must ensure: (a) only
the first 𝑡 trustees that provide decryption shares get paid (each
one gets 𝑎𝑣/𝑡) and (b) trustees that reply with an invalid share lose
more than their expected payment. The solution to the invalid-share
attack is also the solution to the second challenge, collateral. To
disincentivize bribes, the trustees need to lock collateral. The total
collateral locked by a threshold (𝑓 + 1) of trustees should be higher
than 𝑣 . Hence, we assume that every trustee locks 𝑣/𝑓 collateral.
Ron may claim this collateral by proving that the trustee misbe-
haved (e.g., produced an invalid share), and he gets the fraction 𝑎

of it. The rest goes to Wanda. For the protocol to work the trustees
send the encrypted shares on-chain claiming their payment, and
on verification the smart contracts accepts them. Only the first 𝑡
trustees get paid, and only after a dispute window Δ during which
Ron can claim their collateral on proving misbehavior.

6 Achieving the System Goals

We now summarize how Calypso achieves the goals in Section 3.2.
Auditability: All data accesses are third-party verifiable and recorded
in a tamper-resistant log.

Assuming the access-control blockchain implements Byzantine
consensus, all correct read and write transactions are logged by the
access-control blockchain. Once a transaction is logged, anyone
can obtain a third-party-verifiable transaction-inclusion proof.
Decentralization: There are no single points of availability failure
or security compromise in the system.

By design, the protocols do not assume a trusted third party. The
secret-management committee tolerates up to 𝑡 − 1 misbehaving
trustees and up to 𝑛 − 𝑡 offline trustees.
Confidentiality: Secrets stored on-chain can be decrypted only by
authorized clients after leaving an access record.

With long-term secrets, the secret message𝑚 is encrypted under
a symmetric key 𝑘 that is then encrypted under a threshold public
key of the secret-management committee. The ciphertext is bound
to a specific policy through NIZK proofs [70] so it cannot be re-
posted in a new write transaction with a malicious reader listed in
its policy. The access-control trustees log the write transaction txw
that includes the encrypted key, which, because of the encryption
scheme, does not leak any information about 𝑘 . After the secret-
management trustees receive a valid request reqshare, they respond
with the blinded shares of the shared private key encrypted under
the public key in the policy of the respective txw. Due to the prop-
erties of the DKG protocol, the shared private key is never known
to any single entity and can only be used if 𝑡 trustees cooperate.
Thus, only the intended reader gets the secret shares.

With one-time secrets, the secret message𝑚 is encrypted un-
der a symmetric key 𝑘 , which is secret-shared using PVSS among
the secret-management trustees such that 𝑡 shares are required to
reconstruct it. The access-control trustees verify and log on the
blockchain the encrypted secret shares which, due to the properties

Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford

of PVSS, do not leak any information about 𝑘 . After the secret-
management trustees receive a valid request reqshare, they respond
with their secret shares encrypted under the public key listed in the
policy from the respective txw. A dishonest reader cannot obtain
access to someone else’s secret through a ciphertext-replay attack,
because each transaction is bound to a specific policy used to de-
rive the base point for the PVSS NIZK consistency proofs. Without
knowing the decrypted secret shares and the key 𝑘 , the malicious
reader cannot generate correct proofs, and all transactions without
valid proofs are rejected. Only the intended reader thus obtains a
threshold of secret shares necessary to recover 𝑘 and access𝑚.
Fair access: Clients are guaranteed authorized access to a secret
after posting a valid access request on-chain. If a barrier point exists,
authorized clients atomically get simultaneous access after the barrier,
protecting against front-running.

Before a read transaction txr is logged by the access-control
blockchain, PVSS and encryption protects the secret. Once a read
transaction txr is logged and the barrier point has passed, any
reader can run the share-retrieval protocol, obtaining 𝑡 shares of
the encryption key 𝑘 from honest trustees to reconstruct 𝑘 and
access the message𝑚. Since this access is possible only after the
barrier, any transactions that any node subsequently proposes using
this information can affect blockchain state only after the barrier.
Receiver Anonymity: An on-chain proof-of-access log does not
identify the user unless an audit is requested.

The on-chain blinded-key exchange protocol exposes a compos-
ite public key as Ron’s identity, which is secure under the DDH
assumption. The on-chain encryption provides Ron the blinding
factor, making him the only one who can reconstruct the composite
private key. If Wanda reveals this blinding factor, it is easy to verify
the DDH triplet exposed, and hence deanonymize Ron.
Dynamic self-sovereign identities: Users and organizations fully
control the public keys representing their identities, and can update
them verifiably and atomically.

Ron is always in control of his identity skipchain and can evolve
it as he sees fit. Due to the authenticated forward and backward
links Ron is able to prove paths from the genesis block used as
policy to his current keys, and hence convince the secret-manage-
ment to decrypt. Due to the on-chain time-stamping, even if some
of Ron’s stale keys are compromised, the adversary cannot use
them to forge an alternate access path. The time-stamping smart
contract will detect that the adversary’s proposed access does not
build on the latest version of Ron’s identity and reject it.

7 Case Studies Using CALYPSO

We describe two real-world deployments of Calypso that resulted
from collaborations with companies that needed a flexible, secure,
and decentralized solution to manage data. We also describe an
experimental zero-collateral, constant-round decentralized lottery.

7.1 Clearance-enforcing Document Sharing

To show the power of Calypso for auditable data sharing, we
deployed a decentralized, clearance-enforcing document-sharing
system enabling two organizations, A and B, to share a document
D, such that a policy of confidentiality can be enforced on D. We
realized this system with a contractor of the Ministry of Defense

of a European country using a permissioned BFT blockchain and
long-term secrets. This application is evaluated in Section 8.2.
Problem Definition. Organization A wants to share with organi-
zation B a document D whose entirety or certain parts are classified
and should be accessible only by people with proper clearance.
Clearance is granted to (or revoked from) employees individually
as needed or automatically when they join (or leave) a depart-
ment, so the set of authorized employees continuously changes.
The goal is to enable the mutually distrustful A and B to share D
while dynamically enforcing the specific clearance requirements
and securely tracking accesses to D for auditing.
Solution with Calypso. First, A and B agree on a blockchain and
a secret-management committee including trustees controlled by
both organizations. To prevent any organization from having a ma-
jority of trustees, the service provider manages 1/3 of the trustees.
Each organization then establishes federated identity skipchains
with all the identities that have clearance, id𝐴 and id𝐵 , respectively,
including references to (a) federated skipchains for departments
that have top-secret classification (e.g., senior management), (b) fed-
erated skipchains for attributes that have top-secret classification
(e.g., ranked as captain) and (c) personal skipchains of employees.

Organization A creates a document D and labels each paragraph
as confidential or unclassified. A then chooses a confidential sym-
metric key, and derives from it an unclassified subkey using a key
derivation function. A encrypts the document, shares the cipher-
text with B and shares the symmetric keys using Calypso with
policy = id𝐵 . Any employee of B whose public key is included in
the set of classified employees as defined in the latest skipblock of
id𝐵 can retrieve the classified symmetric key via a read transaction
and decrypt the full document. Unclassified readers can retrieve
only the lower-clearance key. Calypso logs the txr, creates a proof
of access and delivers the key. Both organizations can update their
identity skipchains to ensure that at any given moment only autho-
rized employees have access. As a result, both organizations can
share information and maintain a secure audit log without having
to trust each other or the service provider fully.

7.2 Patient-centric Medical Data Sharing

Calypso lends itself well to applications that require secure data
sharing for research purposes. We are currently working with hos-
pitals and research institutions from a European country to build a
patient-centric system to share medical data based on long-term
secrets. We do not evaluate this application as its performance prop-
erties are similar to the one above. To guarantee the confidentiality
and decentralization of the system there should be at least three
independent institutions each contributing a proportional number
of trustees to the secret-management committee.
Problem Definition. Researchers face difficulties in gathering
medical data, as patients increasingly refuse to approve access
to their data for research amidst rapidly-growing privacy con-
cerns [33]. Patients dislike consenting once and completely losing
control over their data, and are more likely to consent to sharing
their data with specific institutions [37]. The goal of this collab-
oration is to enable patients to remain sovereign over their data.
Hospitals to verifiably obtain patients’ consent for specific purposes,
and researchers to obtain access to valuable patient data. In case

CALYPSO: Private Data Management for Decentralized Ledgers

16 32 64 128

Size of SM and AC

0.01

0.1

1

10

100

T
im

e
 (

s
e
c
)

DKG setup

CPU / Wall

Write transaction

Read transaction

Secret reconstruction

Figure 4: Latency of long-term secrets protocol for varying

sizes of secret-management committee and access-control

blockchain.

16 32 64 128

Size of SM and AC

0.01

0.1

1

10

100

W
a
ll
-c

lo
c
k
 t

im
e
 (

s
e
c
)

Write transaction (Client)

Write transaction (AC)

Read transaction (AC)

Share retrieval (SM)

Secret reconstruction

(Client)

Figure 5: Latency of one-time secrets protocol for varying

sizes of secret-management committee and access-control

blockchain.

a patient is unable to grant access (e.g., unconscious), the medical
doctor can request an emergency exception allowed in the policy,
and access the data while leaving an auditable proof of this action.
Solution with Calypso. We designed a preliminary architecture
for a data-sharing application enabling a patient P to share her data
with multiple potential readers. This deployment is different from
the one above in that the data generator (hospital) and the data
owner (P) are different. For this reason, we use a resource policy
skipchain id𝑃 representing P’s data usage preferences. Policy skip-
chains can dynamically evolve by adding and removing authorized
readers, and can include rich access-control rules.

