
Doing Real Work with FHE: The Case of Logistic Regression

Jack L.H.Crawford
Queen Mary Univ. of London

Craig Gentry
IBM Research

Shai Halevi
IBM Research

Daniel Platt
IBM Research

Victor Shoup∗

NYU

February 19, 2018

Abstract

We describe our recent experience, building a system that uses fully-homomorphic encryption
(FHE) to approximate the coefficients of a logistic-regression model, built from genomic data.
The aim of this project was to examine the feasibility of a solution that operates “deep within
the bootstrapping regime,” solving a problem that appears too hard to be addressed just with
somewhat-homomorphic encryption.

As part of this project, we implemented optimized versions of many “bread and butter” FHE
tools. These tools include binary arithmetic, comparisons, partial sorting, and low-precision ap-
proximation of “complicated functions” such as reciprocals and logarithms. Our eventual solution
can handle thousands of records and hundreds of fields, and it takes a few hours to run. To achieve
this performance we had to be extremely frugal with expensive bootstrapping and data-movement
operations.

We believe that our experience in this project could serve as a guide for what is or is not
currently feasible to do with fully-homomorphic encryption.

Keywords: Homomorphic Encryption, Implementation, Logistic Regression, Private Genomic Com-
putation

Research partly supported by the Defense Advanced Research Projects Agency (DARPA) and Army
Research Office(ARO) under Contract No. W911NF-15-C-0236.

∗Work partially done in IBM Research.

Contents

1 Introduction 1
1.1 Somewhat vs. Fully Homomorphic Encryption . 1
1.2 Logistic Regression and the iDASH Competition . 1
1.3 Our Logistic-Regression Approximation Procedure . 2
1.4 Homomorphic Computation of the Approximation Procedure 2
1.5 The End Result . 4
1.6 Related Work . 4
1.7 Organization . 4

2 Logistic Regression and Our Approximation 5
2.1 A Closed-Form Approximation Formula for Logistic Regression 5
2.2 Validity of the Approximation . 6

3 Bird-Eye View of Our Solution 7
3.1 The procedure that we implement . 7
3.2 Homomorphic Evaluation . 8

3.2.1 Parameters and plaintext space . 8
3.2.2 Encrypting the input . 9
3.2.3 Computing the correlation . 9
3.2.4 Finding the k most correlated columns . 10
3.2.5 Computing the category counters . 11
3.2.6 Computing the variance and log-ratio . 12
3.2.7 Computing the matrix A and vector ~b . 12
3.2.8 Solving A~w′ = ~b . 12
3.2.9 Bootstrapping considerations . 13

4 Computing “Complicated Functions” using Table Lookups 13

5 Binary Arithmetic and Comparisons 15
5.1 Adding Two Integers . 15
5.2 Adding Many Integers . 17
5.3 Integer Multiplication . 17
5.4 Comparing Two Integers . 18
5.5 Accumulating the bits in a ciphertext . 18

6 Solving a Linear System 19
6.1 Randomized Encoding with Rational Reconstruction 20
6.2 Are We Still Leaking Too Much? . 21

7 Implementation and Performance Results 22
7.1 Results for the Logistic-Regression Application . 22

7.1.1 Is this Procedure Accurate Enough? . 23
7.2 Timing results for the Various Components . 23

8 Conclusions and Discussion 24

1 Introduction

1.1 Somewhat vs. Fully Homomorphic Encryption

Since Gentry’s breakthrough almost a decade ago [13], fully-homomorphic encryption (FHE) was
touted as a revolutionary technology, with potential far-reaching implications to cloud computing and
beyond. Though only a theoretical plausibility result at first, the last decade saw major algorithmic
improvements (e.g., [5, 4, 15]), resulting in many research prototypes that implement this technology
(e.g., [18, 12, 6, 10]) and attempt to use it in different settings (e.g., [3, 14, 22, 11, 16, 23], among
others).

Nearly all contemporary FHE schemes come in two variants: The basic underlying scheme is
somewhat homomorphic (SWHE), where the parameters are set depending on the complexity of the
required homomorphic operations, and the resulting instance can only support computations up to
that complexity. The reason is that ciphertexts are “noisy”, with the noise growing throughout the
computation, and once the noise grows beyond some (parameter-dependent) threshold the ciphertext
can no longer be decrypted. This can be solved using Gentry’s bootstrapping technique (at the cost of
relying on circular security). In this technique the scheme is augmented with a recryption operation to
“refresh” the ciphertext and reduce its noise level. The augmented scheme is thus fully homomorphic
(FHE), meaning that a single instance with fixed parameters can handle arbitrary computations. But
FHE is expensive, as the computation must be peppered with expensive recryption operations. So, it
is often cheaper to settle for a SWHE scheme with larger parameters (that admit larger noise).

Indeed, with very few exceptions, almost all prior attempts at practical use of HE used only the
SWHE variant, fixing the target computation and then choosing parameters that can handle that
computation and no more. But SWHE has its limits: as the complexity of the function grows, the
SWHE parameters become prohibitively large. In this work, we set out to investigate the practical
feasibility of “deep FHE”, attempting to answer the fundamental question of FHE’s usefulness in
practice:

Can FHE realistically be used to compute complex functions?

1.2 Logistic Regression and the iDASH Competition

Over the last few years, competitions by the iDASH center [20] provided a good source of “real world
problems” to grind our teeth on. iDASH promotes privacy-preserving approaches to analysis of medical
data, and since 2014 they have organized yearly competitions where they present specific problems
in this area and ask for solutions using technologies such as differential privacy, secure multi-party
computation, and homomorphic encryption.

In the homomorphic-encryption track of the 2017 competition, the problem to be solved was to
compute homomorphically the parameters of a logistic-regression model, given encrypted data. The
data consists of records of the form (~x, y) where ~xi ∈ {0, 1}d represent attributes of an individual (e.g.,
man or woman, over 40 or not, high blood pressure or not, etc.), and y ∈ {0, 1} is the target attribute
that we investigate (e.g., whether or not they have a heart disease). A logistic-regression model tries
to predict the probability of y = 1 given a particular value of ~x, postulating that the probability

p~x
def
= Pr[y = 1|~x] can be expressed as p~x = 1/(1 + exp(−w0−〈~x, ~w′〉)) for some fixed vector of weights

~w = (w0, ~w′) ∈ Rd+1. (The term w0 is typically called an “offset”.) Given sample data consisting
of n records, our task is to find the weight vector ~w ∈ Rd+1 that best approximates the empirical
probabilities (e.g., in the sense of maximum likelihood). For a more detailed exposition see section 2.

In addition to presenting the problem, the iDASH organizers also provided some sample data on
which to test our procedures. The data consisted of nearly 1600 records of genomic data, each with
105 attributes (but they also accepted solutions that could only handle much fewer attributes than

1

this). With so many attributes, this appears firmly outside the scope of SWHE1, hence we set out to
design a solution to the iDASH task using FHE.2

1.3 Our Logistic-Regression Approximation Procedure

The starting point for our solution is a closed-form formula that we developed for approximating the
logistic-regression parameters. This formula, developed in section 2 below, involved partitioning the
records into “buckets”, one per value of ~x ∈ {0, 1}d, then counting the numbers of y = 1 and y = 0
in each bucket. These bucket counters are then used to derive a linear system A~w = ~b whose solution
is the vector of weights ~w that we seek. As explained in section 2, computing A,~b from the bucket
counters involve “complicated functions” such as rational inversion and the natural logarithm.

