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Abstract

A series of recent research starting with (Alwen and Serbinenko, STOC 2015) has deepened
our understanding of the notion of memory-hardness in cryptography — a useful property of hash
functions for deterring large-scale password-cracking attacks — and has shown memory-hardness
to have intricate connections with the theory of graph pebbling. Definitions of memory-hardness
are not yet unified in the somewhat nascent field of memory-hardness, however, and the guarantees
proven to date are with respect to a range of proposed definitions. In this paper, we observe
two significant and practical considerations that are not analyzed by existing models of memory-
hardness, and propose new models to capture them, accompanied by constructions based on new
hard-to-pebble graphs. Our contribution is two-fold, as follows.

First, existing measures of memory-hardness only account for dynamic memory usage (i.e.,
memory read/written at runtime), and do not consider static memory usage (e.g., memory on
disk). Among other things, this means that memory requirements considered by prior models are
inherently upper-bounded by a hash function’s runtime; in contrast, counting static memory would
potentially allow quantification of much larger memory requirements, decoupled from runtime.
We propose a new definition of static-memory-hard function (SHF) which takes static memory
into account: we model static memory usage by oracle access to a large preprocessed string,
which may be considered part of the hash function description. Static memory requirements are
complementary to dynamic memory requirements: neither can replace the other, and to deter
large-scale password-cracking attacks, a hash function will benefit from being both dynamic-
memory-hard and static-memory-hard. We give two SHF constructions based on pebbling. To
prove static-memory-hardness, we define a new pebble game (“black-magic pebble game”), and
new graph constructions with optimal complexity under our proposed measure. Moreover, we
provide a prototype implementation of our first SHF construction (which is based on pebbling
of a simple “cylinder” graph), providing an initial demonstration of practical feasibility for a
limited range of parameter settings.

Secondly, existing memory-hardness models implicitly assume that the cost of space and time
are more or less on par: they consider only linear ratios between the costs of time and space.
We propose a new model to capture nonlinear time-space trade-offs: e.g., how is the adversary
impacted when space is quadratically more expensive than time? We prove that nonlinear
tradeoffs can in fact cause adversaries to employ different strategies from linear tradeoffs.

Finally, as an additional contribution of independent interest, we present an asymptotically
tight graph construction that achieves the best possible space complexity up to log log n-factors
for an existing memory-hardness measure called cumulative complexity in the sequential pebbling
model.

1



Contents

1 Introduction 3
1.1 Background on graph pebbling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Discussion on memory-hardness measures and related work . . . . . . . . . . . . . . 5
1.3 Our contributions in more detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Static-memory-hard functions (SHFs) . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Remarks about the static-memory model . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Black-magic pebble game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Capturing relative cost of memory vs. time . . . . . . . . . . . . . . . . . . . 10

1.4 Organization of the rest of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Pebbling definitions 11
2.1 Standard and magic pebbling definitions . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Cost of pebbling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Space complexity in standard pebbling . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Time complexity in standard pebbling . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Space complexity in black-magic pebbling . . . . . . . . . . . . . . . . . . . . 14

2.3 Incrementally hard graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 α-tradeoff cumulative complexity . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Parallel random oracle model (PROM) 16
3.1 Overview of PROM computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Functions defined by DAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Relating complexity of PROM algorithms and pebbling strategies . . . . . . . . . . . 18
3.4 Legality and space usage of ex-post-facto black-magic pebbling . . . . . . . . . . . . 19

4 Static-memory-hard functions 22
4.1 Dynamic SHFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 SHF constructions 23
5.1 H1 constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 A failed attempt at H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Cylinder construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Layering shortcut-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 H2 construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Proofs of hardness of SHF Constructions . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Capturing nonlinear space-time tradeoffs with CCα 35
6.1 CC and CCα consider cumulative cost of different strategies . . . . . . . . . . . . . . 36
6.2 Upper bounds for CCα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Asymptotically tight sequential lower bound for α = 1 . . . . . . . . . . . . . . . . . 39

7 Cylinder-based SHF implementation 44
7.1 Remarks on implementation and musings on random oracles in practice . . . . . . . 45

A Details of SHF construction with short labels 51

B Regular and normal pebbling strategies 51

2



1 Introduction

Pebble games were originally formulated to model time-space tradeoffs by a game played on DAGs.
Generally, a DAG can be thought to represent a computation graph where each node is associated
with some computation and a pebble placed on a node represents saving the result of its computation
in memory. Thus, the number of pebbles represents the amount of memory necessary to perform
some set of computations. The natural complexity measures to optimize in this game is the minimum
number of pebbles used, as well as the minimum amount of time it takes to finish pebbling all the
nodes; these goals correspond with minimizing the amount of memory and time of computation.

Pebble games were first introduced to study programming languages and compiler construc-
tion [PH70] but have since then been used to study a much broader range of tasks such as register
allocation [Set75], proof complexity [AdRNV17, Nor12], time-space tradeoffs in Turing machine
computation [Coo73, HPV77], reversible computation [Ben89], circuit complexity [Pot17], and
time-space tradeoffs in various algorithms such as FFT [Tom81], linear recursion [Cha73, SS79b],
matrix multiplication [Tom81], and integer multiplication [SS79a] in the RAM as well as the external
memory model [JWK81]. To see a more comprehensive survey of the results in pebbling up to the
last couple of years, see [Pip82] up to the 1980s and [Nor15] up to 2015.

The relationship between pebbling and cryptography has been a subject of research interest
for decades, which has enjoyed renewed activity in the last few years. A series of recent works
[AB16, ABH17, ABP17a, ABP17b, AS15, AT17, ACP+16, AAC+17, BZ16, BZ17] has deepened our
understanding of the notion of memory-hardness in cryptography, and has shown memory-hardness
to have intricate connections with the theory of graph pebbling.

Memory-hard functions (MHFs) have garnered substantial recent interest as a security measure
against adversaries trying to perform attacks at scale, particularly in the ubiquitous context of
password hashing. Consider the following scenario: hashes of user passwords are stored in a
database,1 and when a user enters a password p to log in, her computer sends H(p) to the database
server, and the server compares the received hash to its stored hash for that user’s account. For a
normal user, it would be no problem if hash evaluation were to take, say, one second. An attacker
trying to guess the password by brute-force search, on the other hand, would try orders of magnitude
more passwords, so a one-second hash evaluation could be prohibitively expensive for the attacker.

The evolution of password hashing functions has been something of an arms race for decades,
starting with the ability to increase the number of rounds in the DES-based unix crypt function to
increase its computation time—a feature that was used for exactly the above purpose of deterring
large-scale password-cracking. Attackers responded by building special-purpose circuits for more
efficient evaluation of crypt, resulting in a gap between the evaluation cost for an attacker and the
cost for an honest user.2

A promising approach to mitigating this asymmetry in cost between hash evaluation on general-
and special-purpose hardware is to increase the use of memory in the password hashing function.
Memory is implemented in standardized ways which have been highly optimized, and memory
chips are widely regarded to be an interchangeable commodity. Commonly used forms of memory

— whether on-die SRAM cache, DRAM, or hard disks — are already optimized for the purpose
of data I/O operations; and while there is active research in improving memory access times and
costs, progress is and has been relatively incremental. This state of affairs sets up a relatively “even
playing field,” as the normal user and the attacker are likely to be using memory chips of similar
memory access speed. While an attacker may choose to buy more memory, the cost of doing so
scales linearly with the amount purchased.

1In practice, the password should first be concatenated with a random user-specific string called a salt, and then
hashed. The salt is stored in the database alongside the hash to deter dictionary attacks.

2E.g., [CB02] discusses FPGA-based attacks on DES.
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The designs of several MHFs proposed to date (e.g., [Per09, AS15, AB16, ACP+16, ABP17a])
have proven memory-hardness guarantees by basing their hash function constructions on DAGs,
and using space complexity bounds from graph pebbling. Definitions of memory-hardness are
not yet unified in this somewhat nascent field, however — the first MHF candidate was proposed
only in 2009 [Per09] — and the guarantees proven are with respect to a range of definitions. The
“cumulative complexity”-based definitions of [AS15] have enjoyed notable popularity, but some of
their shortcomings have been pointed out by subsequent work proposing alternative more expressive
measures, in particular, [ABP17b, AT17].

Our contribution We observe two significant and practical considerations not analyzed by existing
models of memory-hardness, and propose new models to capture them, accompanied by constructions
based on new hard-to-pebble graphs. Our main contribution is two-fold, as described in (1) and (2)
below. We also provide an additional contribution of separate interest, described in (3).

1. Static-memory-hardness. Existing measures of memory-hardness only account for dynamic
memory usage (i.e., memory read/written at runtime), and do not consider static memory usage
(e.g., memory on disk). Among other things, this means that memory requirements considered
by prior models are inherently upper-bounded by a hash function’s runtime; in contrast, counting
static memory would potentially allow quantification of much larger memory requirements,
decoupled from the honest evaluator’s runtime.
We propose a new definition of static-memory-hard function (SHF) (Definition 4.2), and present
two SHF constructions based on pebbling. To prove static-memory-hardness, we define a new
pebble game called the black-magic pebble game (Definition 2.2), and prove properties of the
space complexity of this game for new graphs (Graph Constructions 5.4 and 5.15). Graph
Construction 5.15 gives rise to an SHF with a better asymptotic guarantee (same space usage but
sustained over more time), whereas Graph Construction 5.4 yields an SHF with the advantage
of simplicity in practice. Informal theorems stating the constructions’ static-memory-hardness
guarantees are given in Section 1.3 and formal theorems are in Section 5. In Section 7, we
discuss our prototype implementation based on Graph Construction 5.4.
We emphasize that static memory requirements are complementary to dynamic memory require-
ments: neither can replace the other, and to deter large-scale password-cracking attacks, a hash
function will benefit from being both dynamic-memory-hard and static-memory-hard.

2. Modeling nonlinear cost of space vs. time. Existing measures of memory-hardness
implicitly assume a linear trade-off between the costs of space and time. This model precludes
situations where the relative costs of space and time might be more unbalanced (e.g., quadratic
or cubic). We demonstrate that this modeling limitation is significant, by giving an example
where adversaries facing asymptotically different space-time cost tradeoffs would in fact employ
different strategies. Then, to remedy this shortcoming, we define graph-optimal variants of
memory-hardness measures (in Section 2) that explicitly model the relative cost of space and
time. These can be seen as extending the main memory-hardness measures in the literature
(namely, cumulative complexity and sustained memory complexity). We prove bounds on the
new measure as elaborated in Section 1.3.

3. We give the first graph construction that is tight, up to log log n-factors, to the optimal cumulative
complexity that can be achieved for any graph (upper bound due to [ABP17a, ABP17b]).

Informal version of Theorem 6.23. There exists a family of graphs where the cumulative

complexity of any constant in-degree graph with n nodes in the family is Θ
(
n2 log logn

logn

)
which

is asymptotically tight to the upper bound of Θ
(
n2 log logn

logn

)
given in [ABP17a, ABP17b] in the

sequential pebbling model.
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Next, Section 1.1 gives a brief background on graph pebbling, Section 1.2 gives discussion
on memory-hardness measures and related work, and Sections 1.3.1 and 1.3.4 give more detailed
high-level overviews of our SHF contribution and nonlinear space-time tradeoff model (items (1)
and (2) above), respectively.

1.1 Background on graph pebbling

The standard black pebble game is parametrized by a directed acyclic graph (DAG) and a special
subset of its nodes (called the target set). In the game, an unlimited supply of “pebbles” is made
available to a player, who must place and remove pebbles on the nodes of the DAG in a sequence of
moves according to the following two rules.

1. A pebble may be placed or moved onto a node only if all of its predecessors have already been
pebbled. (In particular, pebbles may be placed on source nodes at any time.)

2. Any pebble can be removed from the graph at any time.

The goal of the game is to arrive at a state where every pebble in the target set is covered by a
pebble. Often, the target set is the set of the sink nodes.

The pebbling literature, starting with [PH70, Set75, Coo73, HPV77], has established a number
of complexity measures describing the complexity of pebbling: e.g., measuring the minimum number
of pebbles that must be used to achieve a complete pebbling, or the minimum number of moves
needed. In the literature, there are several variants of the game, including sequential and parallel
(depending on whether many pebbles can be placed in a single move), and versions where other
different types of pebbles are used (such as the red-blue pebble game [JWK81] and the black-white
pebble game [CS74]). In this work, our results are stated and proven in the context of constant
in-degree graphs for simplicity; however, most of our results extend straightforwardly to non-constant
in-degree graphs.

Graph pebbling and memory-hardness Graph pebbling algorithms can be used to construct
hash functions in the (parallel) random oracle model. This paradigm has been used by prior
constructions of memory-hard hashing [AS15] as well as other prior works [DKW11].

Informally, the idea to “convert” a graph into a hash function is to associate with each node v a
string called a label, which is defined to be O(v, pred(v)) where O is a random oracle and pred(v) is
the list of labels of predecessors of v. For source nodes, the label is instead defined to be O(v, ζ) for
a string ζ which is an input to the hash function. The output of the hash function is defined to be
the list of labels of target nodes. Intuitively, since the label of a node cannot be computed without
the “random” labels of all its predecessors, any algorithm computing this hash function must move
through the nodes of the graph according to rules very similar to those prescribed by the pebbling
game; and therefore, the memory requirement of computing the hash function roughly corresponds
to the pebble requirement of the graph. Thus, proving lower bounds on the pebbling complexity of
graph families has useful implications for constructing provably memory-hard functions.

In our setting, in contrast to previous work, we employ a variant of the above technique: the
string ζ is a fixed parameter of our hash function, and the input to the hash function instead
specifies the indices of the target nodes whose labels are to be outputted.

1.2 Discussion on memory-hardness measures and related work

The original paper proposing memory-hard functions [Per09] suggested a very simple measure: the
minimum amount of memory necessary to compute the hash function. It was subsequently observed
that a major drawback of this measure is that it does not distinguish between functions f and g
with the same peak memory usage, even if the peak memory lasts a long time in evaluating f and is
just fleeting in evaluating g (Figure 1a). This is significant as the latter type of function is much
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better for a password-cracking adversary. In particular, pipelining the evaluation of the latter type
of function would allow reuse of the same memory for many function evaluations at once, effectively
reducing the adversary’s amortized memory requirement by a factor of the number of concurrent
executions (Figure 1b).
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(b) Pipelined evaluations of g (reusing memory)

Figure 1: Limitations of peak memory usage as a memory-hardness measure

Cumulative complexity [AS15] put forward the notion of cumulative complexity (CC), a com-
plexity measure on graphs. CC was adopted by several subsequent works as a canonical measure
of memory-hardness. CC measures the cumulative memory usage of a graph pebbling function
evaluation: that is, the sum of memory usage over all time-steps of computation. In other words,
this is the area under a graph of memory usage against time. CC is designed to be very robust
against amortization, and in particular, scales linearly when computing many copies of a function
on different inputs. This is a great advantage compared to the simpler measure of [Per09], which
does not account well for an amortizing adversary (as shown in Figure 1).

Depth-robust graphs More recently, [AB16, ABP17a] proved bounds on optimal CC of certain
graph families. They showed that a particular graph property called depth-robustness suffices to
attain optimal CC (up to polylog factors–the CC of any graph with bounded in-degree is upper

bounded by O
(
n2 log logn

logn

)
[AB16, ABP17b]). An (r, s)-depth-robust graph is one where there exists

a path of length s even when any r vertices are removed. Intuitively, this captures the notion that
storing any r vertices of the graph will not shortcut the pebbling in a significant way. It turns out
that depth-robustness will again be a useful property in our new model of memory-hardness with
preprocessing.

Sustained memory complexity Very recently, Alwen, Blocki, and Pietrzak [ABP17a] proposed
a new measure of memory complexity, which captures not only the cumulative memory usage over
time (as does CC), but goes further and captures the amount of time for which a particular level of
memory usage is sustained. Our SHF definition also captures sustained memory usage: we propose
a definition of capturing the duration for which a given amount of memory is required, designed
to capture static as well as dynamic memory requirements. By the nature of static memory, it is
especially appropriate in our setting to consider (and maximize) the amount of time for which a
static memory requirement is sustained.
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Core-area memory ratio Previous works have considered certain hardware-dependent non-
linearities in the ratio between the cost of memory and computation [BK15, AB16, RD17]. Such
phenomena may incur a multiplicative factor increase in the memory cost that is dependent, in a
possibly non-linear way, on specific hardware features. Note that the non-linearity here is in the
hardware-dependence, rather than the space-time tradeoff itself. In contrast, our new models are
more expressive, in that they make configurable the asymptotic tradeoff between space and time (by
a parameter α which is in the exponent, as detailed in Definition 2.16) in an application-dependent
way. This versatility of configuration targets applications where the trade-off may realistically
depend on arbitrary and possibly exogenous space/time costs, and thus contrasts with metrics
tailored for a specific hardware feature, such as core-memory ratio.

Towards a general theory of moderately hard functions Most recently, Alwen and Tackmann
[AT17] proposed a more general (though not comprehensive) framework for defining desirable
guarantees of “moderately hard functions,” i.e., functions that are efficient to compute but somewhat
hard to invert. Their work points out a number of drawbacks of prior measures such as those
described above. Notably, many of the prior measures characterized the hardness of computing the
function with an implicit assumption that this hardness would translate to the hardness of inverting
the function (as it would indeed in the case of a brute-force approach to inversion). In other words,
these measures implicitly assume that the hash function in question “behaves like a random oracle”
in the sense that brute-force inversion is the optimal approach.

1.3 Our contributions in more detail

To prove static-memory-hardness, we define a new pebble game called the black-magic pebble game
(Definition 2.2), and prove properties of the space complexity of this game for new graphs (Graph
Constructions 5.4 and 5.15).

The black-magic pebble game may additionally be of independent interest for the pebbling
literature. Indeed, a pebble game used to analyze security of proofs of space [DFKP15] can be
viewed as a non-adaptive3 version of the black-magic pebble game in which the target node set is
sampled from a distribution by a challenger.

Based on our new graph constructions, we construct SHFs with provable guarantees on sustained
memory usage, as follows. Graph Construction 5.15 gives a better asymptotic guarantee (same
space usage but sustained over more time), whereas Graph Construction 5.4 has the advantage
of simplicity in practice. In Section 7, we discuss our prototype implementation based on Graph
Construction 5.4.