Calypso enables P to initialize id𝑃 when she first registers with
the medical system. Initially, id𝑃 is empty, indicating that P’s data
cannot be shared. If a new research organization or another hospital
requests to access P’s data, then P can update id𝑃 by adding a
federated identity of the research organization and specific rules.
When new data is available for sharing, the hospital generates
a new write transaction consisting of the encrypted and possibly
obfuscated or anonymized medical data and id𝑃 as policy. As before,
users whose identities are included in id𝑃 can post read transactions
to obtain access. Hence, with Calypso, P remains in control of her
data and can unilaterally update or revoke access, solving the data
availability versus consent-management challenge.

7.3 Decentralized Lottery

Prior proposals for decentralized lotteries either need collateral as
in Ethereum’s Randao [57], or run in a non-constant number of
rounds [48]. Calypso enables a simpler design, as the lottery exe-
cutes in one round and needs no collateral, because the participants
cannot predict the randomness or abort.
Problem Definition. We assume there are 𝑛 participants who
want to run a decentralized zero-collateral lottery. A smart contract
manages the lottery by collecting bids and deciding on the winner
via public randomness. We evaluate this application in Section 8.3.
We assume that a threshold of the secret-management committee

is honest; further incentive analysis and slashing is necessary if the
secret-management committee is rational.
Solution with Calypso. Each participant creates a txw with their
secret contribution to the randomness and shares it using long-term
secrets. After a predefined number of blocks (the barrier point), the
input phase of closes. Any user can then generate a txr upon which
the smart contract retrieves all committed inputs and posts the
reconstructed values and their proofs. Finally, the smart contract
computes the XOR of all (random) inputs and uses it to select the
winner. Using the same idea we can see the power of Calypso on
simplifying collaborative decentralized games (e.g., poker).

8 Evaluation

We implemented all components of Calypso, namely long-term se-
crets, one-time secrets and SIAM, in Go [31]. For cryptographic op-
erations we used Kyber [44], an advanced cryptographic library for
Go. In particular, we used its implementation of the Edwards25519
elliptic curve providing 128-bit security. For the consensus mecha-
nism required for the access-control blockchain, we used an imple-
mentation of ByzCoin [39], a scalable Byzantine consensus protocol.
All our implementations are available as open source on GitHub
and have gone through an independent security audit.

First, we evaluate and compare the performance of two on-
chain secrets protocols using micro-benchmarks. Next, we evaluate
the performance of Calypso using two real-world applications:
clearance-enforcing document sharing (Section 7.1) and a decen-
tralized lottery (Section 7.3), using both synthetic and real-world
data traces. For the document-sharing application, we compare
Calypso with both a fully-centralized and a semi-centralized solu-
tion. As for the decentralized lottery, we compare a Calypso-based
lottery to a state-of-the-art zero-collateral lottery. The synthetic
workloads are significantly heavier than those from the real data
traces. For the experimental evaluation of SIAM, see the Appen-
dix D.4. We ran all our experiments on four Mininet [49] servers,
each equipped with 256GB of memory and 24 cores running at
2.5GHz. To simulate a realistic network, we configured Mininet

Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford

4 16 64 256
Number of write transactions

0.1

1

10

100
La
te
nc
y
(s
ec
)

Fully-centralized
Semi-centralized
Calypso

Figure 6: Write transaction latency for different loads in

clearance-enforcing document sharing.

4 16 64 256
Number of read transactions

0.01

0.1

1

10

100

1000

La
te
nc
y
(s
ec
)

Fully-centralized
Semi-centralized
Calypso

Figure 7: Read transaction latency for different loads in

clearance-enforcing document sharing.

with a 100ms latency between the nodes and a per-node bandwidth
of 100Mbps.

8.1 Mirco-benchmarks of On-chain secrets

The two main questions we wish to answer about on-chain secrets
are whether read and write transaction latencies are acceptable in a
realistic deployment, and whether the system can scale to hundreds
of trustees to achieve strong decentralization. We compare Calypso
against a centralized (single server) and a semi-centralized setup
where secrets are stored off-chain and access policies are enforced
by the access-control blockchain. We measure the total latency
of both on-chain secrets protocols, separately analyzing the cost
of the write, read, share-retrieval and share-reconstruction sub-
protocols. We vary the number of trustees in the secret-manage-
ment committee and access-control blockchain, where all trustees
belong to both. A comparison of the transaction size for one-time
secrets and long-term secrets is in the Appendix E.

8.1.1 Long-term Secrets Results for the permissioned setting ap-
pear in Figure 4. It shows the overall latency of the key setup (DKG),
write, read, share retrieval and share reconstruction sub-protocols.
Except for DKG setup, which is a one-time cost, all steps scale
linearly in the size of the committee. Even for a committee of 128
servers, it takes less than 8 seconds to process a transaction. Fur-
thermore, CPU time is significantly lower than wall-clock time due
to the network overhead included in the wall-clock measurements.
This experiment makes clear that the overhead of long-term secrets
scales well with the added level of decentralization and can support
workloads running on permissioned blockchains that tend to have
similar latencies [2, 39] for the same level of decentralization.

8.1.2 One-time Secrets To answer our questions for the permission-
less setting we look at Figure 5. We observe that creating txw takes
almost one second on the client side for 64 trustees. This is expected
as preparing the txw involves picking a polynomial, evaluating it
at 𝑛 points, and setting up the PVSS shares and commitments. Our
experiments also show that verifying the NIZK decryption proofs
and reconstructing the shared secret are faster than creating the
txw– by an order of magnitude for large numbers of shares – be-
cause verification and reconstruction require fewer elliptic-curve
cryptography operations than setting up the PVSS shares. Finally,
the overhead of recovery on the secret-management committee
is an order of magnitude higher than on the client side since the

client sends a request to each trustee. Although these overheads
look substantial, our microbenchmark demonstrates the feasibility
of deploying one-time secrets in a permissionless setting with min-
imal overhead compared to the confirmation latency of minutes
that existing open blockchains have [51, 78].

8.2 Clearance-Enforcing Document Sharing

We compare our clearance-enforcing document-sharing system
with a fully-centralized access-control system, and with our imple-
mentation of a state-of-the-art semi-centralized approach [6, 21, 34,
67] that logs accesses and policies on-chain but entrusts the data
to the cloud. We vary the simulated workload per block from 4 to
256 read and write transactions and report total time to execute all
transactions. These experiments use a blocktime of 10 seconds.

Figure 6 shows that Calypso not only provides better security,
but also has less latency overhead than the semi-centralized solu-
tion when executing write transactions. The difference becomes
greater as the number of transactions increase: the semi-centralized
solution is 20% slower than Calypso for 256 write transactions. The
additional overhead of the semi-centralized solution is because in
addition to logging the access-control policies on the blockchain,
writers also have to separately store the secret in the cloud. On the
other hand, if the users are comfortable outsourcing their data then
Calypso is not suitable as it takes 2× to 100× more time to execute
the write transactions compared to the fully-centralized solution.

Figure 7 shows the results of the same experiment for read trans-
actions. The latency values have two components: storing the read
transactions on the blockchain and decrypting the correspond-
ing secrets. The semi-centralized solution takes 10× to 421× and
Calypso takes 55× to 457× more time than the fully-centralized
solution when executing the read transactions. These results show
that Calypso incurs between 0.9× and 4.5× more latency overhead
than the semi-centralized solution depending on the level of decen-
tralization. The reason for Calypso’s higher overhead is the secret
reconstruction step that is executed by the secret-management
committee. For smaller number of transactions Calypso and the
semi-centralized solution have comparable latency values because
they are dominated by the blocktime, which is almost the same
for both systems. However, as the number of transactions increase,
the secret reconstruction step starts dominating the total latency
in Calypso and causes the larger overhead. More specifically, the

CALYPSO: Private Data Management for Decentralized Ledgers

Write Read
Transaction type

0.01

0.1

1

10

100

Tim
e (

se
c)

Fully-centralized
Semi-centralized
Calypso

Figure 8: Average write and read transaction latencies re-

playing real-world data traces from clearance-enforcing

document sharing.

1 2 4 8 16 32 64 128 256 512
Number of concurrent txns

0

20

40

60

80

100

120

Tx
n
pr
oc
es
sin

g
tim

e
(s
ec
)

p99
Avg
Min

0

1

2

3

4

5

6

7

Th
ro
ug

hp
ut
 (t
xn
s/
se
c)

Figure 9: Performance for varying block size (level of con-

currency)

secret reconstruction step of Calypso amounts to 11% (2 s) and 85%
(125 s) of the total latency for 4 and 256 read transactions, respec-
tively. For the semi-centralized solution the corresponding step of
decrypting the secrets amounts to 0.4% (40 ms) and 19% (2.6 s) of
the total latency for the same number of transactions. Allthough
Calypso has moderate overhead compared to the semi-centralized
solution, we believe the added security benefit is more important.

Next, we show the actual performance of the clearance-enforcing
document sharing deployment of Calypso using real-world data
traces from our governmental contractor partner mentioned in
Section 7.1. Data traces are collected from the company’s testbed
over a period of 15 days. There are 1821 txw and 1470 txr, and the
minimum, maximum and average number of transactions per block
are 1, 7 and 2.62, respectively. We replayed the traces on Calypso
and the fully-centralized and semi-centralized access-control sys-
tem implementations. We use a blocktime of 10 seconds as it is in
the original data traces. Figure 8 shows the average latency for the
write and read transactions. The results show that Calypso and
the semi-centralized system have comparable performance as the
latency is dominated by the blocktime due to the small number
of transactions per block, meaning that for existing deployments
Calypso’s additional security comes at almost no cost.

Figure 9 finally offers insight into selecting an appropriate block
size for Calypso. Transactions inside a block are executed concur-
rently, which, as we see in Figure 9, allows for higher throughput
(bar graphs): an average throughput of 7.4 txns/sec with 512 con-
current transactions. This shows that Calypso can easily keep up
with Bitcoin if deployed as an external secret-management service.
However, the increased throughput comes at the cost of a higher
overall latency for clients with a larger variance.