The first issue that we have to deal with, is that our approximation formula only yields valid results
in settings where the number of records n far exceeds the number of attributes d. Specifically, it relies
on the fraction of y = 1 records in each bucket ~x to roughly approximate p~x, so in particular we must
have n� 2d to ensure that we have sufficiently many records in each bucket. But we aim at a setting
with d > 100, which is far outside the validity region of this approximation formula.

We thus added to our solution a “quick-n-dirty” pre-processing phase, in which we homomorphi-
cally extract from the d input attributes a set of k � d attributes which are likely to be the most
relevant ones, then apply the approximation formula only to these k attributes, and set wj := 0 for
all the others. Specifically, in our solution we used k = 5, since the sample iDASH data had very few
attributes with significant wj coefficients.

This quick-n-dirty procedure involves computing the correlation between each column (attribute)
xj and the target attribute y, this is essentially just computing linear functions. Then we find the
indexes j1, . . . , jk of the k columns xj that are most correlated with y, and extract only these columns
from all the records. The high-level structure of our homomorphic procedure is therefore:

1. For each column j, compute Corrj = |Correlation(xj , y)|;

2. Compute j1, . . . , jk, the indexes of the k columns with largest Corrj values;

3. Extract the k columns j1, . . . , jk, setting ~x′i[1 . . . k] := (~xi[j1], . . . ~xi[jk])

4. Compute the bucket counters, for every ~x ∈ {0, 1}k set

Y~x :=
∣∣∣{i ≤ N : ~x′i = ~x and yi = 1}

∣∣∣ , N~x :=
∣∣∣{i ≤ N : ~x′i = ~x and yi = 0}

∣∣∣ .
5. Compute A ∈ R(k+1)×(k+1) and ~b ∈ Rk+1 from the Y~x’s and N~x’s.

6. Solve the system A~w′ = ~b for ~w′ ∈ Rk+1, then output the coefficients w0 := w′0, wji := w′i for the
columns j1, . . . , jk, and wj := 0 for all other columns j.

Jumping ahead, about 55% of the computation time is spent in the first “quick-n-dirty” phase, which
is the only part of the computation that manipulates homomorphically the entire input dataset.

1.4 Homomorphic Computation of the Approximation Procedure

We used the HElib library [19] as our back end to evaluate our approximation procedure homomor-
phically. Devising a homomorphic computation of this procedure brings up many challenges. Here we
briefly discuss some of them.

1Some entries in the iDASH competition, including the winner, found clever ways to use SWHE for this problem,
albeit only for a much smaller number of attributes. See for example [23].

2Unfortunately, our solution was not ready in time for the iDASH competition deadline, so we ended up not partici-
pating in the formal competition.

2

Implementing “complex” functions. Obtaining the linear system A,~b from the bucket counters
Y~x, N~x involves computing “complex” functions such as rational division, or the natural logarithm.
Computing these functions homomorphically, we have two potential approaches: one is to try to
approximate them by low-degree polynomials (e.g., using their Taylor expansion), and the other to
pre-compute them in a table and rely on homomorphic table lookup.

In this work we opted for the second approach, which is faster and shallower when applicable, but
it can only be used to get a low-precision approximation of these functions. In our solution we used
six or seven bits of precision, see more details in Section 4.

Homomorphic binary arithmetic and comparisons. Other things that we needed were the
usual addition and multiplications operations, but applied to integers in binary representation (i.e.,
using encryption of the individual bits). Somewhat surprisingly, these basic operations were not
discussed much in the literature, not in terms of proper implementations. Computing them homomor-
phically is mostly a matter of implementing textbook routines (e.g., carry look ahead for addition).
But in this context we are extremely sensitive to the computation depth, which is not typical in other
implementations. We describe our implementation of these methods and their various optimizations
in Section 5.

Deciding on the plaintext space. HElib supports working with different plaintext-space moduli,
and different calculations are easier with different moduli. In particular, the correlation computation
in the first step is much easier when using a large plaintext space, as this lets us treat it as a linear
operation over the native plaintext space. But most other operations above are easier when working
with bits.

Here we use some features of the recryption implementation in HElib: When set to recrypt a
ciphertext whose plaintext space is modulo 2, HElib uses temporary ciphertexts with plaintext space
modulo 2e for some e > 2 (usually e = 7 or e = 8). In particular it means that HElib can support
computation with varying plaintext spaces of the form 2e, and it also supports switching back and
forth between them.

In our procedure, we used a mod-211 plaintext space for computing the initial correlation, then
switched to mod-2 plaintext space for everything else.

Setting the parameters. Setting the various parameters for bootstrapping is somewhat of an art
form, involving many trade-offs. In our implementation we settled for using the m-th cyclotomic ring
with m = 215 − 1, corresponding to lattices of dimension φ(m) = 27000. We set the number of levels
in the BGV moduli-chain so that at the end of recryption we will still have nine more levels to use.
Recryption itself for this value of m takes 20 levels, so we need a total of 29 levels. This means that
we used a maximum ciphertext modulus q of size roughly 1030 bits, yielding a security level of just
over 80 bits.

Solving linear systems. The last step in the approximation procedure above is to solve a linear
system over the rational numbers. Performing this step homomorphically (with good numerical sta-
bility) is a daunting task. We considered some “pivot free” methods of doing it, but none of them
seemed like it would be a good solution to what we need.

Since this is the last step of the computation, one option is to implement instead a randomized
encoding of this step, which may be easier to compute. We discuss that option in section 6, in particular
describing randomized encoding of the linear-system-solver function, that may be new. However we
did not implement that scheme in our solution, instead we settled for a “leaky” solution that simply
sends the linear system to be decrypted and solved in the clear.

3

1.5 The End Result

We implemented homomorphically all aspects of the procedure above, except the final linear-system
solver. The program takes a little over four and a half hours on a single core to process the dataset
of about 1600 encrypted records and 105 attributes. Over two and a half hours of this time is spent
on extracting the five most relevant columns, about 45 minutes are spent on computing the bucket
counters, and the remaining hour and 15 minutes is spent computing A and ~b from these counters.
We can use more cores to reduce this time, down to just under one hour when using 16 cores. See
more details in section 7. In terms of accuracy, our solution yields “area under curve” (AUC) of about
0.65 on the given dataset, which is in line with other solutions that were submitted to the iDASH
competition.

1.6 Related Work

Surprisingly, not much can be found in the literature about general-purpose homomorphic implemen-
tation of basic binary operations. The first work that we found addressing this issue is by Cheon et al.
[9], where they describe several optimizations for binary comparison and addition, in a setting where
we can spread the bits of each integer among multiple plaintext slots of a ciphertext. They show
procedures that use fewer multiplication operations, but require more rotations. These optimizations
are very useful in settings where you can ensure that the bits are arranged in the right slots to begin
with. But in our setting, we use these operations as a general-purpose tool, working on the result
of previous computation. In this setting, the need for many rotations will typically negate the gains
from saving on the number of multiplications. We thus decided to stick to bit-slice implementation
throughout our solution, and try to make them use as few operations (and as small depth) as possible.