1.3.1 Static-memory-hard functions (SHFs)

Prior memory-hardness measures make a modeling assumption: namely, that the memory usage of
interest is solely that of memory dynamically generated at run-time. However, static memory can
be costly for the adversary too, and yet it is not taken into account by existing measures such as
CC. Intuitively, it can be beneficial to design a function whose evaluation requires keeping a large
amount of static memory on disk (which may be thought to be produced in a one-time initial setup
phase). While not all the static memory might be accessed in any given evaluation, the “necessity”
to maintain the data on disk can arise from the idea that an adversary attempting to evaluate
the function on an arbitrary input while having stored a lesser amount of data would be forced to
dynamically generate comparable amounts of memory. Note that the resulting dynamic memory
requirements could be orders of magnitude larger (say, gigabytes) than the memory requirements of

3Here, “non-adaptive” means that all magic pebbles must be fixed at the start of the game rather than placed
throughout the game.
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existing memory-hard function proposals, because unlike in prior memory-hardness models, here we
have decoupled the memory requirement from the memory requirements of the honest evaluator.

We propose a new model and definitions for static-memory-hard functions (SHFs), in which we
model static memory usage by oracle access to a large preprocessed string, which may be considered
part of the hash function description. In particular, the preprocessed string can be public and known
to the adversary — the important guarantee is that without storing (almost) all of it statically, the
adversary will incur huge online memory requirements.

Definition (informal).We model a static-memory-hard function family as a two-part algorithm
H = (H1,H2) in the parallel random oracle model, where H1(1κ) outputs a “large” string to which
H2 has oracle access,4 and H2 receives an input x and outputs a hash function output y. Informally,
our hardness requirement is that with high probability, any two-part adversary A = (A1,A2) must
either have A1 output a large state (comparable to the output size of H1), or have A2 use large
(dynamic) space.

We then give two constructions of SHFs based on graph pebbling. To prove static-memory-
hardness, we define a new pebble game called the black-magic pebble game of which we give an
overview in Section 1.3.3. Our simpler SHF construction is based on a family of tree-like “cylinder”
graphs, which achieves memory usage proportional to the square root of the number of nodes,
sustained over time proportional to the square root of the number of nodes. Furthermore, we give a
better construction based on pebbling of a new graph family, that achieves better parameters: the
same (square root) memory usage, but sustained over time proportional to the number of nodes.

Informal version of Theorem 5.28. The “cylinder graph” (Graph Construction 5.4) can be
used to construct an SHF with static memory requirement Λ ∈ Θ(

√
n/(κ− ξ log(κ)) where n is the

number of nodes in the graph, κ is a security parameter, and ξ ∈ ω(1), such that any adversary
using non-trivially less static memory than Λ must incur at least Λ dynamic memory usage for at
least Θ(

√
n) steps.

Informal version of Theorem 5.29. Graph Construction 5.15 can be used to construct an SHF
with static memory requirement Λ ∈ Θ(

√
n)/(κ− ξ log(κ)) where n, κ, and ξ are as described above,

such that any adversary using non-trivially less static memory than Λ must incur at least Λ dynamic
memory usage for at least Θ(n) steps.

Static memory requirements are complementary to dynamic memory requirements: neither can
replace the other, and to deter large-scale password-cracking attacks, a hash function will benefit
from being both dynamic-memory-hard and static-memory-hard. In Section 4.1, we give a discussion
of how, given a static-memory-hard function and a (dynamic-)memory-hard function, they can be
concatenated to yield a “dynamic SHF” that inherits both the static memory requirement of the
former and the dynamic memory requirement of the latter.

Implementation We have a prototype implementation of our “cylinder” SHF construction. The
code is available on github at https://github.com/adiabat/masshash. A discussion of the
implementation and its performance for different static memory sizes is given in Section 7.

1.3.2 Remarks about the static-memory model

On static vs. dynamic memory In the case of function performing lookups to a large, static
memory table, the memory storing the table does not need to be writable. This may seem to point
to an optimization for the attacker: produce a read-only memory chip which supports fast, random-
access read queries, but omits the hardware needed for writing data, as it has been pre-programmed

4More precisely, H2 may adaptively query the value of H1’s output string at specific locations.
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at the factory with the precomputed static table. However, in practice, this optimization seems
implausible. In modern hardware, ROM chips have almost entirely disappeared; where they do still
exist, they are used for their non-volatile storage properties (they retain data when power is lost,
unlike most RAM), and are copied to RAM before being read from, due to the low speed of the
ROM. Current development focuses almost exclusively on dynamic access memory which supports
both reads and writes, so it is reasonable to believe that an attacker would need to use this type of
hardware; switching to ROM would likely increase costs and slow down access to the static table.

Static and dynamic memory requirements are thus incomparable, and both are useful to deter a
password-cracking adversary.

Alternative application: bounded retrieval (“big-key”) model As already stated above,
the preprocessed string in our setting is assumed to be public, and our static-memory-hardness
guarantees hold assuming the adversary knows the string. This is useful as it allows defining a
single hash function accessible to all parties in a system, like a random oracle: one could imagine a
standards body like NIST simply publishing a set of parameters defining a fixed hash function with
a fixed “preprocessed string.” One informal way to think of this is that the preprocessed string is
part of the description of a fixed hash function. A single hash function accessible to everyone is
particularly useful for certain applications such as checksums, where many parties in a distributed
network may need to compute the same hash function.

In some other applications, however, hash function families may suffice or be more appropriate,
i.e., where each party samples a function from the family for her own use, rather than every party
using exactly the same function. In such applications, the preprocessed string can be considered
the seed of a particular hash function from the family defined by (H1,H2), and generated on a
per-application basis. We observe one potential advantage of such a setup, inspired by the bounded
retrieval [Dzi06, CLW06, CDD+07, ADW09, ADN+10, ADW09] (“big-key” [BKR16]) model.5: to
make hash function evaluation more difficult for (e.g., password-cracking) adversaries. If the party
using the hash function decides to keep the preprocessed string secret, then an adversary would
have to exfiltrate almost all of the large preprocessed string from the honest user in order to be able
to evaluate the hash function. As observed in the bounded retrieval literature, exfiltrating large
quantities of data (say, gigabytes) can be much more costly for adversaries than exfiltrating smaller
data items (such as secret keys).

1.3.3 Black-magic pebble game

We introduce a new pebble game called the black-magic pebble game. This game bears some
similarity to the standard (black) pebble game, with the main difference that the player has access
to an additional set of pebbles called magic pebbles. Magic pebbles are subject to different rules
from standard pebbles: they may be placed anywhere at any time, but cannot be removed once
placed, and may be limited in supply. The pebbling space cost of this game is defined as the
maximum number of standard pebbles on the graph at any time-step plus the total number of magic
pebbles used throughout the computation. Observe that while the most time-efficient strategy in
the black-magic pebble game is always to pebble all the target nodes with magic pebbles in the first
step, the most space-efficient strategy is much less clear.

Lower-bounds on space usage can be non-trivially different between the standard and magic
pebbling games. For example, if a graph has a constant number of targets, then magic pebbling space
usage will never exceed a constant number of pebbles, whereas the standard pebbling space usage
can be super-constant. In particular, it is unclear, in the new setting of magic pebbling, whether

5We cite the seminal papers that coined these terms, and note that there has been a rich literature on the topic
since.
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known lower-bounds on pebbling space usage in the standard pebble game6 are transferable to the
magic pebble game. We prove in Section 5 that for layered graphs,7 the best possible lower-bound
for the magic pebbling game is Θ(

√
n).

We leave determining the lower bound for magic pebbling space usage in general graphs as
an open question. An answer to this open question would be useful towards constructing better
static-memory-hard functions using the paradigm presented herein.

Our proof techniques rely on a close relationship between black-magic pebbling complexity and
a new graph property which we define, called local hardness. Local hardness considers black-magic
pebbling complexity in a variant model where subsets of target nodes are required to be pebbled
(rather than all target nodes, as in the traditional pebbling game), and moreover, a “preprocessing
phase” is allowed, wherein magic pebbles may be placed on the graph in advance of knowing
which target nodes are to be produced. This “preprocessing” aspect bears some resemblance to
the black-white pebbling game [CS74], a variant of the standard pebbling game in which some
limited number of white pebbles can be placed “for free,” and the black pebbles must be placed
according the standard rules. However, our setting differs from the black-white pebbling game:
while preprocessing and storing magic pebbles in advance can be viewed as analogous to placing
white pebbles for free, the black-white pebbling game imposes restrictions on the removal of white
pebbles from the graph, which are not present in our setting.

1.3.4 Capturing relative cost of memory vs. time

Existing measures such as CC and sustained memory complexity trade off space against time at a
linear ratio. In particular, CC measures the minimal area under a graph of memory usage against
time, over all possible algorithms that evaluate a function.8

However, different applications may have different relative cost of space and time. We propose
and define a variant of CC called α-CC, parametrized by α which determines the relative cost of
space and time, and observe that α-CC may be meaningfully different from CC and more suitable
for certain application scenarios. For example, when memory is “quadratically” more expensive than
time, the measure of interest to an adversary may be the area under a graph of memory squared
against time, as demonstrated by the following theorem.

Informal version of Theorem 6.8. There exist graphs for which an adversary facing a linear
space-time cost trade-off would in fact employ a different pebbling strategy from one facing a cubic
trade-off.

It follows that when the costs of space and time are not linearly related, the CC measure may
be measuring the complexity of the wrong algorithm, i.e., not the algorithm that an adversary would
in fact favor. We thus see that our α-CC measure is more appropriate in settings where space
may be substantially more costly than time (or vice versa). Moreover, our parametrized approach
generalizes naturally to sustained memory complexity. We show that our graph constructions are
invariant across different values of α, a potentially desirable property for hash functions so that
they are robust against different types of adversaries.

6E.g., Θ
(

n
logn

)
space is necessary to pebble certain classes of graphs in the standard pebble game [LT82].

7“Layered graph” is a standard term in the pebbling literature that refers to graphs whose nodes can be partitioned
into a sequence of “layers” such that edges only go between vertices in adjacent layers.

8Of course, in general, memory usage and time depend on the specific computational model in discussion. However,
in the stylized parallel random oracle model (PROM), on which all analyses in this paper (and previous literature on
MHFs) are based, time-steps and memory usage are well-defined. We refer to Section 3 for a description of the PROM.
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Informal version of Theorem 6.13. Given any graph construction G = (V,E), there exists a
pebbling strategy that is less expensive asymptotically than any strategy using a number of pebbles
asymptotically equal to the number of nodes in the graph for any time-space tradeoff.

1.4 Organization of the rest of the paper

Section 2 introduces standard and new graph pebbling definitions, Section 3 introduces computation
in the parallel random oracle model and its relation to our new black-magic pebbling complexity
measures, Section 4 introduces our definition of a static-memory-hard function (SHF), Section 5
gives our SHF constructions and proofs. Then, Section 6 presents our modeling and motivation of
nonlinear cost tradeoffs between space and time, with upper and lower bounds in the new model.
Finally, Section 7 discusses our prototype SHF implementation.

2 Pebbling definitions

A pebbling game is a one-player game played on a DAG where the goal of the player is to place
pebbles on a set of one or more target nodes in the DAG.

In Section 2.1, we formally define two variations of the sequential and parallel pebble games:
the standard (black) pebble game and the black-magic pebble game, the latter of which we introduce
in this work. We also give the definitions of valid strategies and moves in these games. Then in
Section 2.2, we define measures for evaluating the sequential and parallel pebbling complexity on
families of graphs.

2.1 Standard and magic pebbling definitions

Definition 2.1 (Standard (black) pebble game).

• Input: A DAG, G = (V,E), and a target set T ⊆ V . Define pred(v) = {u ∈ V : (u, v) ∈ E},
and let S ⊆ V be the set of sources of G.
• Rules at move i: At the start of the game, no node of G contains a pebble. The player has

access to a supply of black pebbles. Game-play proceeds in discrete moves, and Pi (called a
“pebble configuration”) is defined as the set of nodes containing pebbles after the ith move. P0 = ∅
represents the initial configuration where no pebbles have been placed. Each move may consist of
multiple actions adhering to the following rules.9

1. A pebble can be placed on any source, s ∈ S.
2. A pebble can be removed from any vertex.
3. A pebble can be placed on a non-source vertex, v, if and only if its direct predecessors were

pebbled at time i− 1 (i.e., pred(v) ∈ Pi−1).
4. A pebble can be moved from vertex v to vertex w if and only if (v, w) ∈ E and pred(w) ∈ Pi−1.

• Goal: Pebble all nodes in T at least once (i.e., T ⊆
⋃t
i=0 Pi).10

Remark. At first glance, it may seem that rule 4 in Definition 2.1 is redundant as a similar effect
can be achieved by a combination of the other rules. However, the application of rule 4 can allow
the usage of fewer pebbles. For example, a simple two-layer binary tree (with three nodes) could

9Multiple applications of rules 1, 2, and 3 can occur in a single move. E.g., multiple sources can be pebbled in a
single move. Rule 4 can also be applied multiple times in a single move for different pebbles, but cannot be applied
more than once to the same pebble (since, naturally, a single pebble cannot move to multiple locations).

10This goal statement corresponds to the notion of a visiting pebbling as defined in [Nor15]. Our paper will use this
visiting pebbling notion throughout; however, we remark that an alternative notion of pebbling exists in the literature,
called persistent pebbling, which requires that all the nodes in T be pebbled in the final configuration (i.e., T ⊆ Pt).
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be pebbled with two pebbles using rule 4, but would require three pebbles otherwise. Nordstrom
[Nor15] showed that in sequential strategies, it is always possible to use one fewer pebble by using
rule 4.

We note for completeness that while rule 4 is standard in the pebbling literature, not all the
papers in the MHF literature include rule 4.

Next, we define the black-magic pebble game which we will use to prove security properties of
our static-memory-hard functions.

Definition 2.2 (Black-magic pebble game).

• Input: A DAG G = (V,E), a target set T ⊆ V , and magic pebble bound M ∈ N ∪ {∞}.
• Rules: At the start of the game, no node of G contains a pebble. The player has access to two

types of pebbles: black pebbles and up to M magic pebbles. Game-play proceeds in discrete
moves, and Pi = (Mi, Bi) is the pebble configuration after the ith move, where Mi, Bi are the
sets of nodes containing magic and black pebbles after the ith move, respectively. P0 = (∅,∅)
represents the initial configuration where no black pebbles or magic pebbles have been placed.
Each move may consist of multiple actions adhering to the following rules.

1. Black pebbles can be placed and removed according to the rules of the standard pebble game
which are defined in the full version.11

2. A magic pebble can be placed on and removed from any node, subject to the constraint that
at most M magic pebbles are used throughout the game.

3. Each magic pebble can be placed at most once: after a magic pebble is removed from a node,
it disappears and can never be used again.

• Goal: Pebble all nodes in T at least once (i.e., T ⊆
⋃t
i=0 (Mi ∪Bi)).

Remark. In the black-magic pebble game, unlike in the standard pebble game, there is always the
simple strategy of placing magic pebbles directly on all the target nodes. At first glance, this may
seem to trivialize the black-magic game. When optimizing for space usage, however, this simple
strategy may not be favorable for the player: by employing a different strategy, the player might be
able to use much fewer than T pebbles overall.

Next, we define valid sequential and parallel strategies in these games.

Definition 2.3 (Pebbling strategy). Let G be a graph and T be a target set. A standard (resp., black-
magic) pebbling strategy for (G,T ) is defined as a sequence of pebble configurations, P = {P0, . . . , Pt},
satisfying conditions 1 and 2 below. P is moreover valid if it satisfies condition 3, and sequential if
it satisfies condition 4.

1. P0 = ∅.
2. For each i ∈ [t], Pi can be obtained from Pi−1 by a legal move in the standard (resp., black-magic)

pebble game.

3. P successfully pebbles all targets, i.e., T ⊆
t⋃
i=0

Pi.

4. For each i ∈ [t], Pi contains at most one vertex not contained in Pi−1 (i.e., |Pi \ Pi−1| ≤ 1).

A black-magic pebbling strategy must satisfy one additional condition to be considered valid:

5. At most M magic pebbles are used throughout the strategy, i.e., |
⋃
i∈[t]Mi| ≤M where Mi is

the ith configuration of magic pebbles.

11The rules of the standard pebble game are a standard definition in the pebbling literature. In the black-magic
game, a predecessor node counts as “pebbled” if it contains either a black or a magic pebble. Where Definition 2.1
treats Pi as a set of nodes, Definition 2.2 treats Pi as equal to Mi ∪Bi.
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2.2 Cost of pebbling

In this subsection, we give definitions of several cost measures of graph pebbling, applicable to the
standard and black-magic pebbling games. While these definitions assume parallel strategies, we
note that the sequential versions of the definitions are entirely analogous.

2.2.1 Space complexity in standard pebbling

We give a brief informal summary of the definitions in this subsection, before proceeding to the
formal definitions.

Pebbling complexity measures We informally overview the pebbling complexity definitions,
some of which are new to this work.

The time complexity of a pebbling strategy P is the number of steps, i.e., Time (P) = |P|. The
time complexity of a graph G = (V,E) given that at most S pebbles can be used is Time(G,S) =
minP∈PG,T,S (Time (P)). Next, we overview variants of space complexity.

1. Space complexity of a pebbling strategy P on a graph G, denoted by Ps(P), is the minimum
number of pebbles required to execute P. Space complexity of the graph G with target set T ,
written Ps(G,T ), is the minimum space complexity of any valid pebbling strategy for G.

2. Λ-sustained space complexity [ABP17a]12 of a pebbling strategy P on a graph G, denoted
by Pss(P,Λ), is the number of time-steps during the execution of P , in which at least Λ pebbles
are used. Λ-sustained space complexity of the graph G with target set T , written Pss(G,Λ, T )
is the minimum Λ-sustained space complexity of all valid pebbling strategies for G.

3. Graph-optimal sustained complexity of a pebbling strategy P, denoted by Popt-ss(P), is
the number of time-steps during the execution of P, in which the number of pebbles in use is
equal to the space complexity of G. Graph-optimal sustained complexity of the graph G with
target set T , written Popt-ss(G,T ) is the minimum graph-optimal sustained complexity of all
valid pebbling strategies for G.

4. ∆-suboptimal sustained complexity of a pebbling strategy P is the number of time-steps,
during the execution of P , in which the number of pebbles in use is at least the space complexity
of G minus ∆. ∆-suboptimal sustained complexity of the graph G is the minimum ∆-suboptimal
sustained complexity of all valid pebbling strategies for G.

A couple of remarks are in order.

Remark. The third and fourth definitions are new to this paper. They can be seen as special variants
of Λ-sustained space complexity, i.e., with a special setting of Λ dependent on the specific graph
family in question. They are useful to define in their own right, as unlike plain Λ-sustained space
complexity, these measures express complexity for a given graph family relative to the best possible
value of Λ at which sustained space usage could be hoped for. In the rest of this paper, we prove
guarantees on graph-optimal sustained complexity of our constructions, which have high sustained
space usage at the optimal Λ-value. However, we also define ∆-suboptimal sustained complexity
here for completeness, since it is more general13 and preferable to graph-optimal complexity when
evaluating graph families where the maximal space usage may not be sustained for very long.