8.3 Decentralized Lottery

Finally, to show that Calypso can provide algorithmic speedup to
certain applications, we compare our Calypso-based zero-collateral
lottery with a corresponding tournament lottery byMiller et al. [48]
on simulated and real workloads. Figure 10 shows that the Calypso-
based lottery performs better both in terms of overall execution time
and bandwidth usage. Specifically, our lottery runs in one round
while the tournament runs in a logarithmic number of rounds due
to its design consisting of multiple two-party lotteries.

Next, we evaluate both lotteries using transactions from an
Ethereum-based lottery called Fire Lotto [75]. We consider trans-
actions sent to the Fire Lotto smart contract over a period of 30
days, where each day is a different run of the lottery. We evaluate a
naive implementation of the lottery where each decryption is run
separately, and a batched version that implements a SELECT query
to batch-decrypt all the tickets at once. Figure 11 shows the total
time it takes to run the lotteries. Each data point in the graph corre-
sponds to a single lottery run. As before, the Calypso-based lottery
performs better because it completes in one round, whereas the
tournament lottery requires a logarithmic number of interactions
with the blockchain and consequently has a larger overhead. More
specifically, while the blocktime of 15 seconds makes up 14–20% of
the total latency in Calypso, it contributes most of the per-round
latency to the lottery. Furthermore, the optimized SELECT query
takes advantage of the fact that the systems is doing the same op-
erations for the same set of private keys and further reduces the
latency around 50% compared to the naive implementation. Our
results include only the latency of the reveal phase since the commit
phase happens asynchronously over a full day.

9 Related and Future Work

In our deployments we demonstrated the power of Calypso, which
enables mutually distrustful parties who want to collaborate within
a blockchain ecosystem to auditably exchange data and payments,
and be protected from front-running attacks. In one sentence, Ca-
lypso is the first truly decentralized system that provides the full
CIA triad thatmodern businesseswant from their data-management
systems. As a result, new applications, such as accountable data
sharing [26], time-locked vaults [59], and multi-party games [42]
can now be deployed within blockchain ecosystems without the
need to place full trust in a centralized manager.

Private data storage has been widely studied in databases [55],
but adding decentralization is challenging. Vanish [28] guarantees
that data self-destructs once it is no longer needed, to protect against
accidental leakage. Calypso can implement similar functionality
by adding timeouts to on-chain secrets, after which the symmetric
encryption keys (or secret shares) are destroyed. The Calypso
approach is more robust as it uses a blockchain ensuring Byzantine
fault tolerance, instead of a DHT, which generally does not.

Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford

4 8 16 32 64 128
0

500

1000

1500

Ti
m
e
(s
ec
)

Tournament
Calypso

4 8 16 32 64 128
Number of participants

0

50

100

150

Ba
nd

wi
dt
h
(K
B) Tournament

Calypso

Figure 10: Lottery evaluation using simulated workloads.

0 5 10 15 20 25 30
Day

0

50

100

150

200

250

Ti
m
e
to
 p
ro
ce
ss
 d
ai
ly
 tx

ns
 (s

ec
) Tournament

Calypso (Individual txns)
Calypso (SELECT * txns)

Figure 11: Lottery evaluation using Fire Lotto.

Nevertheless, Calypso is still limited to guaranteeing data confi-
dentiality up to the point where an authorized reader gains access.
To maintain confidentiality after this point, writers might rely on
additional privacy-preserving technologies, such as differential pri-
vacy [20] or homomorphic encryption [25]. Differential privacy
can also be used to help identify leaks in the case of multiple read-
ers. Wanda can create multiple write transactions if she wants to
pinpoint leaks and apply different noise or watermarks to each.

The closest work to ours is the decentralized data management
platform Enigma [80], where users control their data and a block-
chain enforces access control by logging valid requests as per the
on-chain policy. However, Enigma stores the confidential data at
a centralized storage provider that can read and decrypt the data,
or refuse to serve the data even if there is a valid on-chain proof.
The Enigma storage provider is thus a single point of failure or
compromise. Other projects [6, 21, 34, 67] that rely on centralized
key-management and/or storage systems suffer from similar issues
with atomicity and robustness to compromised service providers.

Instead of a cloud storage provider, Ekiden [15] trusts a secure
enclave (e.g., Intel SGX), which again becomes a single point of
compromise. Calypso is the first system that truly supports the full
CIA triad without having any single point of failure or compromise.
This comes at moderate overhead, of course. Calypso has constant-
sized write transactions only in the permissioned model. If a client
in the permissionless model wants this feature, he needs to trust a
predefined set of service providers and cannot choose any group
arbitrarily. One possible extension is to combinemultiple predefined
sets of long-term secrets servers in a one-time secrets instance
and generate one PVSS share per group. This would make the
transaction linear to the number of groups instead of the number
of trustees, hence reducing the total transaction size.

Finally, other privacy-focused blockchain systems [47, 64] do
not sufficiently address the problem of sharing data. Although they
allow committing confidential data on-chain, they rely on the initial
data provider to reveal the data, which means that they do not have
high availability. This is not an issue for these systems, as they
focus on hiding the identity and amounts of monetary transactions,
but the actual data might be inaccessible forever. The only thing

available is zero-knowledge proofs that the system is consistent,
hence they cannot be used to achieve our goals. Calypso’s on-
chain blinded key-exchange protocol enables Wanda to protect the
identity of the intended reader of her secrets without forfeiting
any of on-chain secrets’ guarantees, but it requires knowing the
reader’s public key. If Ron wants to have both a dynamic identity
and a hidden identity, he would still need to perform the exchange
before the rotation and maintain the hidden key securely.

Despite its limitations, Calypso shows how to preserve the con-
fidentiality of information and guarantee the fairness of disclosure,
opening up new possibilities for investigation. For example, we are
now closer to building decentralized marketplaces [71], or even
using the already decentralized confidential data to build prediction
models without seeing the data, but only the final result.

10 Conclusion

This paper has demonstrated how Calypso enables a blockchain to
hold and manage secrets directly on-chain. Calypso achieves its
goals through two key components. The first component, on-chain
secrets, is deployed on top of a blockchain to enable transparent
and efficient management of secret data via threshold cryptography.
The second component, skipchain-based identity and access man-
agement, allows for dynamic identities and roles and user-managed
access policies. We have implemented Calypso and shown that it
can be efficiently deployed with blockchain systems to enhance
their functionality. Lastly, we describe three deployments of Ca-
lypso to illustrate its applicability to real-world use cases.

Acknowledgments

We thank Nicolas Gailly, Vincent Graf, Jean-Pierre Hubaux, Wouter
Lueks, Massimo Marelli, Carmela Troncoso, Juan-Ramón Troncoso-
Pastoriza, Frédéric Pont, and Sandra Siby for their valuable feedback.
This project was supported in part by the ETH domain under PHRT
grant #2017−201, and by the AXAResearch Fund, Byzgen, DFINITY,
and the Swiss Data Science Center (SDSC).

References

[1] A. N. Amroudi, A. Zaghain, and M. Sajadieh. A Verifiable (k, n, m)-Threshold
Multi-secret Sharing Scheme Based on NTRU Cryptosystem. Wireless Personal

https://link.springer.com/article/10.1007/s11277-017-4245-9
https://link.springer.com/article/10.1007/s11277-017-4245-9

CALYPSO: Private Data Management for Decentralized Ledgers

Communications, 96(1):1393–1405, 2017.
[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro,

D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al. Hyperledger fabric: a
distributed operating system for permissioned blockchains. In Proceedings of the
Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018,
pages 30:1–30:15, 2018.

[3] E. Androulaki, C. Cachin, A. De Caro, and E. Kokoris-Kogias. Channels: Hori-
zontal Scaling and Confidentiality on Permissioned Blockchains. In European
Symposium on Research in Computer Security, pages 111–131. Springer, 2018.

[4] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Secure
Multiparty Computations on Bitcoin. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 443–458. IEEE, 2014.

[5] M. Archetti and I. Scheuring. Game theory of public goods in one-shot social
dilemmas without assortment. Journal of theoretical biology, 299:9–20, 2012.

[6] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. Medrec: Using blockchain for
medical data access and permission management. In Open and Big Data (OBD),
International Conference on, pages 25–30. IEEE, 2016.

[7] J. Benet. IPFS – Content Addressed, Versioned, P2P File System. arXiv preprint
arXiv:1407.3561, 2014.

[8] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: Elliptic-curve
points indistinguishable from uniform random strings. In ACM CCS, Nov. 2013.

[9] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the national
computer conference, volume 48, pages 313–317, 1979.

[10] A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. In 6th International Work-
shop on Practice and Theory in Public Key Cryptography (PKC), Jan. 2003.

[11] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange
for the TLS protocol from the ring learning with errors problem. In Security and
Privacy (SP), 2015 IEEE Symposium on, pages 553–570. IEEE, 2015.

[12] I. Cascudo and B. David. SCRAPE: Scalable Randomness Attested by Public
Entities. In 15th International Conference on Applied Cryptography and Network
Security (ACNS), July 2017.

[13] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In 3rd USENIX
Symposium on Operating Systems Design and Implementation (OSDI), Feb. 1999.

[14] D. Chaum, J.-H. Evertse, J. van de Graaf, and R. Peralta. Demonstrating possession
of a discrete logarithm without revealing it. In Conference on the Theory and
Application of Cryptographic Techniques, pages 200–212. Springer, 1986.

[15] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels, A. Miller, and
D. Song. Ekiden: A Platform for Confidentiality-Preserving, Trustworthy, and
Performant Smart Contract Execution. arXiv preprint arXiv:1804.05141, 2018.

[16] CoinDesk. Decentralized Exchanges Aren’t Living Up to Their Name – And Data
Proves It, July 2018.