Other relevant works on homomorphic binary arithmetic are due to Xu et al. [27] and Chen et al.
[7], who worked in the same bitslice model as us and used similar techniques. But they only provided
partially optimized solutions, requiring deeper circuits and more multiplications than we use. (For
example, they only used a size-4 carry-lookahead-adder for addition, and did not use the three-for-two
procedure for multiplication.)

In terms of applying homomorphic encryption to the problem of logistic regression, the work of
Aono et al. [1] described an interactive secure computation protocol for computing logistic regression,
using additively-homomorphic encryption. Mohassel and Zhang [24] also described related secure-
MPC protocols (but using garbled circuits, not HE). Wang et al described in [26] a system called
HEALER that can compute homomorphically an exact logistic-regression model, but (essentially)
only with a single attribute and only with very small number of records (up to 30).

A lot more work on the subject was done as part of the iDASH competition in 2017, but the
only public report that we found on it is that of Kim et al. [23]. In this report they describe their
implementation, using the somewhat-homomorphic scheme for approximate numbers due to Cheon
et al. [8] to implement a homomorphic approximation of logistic regression (with a small number of
attributes) using gradient-descent methods.

1.7 Organization

The rest of this report is organized as follows: In section 2 we derive our closed-form approximation
formula for logistic regression. Then in section 3 we provide a bird-eye view of our solution, describing
the individual steps and explaining how they are implemented. In sections 4 and 5 we describe many
of the “toolboxes” that we developed and used as subroutines in this solution, and in section 7 we give
performance results of our implementation. Our randomized encoding for the linear-system solver over
the rational numbers in developed in section 6, and we conclude with a short discussion in section 8.

4

2 Logistic Regression and Our Approximation

Logistic regression is a technique to model dependence between related attributes. The input consists
of n records (rows), each with d+ 1 attributes (columns), all of the form (~xi, yi) with ~xi ∈ {0, 1}d and
yi ∈ {0, 1}. Below we sometimes refer to a fixed value ~c ∈ {0, 1}d as a category. (We sometime also
refer to the different values ~c ∈ {0, 1}d as “buckets”.) The ultimate goal is to estimate the probability
p~x = Pr[y = 1|~x]. Logistic regression is a model that postulates that this probability is determined as

p~x =
1

1 + exp
(
− w0 −

∑n
i=1 xiwi

) =
1

1 + exp
(
− 〈(1|~x), ~w〉

)
for some fixed vector of weights ~w ∈ Rd+1. The goal of logistic regression, given all the records

{(~xi, yi)}ni=1, is to find the vector ~w that best matches this data. Below we denote ~x′
def
= (1|~x), and we

use the expression for p~x as a function of ~w ∈ Rd+1, namely we denote

p~x(~w)
def
=

1

1 + exp(−〈~x′, ~w〉)
=

exp(〈~x′, ~w〉)
1 + exp(〈~x′, ~w〉)

. (1)

For a candidate weight-vector ~w and some given record (~x, y), the model probability of seeing this

outcome y for the attributes ~x is denoted P~x,y(~w)
def
= {1− p~x(~w) if y = 0, p~x(~w) if y = 1}. If we

assume that the records are independent and use maximum-likelihood as our notion of “best match”,
then the goal is to find ~w∗ = argmax~w

(∏n
i=1 P~xi,yi(~w)

)
= argmax~w

(∑n
i=1 ln(P~xi,yi(~w))

)
.

2.1 A Closed-Form Approximation Formula for Logistic Regression

To get our approximation formula for logistic regression, we partition the data into the 2d “categories”
~c ∈ {0, 1}d. For each category ~c, we denote the number of records in that category by n~c, the number
of records in that category with y = 1 by Y~c, and the number of records with y = 0 by N~c = n~c − Y~c
(‘Y ’ and ‘N ’ for YES and NO, respectively). We also partition the last sum above into the 2d+1 terms
corresponding to all the Y~c’s and N~c’s,

n∑
i=1

ln(P~xi,yi(~w)) =
∑

~c∈{0,1}d
Y~c · ln(p~c(~w)) +N~c · ln(1− p~c(~w)).

Below it is convenient to do a change of variables and consider the “log odds ratio”,

r~c(~w)
def
= ln

(p~c(~w)
1−p~c(~w)

)
= 〈~c′, ~w〉,

where ~c′ = (1|~c). Then, p~c(~w) = 1/
(
1 + e−r~c(~w)

)
and 1− p~c(~w) = 1/

(
1 + er~c(~w)

)
. With this change of

variables, we now want to find

~w∗ = argmax
~w

∑
~c∈{0,1}d

Y~c · ln
(

1

1 + e−r~c(~w)

)
+N~c · ln

(
1

1 + er~c(~w)

)
. (2)

Fix some category ~c ∈ {0, 1}d, and consider the term corresponding to ~c in the sum above as a
function of r = r~c(~w) (with Y~c, N~c as parameters), namely

fY,N (r)
def
= Y ln

(1

1 + e−r
)

+N ln
(1

1 + er
)
.

5

To develop our closed-form formula, we approximate fY,N (·) using Taylor expansion around its maxi-
mum point r0 = ln(Y/N),

fY,N (r) ≈ someConstant − Y N

2(Y +N)
·
(
r − ln

(Y
N

))2

. (3)

(We discuss the validity of this approximation later in this section.) Recall that we are seeking the
weight-vector ~w that maximizes Eqn. (2), and hence we can ignore the someConstant (as well as the
1/2 factor in Y N

2(Y+N)) since these do not depend on ~w. Hence the value that we seek is

~w∗ = argmax~w

{
−
∑

~c

Y~cN~c
Y~c +N~c︸ ︷︷ ︸

def
= V~c

·
(
r~c(~w)− ln(Y~c/N~c)︸ ︷︷ ︸

def
= L~c

)2}

= argmin~w

{∑
~c V~c ·

(
〈~c′, ~w〉 − L~c

)2}
.

We continue by expressing the last expression in matrix form. Let ~V , ~L be 2d-dimensional column
vectors consisting of all the V~c’s and L~c’s, respectively. Also let Cd be a (d+ 1)× 2d 0-1 matrix whose
columns are all the ~c′ vectors (namely the m’th column is (1|bin(m))t). For example for d = 3 we have

C3 =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 . (4)

Then the expression above can be written in matrix form as

F (~w)
def
=
∑
~c

V~c ·
(
〈~c′, ~w〉 − L~c

)2
=
(
~wTCd − ~LT

)
× diag(~V)×

(
CTd ~w − ~L

)
.

F (~w) is a quadratic form in ~w, and it is minimized at

~w∗ = argmin
~w
F (~w) =

(
Cd × diag(~V)× CTd

)−1
× Cd × diag(~V)× ~L.

This finally gives us our closed-form approximation formula: Given all the records (~xi, yi) we compute
all the YES and NO counters for the different categories, Y~c and N~c, then set V~c := Y~cN~c/(Y~c + N~c)
and L~c := ln(Y~c/N~c).