12We note that our notation diverges from that of [ABP17a], but our Definition 2.5 is equivalent to their definition
of “s-sustained space complexity.” (E.g., they write Πss(P,Λ) instead of Pss(G,P,Λ).) We gave this decision some
consideration as inconsistent notation can add confusing clutter to a literature; we decided on our notation (1) in order
to keep consistency with the pebbling literature, where the pyramid graphs that will be used in our SHF construction
are traditionally denoted by Π; and (2) because our notation makes the graph G explicit where sometimes it is implicit
in [ABP17a], and this is important for the new “graph-optimal sustained complexity” notion we introduce.

13More specifically, graph-optimal sustained complexity is ∆-suboptimal sustained complexity for ∆ = 0.
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Remark. We have found the term “Λ-sustained space complexity” can be slightly confusing, in
that it measures a number of time-steps rather than an amount of space. We retain the original
terminology as it was introduced, but include this remark to clarify this point.

We now present the formal definitions of the complexity measures for the standard pebbling
game. In all of the below definitions, G = (V,E) is a graph, T ⊆ V is a target set, P = (P1, . . . , Pt)
is a standard pebbling strategy on (G,T ), and PG,T denotes the set of all valid standard pebbling
strategies on (G,T ).

Definition 2.4. The space complexity of pebbling strategy P is: Ps(P) = maxPi∈P (|Pi|). The
space complexity of G is the minimal space complexity of any valid pebbling strategy that pebbles the
target set T ⊂ V : Ps(G,T ) = minP ′∈PG,T (Ps (P ′)).

Definition 2.5. The Λ-sustained space complexity of P is: Pss(P,Λ) = |{Pi : |Pi| ≥ Λ}|. The
Λ-sustained space complexity of G is the minimal Λ-sustained space complexity of any valid pebbling
strategy that pebbles the target set T ⊆ V : Pss(G,Λ, T ) = minP ′∈PG,T (Pss (P ′,Λ)).

Definition 2.6. The graph-optimal sustained complexity of P is:
Popt-ss(P) = Pss(P,Ps(G,T )). The graph-optimal sustained complexity of G is the minimal

graph-optimal sustained complexity of any valid pebbling strategy that pebbles the target set T ⊆ V :
Popt-ss(G,T ) = minP ′∈PG,T (Popt-ss (P ′)).

Definition 2.7. The ∆-suboptimal sustained complexity of P is:

Popt-ss(P,∆) = Pss(P,Ps(G,T )−∆).

The ∆-suboptimal sustained complexity of G is the minimal graph-optimal sustained complexity of
any valid pebbling strategy that pebbles the target set T ⊆ V : Popt-ss(G,∆, T ) = minP ′∈PG,T (Popt-ss (P ′,∆)).

2.2.2 Time complexity in standard pebbling

We present the following formal definitions for measuring the time complexity of strategies in the
standard pebble game. In all the below definitions, G = (V,E) is a graph, T ⊆ V is a target set,
P = (P1, . . . , Pt) is a standard pebbling strategy on (G,T ) where PG,T,S denotes the set of all valid
pebbling strategies on (G,T ) that use at most S pebbles.

Definition 2.8. The time complexity of a pebbling strategy P is Time (P) = |P|. The time
complexity of a graph G = (V,E) given that at most S pebbles can be used is Time(G,S) =
minP∈PG,T,S (Time (P)).

2.2.3 Space complexity in black-magic pebbling

Next, we define the corresponding complexity notions for the black-magic pebbling game. As above,
G = (V,E) is a graph, T ⊆ V is a target set, and M is a magic pebble bound. In this subsection,
P = (P1, . . . , Pt) = ((M1, B1), . . . , (Mt, Bt)) denotes a black-magic pebbling strategy on (G,T ).
Moreover, MG,T,M denotes the set of all valid magic pebbling strategies on (G,T ), and m(P) denotes
the total number of magic pebbles used in the execution of P.

Definition 2.9. The (magic) space complexity of P is: Ps(P) = max (m(P),maxPi∈P (|Pi|)). The
(magic) space complexity of G w.r.t. M is the minimal space complexity of any valid magic pebbling
strategy that pebbles the target set T ⊆ V : Ps(G,M, T ) = minP∈PG,T,M (Ps (P)).
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Remark. We briefly provide some intuition for the complexity measure defined above in Def. 2.9.
If we consider all magic pebbles to be static memory objects that were saved from a previous
evaluation of the hash function, then the total number of magic pebbles is the amount of memory
that was used to save the results of a previous evaluation of the hash function. Because of this, it is
natural to take the maximum of the memory used to store results from a previous evaluation of the
function and the current memory that is used by our current pebbling strategy since that would
represent how much memory was used to compute the results of hash function during the current
evaluation.

Definition 2.10. The (magic) Λ-sustained space complexity of P is: Pss(P,Λ) = |{Pi : |Pi| ≥ Λ}|.
The Λ-sustained space complexity ofG w.r.t. M and T ⊆ V is: Pss(G,Λ,M, T ) = minP∈PG,T,M (Popt-ss (P,Λ)).

Definition 2.11. The (magic) graph-optimal sustained complexity of P is: Popt-ss(P) = Pss(P,Ps(G,T )).
The graph-optimal sustained complexity of G w.r.t. M and T ⊆ V is: Popt-ss(G,M, T ) =
minP∈PG,T,M (Popt-ss (P)).

Definition 2.12. The (magic) ∆-suboptimal sustained complexity of P is: Popt-ss(P,∆) =
Pss(P,Ps(G,T )−∆). The ∆-suboptimal sustained complexity of G w.r.t. M and T ⊆ V is:

Popt-ss(G,∆,M, T ) = min
P∈PG,T,M

(Popt-ss (P,∆)) .

2.3 Incrementally hard graphs

We introduce the following definition for our notion of graphs which require |T | pebbles to pebble
regardless of the number of targets that are asked, given a constraint on the number of magic
pebbles that can be used. This concept has not been previously analyzed in the pebbling literature;
traditional pebbling complexity usually treats graphs with fixed target sets.

Definition 2.13 (Incremental Hardness). Given at most M magic pebbles, for any subset of targets
C ⊆ T where |C| >M, the number of pebbles (magic and black pebbles) necessary in the black-magic
pebble game to pebble C is at least |T | where the number of magic pebbles used in this game is upper
bounded by M: Ps(G, |C| − 1, C) ≥ |T |.

2.3.1 α-tradeoff cumulative complexity

α-tradeoff cumulative complexity, or CCα, is a new measure introduced in this paper, which
accounts for situations where space and time do not trade off linearly. Similar notions to this
have been explored before e.g. [FLW13], [BK15, AB16, RD17]. A discuss of the core-area memory
ratio [BK15, AB16, RD17] can be found in Section 1.2. They considered the notion of λ-memory-
hardness where intuitively S · T = Ω

(
Gλ+1

)
where the space-time cost is some exponential of the

size of the stored graph [FLW13]. We note that this notion is very different from our notion of
α-tradeoff complexity since they only consider the space-time cost (not cumulative complexity)
and do not consider nonlinear tradeoffs between space and time (one can just consider Gλ+1 to a
constant in the tradeoff curve).

Here, we see the usefulness of defining sustained complexities in terms of the minimum required
space (as opposed to being parametrized by Λ) since we can always obtain an upper bound on
CCα, for any α, of a graph directly from our proofs of the space complexity and sustained time
complexity of a DAG.
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Definition 2.14 (Standard pebbling α-space cumulative complexity). Given a valid parallel standard
pebbling strategy, P, for pebbling a graph G = (V,E), the standard pebbling α-space cumulative
complexity is the following:

p-ccα(G,P) =
∑
Pi∈P

|Pi|α .

Definition 2.15 (Black-magic pebbling α-space cumulative complexity). Given a valid parallel
black-magic pebbling strategy, P, for pebbling a graph G = (V,E), the black-magic pebbling α-space
cumulative complexity is the following:

p-ccMα (G,P) = max

m(P)α,
∑
Pi∈P

|Pi|α
 = max

m(P)α,
∑
Pi∈P

|Bi ∪Mi|α


where m(P) denotes the total number of magic pebbles used in the magic pebbling strategy P.

The following definition, CCα, is an analogous definition to CC as defined by [AS15] (specifically,
CCα when α = 1 is equivalent to CC) to account for varying costs of memory usage vs. time.

Definition 2.16 (CCα). Given a graph, G ∈ G, and a valid standard/magic pebbling strategy, P,
we define the CCα(G) to be

CCα(P) = (p-ccα (G,P)) .

Given a graph, G ∈ G, and a family of valid standard pebbling strategies, P, we define the
CCα(G) to be

CCα(G) = min
P∈P

(p-ccα (G,P)) ,

and, given a family PM of valid black-magic pebbling strategies, we define CCα(G) to be

CCα(G) = min
PM∈PM

(
p-ccMα

(
G,PM

))
.

3 Parallel random oracle model (PROM)

In this paper, we consider two broad categories of computations: pebbling strategies and PROM
algorithms. Specifically, we discussed above the pebbling models and pebble games we use to
construct our static memory-hard functions. Now, we define our PROM algorithms.

Prior work has observed the close connections between these two types of computations as
applied to DAGs, and our work brings out yet more connections between the two models. In this
section, we give an overview of how PROM computations work and define the complexity measures
that we apply to PROM algorithms. Some of the complexity measures were introduced by prior
work, and others are new in this work.

3.1 Overview of PROM computation

The random oracle model was introduced by [BR93]. When we say random oracle, we always mean
a parallel random oracle unless otherwise specified.
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An algorithm in the PROM is a probabilistic algorithm B which has parallel access to a stateless
oracle O: that is, B may submit many queries in parallel to O. We assume O is sampled uniformly
from an oracle set O and that B may depend on O but not O.

The algorithm proceeds in discrete time-steps called iterations, and may be thought to consist of
a series of algorithms (Bi)i∈N, indexed by the iteration i, where each Bi passes a state σi ∈ {0, 1}∗
to its successor Bi+1. σ0 is defined to contain the input to the algorithm. We write |σi| to denote

the size, in bits, of σi. We write 8σi8 to denote |σi|w , where w is the output length of the oracle
O. In other words, 8σi8 is the size of σi when counting in words of size w. In each iteration, the
algorithm Bi may make a batch qi = (qi,1, . . . , qi,|qi|) of queries, consisting of |qi| individual queries
to O, and instantly receive back from the oracle the evaluations of O on the individual queries, i.e.,
(O(qi,1), . . . ,O(qi,|qi|)).

At the end of any iteration, B can append values to a special output register, and it can end
the computation by appending a special terminate symbol ⊥ on that register. When this happens,
the contents y of the output register, excluding the trailing ⊥, is considered to be the output of
the computation. To denote the process of sampling an output, y, provided input x, we write
y ← BO(x).

Definition 3.1 (Oracle functions). An oracle function is a collection f = {fO : D → R}O∈O of
functions with domain D and outputs in R indexed by oracles O ∈ O.

A family of oracle functions is a set F = {fκ : Dκ → Rκ}κ∈N where each fκ is indexed by oracles
from an oracle set Oκ : {0, 1}κ → {0, 1}κ indexed by a security parameter κ.14

Definition 3.2 (Memory complexity of PROM algorithms). The memory complexity of B(x; ρ)
(i.e., the memory complexity of B on input x and randomness ρ) is defined as:

memO(B, x, ρ) = max
i∈N
{8σi8} . (1)

Definition 3.3 (Λ-sustained memory complexity of PROM algorithms). The Λ-sustained memory
complexity of B(x; ρ) is defined as:

s-memO(Λ,B, x, ρ) = |{i ∈ N : |σi| ≥ Λ}| . (2)

Note that (1) and (2) are distributions over the choice of O ← O.

3.2 Functions defined by DAGs

We now describe how to translate a graph construction into a function family, whose evaluation
involves a series of oracle calls in the PROM. Any family of DAGs induces a family of oracle
functions in the PROM, whose complexity is related to the pebbling complexity of the DAG. We
first define the syntax of labeling of DAG nodes, then define a graph function family.

Definition 3.4 (Labeling). Let G = (V,E) be a DAG with maximum in-degree δ, let L be an

arbitrary “label set,” and define O(δ,L) =
(
V ×

⋃δ
δ′=1 L

δ′ → L
)

. For any function O ∈ O(δ,L)

and any label ζ ∈ L, the (O, ζ)-labeling of G is a mapping labelO,ζ : V → L defined recursively as
follows.15

labelO,ζ(v) =

{
O(v, ζ) if indeg(v) = 0

O(v, labelO,ζ(pred(v))) if indeg(v) > 0
.

14For simplicity, we have the input and output domains of the oracles equal to {0, 1}κ, but this is not a necessary
restriction: the sizes could be any polynomials in κ.

15We abuse notation slightly and also invoke labelO,ζ on sets of vertices, in which case the output is defined to be a
tuple containing the labels of all the input vertices, arranged in lexicographic order of vertices.
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Definition 3.5 (Graph function family). Let n = n(κ) and let Gδ = {Gn,δ = (Vn, En)}κ∈N be a
graph family. We write Oδ,κ to denote the set O(δ, {0, 1}κ) as defined in Definition A.1. The graph
function family of G is the family of oracle functions FG = {fG}κ∈N where fG = {fOG : {0, 1}κ →
({0, 1}κ)z}O∈Oδ,κ and z = z(κ) is the number of sink nodes in G. The output of fOG on input label
ζ ∈ {0, 1}κ is defined to be

fOG (ζ) = labelO,ζ(sink(G)) ,

where sink(G) is the set of sink nodes of G.

3.3 Relating complexity of PROM algorithms and pebbling strategies

Any PROM algorithm B and input x induce a black-magic pebbling strategy, epf-magicζ(B,O, x, $),
called an ex-post-facto black-magic pebbling strategy. The way in which this strategy is induced
is similar to ex-post-facto pebbling as originally defined by [AS15] in the context of the standard
pebble game. We adapt their technique for the black-magic game.

Definition 3.6 (Ex-post-facto black-magic pebbling). Let n = n(κ) and let Gδ = {Gn,δ =
(Vn, En)}κ∈N be a graph family. Let ζ = ζ(κ) ∈ {0, 1}κ be an arbitrary input label for the graph
function family FG. For any v ∈ Vn, define

pre-labO,ζ(v) = (v, labelO,ζ(pred(v))) .

Let B be a non-uniform PROM algorithm. Fix an implicit security parameter κ. Let x be an
input to B. We now define a magic pebbling strategy induced by any given execution of BO(x; $),
where $ denotes the random coins of B. Such an execution makes a sequence of batches of random
oracle calls (as defined in Section 3.1), which we denote by

q(B,O, x, $) = (q1, . . . ,qt) .

The induced black-magic pebbling strategy,

epf-magicζ(B,O, x, $) = ((B0,M0), . . . , (Bt,Mt)) , (3)

is called an ex-post-facto black-magic pebbling, and is defined by the following procedure.

1. B0 = M0 = ∅.
2. For i = 1, . . . , t:

(a) Bi = Bi−1.
(b) Mi = Mi−1.
(c) For each individual query q ∈ qi, if there is some v ∈ Vn such that q = pre-labO,ζ(v) and

v /∈ Pi, then “pebble v” by performing the following steps:

i. If pred(v) ⊆Mi ∪Bi:
• Bi = Bi ∪ {v}.

ii. Else:

• V = {v}.
• Let V ∗ be the transitive closure of V under the following operation:
V = V ∪

(⋃
v′∈V pred(v′) ∩ (Mi ∪Bi)

)
.

• Mi = Mi ∪ V ∗.
3. For i = 1, . . . , t:
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(a) A node v ∈Mi ∪Bi is said to be necessary at time i if

∃j ∈ [t], q ∈ qj , v
′ ∈ Vn s.t. j > i ∧ v ∈ pred(v′) ∧ q = pre-labO,ζ(v

′)

∧
(
6 ∃k ∈ [t], q′ ∈ qk s.t. i < k < j ∧ q′ = pre-labO,ζ(v)

)
.

In other words, a node is necessary if its label will be required in a future oracle call, but its
label will not be obtained by any oracle query between now and that future oracle call.
Remove from Bi and Mi all nodes that are not necessary at time i.

3.4 Legality and space usage of ex-post-facto black-magic pebbling

The following theorems establish that the space usage of PROM algorithms is closely related to the
space usage of the induced pebbling.

We will use the following supporting lemma, also used in prior work such as [AS15, DKW11]
(see, e.g., [DKW10] for a proof).

Lemma 3.7. Let B = b1, . . . , bu be a sequence of random bits and let H be a set. Let P be a
randomized procedure that gets a hint h ∈ H, and can adaptively query any of the bits of B by
submitting an index i and receiving bi as a response. At the end of its execution, P outputs a subset
S ⊆ {1, . . . , u} of |S| = ϕ indices which were not previously queried, along with guesses for the
values of the bits {bi : i ∈ S}. Then the probability (over the choice of B and the randomness of P)
that there exists some h ∈ H such that P(h) outputs all correct guesses is at most |H|/2ϕ.

Lemma 3.8 (Legality and magic pebble usage of ex-post-facto black-magic pebbling). Let n = n(κ)
and let Gδ = {Gn,δ = (Vn, En)}κ∈N be a graph family. Let ζ ∈ {0, 1}κ be an arbitrary input label
for Gδ. Fix any efficient PROM algorithm B and input x. With overwhelming probability over
the choice of random oracle O ← O and the random coins $ of B, it holds that the ex-post-facto
magic pebbling epf-magicζ(B,O, x, $) consists of valid magic-pebbling moves, and uses fewer than

χ =
⌊

|x|
κ−log(q) + 1

⌋
magic pebbles (i.e., for all i, |Mi| ≤ χ), where q is the number of oracle queries

made by B(x).

Proof. Fix an algorithm B and, for the sake of contradiction, suppose that there is an input x such
that with non-negligible probability over O and $, the induced pebbling epf-magicζ(B,O, x, $) uses
at least χ magic pebbles or contains an invalid move. By definition, this means that the following
event E occurs with non-negligible probability: on at least χ occasions, a (magic) pebble is placed
on a node v although its parents were not all pebbled in the previous step. In turn, this means that
a correct random-oracle query for the label of v is made by B; and the correct query contains the
label of some predecessor node v′ which was not contained in the output of any previous oracle call.