[17] M. Czernik. On Blockchain Frontrunning, Feb. 2018.
[18] S. Czsun. Escaping the Dark Forest, Sept. 2020.
[19] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances in Cryptology

(CRYPTO), Aug. 1989.
[20] I. Dinur and K. Nissim. Revealing information while preserving privacy. In

Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 202–210. ACM, 2003.

[21] A. Dubovitskaya, Z. Xu, S. Ryu, M. Schumacher, and F. Wang. Secure and
Trustable Electronic Medical Records Sharing using Blockchain. arXiv preprint
arXiv:1709.06528, 2017.

[22] V. Durham. Namecoin, 2011.
[23] J. Ellis. The Guardian introduces SecureDrop for document leaks. Nieman

Journalism Lab, 2014.
[24] S. Eskandari, S. Moosavi, and J. Clark. Transparent Dishonesty: front-running

attacks on Blockchain. In 3rd Workshop on Trusted Smart Contracts (WTSC), Feb.
2019.

[25] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptology ePrint Archive, 2012:144, 2012.

[26] J. Feigenbaum. Multiple Objectives of Lawful-Surveillance Protocols (Transcript
of Discussion). In Cambridge International Workshop on Security Protocols, pages
9–17. Springer, 2017.

[27] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
Foundations of Computer Science, 1987., 28th Annual Symposium on, pages 427–438.
IEEE, 1987.

[28] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy. Vanish: Increasing Data
Privacy with Self-Destructing Data. In USENIX Security Symposium, pages 299–
316, 2009.

[29] Genecoin. Make a Backup of Yourself Using Bitcoin, May 2018.
[30] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gen-

eration for discrete-log based cryptosystems. In Eurocrypt, volume 99, pages
295–310. Springer, 1999.

[31] The Go Programming Language, Feb. 2018.
[32] E. Hardt. The OAuth 2.0 Authorization Framework, Oct. 2012. RFC 6749.
[33] K. F. Hollis. To Share or Not to Share: Ethical Acquisition and Use of Medical

Data. AMIA Summits on Translational Science Proceedings, 2016:420, 2016.

[34] L. Huang, G. Zhang, S. Yu, A. Fu, and J. Yearwood. SeShare: Secure cloud data
sharing based on blockchain and public auditing. Concurrency and Computation:
Practice and Experience, 2017.

[35] M. Jakobsson. On quorum controlled asymmetric proxy re-encryption. In Public
key cryptography, pages 632–632. Springer, 1999.

[36] A. Kate and I. Goldberg. Distributed Key Generation for the Internet. In 29th
International Conference on Distributed Computing Systems (ICDCS), pages 119–
128. IEEE, June 2009.

[37] K. K. Kim, P. Sankar, M. D. Wilson, and S. C. Haynes. Factors affecting willingness
to share electronic health data among California consumers. BMC medical ethics,
18(1):25, 2017.

[38] E. Kokoris-Kogias, L. Gasser, I. Khoffi, P. Jovanovic, N. Gailly, and B. Ford. Man-
aging Identities Using Blockchains and CoSi. Technical report, 9th Workshop on
Hot Topics in Privacy Enhancing Technologies (HotPETs 2016), 2016.

[39] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhanc-
ing Bitcoin Security and Performance with Strong Consistency via Collective
Signing. In Proceedings of the 25th USENIX Conference on Security Symposium,
2016.

[40] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford. Om-
niLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding. In 39th IEEE
Symposium on Security and Privacy (SP), pages 19–34. IEEE, 2018.

[41] E. Kokoris-Kogias, A. Spiegelman, D. Malkhi, and I. Abraham. Bootstrapping Con-
sensus Without Trusted Setup: Fully Asynchronous Distributed Key Generation.
Cryptology ePrint Archive Report 2019/1015, Sept. 2019.

[42] R. Kumaresan, T. Moran, and I. Bentov. How to Use Bitcoin to Play Decentralized
Poker. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 195–206. ACM, 2015.

[43] J. Kwon. TenderMint: Consensus without Mining, 2014.
[44] The Kyber Cryptography Library, 2010 – 2018.
[45] L. A. Linn andM. B. Koo. Blockchain for health data and its potential use in health

it and health care related research. In ONC/NIST Use of Blockchain for Healthcare
and Research Workshop. Gaithersburg, Maryland, United States: ONC/NIST, 2016.

[46] W. Lueks. Security and Privacy via Cryptography: Having your cake and eating it
too. PhD thesis, [Sl: sn], 2017.

[47] I. Miers, C. Garman,M. Green, and A. D. Rubin. Zerocoin: Anonymous Distributed
E-Cash from Bitcoin. In 34th IEEE Symposium on Security and Privacy (S&P), May
2013.

[48] A. Miller and I. Bentov. Zero-collateral lotteries in Bitcoin and Ethereum. In
Security and Privacy Workshops (EuroS&PW), 2017 IEEE European Symposium on,
pages 4–13. IEEE, 2017.

[49] Mininet – An Instant Virtual Network on your Laptop (or other PC), Feb. 2018.
[50] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel. A survey on essential

components of a self-sovereign identity. Computer Science Review, 30:80–86, Nov.
2018.

[51] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
[52] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi, J. Cappos,

and B. Ford. CHAINIAC: Proactive Software-Update Transparency via Collec-
tively Signed Skipchains and Verified Builds. In 26th USENIX Security Symposium,
pages 1271–1287, 2017.

[53] Ocean Protocol Foundation. Ocean Protocol: A Decentralized Substrate for AI
Data & Services, May 2018.

[54] M. Pilkington. Blockchain Technology: Principles and Applications. Research
Handbook on Digital Transformation, 2015.

[55] R. Poddar, T. Boelter, and R. A. Popa. Arx: A strongly encrypted database system.
IACR Cryptology ePrint Archive, 2016:591, 2016.

[56] B. Rajabi and Z. Eslami. A Verifiable Threshold Secret Sharing Scheme Based On
Lattices. Information Sciences, 2018.

[57] randao.org. Randao: Blockchain Based Verifiable Random Number Generator,
2018.

[58] A. Rapoport, A. M. Chammah, and C. J. Orwant. Prisoner’s dilemma: A study in
conflict and cooperation, volume 165. University of Michigan press, 1965.

[59] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, Mar. 1996.

[60] D. Robinson and G. Konstantopoulos. Ethereum is a Dark Forest. Medium, Aug.
2020.

[61] P. Rogaway. Authenticated-encryption with associated-data. In Proceedings of
the 9th ACM conference on Computer and communications security, pages 98–107,
2002.

[62] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine. Survivable Key Com-
promise in Software Update Systems. In 17th ACM Conference on Computer and
Communications security (CCS), Oct. 2010.

[63] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. Computer, 29(2):38–47, 1996.

[64] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from Bitcoin. In Security and
Privacy (SP), 2014 IEEE Symposium on, pages 459–474. IEEE, 2014.

https://arxiv.org/pdf/1801.10228v1.pdf
https://arxiv.org/pdf/1801.10228v1.pdf
https://link.springer.com/chapter/10.1007/978-3-319-99073-6_6
https://link.springer.com/chapter/10.1007/978-3-319-99073-6_6
https://ieeexplore.ieee.org/abstract/document/6956580
https://ieeexplore.ieee.org/abstract/document/6956580
https://ieeexplore.ieee.org/abstract/document/7573685/
https://ieeexplore.ieee.org/abstract/document/7573685/
https://arxiv.org/abs/1407.3561
https://elligator.cr.yp.to/elligator-20130828.pdf
https://elligator.cr.yp.to/elligator-20130828.pdf
https://www.computer.org/csdl/proceedings/afips/1979/5087/00/50870313.pdf
https://link.springer.com/chapter/10.1007/3-540-36288-6_3
https://link.springer.com/chapter/10.1007/3-540-36288-6_3
https://ieeexplore.ieee.org/abstract/document/7163047
https://ieeexplore.ieee.org/abstract/document/7163047
https://link.springer.com/chapter/10.1007/978-3-319-61204-1_27
https://link.springer.com/chapter/10.1007/978-3-319-61204-1_27
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
https://arxiv.org/pdf/1804.05141.pdf
https://arxiv.org/pdf/1804.05141.pdf
https://www.coindesk.com/decentralized-exchange-crypto-dex
https://www.coindesk.com/decentralized-exchange-crypto-dex
https://medium.com/@matt.czernik/on-blockchain-frontrunning-part-i-cut-the-line-or-make-a-new-one-b33850663b55
https://samczsun.com/escaping-the-dark-forest/amp/
https://dl.acm.org/citation.cfm?id=773173
https://arxiv.org/pdf/1709.06528.pdf
https://arxiv.org/pdf/1709.06528.pdf
https://namecoin.info/
https://www.theguardian.com/technology/2014/jun/05/guardian-launches-securedrop-whistleblowers-documents
http://fc19.ifca.ai/wtsc/TransparentDishonesty.pdf
http://fc19.ifca.ai/wtsc/TransparentDishonesty.pdf
https://eprint.iacr.org/2012/144.pdf
https://link.springer.com/chapter/10.1007/978-3-319-71075-4_2
https://link.springer.com/chapter/10.1007/978-3-319-71075-4_2
https://ieeexplore.ieee.org/abstract/document/4568297/
https://www.usenix.org/legacy/events/sec09/tech/full_papers/sec09_crypto.pdf
https://www.usenix.org/legacy/events/sec09/tech/full_papers/sec09_crypto.pdf
http://genecoin.me/
https://link.springer.com/chapter/10.1007/3-540-48910-X_21
https://link.springer.com/chapter/10.1007/3-540-48910-X_21
http://golang.org/
https://tools.ietf.org/html/rfc7009
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001759/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001759/
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4359
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4359
https://link.springer.com/chapter/10.1007/3-540-49162-7_9
https://ieeexplore.ieee.org/abstract/document/5158416/
https://bmcmedethics.biomedcentral.com/articles/10.1186/s12910-017-0185-x
https://bmcmedethics.biomedcentral.com/articles/10.1186/s12910-017-0185-x
https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/1_Managing_identities_bryan_ford_etc.pdf
https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/1_Managing_identities_bryan_ford_etc.pdf
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2019/1015.pdf
https://eprint.iacr.org/2019/1015.pdf
https://people.csail.mit.edu/ranjit/papers/poker.pdf
https://people.csail.mit.edu/ranjit/papers/poker.pdf
http://tendermint.com/docs/tendermint.pdf
https://github.com/dedis/kyber
https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf
https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf
http://repository.ubn.ru.nl/bitstream/handle/2066/176475/176475.pdf?sequence=1
http://repository.ubn.ru.nl/bitstream/handle/2066/176475/176475.pdf?sequence=1
https://ieeexplore.ieee.org/abstract/document/6547123/
https://ieeexplore.ieee.org/abstract/document/6547123/
https://ieeexplore.ieee.org/document/7966964
http://mininet.org/
https://www.sciencedirect.com/science/article/pii/S1574013718301217
https://www.sciencedirect.com/science/article/pii/S1574013718301217
https://bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://oceanprotocol.com/#papers
https://oceanprotocol.com/#papers
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2662660
https://www.sciencedirect.com/science/article/pii/S0020025516316152
https://www.sciencedirect.com/science/article/pii/S0020025516316152
https://www.randao.org
https://dl.acm.org/citation.cfm?id=888615
https://dl.acm.org/citation.cfm?id=888615
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
http://justinsamuel.com/papers/survivable-key-compromise-ccs2010.pdf
http://justinsamuel.com/papers/survivable-key-compromise-ccs2010.pdf
https://ieeexplore.ieee.org/abstract/document/6956581/

Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford

[65] B. Schoenmakers. A Simple Publicly Verifiable Secret Sharing Scheme and Its
Application to Electronic Voting. In IACR International Cryptology Conference
(CRYPTO), pages 784–784, Aug. 1999.

[66] SECBIT. How the winner got Fomo3D prize – A Detailed Explanation, Aug. 2018.
[67] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy. Towards Blockchain-

based Auditable Storage and Sharing of IoT Data. In Proceedings of the 2017 on
Cloud Computing Security Workshop, pages 45–50. ACM, 2017.

[68] A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613,
1979.

[69] V. Shoup. Practical Threshold Signatures. In Eurocrypt, May 2000.
[70] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen

ciphertext attack. Advances in Cryptology — EUROCRYPT’98, pages 1–16, 1998.
[71] H. Subramanian. Decentralized blockchain-based electronic marketplaces. Com-

munications of the ACM, 61(1):78–84, 2017.
[72] M. H. Swende. Blockchain Frontrunning, Oct. 2017.
[73] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,

I. Khoffi, and B. Ford. Keeping Authorities “Honest or Bust” with Decentralized
Witness Cosigning. In 37th IEEE Symposium on Security and Privacy, May 2016.

[74] N. Szabo. Smart contracts. Unpublished manuscript, 1994.
[75] F. Team. Fire Lotto blockchain lottery, 2018.
[76] A. Tomescu, R. Chen, Y. Zheng, I. Abraham, B. Pinkas, G. G. Gueta, and S. Devadas.

Towards Scalable Threshold Cryptosystems. In 41st IEEE Symposium on Security
and Privacy (SP), pages 877–893. IEEE Computer Society, may 2020.

[77] T. M. Wong, C. Wang, and J. M. Wing. Verifiable secret redistribution for archive
systems. In Security in Storage Workshop, 2002. Proceedings. First International
IEEE, pages 94–105. IEEE, 2002.

[78] G. Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger.
Ethereum Project Yellow Paper, 2014.

[79] G. Zyskind, O. Nathan, et al. Decentralizing privacy: Using blockchain to protect
personal data. In Security and PrivacyWorkshops (SPW), 2015 IEEE, pages 180–184.
IEEE, 2015.

[80] G. Zyskind, O. Nathan, and A. Pentland. Enigma: Decentralized computation
platform with guaranteed privacy. arXiv preprint arXiv:1506.03471, 2015.

A Full Protocol for Long-term secrets

LetG be a cyclic group of prime order 𝑞 with generators𝑔 and𝑔. We
assume the existence of two hash functions: H1 : G6 × {0, 1}𝑙 → G
and H2 : G3 → Z𝑞 .

Setup Protocol. Initially, the secret-management committee needs
to run a DKG protocol to generate a shared private-public key pair
such that the private key is not known to any single party, but can
be reconstructed by combining a threshold of key shares. There
exist a number of DKG protocols that are synchronous [30] or
asynchronous [41]. Given the rarity of the setup phase we run
the DKG by Gennaro et al. [30] using the blockchain to emulate
synchronous communication.

The output of the setup phase is a shared public key pksmc =

𝑔sksmc , where sksmc is the unknown private key. Each server 𝑖 holds
a share of the secret key denoted as sk𝑖 and all servers know the
public counterpart pk𝑖 = 𝑔sk𝑖 . The secret key can be reconstructed
by combining a threshold 𝑡 = 𝑓 + 1 of individual shares. We assume
that pksmc is registered on-chain of the access-control blockchain,
e.g., in the genesis block.

Write Transaction Protocol

Wanda and the access-control blockchain perform the following pro-
tocol to log the txw on the blockchain. Wanda encrypts a message
under the threshold public key pksmc such that it can be decrypted
by anyone that is included in policy4 𝐿 ∈ {0, 1}𝑙 . Wanda performs
the following steps.

(1) Retrieve the threshold public key pksmc of the secret-man-
agement committee.

4This policy is the identifier (hash of genesis block) of an identity skipchain

(2) Choose a symmetric key 𝑘 and encrypt the secret message
𝑚 using authenticated encryption [61] to be shared as 𝑐𝑚 =

enc𝑘 (𝑚) and compute 𝐻𝑐𝑚 = H(𝑐𝑚). Set policy = pk𝑅 to
designate Ron as the intended reader of the secret message
𝑚.

(3) Encrypt 𝑘 towards pksmc using a threshold variant of the
ElGamal encryption scheme. To do so, embed 𝑘 as a point
𝑘 ′ ∈ G, pick a value 𝑟 uniformly at random, compute 𝑐𝑘 =

(pk𝑟smc𝑘
′, 𝑔𝑟) and create the NIZK proof 𝜋𝑐𝑘 to guarantee

that the ciphertext is correctly formed and resistant to replay
attacks as follows.

(4) Choose at random 𝑟, 𝑠 ∈ Z𝑞 . Compute:

𝑐 = pk𝑟smc𝑘
′, 𝑢 = 𝑔𝑟 ,𝑤 = 𝑔𝑠 , 𝑢 = 𝑔𝑟 , 𝑤̄ = 𝑔𝑠 ,

𝑒 = H1 (𝑐,𝑢,𝑢,𝑤, 𝑤̄, 𝐿) , 𝑓 = 𝑠 + 𝑟𝑒.

(5) Finally, prepare and sign the write transaction:
txw = [𝑐𝑘 , 𝜋𝑐𝑘 , 𝐻𝑐𝑚 , policy]sigsk𝑊

, and send it to the access-
control blockchain.

The ciphertext is (𝑐, 𝐿,𝑢,𝑢, 𝑒, 𝑓).
The access-control blockchain then logs the txw.
(1) Verify the correctness of the ciphertext 𝑐𝑘 using the NIZK

proof 𝜋𝑐𝑘 .
(2) If the check succeeds, log txw in block b𝑤 .

Read Transaction Protocol.

After txw has been recorded, Ron needs to log a txr before he can
request the decryption key shares. To do so, Ron performs the
following steps.

(1) Retrieve the ciphertext 𝑐𝑚 and the block b𝑤 , which stores
txw, from the access-control blockchain.

(2) Check that H(𝑐𝑚) is equal to 𝐻𝑐𝑚 in txw to ensure that the
ciphertext 𝑐𝑚 of Wanda’s secret has not been altered.

(3) Compute𝐻w = H(txw) as the unique identifier for the secret
that Ron requests access to and determine the proof 𝜋txw
showing that txw has been logged on-chain.

(4) Prepare and sign the txr: txr = [𝐻w, 𝜋txw]sigsk𝑅
, and send it

to the access-control blockchain.
The access-control blockchain then logs txr as follows.
(1) Retrieve txw using 𝐻w and use pk𝑅 , as recorded in policy,

to verify the signature on txr.
(2) If the signature is valid and Ron is authorized to access the

secret, log txr in block b𝑟 .

Share Retrieval Protocol.

Ron can recover the secret data by running the share retrieval
protocol with the secret-management committee. To do so Ron
does as follows.

(1) Create and sign a secret-sharing request:
reqshare = [txw, txr, 𝜋txr]sigsk𝑅

, where 𝜋txr proves that txr
has been logged on-chain.

(2) Send reqshare to each secret-management trustee to request
the blinded shares.