We then let D be the 2d-by-2d diagonal matrix with the V~c’s on the diagonal and ~U be the 2d

vector with entries V~c · L~c, and we compute the approximation ~w∗ := (Cd D CTd)−1 × Cd ~U .

2.2 Validity of the Approximation

It is clear that the approximation procedure above relies on the number of records being sufficiently
larger than the number of categories, so that we have enough YES and NO instances in each category.
(Indeed if any Y~c or N~c is zero then the value L~c becomes undefined.)

Below we therefore assume that the number of records in each category is very large (i.e., tends
to infinity). This implies by the law of large numbers that Y~c and N~c (now considered as random
variables) can be approximated by normal random variables. In particular they tend to their expected
value p~c ·n~c and (1−p~c)·n~c, and their log ratio R~c := ln(Y~c/N~c) tends to ln(p~c/(1−p~c)). Turning that
around, it means that we expect r~c = ln(p~c/(1− p~c)) to be close to its observed value ln(Y~c/N~c), and
therefore the formula from Eqn. (3) using the Taylor expansion of f(r) around ln(Y~c/N~c) should be a
good approximation. The remaining terms in the Taylor expansion represent a residual contribution
that is not “explained” by the model.

6

Remark 1 In situations where the system is over-determined, it is possible for the model to spline
the data. One way to reduce the impact of this over-fitting is to include an ad hoc penalty to the
likelihood against the variance in β. Commonly applied penalty functions include linear L1, and
quadratic L2 forms. However, it should also be recognized that such penalty functions do not represent
sampling variation that the binomial and multinomial distributions seek to capture when sampled from
disease/exposure pj’s.

Remark 2 In the expansion, genotypes {0, 1, 2} and other similar constructions are easily accommo-
dated by the approximation.

3 Bird-Eye View of Our Solution

Expanding on the description from section 1.3, we now explain our approximate logistic-regression
procedure in more detail. We begin in Section 3.1 with a description of the various functions that
we want to compute, then in Section 3.2 we describe (still on a high level) how we implement these
functions homomorphically.

3.1 The procedure that we implement

Input & Output. The input consists of (the encryption of) n records (~xi, yi)
n
i=1, with ~xi ∈ {0, 1}d

and yi ∈ {0, 1}. Below we view the input as an n-by-d binary matrix X with the i’th row equal to ~xi,
and a column vector ~y ∈ {0, 1}n containing the yi’s. The output should be a logistic regression model,
consisting of d+ 1 real-valued weights w0, w1, . . . , wd.

Extracting “Significant” Columns. We begin by considering each column of X separately, ex-
tracting the the k columns that have the strongest correlation with the target vector ~y. Below we use
HW(~v) to denote the Hamming weight of ~v, and denote by X|j the j’th column of X. We compute
the following quantities:

• Let Y := HW(~y), i.e., the number of records with yi = 1;

• For j = 1, . . . , d, let αj := HW(X|j), i.e., count the records with ~xi[j] = 1;

• For j = 1, . . . , d, let βj := HW(X|j ∧ ~y), i.e., records with ~xi[j] = yi = 1;

• For j = 1, . . . , d, let Corrj := |n · βj − Y · αj |, i.e., the correlation magnitude between ~y and X|j .

Then we redact the input records, keeping only the k attributes with the strongest correlation to y.
Namely we extract from X the submatrix X ′ ∈ {0, 1}n×k, consisting of the k columns with the largest
values of Corrj . In our implementation we used in particular k = 5. Let j1, . . . , jk be the indexes of

the selected columns, and denote by (~x′i, yi)
n
i=1 the n redacted records, i.e., the rows of (X ′|~y).

Computing category counters, variance, and log-ratio. We accumulate the redacted records
in 2k buckets according to their ~x′i values. For each category ~c ∈ {0, 1}k, we compute Y~c, N~c as the
number of records in that category with y = 1, y = 0, respectively,

Y~c :=
∣∣∣{(~x′i, yi) : ~x′i = ~c, yi = 1

}∣∣∣ , N~c :=
∣∣∣{(~x′i, yi) : ~x′i = ~c, yi = 0

}∣∣∣ .
Then we compute the variance and log-ratio, respectively, as V~c := Y~cN~c

Y~c+N~c
and L~c := ln(Y~c/N~c).

7

Setting up the linear system. We now arrange the V~c’s and L~c’s in vectors ~V , ~L: For any
m = 0, 1, . . . , 2k − 1, let bin(m) ∈ {0, 1}k be the binary expansion of m, we set the m’th entry in ~V to
Vbin(m), and the m’th entry in ~L to Lbin(m). Next we compute the coefficients of a linear system from

the vectors ~L, ~V as follows:

The matrix A. Let Ck be a fixed (k + 1) × 2k binary matrix, whose m’th column is (1|bin(m))T .
An example for k = 3 is illustrated in Eqn. (4). We compute a real (k + 1) × (k + 1) matrix
A := Ck×diag(~V)×CkT (over R), where diag(V) is the diagonal matrix with ~V on the diagonal.

The vector ~b. Let ~U be an entry-wise product of ~V and ~L, i.e., Um := Vm · Lm for all m ∈ [2k]. We
compute the real (k + 1)-vector ~b := Ck × ~U .

Computing the output. Finally, we solve the linear system A~w′ = ~b (over R) for ~w′ ∈ Rk+1, then
set the output vector ~w ∈ Rd+1 as follows:

• The “offset” is w0 := w′0;

• For the selected columns j1, . . . , jk we set wj` := w′`;

• For all other columns we set wj := 0.

3.2 Homomorphic Evaluation

We now proceed to give more details on the various steps we used for homomorphic evaluation of the
functions above. The description below is still a high-level one, with many of the details deferred to
later sections. In particular, this implementation relied on many lower-level tools for homomorphic
evaluation of binary arithmetic and binary comparisons that will be described in Section 5, homomor-
phic table lookup in binary representation that will be described in Section 4, and more.

3.2.1 Parameters and plaintext space

For our native plaintext space we use the cyclotomic ring Z[X]/(Φm(X), 211), with m = 32767 (so
φ(m) = 27000). This native plaintext space yields 1800 plaintext slots, each holding an element of
Z[x]/(F (X), 211) for some degree-15 polynomial F (X), irreducible modulo 211. (In other words, each
slot contains the Hensel lifting of GF (215) to a mod-211 ring.)

We stress that HElib includes operations for extracting the bits of an encrypted integer in a mod-2t

plaintext space, so we can always switch to bit operations when needed. The only limitation is that
it roughly takes depth t to extract t bits, and we can only use bootstrapping once we have encryption
of individual bits. We therefore must ensure that we always have enough homomorphic capacity left
to extract the bits of whatever integers we are manipulating.

These 1800 slots are arranged in a 30 × 6 × 10 hypercube, corresponding to the generators g1 =
11628 ∈ Z∗m/(2) of order 30, g2 = 28087 ∈ Z∗m/(2, g1) of order 6, and g3 = 25824 ∈ Z∗m/(2, g1, g2) of
order 10.