Let us suppose that event E occurs with probability more than p = qχ2|x|

2κχ . Note that this
probability is negligible, since

p =
qχ2|x|

2κχ
= 2χ log(q)+|x|−κχ

χ log(q) + |x| − κχ = χ(log(q)− κ) + |x| (analyzing the exponent)

=

⌊
|x|

κ− log(q)
+ 1

⌋
(log(q)− κ) + |x| (substituting for χ)

≤ |x|+ κ− log(q)

κ− log(q)
(log(q)− κ) + |x|

= −(|x|+ κ− log(q)) + |x| (canceling denominator)

= −κ+ log(q)
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and q is polynomial in κ. Based on this assumption, we construct a predictor that predicts χ output
values of the random oracle with impossibly high probability (specifically, violating Lemma 3.7)
as follows. The predictor P depends on input x and can query the random oracle on inputs of its
choice, before outputting its prediction. Let r̂ be an upper bound on the number of random bits
used by B(x). The predictor also has access to a sequence R̂ of r̂ random bits, that it can use to
simulate the random coins of B.

• Hint: The predictor P receives as its hint16 either ⊥ if the induced pebbling epf-magicζ(B,O, x, $)
is valid and uses no more than χ magic pebbles, or the following information otherwise:

– the index i∗ ∈ [q] of the first oracle call causing the illegal event (inducing the χth placement
of a magic pebble on some node v) to happen;

– the indices I ⊂ [i∗] of all oracle calls preceding the i∗th oracle call, that induce the placement
of a magic pebble or pebbles; and

– B’s input x.

The size of this hint is at most χ log(q) + |x| bits.
• Execution: If the hint is ⊥, then P halts and outputs nothing. Otherwise, P runs B(x; R̂),

forwarding all oracle calls to the random oracle, until the i∗th query. By construction, for each
i′ ∈ I ∪ {i∗}, the i′th query contains the labels of the parents of the node vi′ whose pebbling
is induced by the i′th query, and at least one of these labels (say, label `wi′ for parent node
wi′) was not the output of any previous query to the random oracle. For each i′ ∈ I ∪ {i},
our predictor recomputes the value w̃i′ = pre-labO,ζ(wi′) which is the preimage under O of `wi′ .
Note that by definition of pre-lab, w̃i′ can be computed without ever querying O on input w̃i′ .
Finally, P outputs the following pairs:{

(w̃i′ , `wi′ )
}
i′∈I∪{i∗} .

Since by construction, each query i′ ∈ I ∪ {i∗} induced the placement of a magic pebble, it
follows that each pair (w̃i′ , `wi′ ) is a valid input-output pair of O. Moreover, P never queried O
on any w̃i′ .

The predictor’s hint is ⊥ with probability at most that of E , and the predictor succeeds whenever
the hint is not ⊥. Hence, by our assumption about the probability p of the event E , the predictor

must succeed with probability greater than p = qχ2|x|

2κχ . By construction, the size of the predictor’s

hint set is at most qχ2|x|, and the predictor’s output is κχ bits long. Thus Lemma 3.7 implies that
the probability (over the choice of O and the randomness of P) that there is some hint such that P
outputs all correct guesses is at most qχ2|x|

2κχ . (This is equal to p.) We have a contradiction, and the
lemma follows.

Lemma 3.9 (Space usage of ex-post-facto black-magic pebbling). Let n,Gδ, ζ be as in Lemma 3.8.
Fix any PROM algorithm B and input x. Fix any i ∈ [t], λ ≥ 0, and define

epf-magicζ(B,O, x, $) = (PO1 , . . . , P
O
t ) = ((BO1 ,M

O
1 ), . . . , (BOt ,M

O
t ))

for oracle O. We may omit the superscript O for notational simplicity. It holds for all large enough
κ that the following probability is overwhelming:

Pr
[
∀i ∈ [t], |Pi| ≤ χ′

]
,

where χ′ =
⌊

|σi|
κ−log(q) + 1

⌋
, q is the number of oracle queries made by B, and the probability is taken

over O ← O and the coins of B.

16Note that the hint may depend both on the choice of random oracle, and on the randomness R̂.
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Proof. This proof has a very similar structure to that of Lemma 3.8. Assume for contradiction
that with non-negligible probability for some i ∈ [t] it holds that |Pi| > χ′. Let E denote the event
that the induced pebbling epf-magicζ(B,O, x, $) satisfies |Pi| > χ′, and suppose that E occurs with

probability more than p = qχ
′
2|σi|

2κχ′
. Note that p is negligible, since

p =
qχ
′
2|σi|

2κχ′
= 2χ

′ log(q)+|σi|−κχ′

χ′ log(q) + |σi| − κχ′ = χ′(log(q)− κ) + |σi| (analyzing the exponent)

=

⌊
|σi|

κ− log(q)
+ 1

⌋
(log(q)− κ) + |σi| (substituting for χ′)

≤ |σi|+ κ− log(q)

κ− log(q)
(log(q)− κ) + |σi|

= −(|σi|+ κ− log(q)) + |σi| (canceling denominator)

= −κ+ log(q)

We design a predictor P to predict the labels of all nodes in Pi with impossibly high probability, as
follows. We refer to the oracle call that causes the ex-post-facto pebbling of a node v ∈ Pi a critical
call. (Critical calls encompass both black and magic pebble placements.) P depends on σi, O, and
a long enough sequence R̂ of random bits used to simulate the coins of B.

• Hint: The predictor P receives as its hint either ⊥ if the induced pebbling epf-magicζ(B,O, x, $)
satisfies |Pi| ≤ χ′, or the following information otherwise:

– the indices J = {j1, . . . , jc} ∈ [q]|Pi| of the critical calls made by B, and
– the state σi outputted by B at the end of iteration i, and

The size of this hint is |Pi| log(q) + |σi| bits. By our assumption on |Pi|, this is more than
χ′ log(q) + |σi| bits.
• Execution: P runs B on input (z, σi), recording the labels of all input-nodes of the critical calls.

To answer any oracle call Q with output-node v, the predictor does the following:

– Determines if the call is correct. A call is correct iff it is a critical call or for each parent wi′

of v, a correct call for wi′ has already been made and Q matches the results of those calls.
In particular, Q = pre-labO,ζ′(wi′) and no new oracle calls need be made by the predictor to
check this.

– If the call is correct and the label of v has already been recorded then output the label.
Otherwise query O to answer the call.

Finally, P outputs predictions of all of the labels of the magic pebbles and all the labels associated
with Pi, as follows.

– The labels of the magic pebbles are determined as described in the proof of Lemma 3.8.
– When B terminates, P checks the transcript to determine the set Bi. It is easy to verify

that their labels were never queried to O by P . Then, for all v ∈ Bi the predictor computes
ṽ = pre-labO,ζ′(v) and outputs the pair (ṽ, `v) where `v is the label of v (as specified in the
input of the oracle call for associated critical call).

The predictor’s hint is ⊥ with probability at most that of E , and the predictor succeeds whenever
the hint is not ⊥. Hence, by our assumption about the probability p of the event E , the predictor
must succeed with probability greater than p. The predictor’s output is κ|Pi| > κχ′ bits long. From
Lemma 3.7, it follows that the probability (over the choice of O and the randomness of P) that
there is some hint such that P outputs all correct guesses is at most (qχ

′
2|σi|)/2κχ

′
. (This is equal

to p.) We have a contradiction and the lemma follows.
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4 Static-memory-hard functions

We now define static-memory-hard functions. As mentioned above, prior notions of memory-hardness
consider only dynamic memory usage. To model static memory usage, we consider a hash function
with two parts (H1,H2) where H2(x) computes the output of the hash function h(x) given oracle
access to the output of H1. This design can be seen to reduce honest party computation time by
limiting the hard work to one-off preprocessing phase, while maintaining a large space requirement
for password-cracking adversaries. Informally, our guarantee says that unless the adversary stores
a specified amount of static memory, he must use an equivalent amount of dynamic memory to
compute h correctly on many outputs. Definition 4.1 is syntactic and Definition 4.2 formalizes the
memory-hardness guarantee.

Notation PPT stands for “probabilistic polynomial time.” For ~b ∈ {0, 1}∗, define Seek~b :

{1, . . . , |~b|} → {0, 1} to be an oracle that on input ι returns the ιth bit of ~b.

Definition 4.1 (Static-memory hash function family (SHF)). A static-memory hash function family
HO = {hOκ : {0, 1}w′ → {0, 1}w}κ∈N mapping w′ = w′(κ) bits to w = w(κ) bits is described by a pair
of deterministic oracle algorithms (H1,H2) such that for all κ ∈ N and x ∈ {0, 1}n,

HSeekR̂
2 (1κ, x) = hκ(x), where R = H1(1κ) .

(The superscript O is left implicit.)

The next definition presents a parametrized notion of (Λ,∆, τ, q)-hardness of an SHF. Before
delving into the formal definition, we give a brief intuition of the guarantee provided by Definition 4.2:
any adversary who produces at least q correct input-output pairs of the hash function must either
have used Λ −∆ static memory or incur a requirement of Λ dynamic memory sustained over τ
time-steps at runtime.

The role of q. The parameter q in Definition 4.2 serves to capture the intuitive idea that an
adversary that uses a certain amount of space could always use that space to directly store output
values of hκ. Clearly, an adversary with an arbitrary input R could very easily output up to 8|R|8
correct output values. Our goal is to lower bound the amount of space needed by an adversary who
outputs nontrivially more correct values than that — and q, which is a function of |R|, captures
how many more.

Definition 4.2 ((Λ,∆, τ, q)-hardness of SHF). Let H = {hκ}κ∈N be a static-memory hash function
family described by algorithms (H1,H2), mapping w′ to w bits. H is (Λ,∆, τ)-hard if for any large
enough κ ∈ N, any string R ∈ {0, 1}Λ−∆, and any PPT algorithm A, for any set X = {x1, . . . , xq} ⊆
{0, 1}w′, there is a negligible ε such that

Pr
O,ρ

[{
(x1, hκ(x1)), . . . , (xq, hκ(xq))

}
= A(1κ, R; ρ) ∧ s-memO(Λ,A, R, ρ) < τ

]
< ε .

For simplicity, we henceforth assume w′ = w = κ (i.e., the oracle’s input and output sizes are
equal to the security parameter) unless otherwise stated.

4.1 Dynamic SHFs

As discussed in detail in the introduction, static memory requirements are orthogonal and comple-
mentary to dynamic memory requirements of MHFs as formalized by [AS15]. Given a pebbling-based
SHF and a pebbling-based MHF, they can be combined by simple concatenation into a “dynamic
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SHF,” a function that inherits both the static memory requirement of the former and the dynamic
memory requirement of the latter, as outlined (informally) next.

Let HOdyn be a dynamic MHF and (HO1 ,HO2 ) be a SHF family, and the computation of both of
these correspond to computing labels of nodes in a DAG as a function of a pebbling algorithm and
a random oracle O. We construct a dynamic SHF HO that is defined as follows: on input (1κ, x),

output HO(0,·)
2 (1κ, x)||HO(1,·)

dyn (1κ, x). The resulting HO inherits both the MHF guarantees of Hdyn

and the SHF guarantees of (H1,H2). Note that importantly, the labels of the nodes in the graphs

corresponding to the MHF HO(0,·)
dyn and the SHF (HO(1,·)

1 ,HO(1,·)
2 ) are independent as the MHF and

the SHF use disjoint partitions of the random oracle domain.
Using this method, our SHF constructions can be combined with existing MHF constructions

such as [AS15], [ABP17a], [ABP17b], yielding a “best of both worlds” dynamic SHF that enjoys
both types of memory-hardness.

5 SHF constructions

A first attempt What if we pebble a hard-to-pebble graph, and then let Rk,i = H(P (k), i) where
P (k) is the entire pebbling of the graph (on input k and iteration i is the i-th call to the hash
function H)? This would in fact work in the random oracle model where the random oracle
takes arbitrary-length input. However, in practice, hash functions do not take arbitrary-length
input. While constructions like Merkle-Damg̊ard [Mer79] and sponge [BDPA08] can transform a
fixed-input-length hash function into one that takes arbitrary-length inputs, the resulting function
does not behave like a random oracle even if the fixed-length hash function does.17 Moreover,
the computation graphs of known length-expanding transformations such as Merkle-Damg̊ard and
sponge functions require very little space to compute. For instance, the computation graph of the
Merkle-Damg̊ard construction is a binary tree and the computation graph of the sponge function is
a caterpillar graph both of which take logarithmic and constant space, respectively, to compute.
Thus, we have to use special constructions to achieve the local-hardness properties we need.

Recall from Definition 2.13 that the property we want is this “locally hard to access” notion,
meaning that if an adversarial party chooses to not store the static part of our hash function
which they obtain from performing the “preprocessing” computation associated with H1, then
they must use the same memory and sustained time to recompute the function when our static-
memory-hard function is called on any subset of inputs larger than the memory used to store the
preprocessed computation. We achieve this desired property in our H1 functions using two novel
DAG constructions, one of which is optimal for a specific graph class and the other we conjecture to
be optimal for all general graph classes.

5.1 H1 constructions

We first note the differences between the graph constructions we present here and the construc-
tions presented in previous literature [AS15, ACK+16, ABP17a, DFKP15]. Firstly, many of the
constructions presented in previous work feature a single target node. This is reasonable in the
context of memory-hard functions since both the honest party and the adversary must compute the
hash function dynamically (obtaining a single label as the output of the function) on each input.
However, in our context of static-memory-hard functions, single-target-node constructions do not

17For example, both the constructions mentioned process the input sequentially in chunks. Evaluating the hash
function on inputs that differ only in the final chunk will yield outputs that differ in a known way; this provides a way
to distinguish these constructions from a random oracle even if the underlying fixed-length hash function is a random
oracle.
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make sense. Secondly, our constructions differ from even the multiple target node constructions
presented in the literature (specifically, the constructions of [DFKP15]) since prior constructions
mainly focused on finding graphs that have large memory vs. time tradeoffs.

Our constructions are designed with the goal that any adversary that does not store almost all
the target labels must dynamically use the same amount of space as needed to store all the labels to
compute the hash function (while still incurring a cost in runtime). Moreover, our constructions
based on local hardness ensure a stronger guarantee than the constructions in [DFKP15]; in our
case, one must use at least S space (for some definition of S) to compute any given subset of targets
larger than one’s current memory usage, whereas in their case, they use S space to compute some
subset of targets chosen uniformly at random. Therefore, our specifications are stronger in that we
provide a space bound as well as a time bound for adversaries; and moreover, for honest parties, the
time cost is only a one-time setup cost. We prove our pebbling costs in terms of the black-magic
pebble game (defined in Section 2) as opposed to the standard pebble game used in previous works.
Most notably, this means that in all of our constructions, the pebbling number is upper bounded by
the number of targets (since one can always just pebble the targets with magic pebbles).

We begin with some simple and clean constructions of H1 based on pebbling constructions that
exist in the literature. We first prove a lemma regarding the minimum number of pebbles used in the
PROM model and the minimum number of pebbles used in the sequential memory model. This is
useful in more than one way: (1) it tells us that parallelization does not save the adversary in space
so honest parties (who can only compute a constant number of labels at a time) and adversaries
(who can compute an arbitrary number of labels at the same time) operate under the same space
constraints and (2) it allows us to directly compare sustained time complexities between adversaries
and honest parties with respect to space usage .

Lemma 5.1 (Standard Pebbling Sequential/Parallel Equivalence). Given a DAG G = (V,E),

Ps(G,T ) = P
‖
s (G,T ) where Ps(G,T ) is defined to be the minimum standard pebbling space complexity

in the sequential model, and we define P
‖
s (G,T ) to be the minimum standard pebbling space complexity

in the parallel model.

Proof. Any sequential pebbling strategy, P can be simulated by a parallel pebbling strategy, P ||

since P || can choose to place one pebble at a time. Therefore, P
‖
s (G,T ) ≤ Ps(G,T ). We now

show that there exists a sequential pebbling strategy, P, that uses the same number of pebbles
to pebble a graph as a parallel strategy P ||. Suppose that at time i, a set of pebbles are added
to nodes in Pi in G under algorithm P ||. Then, pred(Pi) must be pebbled at time i − 1. P can
thus spend |Pi\Pi−1| pebbling steps to pebble the graph sequentially by adding pebbles on all
vertices v ∈ Pi\Pi−1 sequentially until the state of the graph is the same as the state of the graph
at time i under strategy P ||. Similarly, if a set of pebbles Di are deleted from the graph at time i,
then P can choose to spend at most |Di| sequential pebbling steps to delete |Di| pebbles. If both
strategies start on identical graphs with the same starting configuration P0, then we have shown

that P
‖
s (G,T ) ≥ Ps(G,T ). Thus, P

‖
s (G,T ) = Ps(G,T ).

We use Lemma 5.1 to prove an equivalent lemma for the black-magic pebble game below.

Lemma 5.2 (Black-Magic Pebbling Sequential/Parallel Equivalence). Given a DAG G = (V,E),
Ps(G, |T |, T ) = Ps

‖(G, |T |, T ) where Ps(G, |T |, T ) was defined to be the minimum black-magic
pebbling space complexity in the sequential model, and we define Ps

‖(G, |T |, T ) to be the minimum
black-magic pebbling space complexity in the parallel model.

Proof. Any placement of black pebbles can be translated from the sequential to the parallel pebbling
strategy and vice versa using the techniques stated in the proof of Lemma 5.1. Any sequential
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pebbling placement of magic pebbles can be simulated trivially by a parallel pebbling strategy. Any
parallel pebbling placement of M magic pebbles can be simulated via a sequential pebbling strategy
using M additional steps. Thus, Ps(G, |T |, T ) = Ps

‖(G, |T |, T ).

Now, we jump into our constructions. We first provide a simple construction and show why
this construction is not optimal. In addition, we define some subgraph components in the pebbling
literature that are important subcomponents of our constructions.

5.1.1 A failed attempt at H1

We first provide a failed attempt at constructing H1 due to the large amount of time that is needed
to compute the function (for the sequential honest party) with respect to the amount of memory
needed to store the output of the function. In other words, this construction is problematic in the
sense that an exponential number of steps is necessary to compute the stored results of the function
from scratch for the honest party but the adversary with parallel processing time can compute the
function from scratch in linear time. Although the honest party could obtain the results of the
preprocessing (i.e. the static part of the hash function) from elsewhere, we must ensure that they
can still feasibly compute H1 themselves in the event that they do not trust any of the sources from
which they can obtain the static data.

Intuitively, our failed attempt at constructing H1 is a series of binary search trees. From here
onwards, we describe all constructions of H1 as a directed acyclic graph with n nodes and later use
our theorems above to prove static memory hardness from our constructed DAGs.