Given a ciphertext (𝑐, 𝐿,𝑢,𝑢, 𝑒, 𝑓) and a matching authorization
to 𝐿, each trustee 𝑖 performs the following steps.

https://link.springer.com/chapter/10.1007/3-540-48405-1_10
https://link.springer.com/chapter/10.1007/3-540-48405-1_10
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://dl.acm.org/citation.cfm?id=3140656
https://dl.acm.org/citation.cfm?id=3140656
https://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.pdf
https://link.springer.com/content/pdf/10.1007/3-540-45539-6_15.pdf
https://link.springer.com/chapter/10.1007/BFb0054113
https://link.springer.com/chapter/10.1007/BFb0054113
https://dl.acm.org/citation.cfm?id=3158333
http://swende.se/blog/Frontrunning.html
http://dedis.cs.yale.edu/dissent/papers/witness-abs
http://dedis.cs.yale.edu/dissent/papers/witness-abs
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://firelotto.io/
https://www.computer.org/csdl/proceedings-article/sp/2020/349700b367/1j2LgjE3Q6Q
https://dl.acm.org/citation.cfm?id=830217
https://dl.acm.org/citation.cfm?id=830217
https://github.com/ethereum/wiki/wiki/White-Paper
https://ieeexplore.ieee.org/abstract/document/7163223/
https://ieeexplore.ieee.org/abstract/document/7163223/
https://arxiv.org/pdf/1506.03471.pdf
https://arxiv.org/pdf/1506.03471.pdf

CALYPSO: Private Data Management for Decentralized Ledgers

(1) Check if 𝑒 = H1 (𝑐,𝑢,𝑢,𝑤, 𝑤̄, 𝐿) by computing 𝑤 =
𝑔𝑓

𝑢𝑒 and
𝑤̄ =

𝑔𝑓

𝑢𝑒 , which is a NIZK proof that log𝑔 𝑢 = log𝑔 𝑢.
(2) If the share is valid, choose 𝑠𝑖 ∈ Z𝑞 at random and compute:

𝑢𝑖 = 𝑢sk𝑖 , 𝑢𝑖 = 𝑢𝑠𝑖 , ℎ̂𝑖 = 𝑔𝑠𝑖 ,

𝑒𝑖 = H2
(
𝑢𝑖 , 𝑢𝑖 , ℎ̂𝑖

)
, 𝑓𝑖 = 𝑠𝑖 + sk𝑖𝑒𝑖

(3) Create and sign the secret-sharing reply: repshare = [𝑢𝑖 , 𝑒𝑖 , 𝑓𝑖]sigsk𝑖
,

and send it back to Ron.

Secret reconstruction

Ron can reconstruct the secret and obtain the decryption key 𝑘

both on the client side or at an untrusted server. We describe both
schemes below.

Secret reconstruction at Ron
(1) Each secret-management server 𝑖 prepares a blinded share

𝑢𝑖 = (𝑔𝑟)sk𝑖 along with its NIZK proof of correctness, com-
putes 𝑐𝑖 = encpk𝑅 (𝑢𝑖), and sends (𝑐𝑖 , 𝑒𝑖 , 𝑓𝑖) back to Ron.

(2) Run the decryption share check tomake sure that the trustees
are not misbehaving.

(3) If the check passes then verify that (𝑢,𝑢𝑖 , ℎ𝑖) is a DH triple
by checking that 𝑒𝑖 = H2

(
𝑢𝑖 , 𝑢𝑖 , ℎ̂𝑖

)
, where 𝑢𝑖 = 𝑢 𝑓𝑖

𝑢𝑖
𝑒𝑖 and

ℎ̂𝑖 =
𝑔𝑓𝑖

ℎ𝑖
𝑒𝑖 .

(4) If there are at least 𝑡 valid shares, (𝑖, 𝑢𝑖), the recovery algo-
rithm is doing Lagrange interpolation of the shares:

pk𝑟smc =

𝑡∏
𝑘=0

𝑢𝑖
𝜆𝑖

where 𝜆𝑖 is the 𝑖𝑡ℎ Lagrange element.
(5) Ron recovers the encoded encryption key:𝑘 ′ = (𝑐𝑘) (pk𝑟smc)−1 =

(pk𝑟smc𝑘
′) (pk𝑟smc)−1, retrieves the symmetric encryption key

𝑘 from 𝑘 ′, and finally decrypts the secret message 𝑚 =

dec𝑘 (𝑐𝑚).

Secret reconstruction at the trusted server
Ron authenticates himself using his public key 𝑔𝑥𝑐 . One of the
trustees is assigned to do the reconstruction for the client.

(1) Each secret-management server 𝑖 ElGamal encrypts its secret
key share 𝑢𝑖 = (𝑔𝑟)sk𝑖 using Ron’s public key pk𝑅 = 𝑔sk𝑅

and its secret key sk𝑖 instead of the usual random exponent.
The encrypted share is 𝑢 ′

𝑖
= 𝑔𝑟sk𝑖𝑔sk𝑅sk𝑖 = 𝑔 (𝑟+sk𝑅)sk𝑖 =

𝑔𝑟
′sk𝑖 Then the trustee computes ℎ̂𝑖 , as before and 𝑢 ′𝑖 = 𝑢 ′sk𝑖 .

Finally 𝑒 ′
𝑖
= H2

(
𝑢 ′
𝑖
, 𝑢 ′

𝑖
, ℎ̂𝑖

)
and 𝑓 ′

𝑖
= 𝑠𝑖 + 𝑥𝑖𝑒

′
𝑖

(2) The trustee collects 𝑡 valid shares, then uses Lagrange in-
terpolation to reconstruct 𝑔𝑟 ′sksmc = 𝑔 (𝑟+sk𝑅)sksmc which he
sends to Ron. Note that the server never sees 𝑔𝑟sksmc and
consequently cannot decrypt the secret message intended
for Ron.

(3) Ron knows pksmc = 𝑔sksmc and sk𝑅 , and can calculate (𝑔𝑟 sk𝑅)−1.
Then, he can recover
pk𝑟smc as (𝑔𝑟 ′sksmc) (𝑔𝑟 sk𝑅)−1 = (𝑔 (𝑟+sk𝑅)sksmc) (𝑔𝑟 sk𝑅)−1 =

(𝑔𝑟 sksmc) (𝑔𝑟 sk𝑅) (𝑔𝑟 sk𝑅)−1 = 𝑔𝑟 sksmc = pk𝑟smc.

Finally, Ron recovers the symmetric key 𝑘 and carries out
the decryption as explained in the step above. If the authenti-
cated decryption fails then Ron cannot distinguish between
a bad server and Wanda’s misbehavior. As a result he can
either optimistically ask another server to do the interpo-
lation or pessimistically do it himself and blame Wanda if
decryption fails again. Another path would be for the server
to contact the secret-management committee in order to
generate a ZK-proof of correct re-encryption but we opted
for the optimistic approach that has less overhead.

B One-Time Secrets Protocols

We follow the protocol in [65] where a dealer wants to distribute
shares of a secret value among a set of trustees. Let G be a cyclic
group of prime order 𝑞 where the decisional Diffie-Hellman as-
sumption holds. Let 𝑔 and ℎ denote two distinct generators of G.
We use 𝑁 = {1, . . . , 𝑛} to denote the set of trustees, where each
trustee 𝑖 has a private key sk𝑖 and a corresponding public key pk𝑖
= 𝑔sk𝑖 . The protocol runs as follows:

Write Transaction Protocol.

Wanda, the writer and each trustee of the access-control blockchain
perform the following protocol to log the write transaction txw on
the blockchain. Wanda initiates the protocol as follows.

(1) Compute ℎ = H(policy) to map [8] the access-control policy
to a group element ℎ to be used as the base point for the
PVSS polynomial commitments. This prevents replay attacks
as described later.

(2) Choose a secret sharing polynomial 𝑠 (𝑥) =
∑𝑡−1

𝑗=0 𝑎 𝑗𝑥
𝑗 of

degree 𝑡 − 1. The secret to be shared is 𝑠 = 𝑔𝑠 (0) .
(3) For each secret-management trustee 𝑖 , compute the encrypted

share 𝑠𝑖 = pk𝑠 (𝑖)
𝑖

of the secret 𝑠 and create the corresponding
NIZK proof 𝜋𝑠𝑖 that each share is correctly encrypted. Create
the polynomial commitments 𝑏 𝑗 = ℎ𝑎 𝑗 , for 0 ≤ 𝑗 ≤ 𝑡 − 1.

(4) Set 𝑘 = H(𝑠) as the symmetric key, encrypt the secret mes-
sage𝑚 to be shared as 𝑐 = enc𝑘 (𝑚), and compute𝐻𝑐 = H(𝑐).
Set policy = pk𝑅 to designate Ron as the intended reader of
the secret message𝑚.

(5) Finally, prepare and sign the write transaction:
txw = [⟨̂𝑠𝑖 ⟩ , ⟨𝑏 𝑗 ⟩ , ⟨𝜋𝑠𝑖 ⟩ , 𝐻𝑐 , ⟨pk𝑖 ⟩ , policy]sigsk𝑊

, and send it
to the access-control blockchain.

𝜋𝑠𝑖 proves that the corresponding encrypted share 𝑠𝑖 is consistent.
More specifically, it is a proof of knowledge of the unique 𝑠 (𝑖) that
satisfies:

𝐴𝑖 = ℎ𝑠 (𝑖) , 𝑠𝑖 = pk𝑠 (𝑖)
𝑖

where 𝐴𝑖 =
∏𝑡−1

𝑗=0 𝑏 𝑗
𝑖 𝑗 . In order to generate 𝜋𝑠𝑖 , the dealer picks

at random𝑤𝑖 ∈ Z𝑞 and computes:

𝑎1𝑖 = ℎ𝑤𝑖 , 𝑎2𝑖 = pk𝑤𝑖

𝑖
,

𝐶𝑖 = H(𝐴𝑖 , 𝑠𝑖 , 𝑎1𝑖 , 𝑎2𝑖), 𝑟𝑖 = 𝑤𝑖 − 𝑠 (𝑖)𝐶𝑖
where H is a cryptographic hash function, 𝐶𝑖 is the challenge,

and 𝑟𝑖 is the response. Each proof 𝜋𝑠𝑖 consists of 𝐶𝑖 and 𝑟𝑖 , and it
shows that logℎ 𝐴𝑖 = logpk𝑖 𝑠𝑖 .

Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford

The access-control blockchain then logs the write transaction
on the blockchain as follows.

(1) Derive the PVSS base point ℎ = H(policy).
(2) Compute𝐴𝑖 =

∏𝑡−1
𝑗=0 𝑐 𝑗

𝑖 𝑗 using the polynomial commitments
𝑐 𝑗 , 0 ≤ 𝑗 < 𝑡 .