We note that due to limitations of the BGV encryption scheme that we use, we cannot realistically
use a larger plaintext space. Using a large plaintext modulus adds to the noise of operations in the
scheme, and above 211 this added noise becomes too hard to deal with. In fact a better optimized
implementation would have used a smaller plaintext space of perhaps 28 rather than 211. This would
make computing the correlation a little harder, but would reduce the noise everywhere else.

8

3.2.2 Encrypting the input

As we said in the introduction, computing the correlation is much simpler when working with a large
plaintext space, but for other operations it is easier to work with bit representation. We therefore
encrypt the input more than one way, as follows:

• We keep two mod-211 ciphertexts as accumulators for the α and β counters, and a few other
ciphertexts for packing the raw data itself. Initially all the ciphertexts are initialized to zero.
The number of the raw-data ciphertexts depends on the number of records in the dataset: The
packing scheme that we use allows each raw-data ciphertext to hold up to 150 records, and we
“fill” these ciphertexts one at a time until we encrypt all the records.

• Given a record (~xi, yi), we pack the bits in the next available raw-data ciphertext, using a
packing scheme that considers the 27000 coefficients in the native plaintext space as arranged in
a 180× 150 = (30× 6)× (10× 15) matrix. The j’th attribute in the record is then stored in the
coefficient with index (j, i) in this matrix.

In even more detail, let us consider the d+1 vector ~zi = (yi|~xi) (where we assume that d < 180),
and the bits of this record will be stored in the raw-data ciphertext of index i div 150. We let
i′ = i mod 150, i1 := i′ mod 15 and i2 := i′ div 15, and for every j = 0, 1, . . . , d we also also let
j1 := j mod 6 and j2 := j div 6. Then the bit ~zi[j] is stored in the slot of index (j1, j2, i2) in
the hypercube, in the i1’st coefficient. To encrypt this record we prepare a fresh ciphertext that
encrypts all the bits from ~zi in the order above (and is otherwise empty), and homomorphically
add it to the appropriate raw-data ciphertext.

Then, we also add the bits ~xi[j] and yi · ~xi[j] to the accumulator ciphertexts α and β. Again
we prepare a fresh ciphertext that has each bit ~xi[j] in the j’th slot (and zero elsewhere) and
add it homomorphically to the α, accumulator, and similarly we homomorphically add to the β
accumulator a fresh ciphertext with yi · ~xi[j] in the j’th slot (and zero elsewhere).

3.2.3 Computing the correlation

Once we have encrypted all the records, we have in the α, β ciphertexts all the counters αj , βj (which we
assume are sufficiently smaller than the plaintext-space modulus 211). We also assume that we are given
in the clear (a good approximation of) the value Y , i.e. the number of records with yi = 1. 3 Similarly
we know in the clear the number of records n, so we would like to just compute homomorphically
the linear combination n � β � Y � α. Unfortunately our plaintext space is not large enough for
this computation, as we expect the result to exceed 211. Instead, what we do is use a low-resolution
approximation of n, Y , namely we compute the correlation values as

Ecorr = dn/Sc� β � dY/Sc� α

for an appropriate scaling factor S, chosen just large enough so we can expect the result to fit in 11
bits.

An alternative implementation (that we did not try) is to use sub-sampling. Namely instead of
adding all the record data into the accumulators α, β, we can sub-sample (say) only 1/8 of the records
to add. This would give us three more bits, and we can even trade it off with the amount of precision
in n and Y (i.e., make the scaling factor S smaller as we sub-sample less records). Yet another option
would have been to extract the bits of all the integers in α, β and perform the computation using bit
operations, bypassing the plaintext-space issue altogether.

3This is a valid assumption in the context of medical studies, since the fraction of YES records in the overall population
is always given in “Table 1” in such studies.

9

Once we have the Ecorr ciphertext, we extract the bits to get ciphertexts Ecorr1,Ecorr2,Ecorr3, . . .,
where Ecorri encrypts the i’th bit of all the correlation numbers (represented as signed integers in
2’s-complement). I.e., the j’th slot in Ecorri encrypts the i’th bit of the number Corrj .

Computing the absolute value. Once we have the bits of the Corrj ’s, we need to compute their
absolute value. Here we simplify things by computing the 1’s-complement absolute value (rather than
2’s-complement). Namely, for a signed integer in binary representation x = xtxt−1 . . . x0, we will set
x′i = xi ⊕ xt (i ≤ t − 1). Note that this introduces an error if x < 0 (since we now have x′ = −x − 1
rather than x′ = −x). But we assume that the “relevant” columns have much stronger correlation
than the others, so a ±1 error should not make a difference.

3.2.4 Finding the k most correlated columns

We now come to the most expensive part of our procedure, where we find the indexes of the k columns
with largest correlation magnitude.

We note that the correlation computations above were done on packed ciphertexts, in a SIMD
manner. This means that we now have a few ciphertexts (one for each bit of precision), with the i’th
bit of |Corrj | stored in the j’th slot of the i’th ciphertext. We therefore find the top few values by a
shift-and-MUX procedure, using a binary comparison subroutine:

• Let ~C be the vector of values that we have, we compare point-wise ~C to ~C � `/2 (where ` is
the number of slots), homomorphically computing in each slot j ≤ `/2 a bit bj which is zero if

Cj < Cj`/2 and one otherwise. Then we set ~C ′ := ~b� (~C � `/2) + (1 �~b) � ~C.

• Then we repeat the process with shifting by `/4, etc. After log(`) such steps we have transformed
the vector into a heap with the MAX value at the root (which is at slot 0).

We then zero-out the MAX value at slot 0, and repeat the process to get the 2nd-largest value,
then the 3rd-largest value, etc. After running this procedure k times, we have our k largest
values.

We remark that this procedure that we implemented does not take any advantage of the fact that
after finding the largest value we have the values in a heap rather than in arbitrary ordering. But
note that in our SIMD environment we only need log(`) operations to extract the next largest
value, the same as extracting a value from a heap. We do not know if there is a SIMD solution
that uses less than log ` operations per extracted value.

• As described above, this procedure gives the k largest Corrj values, but our goal here is to
compute the argmax, namely the indexes of these k largest values.

To that end, we pack the indexes in the same order as we do the values. Namely we keep another
ciphertext that packs the index j in the same slot that Ecorr packs the value Corrj . Then we

perform the comparison on Ecorr, computing the ~b as before, and apply the same shift-and-MUX
operations to both Ecorr and the ciphertext containing the indexes. This ensures that when the
MAX value arrives in slot 0 in Ecorr, the index of the corresponding column will arrive at slot 0
of the other ciphertext.

Extracting the k most correlated columns. Now that we computed the indexes of the k signif-
icant columns, we proceed to extract these columns from the raw-data ciphertexts. Note that with
the packing scheme as described above, each column j is packed in all the coefficients of all the slots
with hypercube indexes (j mod 6, j div 6, ?).

10

We therefore implement a homomorphic operation, similar to the shift-and-MUX from above, that
given the bits of j, move each slot (j mod 6, j div 6, i) to position (0, 0, i), then zero-out all other
slots, thus extracting the raw data of column j. We repeat this for column 0 (containing the yi’s) and
columns i1, . . . , ik.