Graph Construction 5.3 (Composite Binary Tree DAG). Let BC
h be a composite binary tree

DAG with height h constructed in the following way where T is the number of targets of our DAG.
Let s = |T |. In our intended construction h = s.

1. Let the set of nodes be V . Let the set of edges be E.
2. Create (s+ 1)2h−1 + s nodes.
3. Create s+ 1 binary search trees using (s+ 1)2h−1 nodes in total where edges are directed from

children to parents in each binary tree. Let ri for i ∈ [1, s+ 1] be the roots of these binary search
trees.

4. Order the remaining nodes in some arbitrary order, let sj be the jth node in this order for
j ∈ [1, s].

5. Create directed edges (ri, si) and (ri+1 mod s, si) for all i ∈ [1, s].

Given any binary search tree with height h, the minimum number of pebbles necessary to pebble
the tree is h (assuming a ‘tree’ with one node has height 1) using the rules of the standard pebble
game. Therefore, to ensure that the apex of the tree is pebbled and that both the honest party and
the adversary both use h space to pebble the apex, the number of leaves necessary at the base of the
tree is 2h−1. If we suppose that the computationally weak honest party (who does not build special
circuits) can only evaluate a constant number of random oracle calls at a time (place a constant
number of pebbles), the number of sequential evaluations necessary for the honest party is ≥ Ω(2h)
which is infeasible to accomplish. In constrast, the adversary only has to make O(h) parallel random
oracle calls, an exponential factor difference between the honest party and the adversary! Such
a construction fails since it is clearly infeasible for the honest party since they would never be
able to compute all target values of H1 from scratch (since this computation requires exponential
time for the honest party). Thus, we would like a construction that has the same minimum space
requirement but also small sequential evaluation time. We prove a better (but also simply defined)
construction below.
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5.1.2 Cylinder construction

We make use of what is defined in the pebbling literature as a pyramid graph [GLT80] in constructing
our cylinder graph. The key characteristic of the pyramid graph we use is that the number of pebbles
that is required to pebble the apex of the pyramid is equal to the height of the pyramid [GLT80]
using the rules of the standard pebble game. Note that a pyramid by itself is not useful for our
purposes since the black-magic pebbling space complexity of a pyramid with one apex is 1. Therefore,
we need to be able to use the pyramid in a different construction that uses superconstant number of
pebbles in the magic pebble game in order to successfully pebble all target nodes.

Graph Construction 5.4 (Illustrated in Fig. 2). Let ΠC
h be a cylinder graph with height h. We

define ΠC
h as follows:

1. Create 2h2 nodes. Let this set of 2h2 nodes be V .
2. Arrange the nodes in V into 2h levels of h nodes each, ranging from level 0 to level 2h−1. Let the

j-th node in level i be vji . Create directed edges (vj mod h
i , vj mod h

i+1 ) and (vj mod h
i , v

(j+1) mod h
i+1 )

for all i ∈ [0, 2h− 2]. Let this set of edges be E.

Figure 2: Cylinder construction (Def. 5.4) for h = 5.

Lemma 5.5. Given a cylinder graph with height h, ΠC
h , Ps(Π

C
h , T ) ≥ h.

Proof. Let T be the target nodes of ΠC
h . Each target node is connected to a pyramid of height

h. Therefore, by the proofs of minimum pebbling cost of pyramids given in [GLT80], the pyramid
requires h pebbles to pebble using the rules of the standard pebble game. Therefore, to pebble any
one target node t ∈ T requires h pebbles, so pebbling all target nodes of ΠC

h , T , trivially requires h
pebbles.

Lemma 5.6. Popt-ss(Π
C
h , T ) ≥ 2h.

Proof. The depth of ΠC
h is 2h (i.e. the longest directed path in ΠC

h has length 2h). Thus, the
minimum number of parallel steps necessary to pebble any v ∈ T is 2h. Let Li be the set of nodes at
the i-th level of ΠC

h where T is at level 2h−1 and S is at level 0. To pebble each target node requires
that all vertices in Lh−1 (vih−1 for all i ∈ [1, h]) be pebbled at some time step simultaneously18,
t ∈ [0, tP ], by normality of pebbing strategies (see the definition of frugal and normal strategies in
Definitions B.1 and B.2 [GLT80, DL17]). given any normal strategy P. Thus, at least h parallel
time steps where h pebbles are on the graph simultaneously are necessary to pebble any target
v ∈ T because to pebble all nodes in Lh−1 at time t requires h parallel time steps where h pebbles
are used at each time step.

Suppose for contradiction that Popt-ss(Π
C
h , T ) < 2h. We first prove that to pebble any k targets

(where k ≤ h) simultaneously require at least k time steps (where each time step is larger than t

18Whereby ‘simultaneously’, we mean there exists some time t′ where all vertices in Lh−1 are pebbled.
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defined above) where h pebbles are on the graph simultaneously. Furthermore, there exists time
steps tl−1 > tl−2 > · · · > t1 > t where h pebbles are on all vertices in Lh−1+j (vih−1+j for all
i ∈ [1, h]) at time tj . We prove this by induction. Let the base case be k = 1. In order to pebble any
target v ∈ T using a normal strategy P , there must be a time step t1 > t where h pebbles are on all
vertices in Lh (vih for all i ∈ [1, h]) by normality of pebbling strategies (see Theorem B.3 [GLT80]).
We assume as our induction hypothesis that the statement is true for all k ≤ l − 1 where l ≤ h. We
now prove the statement for k = l. At time tl−1, there exist h pebbles on all vertices in Lh+l−2 by
definition of tl−1 and by our induction hypothesis. By inspection, to pebble any subset of l targets
requires all vertices in Lh+l−1 to be pebbled at some point in the execution of the pebbling strategy.
Suppose there exists a strategy that pebbles k targets using at most k − 1 parallel moves where
h pebbles are on the graph during each of the k − 1 parallel moves. By our induction hypothesis,
pebbling any k − 1 sized subset of the k targets requires k − 1 parallel moves where h pebbles are
on the graph and all nodes in Lh+k−1 for all k < l are pebbled simultaneously at time tk. If no
more than h− 1 pebbles can be on the vertices in Lh+l−1, this means that there exists a vertex in
Lh+l−1 that must be pebbled with at least l pebbles (given there exists a previous time step when
h pebbles are on all vertices in Lh+l−2 and no more than h− 1 of these pebbles can be moved to
the vertices in Lh+l−1). Let this vertex be u. If we continue strategy P without pebbling u, then
there will exists a vertex at every level h+ l′ − 1 (for all l′ ≥ l) where l′ pebbles are necessary to
pebble the vertex. Thus, the lower bound on the minimum number of pebbles necessary to pebble k
targets using strategy P is h− 1 + l′ at some time step tl′ > tl−1, a contradiction since l′ ≥ 119.

Given that to pebble any k targets requires at least k time steps (inaddition to the h timesteps
necessary to pebble all nodes in Lh−1) where h pebbles are on the graph simultaneously. Thus,
pebbling all targets using any strategy that pebbles sequentially subsets of targets S1, . . . , Sd where⋃d
i=1 S = T results in

∑d
i=1 |Si| ≥ h steps where h pebbles are on the graph simultaneously. In all

cases, we reach a contradiction with Popt-ss(Π
C
h , T ) < 2h. Therefore, Popt-ss(Π

C
h , T ) ≥ 2h.

Theorem 5.7. Using the rules of the standard pebble game, h pebbles are necessary for at least h
parallel steps to pebble any target of a height 2h cylinder graph, ΠC

h .

Proof. To pebble any target of ΠC
h requires h pebbles on all nodes in level h by normality of pebbling

strategies. Given at most h pebbles, to pebble any subset k of nodes in level h (by the normality of
pebbling strategies) require h pebbles to be present on the graph for at least k parallel time steps
as proven in the proof for Lemma 5.6. Thus, given a pebbling strategy that pebbles the following
subsets of nodes in level h sequentially, S1, . . . , Sd where T =

⋃d
i=1 Si, the number of time steps

where h pebbles are on the graph is given by
∑d

i=1 |Si| ≥ h. Therefore, h pebbles are on the graph
during at least h time steps when pebbling any target of ΠC

h , proving our theorem.

Theorem 5.8. Ps(Π
C
h , |T |, T ) ≥ h where ΠC

h is defined as in Def. 5.4 where |S| = |T | = h.

Proof. Assume for the sake of contradiction that s < h pebbles can be used to pebble all target
nodes in T . By the rules of the black-magic pebble game, we can choose to use either magic pebbles
or black pebbles at each time step in a valid strategy.

We first prove that given s < |T | magic pebbles, one would choose to place the pebbles on s
target nodes as opposed to any number of intermediate nodes. Let Li be the set of nodes at the
i + h-th level of ΠC

h (for 0 ≤ i ≤ h − 1) where T is at level 2h − 1 and S is at level 0. Given s
adjacent pebble placements on nodes in Li, we can pebble at most j ≤ max(0, s+ i− h+ 1) target
nodes by construction of ΠC

h without performing any repebbling of any nodes in S. (Note that we

19Note that a simpler proof can be shown to state that at least h pebbles are needed to pebble u at level l′ but we
present the present proof to show that even for a cylinder with height h (instead of 2h) our proof here still holds–i.e.
h steps where h pebbles are on the cylinder are necessary to pebble all targets T
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do not need to account for the case when s < |T | pebbles are placed on levels 0 to h− 1 since no
targets can be pebbled if that is the case.) If repebbling of any node in Li needs to be done (using
black pebbles), then at least h total pebbles are necessary to pebble T . We now show this is true.
Suppose that in order to pebble a target node v ∈ T , there exist at most h− i− 1 magic pebbles on
adjacent nodes in Li. Then, at least 1 additional pebble is necessary at some node in Li to pebble
v. Let the node that needs to be pebble in Li be w. Suppose that we use a black pebble to pebble
w at level i (i.e. we wouldn’t choose to use magic pebbles to pebble the ancestors of w since that
would use more magic pebble than if we used a magic pebble to pebble w). Note that w is the apex
of a pyramid of height at least i+ 1. Therefore, at least i+ 1 black pebbles are necessary to pebble
w resulting in i+ 1 + h− i− 1 = h total pebbles necessary to pebble v, which is greater than the
initial h− i− 1 magic pebbles in total pebble count for all i ∈ [0, h− 1] (our desired range of values
of i). Note that this argument applies recursively to any number i′ ≤ i missing pebbles at level i.

Therefore, for any number of magic pebbles s′ ≤ s that are not on target nodes, we can obtain
at most s′ − 1 target values without performing repebbling of any nodes in S. It is then strictly
more efficient to pebble s′ target nodes with magic pebbles instead of s′ non-target nodes. We can
have a total of s < h magic pebbles which is not enough pebbles to pebble all the target nodes. To
pebble the target node that is not pebbled by a magic pebble, we require h additional pebbles by
pebbling price of pyramids [GLT80], contradicting our assumption.

As a simple extension of our theorem and proof above, we get Corollary 5.9. Moreover, as an
extension of the proof given for Theorem 5.8 that all magic pebbles are placed on targets and from
Theorem 5.7, we obtain Corollary 5.10.

Corollary 5.9. Given a cylinder G = (V,E) as constructed in Graph Construction 5.4, G is
incrementally hard: Ps(G, |C| − 1, C) ≥ |T | for any subset C ⊆ T .

Corollary 5.10. Given a cylinder G = (V,E) as constructed in Graph Construction 5.4, Popt-ss(G, |C|−
1, C) = Θ(|T |) for all subsets of C ⊆ T .

A logical question to ask after constructing our very simple hash function based on a cylinder
graph is whether such a construction is optimal in terms of graph-optimal sustained complexity
and follows our requirements for a static-memory-hard hash function. As it turns out, the graph-
optimal sustained complexity of a cylinder graph is optimal in the class of layered graphs. In
other words, if we choose to use layered graphs in our constructions, then we cannot hope to get
a better memory and time guarantee. From an implementation and practical standpoint, layered
graphs are easier to implement and hence this result has potential practical applications (as more
complicated constructions need to consider memory allocation factors in the real-life implementation,
not considered in the theoretical model).

Theorem 5.11. Given a layered graph, G = (V,E), if the number of target nodes is |T | = s and
Ps(G, s, T ) ≥ s, then |V | = Ω(s2). A layered graph is one such that the vertices can be partitioned
into layers and edges only go between vertices in consecutive layers.

Proof. In order to satisfy Ps(G, s, T ) ≥ s, the number of targets has to be at least s; if |T | < s,
then T can be completely pebbled with less than s magic pebbles and Ps(G, s, T ) < s. Suppose the
sources (the first level) are at level 0 and the targets (the last level) are at level h− 1 where h is the
height of the layered graph. In any layered graph with in-degree 2, the cost of pebbling a vertex vi
in level i is at most i+ 1 [Nor15]. Therefore, the height of G must be at least s− 1, in order for
Ps(G, s, T ) ≥ s. Let h = s− 1. In order for Ps(G, s, T ) ≥ s, the width of the layered graph in layer
j for all j ∈

[
h
2 , h− 1

]
must be at least h

2 (where by width, we mean the number of nodes in layer
j).
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Suppose that a layer j where j ∈
[
h
2 , h− 1

]
has width less than h

2 . We can subsequently use less

than h
2 magic pebbles to pebble layer j. Then, at most h

2 black pebbles are necessary to pebble all
targets in T resulting in Ps(G, s, T ) < h and Ps(G, s, T ) < s (by our definition of h), a contradiction.

The total number of nodes in layers [h2 , h−1] must then be at least h2

4 , and |V | = Ω(h2) = Ω(s2).

Thus, our construction of the cylinder graph is optimal in terms of amount of memory used
in the asymptotic sense for the class of layered graphs. An open question is whether this is also
optimal when we consider the larger class of all DAGs.

Open Question. Does Thm 5.11 also hold for general graphs with bounded in-degree 2?

Given the impossibility of providing a better space guarantee for layered graphs, we provide a
general (non-layered) construction that transforms a graph from a certain class into another graph
with the same space guarantee as in Theorem 5.11. Furthermore, we provide an example below that
has the same space guarantees but a better time guarantee.

5.1.3 Layering shortcut-free graphs

We now show how to convert any shortcut-free DAG, G = (V,E), with Ps(G,T ) = s and one target
node (i.e. |T | = 1) into a DAG, G′ = (V ′, E′), with |T ′| = s targets and Ps(G

′, s, |T ′|) = s.

Definition 5.12 (Shortcut-Free Graphs). Let G = (V,E) be a DAG where Ps(G,T ) ≥ s. Let tPs
be the last time step that exactly s pebbles must be on G during any normal and regular pebbling
strategy, P, (see Thms B.3 and B.5, [GLT80, DL17]) that uses s pebbles. More specifically, let Let
X be the union of the set of nodes that are pebbled at tPs for all normal and regular strategies P:
X =

⋃
P∈P

PtPs . Let D be the set of descendants of nodes of X. A DAG is shortcut-free if |X| ≤ s

and given s1 < s pebbles placed on any subset X1 ⊂ X, no normal and regular strategy uses less
than s− s1 pebbles to pebble D ∪ (X\X1).

Graph Construction 5.13. Given a shortcut-free DAG, G = (V,E), with Ps(G,T ) = s and
|T | = 1, we create a DAG, G′ = (V ′, E′), with the following vertices and edges and with the set of
targets T ′ where |T ′| = s. Let X be defined as in Definition 5.12.

1. V ′ is composed of the nodes in V and s− 1 copies of X ∪D. Let the i-th copy of X be Xi (the
original is X0) and let the i-th copy of x ∈ Xi be xi.

2. E′ is composed of the edges in E and the following directed edges. If (v, w) ∈ E and v, w ∈ X,
then create edges (vi, wi) ∈ E′ for all i ∈ [1, s− 1]. Create edges (u, vi) ∈ E′ if (u, v) ∈ E and
u ∈ V \X,D.

3. The set of targets T ′ is the union of the set of targets of the different copies: T ′ =
⋃s−1
i=0 Ti.

Using the above construction, we have created a graph G′ = (V ′, E′) where |V ′| = |V | + (s −
1)(|D|+ |X|) and |T ′| = s.

Theorem 5.14. Given a shortcut-free DAG G = (V,E) with Ps(G,T ) = s and |T | = 1, the construc-
tion produced by Graph Construction 5.13 produces a DAG G′ = (V ′, E′) such that Ps(G

′, s, |T |) = s.

Proof. We first prove that Ps(G
′, s, |T |) ≤ s. Since there are s different targets, Ps(G

′, s, |T |) ≤ s
trivially.

We now prove that Ps(G
′, s, |T |) ≥ s. If only black pebbles are used to pebble the targets in T ′,

then s black pebbles must trivially be used provided Ps(G,T ) = s. Suppose some number of magic
pebbles are used. Using the magic pebbles on any node in a copy of D (defined in Def. 5.13) that is
not a target in T ′ is strictly worse than using a magic pebble on a target. Suppose the total number
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of pebbles used is less than s. We first prove that no magic pebbles are used on copies of D. If
the total number of pebbles used is less than s, then not all of the s targets can be pebbled using
magic pebbles. The remaining target that is not pebbled must be pebbled using s black pebbles
since Ps(G,T ) = s by definition. By the same logic, no magic pebbles are used on the nodes in the
copies of X.

Therefore, if less than s magic pebbles are used to pebble the graph, all magic pebbles should be
used to pebble the predecessors of X. No magic pebble can be removed and repebbled since such a
magic pebble must be placed s times (once for each copy of X and D), exceeding the maximum
number of magic pebbles we can have. Given that we can use a total of less than s magic pebbles
to pebble the predecessors of X, suppose some s′ < s pebbles are used, then less than s− s′ pebbles
are left to pebble each copy of X and D; by incremental hardness, less than s− s′ cannot be used
to pebble each copy of X and D. At least one magic pebble is used on the predecessors of X; by
our definition of incremental hardness, less than s− 1 pebbles cannot be used to pebble X and D, a
contradiction. Thus, Ps(G

′, s, T ) ≥ s.

If D = Θ(s) and s = O(
√
|V |), then |V ′| = Θ(s2 + |V |) which has a better sustained time

guarantee than our cylinder construction.
We first note that the sustained memory graphs presented in [ABP17a] do not achieve optimal

local memory hardness because X ∪D (as defined in Definition 5.13) is Θ(n) (since the sources are
the ones that remain pebbled in their construction). Thus, we would like to provide a construction
of a shortcut-free DAG where |X ∪D| = Θ(s). Note that the size of X ∪D will always be Ω(s),
trivially. We now provide a definition of a shortcut-free graph class G that can be transformed
using Definition 5.13.