(3) Compute 𝑎′1𝑖 = ℎ𝑟𝑖𝐴
𝐶𝑖

𝑖
and 𝑎′2𝑖 = pk𝑟𝑖

𝑖
𝑠𝑖
𝐶𝑖

(4) Check that H(𝐴𝑖 , 𝑠𝑖 , 𝑎
′
1𝑖 , 𝑎

′
2𝑖) matches the challenge 𝐶𝑖 .

(5) If all shares are valid, log txw in block b𝑤 .

Read Transaction Protocol.

After the write transaction has been recorded, Ron needs to log the
read transaction txr through the access-control blockchain before
he can request the secret. To do so, Ron performs the following
steps.

(1) Retrieve the ciphertext 𝑐 and block b𝑤 , which stores txw,
from the access-control blockchain.

(2) Check that H(𝑐) is equal to 𝐻𝑐 in txw to ensure that the
ciphertext 𝑐 of Wanda’s secret has not been altered.

(3) Compute𝐻w = H(txw) as the unique identifier for the secret
that Ron requests access to and determine the proof 𝜋txw
showing that txw has been logged on-chain.

(4) Prepare and sign the transaction: txr = [𝐻w, 𝜋txw]sigsk𝑅
, and

send it to the access-control blockchain. The transaction can
optionally bear a payment value 𝑣 that the trustees receive
upon replying.

The access-control blockchain then logs the read transaction on
the blockchain as follows.

(1) Retrieve txw using 𝐻w and use pk𝑅 , as recorded in policy,
to verify the signature on txr.

(2) If the signature is valid and Ron is authorized to access the
secret, log txr in block b𝑟 .

Share Retrieval Protocol.

After the read transaction has been logged, Ron can recover the
secret message𝑚 by running the share retrieval protocol with the
secret-management committee to obtain shares of the encryption
key used to secure𝑚. To do so, Ron initiates the protocol as follows.

(1) Create and sign a secret-sharing request:
reqshare = [txw, txr, 𝜋txr]sigsk𝑅

, where 𝜋txr proves that txr
has been logged on-chain.

(2) Send reqshare to each secret-management trustee to obtain
the decrypted shares.

Each trustee 𝑖 of the secret-management committee responds to
Ron’s request as follows.

(1) Use pk𝑅 in txw to verify the signature of reqshare and 𝜋txr to
check that txr has been logged on-chain.

(2) Compute the decrypted share 𝑠𝑖 = (𝑠𝑖)sk−1
𝑖 , create a NIZK

proof 𝜋𝑠𝑖 that the share was decrypted correctly. The proof
shows the knowledge of the unique value that satisfies log𝑔 pk𝑖 =
log𝑠𝑖 𝑠𝑖 .

(3) Derive 𝑐𝑖 = encpk𝑅 (𝑠𝑖) to ensure that only Ron can access it.
(4) Create and sign the secret-sharing reply: repshare = [𝑐𝑖 , 𝜋𝑠𝑖]sigsk𝑖

,
and send it back to Ron or publish on-chain claiming pay-
ment.

Secret Reconstruction Protocol.

To recover the secret key 𝑘 and decrypt the secret𝑚, Ron performs
the following steps.

(1) Decrypt each 𝑠𝑖 = decpk𝑅 (𝑐𝑖) and verify it against 𝜋𝑠𝑖 .
(2) If there are at least 𝑡 valid shares, use Lagrange interpolation

to recover 𝑠 .
(3) Recover the encryption key as 𝑘 = H(𝑠) and use it to decrypt

the ciphertext 𝑐 to obtain the message𝑚.

C Post-Quantum One-Time Secrets

The one-time secrets implementation can be converted to a post-
quantum secure version by using Shamir’s secret sharing [68]. We
need the following assumptions to provide confidentiality. First, we
assume that Wanda has post-quantum confidential and authenti-
cated point-to-point communication channels [11] with the trustees.
Second, we assume that the cryptographic protocols (for access con-
trol, authentication and blockchain security) are upgraded gradually
over time to achieve post-quantum security. To protect Calypso
from confidentiality violations by quantum attackers, we need to
ensure that the on-chain secrets generated now are post-quantum
secure.

Unlike the publicly-verifiable schemewe previously used, Shamir’s
secret sharing does not prevent a malicious writer from distributing
bad secret shares. To mitigate this problem, we provide accountabil-
ity of the secret sharing phase by (1) requiring the writer to commit
to the secret shares she wishes to distribute and (2) requesting that
each secret-management trustee verifies and acknowledges the con-
sistency of their secret share against the writer’s commitment. As
a result, assuming 𝑛 = 3𝑓 + 1 and secret sharing threshold 𝑡 = 𝑓 + 1,
the reader can hold the writer accountable for a bad transaction
should he fail to correctly decrypt the secret message.

We sketch the protocol for one-time secrets below. We remark
that long-term secrets can also achieve post-quantum security
through verifiable secret sharing that relies on lattices [56] or
NTRU [1].

Write Transaction Protocol Wanda prepares her write transac-
tion txw with the help of the secret-management committee and
access-control blockchain, where each individual trustee carries
out the respective steps. Wanda initiates the protocol by preparing
a write transaction:

(1) Choose a secret sharing polynomial 𝑠 (𝑥) =
∑𝑡−1

𝑗=0 𝑎 𝑗𝑥
𝑗 of

degree 𝑡 − 1. The secret to be shared is 𝑠 = 𝑠 (0).
(2) Use 𝑘 = H(𝑠) as the symmetric key for encrypting the secret

message𝑚. 𝑐 = enc𝑘 (𝑚) and set 𝐻𝑐 = H(𝑐).
(3) For each trustee 𝑖 , generate a commitment 𝑞𝑖 = H(𝑣𝑖 ∥ 𝑠 (𝑖)),

where 𝑣𝑖 is a random salt value.
(4) Specify the access policy and prepare and sign txw.

txw = [⟨𝑞𝑖 ⟩ , 𝐻𝑐 , ⟨pk𝑖 ⟩ , policy]sigsk𝑊

(5) Send the share 𝑠 (𝑖), salt 𝑣𝑖 , and txw to each secret-manage-
ment trustee using a secure channel.

The secret-management committee verifies txw as follows.
• Check that (𝑠 (𝑖), 𝑣𝑖) corresponds to the commitment 𝑞𝑖 . If
yes, sign txw and send it back to Wanda as a confirmation
that the share is valid.

The access-control blockchain finally logs Wanda’s txw.

CALYPSO: Private Data Management for Decentralized Ledgers

• Wait to receive txw signed by Wanda and the secret-man-
agement trustees. Verify that at least 2𝑓 + 1 trustees signed
the transaction. If yes, log txw.

Read Transaction, Share Request, and Reconstruction The
other protocols remain unchanged except that the secret-manage-
ment trustees are already in possession of their secret shares and
the shares need not be included in txr. Once Ron receives the shares
from the trustees, he recovers the symmetric key 𝑘 as before and
decrypts 𝑐 . If the decryption fails, then the information shared
by Wanda (the key, the ciphertext, or both) was incorrect. Such
an outcome would indicate that Wanda is malicious and did not
correctly execute the txw protocol (e.g., provided bad shares or
used a higher-order polynomial). In response, Ron can release the
transcript of the txr protocol in order to hold Wanda accountable.

D Security Considerations and Incentive

Structure

Our contributions are mainly pragmatic rather than theoretical
as we employ mostly existing, well-studied cryptographic algo-
rithms in a black box, modular fashion. For the replay attack ad-
versary that was not considered in prior work we provide a sketch
of the security proofs. Then, we show the incentive compatibility
of our permissionless protocol and analyze the number of trustees
Wanda should for sufficient security.

D.1 Replay attack

In both long-term secrets and one-time secrets Wanda posts on-
chain the ciphertexts which the adversary (Eve) can easily access.
The replay attack consists of Eve copying the ciphertext and creat-
ing a new transaction that includes the ciphertext (or a homomor-
phic modification of it), but changes the policy from Ron to Eve.
As a result, Eve can now authorize decryption of the new trans-
action and get the decrypted shares from the secret-management
committee.

D.1.1 Long-term secrets Security Argument In order to show that
long-term secrets is secure under this attack we need to show
that Eve is unable to generate a valid transaction after seeing the
ciphertext.

Recall the ciphertext includes form (pk𝑟smc𝑘
′, 𝑔𝑟 , 𝑔𝑠 , 𝑢 = 𝑔𝑟 , 𝑤̄ =

𝑔𝑠𝐿, 𝑒 = H1 (𝑐,𝑢,𝑢,𝑤, 𝑤̄, 𝐿) , 𝑓 = 𝑠+𝑟𝑒). Evewants to take pk𝑟smc𝑘
′, 𝑔𝑟

and generate a new valid transaction so that she can convince the
secret-management committee to reveal pk𝑟smc to her, since she
does not know 𝑟 . This would not be a problem if Wanda was using
simple threshold encryption. However in Calypso, Eve needs to
generate 𝑒 ′ = H1 (𝑐,𝑢,𝑢,𝑤, 𝑤̄, 𝐿′)] (where 𝐿′ is her public key in-
stead of Ron’s) and 𝑓 = 𝑠 + 𝑟𝑒 however she know neither 𝑠 nor 𝑟 .
From the two she can trivially choose a new 𝑠 ′ since it is not crucial
for decryption, however she still does not know 𝑟 and she cannot
recover it form 𝑢 = 𝑔𝑟 (DLOG is hard in G).

Let’s assume that Eve can somehow generate a valid 𝑓 such that
𝑔𝑓

′
= 𝑔𝑠

′ + 𝑔𝑟 𝑒′ and convince access-control blockchain to log the
transaction as valid. Then we can use Eve’s algorithm to solve the
DDH problem as the triple (𝑔𝑟 , 𝑔𝑒′, 𝑔𝑓 − 𝑔𝑠

′) is a DDH triple and
Eve generated it without knowing 𝑟 which should be hard.