3.2.5 Computing the category counters

Now that we extracted the data corresponding to the relevant k + 1 columns, we need to count for
every value {0, 1}k+1, how many records (yi, ~x′i) we have with this value. After the column extraction
step above the bits of each column are packed in all the coefficients of some of the slots (namely slots
of index (0, 0, ?)) in several ciphertexts.

As a first step in computing the counters, we distribute the bits of each column j among the slots
of one ciphertext Cj , one bit per slot. This is doable since we have 1800 slots per ciphertext, and
less than 1800 records in our dataset. (If we had more records we could have used more ciphertexts
to pack them, this would not have made a big difference in running time.) Similar to other data
movement procedures (e.g., the replicate procedures from [17]), the bit distribution can be done using
a shift-and-add approach, and there are some time-vs.-noise trade-offs to be had. In our program we
somewhat optimized this step, but more optimizations are certainly possible.

After we have the bits from each column j in the slots of one ciphertext Cj , we proceed to compute
in a SIMD manner all the indicator bits χi,m, for i = 0, . . . , n and m ∈ [2k+1], indicating whether the

record ~x′i, yi belongs to category m. I.e., whether (yi|~x′i) = bin(m). This is done simply by taking
all the “subset products” of the k + 1 ciphertexts Cj . Namely we compute the product ciphertexts
P0, P1, . . . , P2k+1−1 as follows:

P0 := (1− Ci)� . . . �(1− Ck−1) � (1− Ck)
P1 := (1− Ci)� . . . �(1− Ck−1) � Ck
P2 := (1− C0)� . . . � Ck−1 � (1− Ck)
P3 := (1− C0)� . . . � Ck−1 � Ck

...
P2k+1−1 := C0 � . . . � Ck−1 � Ck

Computing all these 2k+1 products is done in depth dlog2(k + 1)e, and using “not much more” than
2k+1 multiplications, as we describe in Section 4. (Specifically, for our choice of k = 5 we use 96
multiplies.)

At this point, each slot i in the ciphertext Pm contains the indicator bit χi,m. All that is left
is to sum up all the slots in each ciphertext Pi (as integers in binary representation), getting the
bits of the corresponding counter. In our program we implemented a special-purpose accumulation
procedure for this purpose, described in Section 5 (but that procedure is not very well optimized).
The accumulation of the Pm’s for m = 0 . . . , 2k−1 give the counters Nm, and the accumulation of the
Pm’s for m = 2k, . . . , 2k+1 − 1 gives the counters Ym−2k .

Our accumulation routine also includes a “transpose-like” operation: In the input we have different
categories (buckets) represented by different ciphertexts, with the different rows across the slots. In
the output we have the different categories across the slots and different ciphertexts for different
bit positions. (We expect seven-bit counters in the output, so we have seven ciphertexts Q0, . . . , Q6

encrypting the bits of the counters. The slots in
∑

2iQi give all the counter values, with the m’th
counter in the m’th slot.) We terefore need to “transpose” from categories across different ciperhtexts
to categories across slots in the same ciphertext. This “transpose-like” operation is handled at the
same time as the accumulation: Beginning with all the slots in the input corresponding to bits of the
same counter, we gradually accumulate many bits in larger integers, thereby clearing the slots of these

11

bits so we can pack in these slots the integers for other counters, until we have the integers of all the
counters packed across the slots of the result.

3.2.6 Computing the variance and log-ratio

Next we need to compute from Ym and Nm the values Vm = YmNm
Ym+Nm

and Um = Vm · ln(Ym/Nm).
Computing the variance and log-ratio is done using table lookups: As described in Section 4, for some
function f that we want to compute, we pre-compute a table Tf such that T [x] = f(x) for all x. These
tables are computed with some fixed input and output precision, which means that the values there
are only approximate. (In our program we use 7 input bits and 7 output bits for most tables.)

We use tables for three functions in our program, specifically Tinv[x] ≈ 1/x, Tinv1[x] ≈ 1/(x+ 1),
and Tln[x] ≈ ln(x)/(x+ 1). Then given Ym and Nm we compute

rm := Ym · Tinv[Nm] ≈ Ym/Nm,

Vm := Ym · Tinv1[rm] ≈ Ym · 1
Ym/Nm+1 = YmNm/(Ym +Nm)

Um := Ym · Tln[rm] ≈ ln(Ym/Nm) · YmNm/(Ym +Nm)

Since the counters are packed in the different slots of the ciphertexts Qi, then we only need to perform
these operations once to compute in SIMD all the Vm’s and Um’s.

3.2.7 Computing the matrix A and vector ~b

The next step is to compute A := Ck × diag(~V)× CTk and ~b := Ck × ~U (over the rationals), using the
bit representation of the Vm’s and Um’s (which in our program are represented by seven bits each).
Given the structure of the 0-1 matrix Ck, in our k = 5 implementation these computations require
computing a relatively small number of subset-sums of these numbers (in binary representation). In
particular, for every two bits position `1, `2 ∈ {0 . . . k − 1}, we need to sum up all the number Vm
corresponding to indexes m with bits `1, `2 set (i.e, m`1 = m`2 = 1), and we also need one more
subset sum of all the numbers Vm of even index (m0 = 0). Similar subset sums should be computed
of the numbers Um, and we pack the numbers Um, Vm in such a way that the sums for Um, Vm can be
computed together.

Computing all the entries of A,~b for our case k = 5 takes only 16 subset sums. Note that since
the different numbers are packed in different slots, then adding two numbers require that we rotate
the ciphertext to align the slots of these numbers. Again we carefully packed the numbers in the slots
to reduce the number of rotations needed, and this step in its entirety requires 50 different rotation
amounts (each applied to all the seven bits of the numbers, for a total of 350 rotation operations).

3.2.8 Solving A~w′ = ~b

The final operation that needs to be computed is solving the linear system A~w′ = ~b over the rationals
to find ~w′. Here, however, we have a problem: recall that the procedures above only compute an
approximation of A,~b (mostly due to our use of low precision in the table-lookup-based implementation
of inversion and logarithm). Hence we must use a very numerically-stable method for solving this linear
system in order to get a meaningful result, and such methods are expensive.

One solution (which is what we implemented) is to simply send A,~b back to the client, along with
the indexes j1, . . . , jk of the significant columns. The client then decrypts and solves in the clear
to find ~w′ and therefore ~w. The drawback of this solution, of course, is that it leaks to the client
more information than just the solution vector ~w′. In section 6 we describe a solution that prevents
this extra leakage, leaking to the client only as much information as contained in ~w′, without having
to implement homomorphically expensive linear-system solvers. However we did not get around to

12

implementing this solution in our program. (We remark that implementing it would not have added
significantly to the running time.)

3.2.9 Bootstrapping considerations

As it turns out, most of the runtime of our program is spent in the recryption operations, between
66% and 75%. We must therefore be frugal with these operations. Some things that we did to save
on them include:

• Fully packed recryption. HElib can bootstrap fully packed ciphertexts, i.e., ones that encode φ(m)
coefficients in one ciphertext. The ciphertexts that we manipulate in our procedure, however,
are seldom fully packed. Hence, whenever we need to perform recryption, we first pack as much
data as we can in a single ciphertext, then bootstrap that ciphertext, and unpack the data back
to the ciphertexts where it came from.