Graph Construction 5.15 (Illustrated in Fig. 3). Let G = (V,E) be a graph defined by parameter
s and in-degree 2 with the following set of vertices and edges:

1. Create a height s pyramid. Let ri be the root of a subpyramid (i.e. a pyramid that lies in the
original height s pyramid) with height i ∈ [2, s]. One can pick any set of these subpyramids.

2. Topologically sort the vertices in each level and create a path through the vertices in each level
(see Fig. 3). Replace any in-degree-3 nodes with a pyramid of height 3, with a 6-factor increase
in the number of vertices.

3. Create c1s additional nodes for some constant c1 ≥ 2 (in Fig. 3, c1 = 6). Label these nodes vj
for all j ∈ [1, c1s].

4. Create directed edges (rs, v1) and (ri, vk(i−1)) for all k ∈ [1, s].
5. Create s− 1 additional nodes. Let these nodes be wl for all l ∈ [1, s− 1].
6. Create directed edges (vc1s, w1) and (ri, wi−1) for all i ∈ [2, s].
7. The target node is ws−1.

Lemma 5.16. Given a DAG G = (V,E) and a parameter s where G is defined by Definition 5.15,
Ps(G,T ) = s.

Proof. In order to pebble the apex of the pyramid of height s, we must use at least s pebbles as
proven in the proof for black pebbling cost of pyramids [GLT80].

Before we prove that G = (V,E) created by Definition 5.15 with parameter s is shortcut-free,
we first prove the following stronger lemma which will help us prove that G is shortcut-free.

Lemma 5.17. Let G = (V,E) be a graph created using Definition 5.15 with parameter s. Given a
normal strategy P to pebble G, when vq for q ∈ [1, c1s] is pebbled at some time step, black pebbles
are present on all nodes in [ri, rs] where i = (q mod s− 1) + 1 from the time when v1 is pebbled to
when vq is pebbled.
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Figure 3: Example of a time optimal graph family construction as defined in Def. 5.15. Here, s = 5.

Proof. We prove this lemma via induction.
In our base case when i = s, when the corresponding vq is pebbled, a black pebble must be

on rs and vq−1 in the previous time step. Thus, a black pebble remains on rs from the time v1 is
pebbled till the time that vq is pebbled or a set of s− j black pebbles remain on the j-th level of
the pyramid for some j ∈ [0, s− 1] (in which case we can charge one of these pebbles to be “present
on rs”). Suppose neither of these conditions are met. Then, by the pebbling number of pyramids
(see Thm B.6, [Nor15]), at least s pebbles must be used to pebble rs, contradicting the frugality of
P (since at most s pebbles are used to pebble G). In general, we make the observation that if there
s− j pebbles on some level j ∈ [0, s− 1], then we can charge these s− j pebbles to be “on all nodes
in [rj , rs]”.

For our induction hypothesis, we assume that the theorem is true for j and prove the stratement
for i = j − 1. When i = j − 1 and the corresponding vq is pebbled, we assume by our induction
hypothesis that there are s− j black pebbles present on [rj , rs] (or charged to be on [rj , rs]) from
when v1 is pebbled to when vq is pebbled. In order to pebble vq, there must be black pebbles
on ri and vq−1. If there does not exist a black pebble on ri (or on the predecessors of ri) from
when v1 is pebbled to when vq is pebbled, then at least one pebble must be removed from some
r ∈ [rj , rs] or from vq−1 since at least j − 1 pebbles are necessary to pebble rj−1 (s− j + 2 pebbles
are currently in use–leaving not enough pebbles to pebble rj−1 unless a pebble is removed). If the
black pebble is removed from vq−1, the frugality of P is contradicted. If the black pebble is removed
from some r ∈ [rj , rs], then by observation, rs will need to be repebbled sometime in the future,
also a contradiction to the frugality of P. Thus, we prove our statement.

Lemma 5.18. Given a DAG G = (V,E) and a parameter s where G is defined by Definition 5.15,
G is shortcut-free.

Proof. We first prove that any normal standard pebbling strategy P that pebbles G must contain
pebbles on all ri and vc1s at some time (say, tX) during the execution of P.

Let X be the set of vertices containing black pebbles when vc1s is pebbled. Thus, a total of s
pebbles must be on the graph (specifically on all nodes in X) at this time in any normal strategy by
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proof of Lemma 5.17. We now prove the incremental hardness of G. Let s′ < s pebbles be on X at
time tX . We prove that we cannot pebble X ∪D using less than s− s′ pebbles.

Suppose for the purposes of contradiction, given s′ < s, assume that s′ pebbles are placed on X
and less than s− s′ pebbles can be used to pebble X\X ′ ∪D. Supose that X\X ′ includes either:

1. vc1s and some s− s′ − 1 subset of vertices in [r2, rs], or
2. some s− s′ subset of vertices in [r2, rs].

In the first case, if no pebbles are on vi for i ∈ [1, c1s], then at least one pebble needs to be used
to pebble vi for i ∈ [1, c1s]. If X\X ′ includes some s− s′ − 1 subset of vertices in [r2, rs], then at
least s− s′ pebbles are needed to pebble the vertices missing the pebbles.

In the second case, if some subset s− s′ of vertices in [r2, rs] are in X\X ′, then at least s− s′+ 1
pebbles are necessary to pebble the nodes missing pebbles in order to be able to pebble wl for
l ∈ [1, s− 1].

In either case, at least s− s′ pebbles are necessary to pebble X\X ′ ∪D, thus, this construction
is shortcut-free.

Theorem 5.19. s pebbles are necessary for at least Θ(s2) parallel steps to pebble any target of G′.

Proof. To pebble vj for all j ∈ [1, c1s], we require pebbles on all ri for i ∈ [2, s] and one pebble on
the path from v1 to vc1s; otherwise, the entire pyramid must be rebuilt, resulting in repebbling all
nodes in the graph as we showed in the proof of Lemma 5.17. To pebble the pyramid requires s
pebbles on the pyramid at all times and takes Θ(s2). We show this is true.

Suppose that at some point before pebbling the apex of the pyramid that a pebble is removed
from the graph, then, by our requirement that s− 1 pebbles must remain on ri for i ∈ [2, s] and
that a pebble must be on the path from v1 to vc1s, the removed pebble cannot be used for either of
these tasks. Thus, the entire pyramid must be rebuilt, contradicting the frugality of the strategy.

Thus, s nodes must remain on the graph for Θ(s2 + c1s) = Θ(s2) parallel time steps, proving
our theorem.

We create G′ = (V ′, E′) from G (as constructed using Definition 5.15) using Definition 5.13 ,
resulting in a graph with Θ(s2) total nodes.

Theorem 5.20. Ps(G
′, s, T ) = s.

Proof. By Lemma 5.18 the graph is shortcut-free and by Lemma 5.16 Ps(G,T ) = s, therefore, we
use Theorem 5.14 to prove that Ps(G

′, s, T ) = s.

By the proof that G′ is shortcut-free, we obtain the following corollary that G′ is also incrementally
hard. Moreover, Corollary 5.22 follows directly from the proof of Theorem 5.14.

Corollary 5.21. Given a graph G = (V,E) as constructed in Graph Construction 5.15, G is
incrementally hard: Ps(G, |C| − 1, C) ≥ |T | for any subset C ⊆ T .

The following corollary about the graph-optimal sustained time complexity is proven directly
from the proof of Lemma 5.17 and Theorem 5.19 that if less than s

2 magic pebbles are on the
pyramid, then half the pyramid must be rebuilt resulting in Θ(s2) time-steps in which s pebbles are
on the graph; thus proving for the cases when |C| − 1 < s

2 . We now prove the case when |C| − 1 ≥ s
2 .

Corollary 5.22. Given a graph G = (V,E) as constructed in Graph Construction 5.15, Popt-ss(G, |C|−
1, C) = Θ(|V |) for all subsets of C ⊆ T .

Proof. If |C| − 1 ≥ s
2 magic pebbles are not placed on ri for all i ∈ [2, s], then we have to rebuild at

least half the pyramid, resulting in Θ(s2) = Θ(|V |) time being used. Thus, some s′ ≥ s
2 magic pebbles

must be used on ri for all i ∈ [2, s]. Then, to pebble all |C| ≥ s
2 targets requires Θ(s2) = Θ(|V |)

time using another black pebble since s′ ≥ s
2 pebbles are used on the pyramid.
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5.2 H2 construction

Our construction of H2 is presented in Algorithm 1.

Algorithm 1 H2

On input (1κ, x) and given oracle access to SeekR (where R is the string outputted by H1):

1. Let 8R8 = |R|/w be the length of R in words.
2. Query the random oracle to obtain ρ0 = O(x) and ρ1 = O(x+ 1).
3. Use ρ0 to sample a random ι ∈ [8R8].
4. Query the SeekR oracle to obtain y′ = SeekR(ι).
5. Output y′ ⊕ ρ1.

Lemma 5.23. For any R, the output distribution of H2 is uniform over the choice of random oracle
O ← O.

Proof. Over the choice of random oracle, the value ρ1 computed in Step 2 is truly random, and y′ is
independent of ρ1 by construction, so the output y′ ⊕ ρ1 is also truly random.

Remark. Lemma 5.23 is important as an indication that our SHF construction “behaves like a
random oracle.” The memory-hardness guarantee alone does not assure that the hash function
is suitable for cryptographic hashing: e.g., a modified version of H2 which directly outputted y′

instead of y′ ⊕ ρ1 would still satisfy memory-hardness, but would be an awful hash function (with
polynomial size codomain). The inadequacy of existing memory-hardness definitions for assuring
that a function “behaves like a hash function” is discussed by [AT17].

5.3 Proofs of hardness of SHF Constructions

We now prove the hardness of our graph constructions given earlier in Section 5.
We begin by stating two supporting lemmata. The first is due to Erdős and Rényi [ER61], on

the topic of the Coupon Collector’s Problem.

Lemma 5.24 ([ER61]). Let Zn be a random variable denoting the number of samples required,
when drawing uniformly from a set of n distinct objects with replacement, to draw each object at
least once. Then for any c, limn→∞ Pr[Zn < n log n+ cn] = e−e

−c
.

Corollary 5.25. Let Zn,k be a random variable denoting the number of samples required, when
drawing uniformly from a set of n distinct objects with replacement, to have drawn at least k ∈ [n]
distinct objects. Let q ∈ ω(k log k). Then Pr[Zn,k < q] is overwhelming (in k).

Proof. For m ∈ N and i ∈ [m− 1], let Ei,m denote the event that after i elements out of a set of m
elements have already been sampled uniformly with replacement, the (i+ 1)th sample will coincide
with one of the elements already drawn. For any i ≤ k ≤ n, it holds that Pr[Ei,n] ≥ Pr[Ei,k]. The
desired event of drawing k distinct objects corresponds exactly to the conjunction of Ei,m for i ∈ [k].
Therefore, for all k ∈ [n] and any c′,

Pr[Zn,k < c′] ≥ Pr[Zk < c′] . (4)

Hence, it suffices for our purposes to bound Pr[Zk]. From Lemma 5.24,

lim
k→∞

Pr[Zk < k log k + ck] = lim
k→∞

e−e
−c
.

Applying a Taylor expansion, we get Pr[Zk < k log k + ck] ∈ O(1 − e−c). This probability is
overwhelming in k (i.e., e−c is negligible) whenever c ∈ ω(log(κ)).
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Theorems 5.26–5.29 state the static-memory-hardness of our SHF constructions based on Graph
Constructions 5.4 and 5.15.

Theorem 5.26. Define a static-memory hash function family (H1,H2) as follows: let H1 be the
graph function family FΠCh

(Graph Construction 5.4), and let H2 be as defined in Algorithm 1. Let

H = {hκ}κ∈N be the static-memory hash function family described by (H1,H2). Let κ̂ = κ− ξ log(κ)
for any ξ ∈ ω(1), let Λ̂, τ ∈ Θ(

√
n), and let q ∈ ω(Λ log Λ). Then (H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.

Proof. Suppose, for contradiction, that the theorem does not hold. Then by Definition 4.2, there

exist: κ ∈ N, a string R ∈ {0, 1}κ̂(Λ̂−1), an algorithm A, and a set X = {x1, . . . , xq} such that the
following probability is non-negligible:

Pr
O,ρ

[{
(x1, hκ(x1)), . . . , (xq, hκ(xq))

}
= A(1κ, R; ρ) ∧ s-memO(κ̂Λ̂,A, R, ρ) < τ

]
. (5)

We denote by Eρ the event that

(x1, hκ(x1)), . . . , (xq, hκ(xq))
}

= A(1κ, R; ρ) ∧ s-memO(κ̂Λ̂,A, R, ρ) < τ .

Given a correct evaluation y = hκ(x) of H2 on a given input x, one can easily compute ρ0, ρ1

by evaluating O on x, x+ 1 respectively, and demask y to obtain the value y′(x) = y ⊕ ρ1 of the
target label computed in Step 4 of Algorithm 1. Moreover, the index ι computed in Step 3 can be
computed as a deterministic function of ρ0. Define B′ to be the deterministic algorithm that on
input (x, y) computes ρ0, ρ1 and y′ as described above, and outputs (ι, y′).

Next, define B to be the algorithm that runs A and then applies B′ on each pair (xi, yi) outputted
by A, and outputs the resulting set J = {(ι1, y′1), . . . , (ιq, y

′
q)} where each (ιi, y

′
i) = B′(xi, yi).

By construction, if yi = hκ(xi), each y′i is the correct label of ιith target node of the cylinder
graph. Notice that this means that for each value of ι, there is a unique value of y′ such that
(ι, y′) = B′(x, hκ(x)) for any x.

Let I denote |{ιi}xi∈X |. Since the set X is fixed before the random oracle, the locations I are
distributed uniformly and independently (with replacement). Then by Corollary 5.25, the number
of distinct locations |I| is at least Λ̂ with overwhelming probability. That is, there is a negligible

function ε′ such that Pr
[
|I| ≥ Λ̂

]
≥ 1− ε′. Conditioned on Eρ, all pairs (xi, yi) outputted by A are

such that yi = hκ(xi), and we have already observed that each value of ι induces a unique value of
y′ outputted by B′ on input pairs of the form (xi, hκ(xi)). It follows that Pr[|J | ≥ Λ̂ | Eρ] ≥ 1− ε′.

Now consider the ex-post-facto magic pebbling strategy P induced by B. By Lemma 3.8, with
overwhelming probability over the random oracle and the coins of B, P is legal and uses at most⌊

|R|
κ̂

⌋
=

⌊
κ̂(Λ̂− 1)

κ̂

⌋
≤ Λ̂− 1 (6)

magic pebbles; call this event E ′ρ (where ρ denotes the randomness of B). By Lemma 3.9, with
overwhelming probability over the same,

∀i ∈ [t], |Pi| ≤
⌊
|σi|
κ̂

⌋
, (7)

where t is the length of P, Pi is the ith configuration of P, and σi is the ith state of the execution
of B. We denote by E ′′ρ the event that (7) is satisfied (where ρ denotes the randomness of B). By

definition, event Eρ implies that |σi| ≥ κ̂Λ̂ for fewer than τ values of i. Combining this observation

with (7), we have that whenever Eρ occurs, |Pi| ≥ Λ̂ for fewer than τ values of i.
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Finally, we observe that conditioned on Eρ, since we established above that B outputs a set of at

least Λ̂ correct target labels, the strategy P must successfully pebble the corresponding Λ̂ target
nodes. Since Pr[Eρ] is non-negligible and Pr[E ′] and Pr[E ′′] are overwhelming, Pr[E ′ ∧ E ′′|E ] must
be negligibly close to Pr[E ] (and thus, non-negligible). The occurrence of E ∧ E ′ ∧ E ′′ implies the
existence of a pebbling strategy P that is legal, uses at most Λ̂− 1 magic pebbles, and for which
the number of time-steps in which at least Λ̂ total (i.e., black and magic) pebbles are used is less
than τ . This contradicts Corollaries 5.9–5.10.

Theorem 5.27. Define a static-memory hash function family (H1,H2) as follows: let H1 be the
graph function family FG (Graph Construction 5.15), and let H2 be as defined in Algorithm 1. Let
κ̂ = κ − ξ log(κ) for any ξ ∈ ω(1), let Λ̂ ∈ Θ(

√
n), let τ ∈ Θ(n), and let q ∈ ω(Λ log Λ). Then

(H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.

Proof sketch. Identical proof structure to the proof of Theorem 5.26, except instead of invoking
Corollaries 5.9–5.10 at the end, we derive a contradiction to Corollaries 5.21–5.22.

The parameter q is suboptimal in Theorems 5.26 and 5.27. We can achieve optimality (i.e.,
q = 8|R|8) by the following alternative construction of H2: make q′ = ω(log(κ)) random calls instead
of just one call to the Seek oracle in Step 4. To preserve the output size of hκ, it may be useful to
reduce the size of node labels by a corresponding factor of q′. This can be achieved by truncating
the random oracle outputs used to compute labels in Definition A.1. The description of this altered

Hq
′

2 and the definition of graph function family Fq′G with shorter labels are given in Appendix A.

Theorem 5.28. Define a static-memory hash function family (H1,H2) as follows: let H1 be the

graph function family Fκ/q
′

ΠCh
(Graph Construction 5.4), and let H2 be Hq

′

2 as defined in Algorithm

2 for some q′ ∈ ω(log Λ). Let κ̂ = κ− ξ log(κ) for any ξ ∈ ω(1), let Λ̂, τ ∈ Θ(
√
n), and let q = Λ.

Then (H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.

Proof sketch. Identical proof structure to the proof of Theorem 5.26, except that when invoking

Corollary 5.25, due to the design of Hq
′

2 which calls Seek more times than H2, we obtain the stronger
statement that an adversary that successfully outputs q pairs ((x1, hκ(x1)), . . . , (xq, hκ(xq))) must
correctly guess q target labels of the graph.

Theorem 5.29. Define a static-memory hash function family (H1,H2) as follows: let H1 be the

graph function family Fκ/q
′

G (Graph Construction 5.15), and let H2 be Hq
′

2 as defined in Algorithm

2 for some q′ ∈ ω(log Λ). Let κ̂ = κ− ξ log(κ) for any ξ ∈ ω(1), let Λ̂ ∈ Θ(
√
n), let τ ∈ Θ(n), and

let q = Λ. Then (H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.

Proof sketch. Identical proof structure to the proof of Theorem 5.28, except instead of invoking
Corollaries 5.9–5.10 at the end, we derive a contradiction to Corollaries 5.21–5.22.