This means that under the ROM model the only valid 𝑒 comes
from including the original 𝐿 in H1, which ties the transaction to
the policy.

D.1.2 One-time secrets Security Argument In order to bind one-
time secrets with the policy 𝐿 we use it to derive a base point from
𝐻 (𝐿). Eve wants to change the policy to 𝐿′, hence she would need
to do the proofs using 𝐻 (𝐿′), but she does not know the secrets.
Since we know that our zk-proof of knowing the secret shares are
secure and Eve does not know the secret shares we get the security
directly from PVSS.

However we changed one thing in PVSS that can break security
if not handled properly. Instead of having a random base point we
derive it from 𝐻 (𝐿). As a result if Eve could compute an exponent
𝑎 such that 𝐻 (𝐿)𝑎 = 𝐻 (𝐿′) she could homomorphically apply the
exponent to all proofs and make them work for her policy. We
need to make sure when deriving the point from 𝐻 (𝐿) that it is
indistinguishable from random to prevent this attack. If we simply
cast 𝐻 (𝐿) into a scalar 𝑎 and derive 𝐻 = G𝑎 then Eve could also
find 𝑎 as she knows 𝐿. Then she would derive 𝑎′ from 𝐻 (𝐿′) and
raise all the proofs to 𝑎′/𝑎 making them work for 𝐻 (𝐿′).

The security of one-time secrets comes from using Elligator
maps [8] when deriving the base point from 𝐻 (𝐿) which makes
sure that the point is random. As a result for Eve to break one-
time secrets she can to nothing better than guessing, which has
negligible probability of succeeding.

D.2 Incentive Analysis

In this section we analyze the incentives that rational participants
have when running Calypso in a permissionless mode. The trustees
have three possible deviations: (a) do not release their share (b) claim
they released their share but encrypt garbage and (c) release their
share even if there is no valid read transaction. Ron has one possible
deviation which is to bribe the trustees in order to release their
shares without paying Wanda. Wanda has one possible deviation
which is to bribe the trustees to not reply or to release garbage.
Next we analyze these scenarios.

The easiest to analyze is Wanda’s deviation. Let’s say that she
sends a bribe 𝜖 to the trustees. Given that she cannot stop them
from sending a message the trustees best course of action is to
accept the bribe and still make money from Ron, hence Wanda just
loses money. Notice that this is not a fair-exchange problem since
in fair exchange both parties have some secret. In this example
the trustees have no secret to trade. They can send the message
whenever they want and Wanda cannot stop them.

Next we analyze Ron’s deviation. In order for a trustee to take
a bribe Ron needs to send him 𝑎𝑣/𝑡 for the payment the trustee
would normally make and 𝑣/𝑓 for the collateral that the trustee
risks (again notice that the trustee has no way to stop Ron from
slashing). As a result Ron needs to pay in total 𝑡𝑣/𝑓 + 𝑎𝑣 . From
this he can claim back a percentage 𝑎 of the collateral through
slashing the 𝑡 trustees for a total of 𝑎𝑡𝑣/𝑓 . As a result his expected
cost is 𝑡𝑣/𝑓 + 𝑎𝑣 − 𝑎𝑡𝑣/𝑓 = (𝑓 + 1)𝑣/𝑓 + 𝑓 𝑎𝑣/𝑓 − 𝑎(𝑓 + 1)𝑣/𝑓 =

(𝑓 𝑣 + 𝑣 + 𝑓 𝑎𝑣 − 𝑎𝑓 𝑣 − 𝑎𝑣)/𝑓 = (𝑓 + 1 − 𝑎)𝑣/𝑓 . But 𝑎 < 1 hence
(𝑓 + 1 − 𝑎)𝑣/𝑓 > (𝑓 + 1 − 1)𝑣/𝑓 = 𝑣 . Hence a rational Ron will
not bribe the trustees. This analysis trivially extends to Ron having
shares from Byzantine parties that did not ask for a bribe. This hold

Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford

because slashing a Byzantine party makes 𝑎𝑣/𝑓 and legally paying
an rational a party costs 𝑎𝑣/𝑓 + 1. Hence Ron will prefer to slash
and pay than to bribe.

Finally, we analyze the deviations of the trustees. The third
deviation is the trustees action when bribed. We already showed
that Ron will never bribe the trustees 𝑣/𝑓 +𝑎𝑣/𝑡 or more because he
loses money. On the other hand the trustee will never accept a bribe
of less since 𝑎𝑣/𝑡 is his expected revenue for following the protocol
and 𝑣/𝑓 his expected loss for deviating. Similarly the trustee has
no incentive to put garbage in a transaction since he can only lose
his collateral.

The last deviation we look into is for the trustee to act as a benign
fault. Clearly here the collateral is not at risk, and if 𝑡 rational parties
agree to not reply they can hold Ron hostage. If we look the game
from the perspective of a single rational trustee it is a prisoner’s
dilemma game [58]. If he follows the hostage protocol and the
other 𝑓 trustees do as well then he can hold Ron hostage and gain
more than 𝑎𝑣/𝑓 , however, if a single party from the 𝑓 releases his
share (mounting a front-running attack to everyone in the hostage
cluster) then the expected payoff for the rest of the hostage cluster
drops to 0. As a result, given that no 𝑓 + 1 trustees are managed by
a single adversary the rational behavior is to follow the protocol.

D.3 Selecting one-time secrets Group Size

From the rationality analysis it is clear that the minimum one-
time secrets size is 3 in order to prevent hostage situations. In
this section, we analyze the recommended size for Wanda based
on her perception of dishonest nodes in the group. The goal is
to have at least 𝑓 + 1 rational parties in her selection with high
probability (failure probability 10−6). We model this problem as a
random sampling protocol. In order to compute the appropriate
group size for different expected percentage of dishonest parties
we use the binomial distribution:

𝑃 [𝑋 ≤ 𝑐] =
𝑐∑

𝑘=0

(
𝑤

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑤−𝑘 (1)

Table 1 displays the results for the evaluation for various per-
centages of adversarial power 𝑝 .

𝑝 (%) 1 5 10 20 30 45
Group Size 7 13 24 41 127 501

Table 1: Recommended one-time secrets group size

D.4 SIAM Evaluation

For SIAM, we benchmark the cost of validating the signature on
a read transaction which is the most resource and time intensive
operation. We distinguish single and multi-signature requests. The
single signature case represents simple requests where one iden-
tity is requesting access while multi-signature requests occur for
complex access-control rules.

For single-signature requests, the verification time is the sum of
the signature verification and the time to validate the identity of
the reader requesting access by checking it against the identity of

1 2 5 10 20 50 100 200
Depth of the requester

0.1

1

10

100

1000

R
e
q
u
e
st

 v
e
ri

fi
ca

ti
o
n
 t

im
e
 (

u
s)

Path verification

Signature verification

Figure 12: Single-signature request verification.

Table 2: txw size for varying secret-management committee

sizes

txw size (bytes)
Number of trustees One-time secrets Long-term secrets

16 4’086 160
32 8’054 160
64 15’990 160
128 31’926 160
160 39’894 160
192 47’862 160
224 55’830 160
256 63’798 160

the target reader as defined in the policy. The validation is done
by finding the path from the target’s skipchain to the requester’s
skipchain. We vary the depth of the requester, which refers to the
distance between the two skipchains. Figure 12 shows the variation
in request verification time depending on the requester’s depth.
We observe that most of the request verification time is required
for signature verification which takes ≈ 385 µs and accounts for
92.04 − 99.94% of the total time. We observe that even at a depth
of 200, a relatively extreme scenario, path finding takes only about
35 µs.

E Evaluation of Transaction Size in On-chain

secrets

The size of transactions is smaller in long-term secrets than in one-
time secrets because the data is encrypted under the secret-manage-
ment’s threshold public key which results in a constant overhead
regardless of the committee’s size. We can see that the costs of
txr and txw are almost equal as they are dominated by adding a
block to the access-control blockchain blockchain. Table 2 shows
txw sizes in one-time secrets and long-term secrets for different
secret-management committee configurations. In one-time secrets,
a txw stores three pieces of PVSS-related information: encrypted

CALYPSO: Private Data Management for Decentralized Ledgers

shares, polynomial commitments and NIZK encryption consistency
proofs. As the size of this information is determined by the number
of PVSS trustees, the size of the txw increases linearly with the size
of the secret-management committee. In long-term secrets txw uses

the shared key of the secret-management committee and does not
need to include the encrypted shares. As a result, long-term secrets
has constant write transaction size.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Motivating Examples
	2.2 Blockchains and Skipchains
	2.3 Threshold Cryptosystems

	3 Overview of CALYPSO
	3.1 Strawman Data Management Protocols
	3.2 System Goals
	3.3 System Model
	3.4 Threat Model
	3.5 Architecture Overview

	4 Permissioned Deployment
	4.1 Long-Term Secrets
	4.2 On-chain Blinded Key Exchange
	4.3 Identity and Access Management

	5 Permissionless Deployment
	5.1 One-Time Secrets
	5.2 Incentives

	6 Achieving the System Goals
	7 Case Studies Using CALYPSO
	7.1 Clearance-enforcing Document Sharing
	7.2 Patient-centric Medical Data Sharing
	7.3 Decentralized Lottery

	8 Evaluation
	8.1 Mirco-benchmarks of On-chain secrets
	8.2 Clearance-Enforcing Document Sharing
	8.3 Decentralized Lottery

	9 Related and Future Work
	10 Conclusion
	Acknowledgments
	References
	A Full Protocol for Long-term secrets
	B One-Time Secrets Protocols
	C Post-Quantum One-Time Secrets
	D Security Considerations and Incentive Structure
	D.1 Replay attack
	D.2 Incentive Analysis
	D.3 Selecting one-time secrets Group Size
	D.4 SIAM Evaluation

	E Evaluation of Transaction Size in On-chain secrets