• Strategic recryption. Instead of performing recryption only at the last minute, we check the level
of our ciphertexts before every “big step” in our program. For example, before we begin to add
two numbers in binary representation, we check all the bit encryptions to ensure that we could
complete the operation without needing to recrypt. If any of the input bits is at a low enough
level, we pack all the input bits as above and recrypt them all. Then we unpack and perform
the entire “big step” without any further recryption operations. This way we ensure that we
never need to recrypt temporary variables that are used in internal computations, only the “real
data” which is being manipulated.

4 Computing “Complicated Functions” using Table Lookups

As we explained above, we used a solution based on table lookup to implement a low-precision approx-
imation of “complex functions”. Namely, for a function f that we need to compute, we pre-compute
in the clear a table Tf such that Tf [x] = f(x) for every x in some range. Then given the encryptions
of the (bits of) x, we perform homomorphic table lookup to get the (bits of) the value Tf [x].

Building the table. Importantly, implementing a function using table lookup relies on fixed-point
arithmetic. Namely the input and output must be encoded with a fixed precision and fixed scaling.
In our implementation, we have three fixed-point parameters, precision p, scale s, and a Boolean
flag ν that indicates if the numbers are to be interpreted as unsigned (ν = false) or as signed in 2’s
complement (ν = true). Given the parameters (p, s, ν), a p-bit string (xp−1 . . . x1x0) is interpreted as
the rational number

Rp,s,ν(xp−1 . . . x1x0) = 2−s ·

(
p−1∑
i=0

2ixi + (−1)ν · 2p−1xp−1

)
.

In our implementation we have two such sets of parameters, (p, s, ν) for the input (i.e., indexes into T),
and (p′, s′, ν ′) for the output (i.e., values in T). With these parameters, the table will have 2p entries,
each big enough to hold a 2p

′
-bit number. In our implementation we pack all the bits of the output

in one plaintext slot, so we can only accommodate tables with output precision up to the size of the
slots.

Preparing the table Tf with parameters (p, s, ν, p′, s′, ν ′) for a function f(·), each entry in the table
consists of a native plaintext element (i.e, an element in Z[X]/(Φm(X), pr), in our case m = 215 − 1,

13

pr = 211). For every index i ∈ [2pin], we put in Tf [i], and element that has in every plaintext slot the
bits of the integer zi such that

Rp′,s′,ν′(bin(zi)) =
⌈
f
(
Rp,s,ν(bin(i))

)⌋
p′,s′

where dxcp′,s′ rounds the real value x to the nearest point in the set 2−s
′ · [2p′].

Saturated arithmetic. When building the table, we need to handle cases where the function value
is not defined at some point, or is too large to encode in p′ bits. In these cases, the number that we
store in the table will be either the largest or smallest number (as appropriate) that can be represented
with the given parameters p′, s′, ν ′. (For example, in the table for f(x) = 1/x, the entry T1/x[0] will

have the MAXINT value 2p
′ − 1 encoded in all the slots.)

Computing all subset-products. The main subroutine in homomorphic table lookup is a proce-
dure that computes all the subset products of a vector of bits. The input is an array of p encrypted
bits σp−1, . . . , σ1, σ0, and the output is a vector of 2p bits ρm of all the “subset products” of the σi’s
the their negation, i.e.,

ρ0 := (1− σi)· . . . ·(1− σp−1) · (1− σp)
ρ1 := (1− σi)· . . . ·(1− σp−1) · σp
ρ2 := (1− σ0)· . . . · σp−1 · (1− σp)
ρ3 := (1− σ0)· . . . · σp−1 · σp

...
ρ2p−1 := σ0 · . . . · σp−1 · σp

Namely, for any m ∈ [2p], the bit ρm is set to ρm :=
∏
mj=1 σj ·

∏
mj=0(1− σj).

To compute all these products ρm we use a “product tree” that on one hand ensure that the
multiplication depth remains as low as possible (namely dlog2 pe), and on the other hand tries to
use as few multiplication operations as possible. For p power of two, this can be done recursively as
follows:

ComputeAllProducts(input: σp−1, . . . , σ0, output: ρ2p−1, . . . , ρ0)

1. if p = 1 return ρ0 := 1− σ0, ρ1 := σ0
2. else
2. ComputeAllProducts(input: σp/2−1, . . . , σ0, output: ρ′

2p/2−1, . . . , ρ
′
0)

4. ComputeAllProducts(input: σp−1, . . . , σp/2, output: ρ′′
2p/2−1, . . . , ρ

′′
0)

5. for i, j in 0, . . . , 2p/2, set ρ2p/2j+i := ρ′′j · ρ′i.

Essentially the same procedure applies when p is not a power of two, except that it is better to
split the array so that the first part is of size power of two (i.e., size 2` for ` = dlog2 pe − 1) and the
second part is whatever is left.

We comment that this procedure is not quite optimal in terms of the number of multiplications
that it uses, but it is not too bad. Specifically the number of multiplications that it uses to compute
the 2p products is only N(p) = 2p + 2N(p/2) = 2p + 2p/2+1 + 2p/4+2 + · · · . One optimization that
we have in our program is that we stop the recursion at p = 2 rather than p = 1, and compute
the four output bits using just a single multiplication (rather than four). Namely we set ρ3 = σ1σ0,
ρ2 = σ1 − σ1σ0, ρ1 = σ0 − σ1σ0, and ρ0 = 1 + σ1σ0 − σ1 − σ0.

14

This optimization can in principle be extended to higher values of p, but it gets more complicated.
The idea is that the ρm’s can be computed in terms of the “real subset products” τm =

∏
mj=1 σj .

The τm’s can be computed using a recursive formula similar to the one above, except that in the last
line if i = 0 or j = 0 we do not need to multiply. (For i = 0 we set τ2p/2j := τ ′′j and for j = 0 we set

τi := τ ′i .) Hence the number of products is reduced to N ′(p) = (2p/2 − 1)2 + 2N ′(p/2) = 2p − p − 1.
The problem with this procedure is that recovering the ρm’s from the τm’s seems complicated (and
the savings are not that large), so we did not attempt to implement it.

Homomorphic table lookup. Once we have a table T [0, . . . , 2p− 1] and an implementation of the
subset-product procedure above, implementing homomorphic lookups into the table with encrypted
p-bit indexes requires just a simple MUX. Namely, we are given p ciphertexts, encrypting the bits σi
of an index into T . We apply the subset-product procedure above to get all the products ρm, then
return

∑
m T [m] � ρm.

Note that the input ciphertext could be packed, with a different bit σi,j in each slot j of ciphertext i.
In this case our lookup procedure would return a SIMD table lookup: the coefficients of the j’th slot
of the output will store the bits of T [xj], where xj =

∑
i 2iσi,j .

We also remark that it is possible to implement different tables in different slots, so the j’th output
slot will contain Tj [xj] instead of all using the same table T . This will require only a minor change to
our procedure for building the table (and no change to the homomorphic lookup procedure), but we
did not implement this variant yet.

5 Binary Arithmetic and Comparisons

Much of our logistic-regression procedure manipulates the various variables in their binary represen-
tation. To implement these manipulations, we rely on procedures that implement various common
low-level operations, such as arithmetic and comparisons in binary representation. In this section we
describe our implementation of these low-level operations, which has been integrated into the HElib
library.