6 Capturing nonlinear space-time tradeoffs with CCα

Next, we motivate our notion of CCα (Definition 2.16). We show that both the honest party and the
adversary may choose to use different pebbling strategies given different values of α even when α is
constant. Furthermore, we show that both of our pebbling constructions of H1 (given in Section 5)
have the desirable feature that the honest party and the adversary use the same strategy regardless
of the size of α.
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6.1 CC and CCα consider cumulative cost of different strategies

We present a graph family with in-degree-2 where the strategy that an adversary chooses to pebble
an instance G in the graph family differs depending on the α parameter of the CCα complexity
measure. We show that in our case, for certain α, we would choose to use constant space, whereas
for other α, using superconstant space is the preferred option. We define our graph family as follows:

Graph Construction 6.1. We define a graph family G with bounded degree 2 and arbitrary
n ∈ N nodes such that the time-space tradeoff of a graph with n nodes in the family is T (S) ≥
(n

c

na )(na − (S − 2))(nb) + n (where S is the number of pebbles used to pebble the graph) where
0 ≤ a, b, c < 1, b+ c > a+ 1, a < b, c, and nc ≈ n− na+b.

• Given a graph G = (V,E) with n vertices, partition the set of vertices, V , into 2 sets, A and B
where |A| = na+b and |B| = nc (since we know nc ≈ n− na+b, nc + na+b ≈ n).
• We arbitrarily order all vertices in B in some order, [vi, . . . , vn] and create edges (vj , vj+1) ∈ E

for all j ∈ [i, n− 1].
• We arbitrarily order all vertices in A in some order, [v1, . . . , vi−1] and create edges (vj , vj+1) ∈ E

for all j ∈ [1, i− 2].
• We create edge (vi−1, vi).
• Create edges (vk, vl) ∈ E (vk ∈ A and vl ∈ B) where k mod nb = 0 and l = na+b+

(
k
nb

)
+(q−1)na

for all integers q ∈
[
1, n

c

na

]
.

Fig. 4 illustrates Graph Construction 6.1.

B

Figure 4: Graph Construction 6.1 with n = 16, a = 1
4 , b = 2

3 , c = 2
3 . For clarity, we depict na = 2,

nb ≈ 6 and nc ≈ 6.

We show that there are at least two pebbling strategies, P1 and P2, where an adversary would
differ in his preferred strategy depending on α when using the CCα complexity measure when α > α′

where α′ is calculated with respect to the parameters of the graph family constructed from Graph
Construction 6.1.

Lemma 6.2. Given a pebbling strategy P1 that uses constant space S1, Time(P1) = Θ(nb+c) where
G ∈ G in defined by Graph Construction 6.1.

Proof. Suppose that a constant S1 pebbles can be on the graph at any particular time, then at most
S1 − 1 of the vertices in A ⊆ V can be pebbled. It does not help to pebble the vertices in B since
all vertices in B needs to be pebbled only once regardless of the pebbling strategy used. Since only
the vertices vj ∈ A where j mod nb = nb − 1 are connected to vertices in B, using the given S1,
the optimal placements are on vertices vj in order to minimize pebbling time since any extra space
needs to be used to pebble B and pebbling anywhere else results in greater pebbling time since
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the pebble needs to be moved to vertex vj by the pigeonhole principle. Given constant S1 pebbles,
there exist vj vertices that do not contain pebbles. Thus, each time one reaches a vertex in B with
predecessor vj ∈ A without a pebble, at least nb time must be spent to pebble it. Therefore, given
S1 pebbles, the total amount of time necessary to pebble G is ( n

c

na )(na− S1)(nb) + n = Θ(nb+c).

Corollary 6.3. Given a pebbling strategy, P1, that uses constant space S1, p-ccα(P1) = Θ(nb+c)
where G ∈ G is constructed by Def. 6.1.

Proof. This follows immediately from Lemma 6.2 since constant space is used throughout the
pebbling.

Lemma 6.4. Given a pebbling strategy P2 that uses space S2 = na + 1, Time(P2) = Θ(n) where
G ∈ G is constructed by Graph Construction 6.1.

Proof. It is trivial to show that pebbling a line takes Ω(n) time since all nodes have to be pebbled
at least once. We now show a strategy using na + 1 pebbles that uses O(n) time.

We start with the vertices in A and pebble them in topological order, keeping pebbles on all
vj ∈ A where j mod nb = nb − 1. There exists exactly na vertices in A by definition that are
predecessors of vertices in B. Therefore, as we pebble the vertices in A in topological order, we
leave a pebble on each vertex vj . When we pebble B all predecessors of vertices in B are either in
B or are pebbled in A. Therefore, we only need to pebble all vertices in A and B once, resulting in
Time(P2) = Θ(n).

The following corollary is directly proven by the proof of Lemma 6.2.

Corollary 6.5. Given a pebbling strategy, P2, that uses space S2 = na + 1 and Time(P2) = Θ(n),
p-ccα(P2) = Θ(nαa+1) where G ∈ G is constructed by Graph Construction 6.1.

Lemma 6.6. When α = 1, then CCα(G) = Θ(na+1).

Proof. Suppose in the case when α = 1, we use a pebbling strategy, P , that uses nonconstant space
s = o(na). Then, for each pebble, we pebble one of the vertices vj ∈ A where j mod nb = nb−1. The
resulting p-ccα(P) = s(n

c

na )(na − s)(nb) + n which is minimized when s = na + 1 given b+ c > a+ 1
by definition of our graph family.

Lemma 6.7. For all a, b, c, there exists an α′ such that for all constant α > α′, CCα(G) = Θ(nb+c).

Proof. Given a pebbling strategy, P , that uses space s = ω(1), the pebbling cost is then p-ccα(P) =
sα(n

c

na )(na − s)(nb) + n. When α > 1, p-ccα(P) = Θ(min(sαnb+c, nαa+1)) = ω(nb+c) when α > b+c
a

and s = ω(1). Therefore, only for s = O(1), does the pebbling cost become p-ccα(P) = Θ(nb+c)
when α′ = b+c

a . Since a, b, c are constants, for all α > α′, CCα(G) = Θ
(
nb+c

)
.

From the above two lemmas, we immediately get the following theorem regarding the CCα of
the constructions given different constant values of α.

Theorem 6.8. Given a graph G = (V,E) as constructed by Graph Construction 6.1, when α = 1,
CCα(G) = Θ(na+1) but when α > α′ for some constant α′, CCα(G) = Θ(nb+c).

As an immediate result of the above, there exists a point for constants a, b, c that the adversary
chooses a different strategy to pebble a graph for different constant values of α (we can pick values
of a, b, c such that α′ can be reduced even down to α′ ≥ 3).
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6.2 Upper bounds for CCα

We prove a tighter upper bound for CCα when α is a constant than the trivial upper bound of
nα+1. We first note that nα+1 is a trivial upper bound on the CCα(G) of a graph, G, since at
any timestep Ps(G,T ) ≤ n and the algorithm runs for Time(G, |T |) ≤ n given n space is used
throughout. Therefore, CCα(G) ≤ nα+1 for all graphs G. We now prove a tighter upper bound
using the general pebbling algorithm described in [AB16] as GenPeb(G,S, g, d).

We formulate a simplified version of the GenPeb(G,S, g, d) procedure which we call the GenPeb(G)
procedure. At a high-level the GenPeb(G) algorithm proceeds as follows (see [AB16] for more detail).

Definition 6.9 (GenPeb(G):).

1. There exists a subset S of |S| ≤ 2αn log logn
logn vertices (for large enough n where 2α log logn ≤ log n)

such that depth(G− S) ≤ n
logα n (Lemma 6.1, 6.2 in [AB16], [Val77]).

2. Balloon Phase: Pebble all nodes up to depth n
logα n (depth measured from the last light phase)

until all immediate descendants lie in S.
3. Light Phase: When all immediate descendants lie in S, remove all pebbles from nodes not in

S and not on parents of the next nodes to be pebbled. Continue in the light phase until a node
not in S must be pebbled.

4. Repeat the above until no more nodes need to be pebbled.

Lemma 6.10. Let sΣ be the total number of pebbles used in the balloon phase (the sum of the
number of pebbles used in all balloon phases) and sΣ\S be the total number of pebbles used in the
balloon phases on all nodes v 6∈ S. Then, sΣ\S ≤ n.

Proof. This proof is trivial since at most n pebbles can be the graph at any time.

Lemma 6.11. Let Σ\S be the subgraph of G = (V,E) which is pebbled during the balloon phase

and whose vertices are not in S. Then, CCα(Σ\S) ≤ nα+1

logα n .

Proof. By Lemma 6.10, the number of pebbles necessary to pebble Σ\S is at most n: sΣ\S ≤ n.

Therefore, we can compute CCα(Σ\S) ≤
∑

Bi∈B(|Bi|)α ≤ nα( n
logα n) = nα+1

logα n given a series of

balloon phase pebble configurations B where
∑

Bi∈B |Bi| = n and B0
⋃
· · · ·

⋃
· B|B| = V .

Lemma 6.12. Let CCα(S) be the cost of pebbling S in both the light and the balloon phases. The

CCα(S) of the light and balloon phases is at most O
(
nα+1(log logn)α

logα n

)
.

Proof. The total amount of time that light and balloon phases last in which nodes in S are pebbled is
at most n timesteps since a number greater than n implies that |S| ≥ n which is impossible since the
number of nodes in the graph is n. In the light phases, at most 2|S| = 4αn log logn

logn pebbles are kept

on the graph since each node has bounded in-degree 2. Therefore, CCα(G) ≤ 4αααnα+1(log logn)α

logα n .

Theorem 6.13. For any bounded in-degree-2 graph, CCα(G) = O
(
nα+1(log logn)α

logα n

)
for constant

α ≥ 1.

Proof. This follows directly from Lemmas 6.11 and 6.12.
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6.3 Asymptotically tight sequential lower bound for α = 1

We give an explicit construction of a graph that achieves asymptotically tight lower bound (up to
log logn factors) in CCα that matches our upper bound provided in Section 6 for α = 1 and in [AB16,
ABP17b] when considering the sequential pebbling model20 . Previous constructions [AB16, ABP17a]
ignored log log n factors and were not tight up to such factors in the parallel model. Because we
consider the sequential pebbling model (and not the parallel model) in proving our lowerbound
below, our results are incomparable to these previous lower bound results in the parallel model. Our
graph constructions are new, and their tightness in the parallel pebbling model is an open question.

In our construction, we make use of the stacked superconcentrators constructed in [LT82, §4]
except that the vertices are connected in some topological order (blowing up our graph by only a
constant factor of 6 if we replace all degree 3 nodes with a height 3 pyramid).

Graph Construction 6.14. Let C(n, k) be a stacked superconcentrator with k layers where Ci is
the i-th linear superconcentrator. We create the following edges between nodes. Let T be a topological
sort order of the vertices in C(n, k). Create edges (vi, vi+1) where vi is the vertex immediately
preceding vi+1 in T. Replace all degree 3 nodes with pyramids of height 3.

It was proven in [LT82] (Theorem 4.2.6) that given S ≤ n
20 pebbles, k layers, and n nodes in

each linear superconcentrator per layer, the pebbling time, T (n, k, S), of pebbling C(n, k) is lower
bounded by:

T (n, k, S) = nΩ

((
nk

64S

)k)
.

In our construction defined by Def. 6.14, we first let S = c1(N log logN/ logN) (for some
constant c1), n = 20S, k = bN/Sc, and we get a graph C(n, k) with Θ(N) vertices. Thus, we obtain
the following tradeoff for this graph given S pebbles:

T ≥ SΩ

(
N

S

)Ω(N/S)

for S ≤ c2

(
N log logN

logN

)
for some constant c2 where c2 < c1.

Thus, we notice two main characteristics of our graph. If S ≥ c1

(
N log logN

logN

)
, then the time

it takes to pebble the graph is O(N) since the width of the graph is Θ
(
N log logN

logN

)
. Second, if

S ≤ c2

(
N log logN

logN

)
then S pebbles are used to pebble the graph for ω(N) time by Theorem 4.2.6

of [LT82]. Note that if the tradeoff is sufficiently great, then we achieve our stated lower bound.
To prove our stated lower bound, we modify the proof for Theorem 4.2.5 of [LT82] so that we
account for CCα instead of just the time-space tradeoff. Minimizing the equation for tradeoff in

terms of α = 1 and showing that the cost is greater than the cost of when S ≥ c1

(
N log logN

logN

)
and

the cumulative complexity for when S ≥ c1

(
N log logN

logN

)
is Θ

(
N2 log logN

logN

)
then provides us with the

lower bound we want.
We use the same notation as that used in the proof of Theorem 4.2.5 in [LT82]. Let n be

the number of outputs of the superconcentrator C(n, k) and k be the number of copies of the

20Although our construction matches asymptotically the best lower bound construction in the pROM (see the
footnote for Lemma 6.22).
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linear superconcentrators (number of levels in the stack of superconcentrators) in C(n, k). We
number the parts of C(n, k) similarly to how they are numbered in the proof of Theorem 4.2.5,
let Ci be the i-th copy of the linear superconcentrators that composes C(n, k). We consider the
outputs of Ck as numbered in the order in which they are first pebbled. Let zi be the time that
output i (where 1 ≤ i ≤ n) is pebbled. Therefore, z0 = 0 and zn+1 = Time(C(n, k), S). Then, let
[z′i, z

′′
i ] be the interval of time starting with the z′i-th move and ending with the z′′i -th move where

zi−1 ≤ z′i ≤ z′′i ≤ zi. Let pi be the minimum number of pebbles on Ck in the interval [zi−1, zi] for
1 ≤ i ≤ n and where p0 = 0, pn+1 = 0, and pi ≤ S for all i in the valid range.

We first note that since we do not remove any vertices or edges (only add edges to the construction
to maintain the topological order and to ensure that at most one additional pebble is added to the
graph at each time step), all properties of the graph with respect to n as proven in [LT82] still hold
(i.e. adding edges does not change the linear superconcentrator properties of the graphs). Hence,
we restate some of the key theorems and lemmas in [LT82] that will allow us to prove the lower
bound in CCα when α = 1 that we seek.

We restate the definition of a good interval given in [LT82] below:

Definition 6.15 (Good Intervals [LT82]). An interval [i, j] ⊂ [1, n] is good if it fulfills the following
three requirements:

pi ≤
j − i

2
, (8)

pj+1 ≤
j − i

2
, (9)

pk >
j − i

8
for i < k ≤ j. (10)

We also restate one key lemma relating to good intervals below:

Lemma 6.16 (Lemma 4.2.3 [LT82]). During the good interval [i, j] at least n− 2S different outputs
of Ck−1 are pebbled. Only S − 1− b j−i8 c pebbles are available to pebble the n− 2S different outputs
of Ck−1.

We also restate a combinatorial lemma proved in [LT82] that will allow us to prove a recursive
relation on CCα (which will subsequently allow us to provide a bound for our construction).

Lemma 6.17 (Lemma 4.2.4 [LT82]). Let r ≤ n. We can find a set of disjoint good intervals in
[1, r] that covers at least r

4 − S − pr+1 elements of [1, r].

Finally, we adapt a theorem based on a simple application of BLBA that provides a (not quite
tight enough) lower bound on the time necessary to pebble our constructed graph given S pebbles
and provide a proof for our construction defined in Graph Construction 6.14.

Theorem 6.18 (Theorem 4.2.1 [LT82]). In order to pebble all outputs of C(n, k) as defined in
Graph Construction 6.14 using S black pebbles, 2 ≤ S ≤ n−1

4 (starting with any configuration of
pebbles on the graph), we need T placements where

T ≥ n
( n

10S

)k
.

Using these lemmas, we now write our final recursive theorem for the CCα of our construction.
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Theorem 6.19. Let CCα(N, k, S) be the CCα (when α = 1) necessary to pebble all the outputs of
C(n, k) (recall that the topological sort of the vertices requires that for the last output to be pebbled,
all other outputs must be pebbled) with S ≤ n

20 pebbles. Then,

T (n, 1, S) ≥ n2

10S
(11)

T (n, k, S) ≥ min
(x1,...,xm)∈Dk

∑
1≤i≤m

T

(
n, k − 1, S − 1−

⌊
xi − 1

8

⌋)
for k > 1, (12)

CCα(N, k, S) ≥ min
D1,...,Dk

∑
1≤j≤k

∑
(x1,...,xm)∈Dj

⌊
xi − 1

8

⌋(
T

(
n, j − 1, S − 1−

⌊
xi − 1

8

⌋))
(13)

≥ min
D

∑
(x1,...,xm)∈D

⌊
xi − 1

8

⌋
T

(
n, k − 1, S − 1−

⌊
xi − 1

8

⌋)
. (14)

where Di is an index set that contains all the ways in which we can select a large number of
good intervals. Specifically,

Di =

(x1, . . . , xm)|m >
n

64S
, 1 ≤ xi ≤ 8S − 6 for 1 ≤ i ≤ m, and

∑
1≤i≤m

xi ≥
n

8

 .

Proof. The proof for the expression for T (n, k, S) follows directly from Theorem 4.2.5 in [LT82].
Now we prove the expression for CCα of C(n, k) for the case when S ≤ n/20. For each good

interval, at least
⌊
xi−1

8

⌋
pebbles must remain on Ck while C1, . . . , Ck−1 are pebbled with the

remaining S − 1−
⌊
i−1

8

⌋
pebbles. Therefore, the CCα when α = 1 of the good period with length x

is
⌊
xi−1

8

⌋
T
(
n, k − 1, S − 1−

⌊
xi−1

8

⌋)
. By Lemma 6.17, we have that the total length of the disjoint

good intervals is at least n/8 (since pr+1 ≤ S and n/4− 2S ≥ n/8). Thus, summing over the CCα

for all good intervals and minimizing over all possible allocations of good intervals gives a lower
bound on the CCα for Ck which is a lowerbound on the CCα when α = 1 of the entire graph.

Lemma 6.20. When S = c1

(
N log logN

logN

)
for some constant c1, n = 20S, k = bN/Sc and we create

a graph according to Graph Construction 6.14, C(n, k) with Θ(N) vertices,

CCα(N, k, S) ≥ min
D

∑
(x1,...,xm)∈D

⌊
xi − 1

8

⌋20S

(
20S(bN/Sc − 1)

c
(
S − 1−

⌊
xi−1

8

⌋))bN/Sc−1
 (15)

for S ≤ c2

(
N log logN

logN

)
for some constants c (specified in the proof) and c2 < c1.

Proof. We know from [LT82] that the expression for T (n, k, S) is lower bounded by T (n, k, S) ≥
n
(
nk
cS

)k
for some constant c ≥ 10. Therefore, we can substitute this expression into our Eq. 14 to

obtain the following expression:

CCα(N, k, S) ≥ min
D

∑
(x1,...,xm)∈D

⌊
xi − 1

8

⌋n( n(k − 1)

c(S − 1−
⌊
xi−1

8

⌋
)

)k−1
 .
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Substituting our values as stated above then gives

CCα(N, k, S) ≥ min
D

∑
(x1,...,xm)∈D

⌊
xi − 1

8

⌋20S

(
20S(bN/Sc − 1)

c
(
S − 1−

⌊
xi−1

8

⌋))bN/Sc−1
 (16)

for some number of pebbles used that is less than n/20; or in other words, for some constant

c2, S ≤ c2

(
N log logN

logN

)
where we determine the exact values of c1 and c2 later on (since the exact

values of c1 and c2 also depend on the types of linear superconcentrators used in each of the k layers
of our construction).

Lemma 6.21. Given S ≤ c2

(
N log logN

logN

)
for some constant c2 where c2

(
N log logN

logN

)
< n/20,

CCα(N, k, S) ≥ c2

8

(
N log logN

logN

)20S

(
20S

(⌊
N
S

⌋
− 1
)

c(S − 1)

)bNS c−1
 . (17)

Proof. We assume for the sake of contradiction that there exists a closed formed lowerbound for the
equation where some xi > 1. Suppose there exists some good period with length xi > 1, then the
term

xi
8

20S

(
20S

(⌊
N
S

⌋
− 1
)

c(S − 1−
⌊
xi−1

8

⌋
)

)bNS c−1


is in the summation of the calculation of CCα(N, k, S) (see Eq. 16). We can replace the term
with the following:

xi

1

8

20S

(
20S

(⌊
N
S

⌋
− 1
)

c(S − 1)

)bNS c−1


which results in a smaller CCα(N, k, S) a contradiction, therefore no values of xi are greater
than 1 and the closed form lower bound is that as stated in Eq. 17.

Lemma 6.22. Given S ≤ c2

(
N log logN

logN

)
for some constant c2 where c2

(
N log logN

logN

)
< n/20, CCα

when α = 1 is ω
(
N2 log logN

logN

)
.21

Proof. From Lemma 6.21, the CCα when less than c2

(
N log logN

logN

)
pebbles are used is lower bounded

by the closed form expression,

CCα(N, k, S) ≥ c2

64

(
N log logN

logN

)20S

(
20S

(⌊
N
S

⌋
− 1
)

c(S − 1)

)bNS c−1
 . (18)

21We can show for this case that CCα is ω
(

N2

logN

)
in the parallel random oracle case since the runtime in Eq. 18

can be improved by at most a factor of 1
S

.
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We know that the lower bound given in Eq. 18 is Θ

(
N log logN

logN

(
S
(
N
S

)N
S
−1
))

.

Given S ≤ N log logN
logN pebbles, we now prove that the CCα of our construction for α = 1

is ω
(
N2 log logN

logN

)
. We know that S

(
N
S

)N
S
−1

= ω(N) for all S ≤ c2

(
N log logN

logN

)
. Therefore,

CCα(N, k, S) = ω
(
N2 log logN

logN

)
.

Theorem 6.23. Given S > c2

(
N log logN

logN

)
, CCα when α = 1 is Ω

(
N2 log logN

logN

)
. Therefore,

CCα(G) = Θ
(
N2 log logN

logN

)
in the sequential22 pebbling model where G is given by our Graph

Construction 6.14 above.

Proof. Let S be large enough that a single linear superconcentrator with n output nodes can be
pebbled in almost linear time. In this case, we use the simple BLBA argument presented in Theorem

4.2.1 of [LT82] to prove that in this case, CCα(N, k, S) = Ω
(
N2 log logN

logN

)
since each Ci in the

construction of C(n, k) as defined in Graph Construction 6.14 along with the edges joining Ck−1

with Ck is an n-superconcentrator.
The BLBA theorem as proven in [LT82] proves a tradeoff in time with respect to the number of

pebbles in the starting and ending configuration of the graph. Let Sa be the starting number of
pebbles on the graph and Sb be the ending number of pebbles on the graph. Suppose that Sb = 0 for

the sake of lowerbounding our cumulative complexity. Then c2

(
N log logN

logN

)
< min1≤i≤k

(
Sia
)
≤ S

by our theorem statement where Sia is the starting pebble configuration for level i. Suppose that

Scia ≤ c2

(
N log logN

logN

)
for L levels (i.e. for some set of levels in [c1, . . . , cL]), then CCα(n, i, S) is

given by Lemma 6.22 for the L values. Using Lemma 6.22, we see that in order for the bound from
Lemma 6.22 to not hold, we must have L = o(N/S). But, then, N/S − o(N/S) = Θ(N/S) layers

are pebbled with Sia > c2

(
N log logN

logN

)
pebbles. Therefore, we achieve the same asymptotic bound

by considering c2

(
N log logN

logN

)
< min1≤i≤k

(
Sia
)
≤ S.

Thus, by BLBA, we know that

T (n, 1, S) ≥ max

(
1,
n− 2S

2S + 1

)
(19)

T (n, i, S) ≥ n
(

max
(

1,
n

10S

))i
(20)

CCα(N, k, S) ≥
∑

1≤i≤k:Sia

SiaT (n, i− 1, S − Sia) max

(
1,

(
n− 2Sia
2Sia + 1

))
(21)

≥ n min
1≤i≤k:Sia

(
Sia
)

max

(
1,
n− 2S

2S + 1

)
(k − 1) (22)

We can simplify in the last step since T (n, i− 1, S − Sia) ≥ n for all 1 ≤ i ≤ k. Furthermore, by
our argument above, we know that min1≤i≤k:Sia

(
Sia
)

= Θ(S).

When n = c1

(
N log logN

logN

)
, S > c2

(
N log logN

logN

)
, and k = logN

log logN , then Eq. 22 simplifies

to Ω
(
N2 log logN

logN

)
for some predefined c2 and c1. Otherwise, the time of pebbling is N using

22Erratum: An earlier version of this paper stated the theorem for general pebbling strategies, not just sequential
ones. The proof herein is unchanged from that earlier version, and proves the theorem only for sequential strategies.
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(a) Runtime vs. output size, 128 B
input, 65 KB row

(b) Runtime vs. input size, 1 B out-
put, 65 KB row

(c) Runtime vs. row size, 64 B out-
put, 128 B input

Figure 5: Evaluation of cylinder implementation

c1

(
N log logN

logN

)
pebbles resulting in CCα when α = 1 to be Θ

(
N log logN

logN

)
.

Case of α = 2 We briefly note that the above construction does not asymptotically achieve tightness
for α = 2 by our current analysis. This is due to the fact that when α = 2, Lemma 6.22 no longer

holds due to the fact that
(
N log logN

logN

)
·
(

logN
log logN

) logN
log logN

= o(N2).

Open Question. Does there exist a bounded in-degree graph family that has CCα for α ≥ 2 that
meets the upper bound?

7 Cylinder-based SHF implementation

We implemented a prototype our cylinder construction defined in Def. 5.4. We choose to implement
this construction because it is simplest of the constructions we present for H1, yet achieves memory
and time bounds comparable to our more complicated construction. Our implementation seeks
to give a preliminary demonstration of practical feasibility of the cylinder construction for certain
parameter ranges; it is not a detailed evaluation of optimized performance.

In implementing the pebbling construction, we seek to minimize the runtime of H1 while
maximizing its output size. This leads to some interesting tradeoffs as well as an observation about
static-memory-hardness and the random oracle model in general.

Overview of implementation First, we map an entire row of labels (i.e., labels in a particular
layer of our construction) in our cylinder construction defined in Definition 5.4 to an array of bits in
memory of length l. We implement a serialized pebbling algorithm by iteratively reading n bits,
starting at offset f , applying a hash function to the read bits, writing the n-bit output from the hash
function at offset f , and finally incrementing f by additive n bits for the next round. This process
is repeated until the end of the string, which constitutes one row of the cylinder construction. This
procedure of processing the rows of the cylinder is repeated once for every row of the cylinder DAG.

Parameters Our configurable parameters are: the total size of the array l, the input size i and the
output size n of the hash function. Other parameters depend on these as follows:

• The label size is n which is also the output length of the hash function. Every hash produces
one label. The number of labels per row is then l

n . l should be a multiple of n so that there are
no partial labels at the end of the array.
• The indegree of the wraparound pyramid is i

n . Here as well, i should be a multiple of n so that
the degree is an integer and this maps cleanly to the pebbling model when we consider ingree
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2n (ie constant indegree 2 in the pebbling model).
• The height needed for the wraparound pyramid is then the array size divided by the difference

between input and output sizes, or l
i−n . The input size must be greater than the output size for

the height to be defined. This corresponds with the requirement that the degree must be at
least 2 for the pyramid construction to provide meaningful guarantees.

Instantiating the random oracle We used blake2b, a fast and well-known hash function. Blake2b
has an internal state size of 1024 bits, so we were able to set i to 1024 bits while keeping the memory
hardness. n was set to 512 bits, giving a 2-degree pebbling graph. Decreasing either i or n would
lead to inefficient use of the function. It would seem that hash functions with a larger internal state
size, capable of supporting a larger i would be faster for this usage, but it is not as clear as larger
state sizes may correlate with slower evaluation of a single hash.

We measured the time taken by using a single core of an AMD Ryzen 7 1700 processor. The
single threaded code was able to perform approximately 300 million hash operations per second on
1024 bit inputs. This rate could be increased by using multiple cores, but the 300 million hashes
per second rate can be used with the above figures to see how many hash operations are being
performed at the different settings.

7.1 Remarks on implementation and musings on random oracles in practice

Reducing number of hashes The runtime of evaluating H1 is determined by the number of hash
transformations called as very little other computation is done. The number of hashes per row is l

n ,

and the number of rows is l
i−n , giving a total number of hash calls as(

l

n

)(
l

i− n

)
=

l2

ni− n2
.

l2 indicates the expected time requirement proportional to the square of the output size. To optimize
the time for a given l, we look at the denominator, ni− n2, noting that i > n, keeping this positive.
To reduce the time taken, increase the input size i. Graphically, this makes sense as descending
from the top of the wraparound pyramid, the higher degree will quickly cover the entire width of a
row. However, in practice we cannot increase i and maintain the memory-hard properties: this is
an interesting divergence between the random oracle model and real-world hash functions.

Data busses to the random oracle One aspect which is rarely discussed in the random oracle
model is the exact process by which one makes a call to the oracle. Does the query need to be
sent to the oracle via a parallel bus, all bits at once, or is the query sent via a serial bus, one bit
at a time? If serially, can we send some of the bits, then wait a while, and send the rest? We are
not aware of literature dealing with these mechanics of data transmission to and from the oracle;
however, in our case it is quite relevant. If serial transmission is allowed, i can be made arbitrarily
large without needing to store the whole row of the wraparound pyramid in memory. For each bit
of a label, as soon as it is computed it can be sent to all the oracles using that bit as an input,
and promptly forgotten; the oracles act as a memory cache. The memory-hardness proofs implicity
assume an oracle model where the entire query is handed over simultaneously to the oracle, and as
such, any query to the oracle must exist in its entirety in memory before the query is made.

In practice, real-world hash functions resemble a serial-bus oracle much more closely than a
parallel bus oracle. Whether we’re referring to Merkle-Damg̊ard [], Sponge construction [], or other
methods, today’s widely used hash functions are built out of fixed length one-way functions. The
internal state of a hash function can thus act as a data cache for the purposes of the pebbling graph.
For a high-degree node, the left predecessors can be fed to the hash function and forgotten before
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the right predecessors are known. Since the internal state of the hash function has a fixed size, this
defeats the memory hardness promised by the pebbling construction.

Data-dependence and cache timing attacks We implement a data-dependent memory access
pattern for H2. Other papers (e.g., Catena [LW15] and Balloon Hash [BCGS16]) have identified
security vulnerabilities due to data-dependent memory access patterns which can leak information
about the password to an attacker with incomplete access to the physical system evaluating the
password hashing function. These attacks occur because of the variable time taken to evaluate the
function based on the input data, primarily due to the automatic caching of data inside the CPU.

We believe that our H2 function, while implementing a data-dependent memory access pattern,
is likely much more resistant to cache timing attacks than the examples mentioned above, based on
the following analysis. In practical usage, the output of H1 will be very large with respect to the
number of queries H2 performs on the data; for any single evaluation of H2, nearly all of the H1

data will go unread. Because of this sparse access, data will be read once and not used again before
being evicted from the cache. The probability that an input to H2 results in a collision, and multiple
reads from the same memory region, is thus modeled by (8Λ8)−Q where Λ is the size of the output
of H1, and Q is the number of oracle calls made by H2.

Inputs resulting in cache hits should be rare, and knowledge of a cache hit during H2 evaluation
give a bounded advantage to the attacker expressed by

total number of access patterns with n collisions

total number of zero-collision access patterns
.

However, we note that this could still be significant advantage in practice because attackers do not
need to perform memory lookups into the set of H1 outputs in order to detect collisions. That
is, an attacker still has to perform lots of hashes, but their memory requirement could go down
significantly.

On memory allocation In order to implement the wraparound pyramid in the efficient way
described above, memory usage needs to be slightly greater than that stated in theoretical model,
due to necessary memory allocations in the hardware. Namely, the leftmost bits of the array need
to be copied and appended to the right side, so that the lower level input values are available to the
final hash interations which consume the wraparound inputs. This increases the memory needed by
i− n.
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Algorithm 2 Hq
′

2

On input (1κ, x) and given oracle access to SeekR (where R is the string outputted by H1):

1. Let 8R8 = |R|/w be the length of R in words.
2. Query the random oracle to obtain ρ0 = O(x) and ρ1 = O(x+ 1).
3. Use ρ0 to sample randomly ι1, . . . , ιq′ ∈ [8R8].
4. Query the SeekR oracle to obtain {y′i = SeekR(ιi)}i∈[q′].
5. Output (y′1|| . . . ||y′q′)⊕ ρ1.

A Details of SHF construction with short labels

Definition A.1 (q′′-labeling). Let G = (V,E) be a DAG with maximum in-degree δ, let L be an

arbitrary “label set,” and define O(δ,L) =
(
V ×

⋃δ
δ′=1 L

δ′ → L
)

. Let O|q′′ be the function that

outputs the first q′ bits of the output of O. For any function O ∈ O(δ,L) and any label ζ ∈ L, the
(O, ζ, q′′)-labeling of G is a mapping labelO,ζ : V → L defined recursively as follows.23

labelO,ζ(v) =

{
O|q′′(v, ζ) if indeg(v) = 0

O|q′′(v, labelO,ζ(pred(v))) if indeg(v) > 0
.

Then, we define our family of random oracle functions defined from our hard to pebble graph
family constructions.

Definition A.2 (q′′-graph function family). Let n = n(κ) and let Gδ = {Gn,δ = (Vn, En)}κ∈N be
a graph family. We write Oδ,κ to denote the set O(δ, {0, 1}κ) as defined in Definition A.1. The

q′′-graph function family of G is the family of oracle functions Fq
′′

G = {fG}κ∈N where fG = {fOG :
{0, 1}κ → ({0, 1}κ)z}O∈Oδ,κ and z = z(κ) is the number of sink nodes in G. The output of fOG on
input label ζ ∈ {0, 1}κ is defined to be

fOG (ζ) = labelO,ζ(sink(G)) ,

where sink(G) is the set of sink nodes of G.

B Regular and normal pebbling strategies

Here, we restate three theorems and prove briefly their equivalent formulation in the parallel model
for the parallel model adapted from theorems in [GLT80, DL17] proven in the sequential model.

We first restate the definitions for normal and regular strategies:

Definition B.1 (Frugal Strategy [GLT80]). Given a DAG G = (V,E), a frugal strategy is a
pebbling strategy with no unnecessary placements. In particular, the following are true of any frugal
pebbling strategy:

1. At all times after the first placement on a vertex v, some path from v to the goal vertex contains
a pebble.

2. At all times after the last placement on a vertex v, all paths from v to the goal vertex contain a
pebble.

23We abuse notation slightly and also invoke labelO,ζ on sets of vertices, in which case the output is defined to be a
tuple containing the labels of all the input vertices, arranged in lexicographic order of vertices.
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3. The number of placements on a nongoal vertex is bounded by the total number of placements on
its successors.

Definition B.2 (Normal Strategy [GLT80]). A normal strategy is a standard pebbling strategy
that is frugal and it pebbles each pyramid P in G as follows: after the first pebble is placed on P ,
no placement or removal of pebbles occurs outside P until the apex of P is pebbled and all other
pebbles are removed from P . No new placement occurs on P until after the pebble on the apex of P
is removed.

Theorem B.3 (Normal Strategy Conversion [GLT80]). If the goal vertex is not inside a pyramid,
any standard pebbling strategy can be transformed into a normal pebbling strategy without increasing
the number of pebbles used in both the sequential and parallel pebbling models.

Proof. The proof of this statement in the sequential model is given in [GLT80]. We now prove
this statement in the parallel model. By our proof of Lemma 5.1, any sequential strategy can be
simulated trivially by a parallel strategy; therefore, if any pebbling strategy can be transformed
into a sequential normal pebbling strategy, then any pebbling strategy can be transformed into a
parallel normal pebbling strategy.

We now define regular pebbling strategies:

Definition B.4 (Regular Strategy [DL17]). Given a DAG G = (V,E), a regular strategy is a
standard pebbling strategy that is frugal and after the first pebble is placed on any road graph Rw ∈ G,
no placements of pebbles occurs outisde Rw until the set of desired outputs of Rw all contain pebbles
and all other pebbles are removed from Rw.

By the same argument as given for the proof of Theorem B.3, we can prove the equivalent for
parallel regular pebbling strategies.

Theorem B.5 (Regular Strategy Conversion [DL17]). Given a DAG G = (V,E), if each input,
ij ∈ {i1, . . . , iw}, to a road graph has at most 1 predecessor, any standard pebbling strategy that
pebbles a set of desired outputs, O ⊆ {o1, . . . , ow}, at the same tiime can be transformed into a
regular strategy without increasing the number of pebbles used.

In addition, we prove this stronger theorem about the pebbling space complexity of pyramid
graphs below than the theorems provided in [GLT80, Nor15] that will be useful for determining the
pebbling space complexity of pyramids in the magic pebble game.

Theorem B.6. Given a pyramid graph Πh with h levels where level 1 has h nodes and level h has 1
node. Given S pebbles and if all S pebbles are placed on level i of the pyramid and S < h+ 1− i,
then the apex of the pyramid cannot be pebbled using the rules of the standard pebble game.

Proof. Given S < h+ 1− i pebbles on the i-th layer of a height h pyramid, we know that the i-th
level of the pyramid forms a height h+ 1− i height pyramid with the apex. Thus, by the pebbling
space complexity of pyramids, h+ 1− i pebbles are necessary on level h+ 1− i in order to pebble
the apex.
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