5.1 Adding Two Integers

One basic operation that we need is adding two integers in binary representation. The input consists of
two sequences of ciphertexts, (at−1, . . . , a1, a0) and (bt−1, . . . , b1, b0), encrypting the bits of two integers
a, b, respectively (using padding, we can assume w.l.o.g. that the two integers have the same bit size).4

The output is the sequence of ciphertexts (st+1, . . . , s1, s0), encrypting the bits of the sum s = a+ b.
Of course the hard part is to compute the carry bits in the addition, which we do as follows:

• For i = 0, ..., t − 1 we compute “generate carry” and “propagate carry” bits, gi := aibi and
pi := ai + bi. (Note that at most one of pi, gi can be 1.)

• We extend the “generate” and “propagate” bits to intervals, where for any i ≤ j we have
p[i,j] =

∏j
k=i pk and g[i,j] = gi ·

∏j
j=i+1 pk.

• The carry bit out of position j is cj :=
∑j

i=0 g[i,j], and the result bits are si := ai + bi + ci−1 for
i = 0, . . . , t.

4We can have different bits in different plaintext slots of these ciphertexts, so each slot could represent a different
integer and the addition will be applied to all of them.

15

To get all the carry bits ci, we therefore need to compute all the interval products g[i,j] for all [i, j] ⊆
[0, t−1], which we do using a dynamic-programming approach. Namely we compute for all the intervals
of size two, then all intervals of size up to four, etc.

In more detail, given the inputs ai, bi we build an addition DAG that encodes our plan for what
ciphertexts to multiply in what order. This is done to ensure that we consume the smallest number
of levels, and use as few multiplications as we can. Note that the input ciphertexts need not be all at
the same level, and the plan may vary depending on the input levels.

The DAG has two nodes for every interval [j, i] ⊆ [0, t − 1], representing p[i,j] and g[i,j], and each
node has two parents which are the nodes that should be multiplied to form the variable of this node.
We initialize the nodes in the DAG in the following order:

• First we initialize all the singleton nodes p[i,i], the parents are set to ai, bi and the level is set to
min(lvl(ai), lvl(bi)).

• Next we initialize all the other nodes p[i,j] in order of increasing interval size. To initialize p[i,j+1],
we compute

k = arg max
k∈[i,j]

{
min

(
lvl(p[i,k]), lvl(p[k+1,j+1])

)}
(breaking ties as described later in this section). The parents of p[i,j+1] are set to p[i,k] and p[k+1,j+1],
and its level to min

(
lvl(p[i,k]), lvl(p[k+1,j+1])

)
− 1.

• Next we initialize all the singleton nodes g[i,i], the parents are set to ai, bi and the level is set to
min(lvl(ai), lvl(bi))− 1.

• Finally we initialize all the other nodes g[i,j] in order of increasing interval size. To initialize
p[i,j+1], we compute

k = arg max
k∈[i,j]

{
min

(
lvl(g[i,k]), lvl(p[k+1,j+1])

)}
(breaking ties as described later in this section). The parents of p[i,j+1] are set to g[i,k] and p[k+1,j+1],
and its level to min

(
lvl(g[i,k]), lvl(p[k+1,j+1])

)
− 1.

This procedure ensures that each node ends up at the highest possible level (i.e. the lowest possible
multiplication depth), for the given levels of the inputs ai, bi. When all the input bits ai, bi are at
the same level, then the depth is dlog2(t+ 2)e, since the largest term that we need to compute is the
(t+ 1)-product g[0,t−1] = a0b0 ·

∏t−1
i=1(ai + bi + 1).

We note, however, that not all the nodes in the DAG must be computed: Only the nodes g[i,j] are
used in the carry calculation, and not every p[i,j] is necessarily an ancestor of some g[i′,j′]. We can hope
that by breaking ties in a clever way when computing argmax above, we can minimize the number
of nodes p[i,j] that need to be computed, hence reducing the number of multiplications that must be
performed. In our implementation, we break ties heuristically by choosing among the highest-level k’s
the nodes that already have the largest number of children.

The homomorphic addition procedure. Given the input ciphertexts ai and bi, we build a DAG
as above, and check that the lowest-level node in this DAG is still at a level above zero. If not, then we
attempt to recrypt all the input ciphertexts, then re-build the DAG with the new input levels. Once
we have a valid DAG, we compute all the g[i,j] nodes and from then add them as needed to compute
all the carry bits, and then compute the result bits.

While computing the g[i,j]’s, we try to compute the nodes in the DAG lazily, computing each node
only when it is needed (either directly for one of the carry bits or indirectly for one of its children),
and keeping the intermediate node ciphertexts around only as long as they are still needed. (I.e., as
long as they still have some descendants that were not yet computed.) We also use parallelism when
we can, computing different nodes using different threads (if we have them).

16

5.2 Adding Many Integers

When we need to add many integers (all in binary representation), we use the three-for-two method
(cf. [21]) to reduce their number: until we only have two integers left, then use the routine from above
to add the remaining two numbers.

The three-for-two procedure. Given three integers in binary representation, (ut−1, . . . , u0), (vt−1 . . . v0),
(wt−1 . . . w0), we can add the three bits in each position ui + vi + wi (over the integers), yielding a
number between zero and three that can be represented in two bits. Namely ui + vi + wi = xi + 2yi,
where xi = ui + vi + wi (mod 2) and yi = uivi + uiwi + viwi (mod 2). Adding every triple of bits
ui, vi, wi in this manner, we get the two integers x = (xt−1 . . . x0), and y = (yt . . . y00), such that
x+ y = u+ v + w over the integers.

Computing the bits of x involves only additions, and each yi can be computed using two multipli-
cations and two additions, namely yi := uivi + (ui + vi)wi. Hence x is at the same level as the input
numbers u, v, w, and y is one level lower. (Note also that all the xi’s and yi’s can be computed in
parallel.)

The add-many-numbers procedure. Given many integers in binary, we apply the three-for-two
procedure to them in a tree manner, namely we partition them into groups of three, apply the three-
for-two to each group separately, then collect all the resulting pairs (plus whatever leftover numbers
were not part of any group) into one list, and repeat the process until only two integers are left. This
yields multiplication depth d ≈ log3/2(n) to reduce n numbers into two, while adding at most d to the
bitsize of the input integers. Once we have only two integers left, we apply the addition routine from
above.

5.3 Integer Multiplication

Given two integers in binary to multiply a = (at−1 . . . a0) and b = (bt′−1 . . . b0), we first compute all
the pairwise products biaj , and then use the add-many-numbers procedure from above to add the t′

integers 2ibi · a. For example when multiplying a 3-bit b by a 4-bit a, we add the numbers

b0 · a = b0a3 b0a2 b0a1 b0a0
2b1 · a = b1a3 b1a2 b1a1 b1a0 0
4b2 · a = b2a3 b2a2 b2a1 b2a0 0 0

When both numbers are unsigned, we always choose t′ ≤ t, namely we let the longer integer be a and
the shorter one be b.

Dealing with negative numbers. In our implementation we also implemented a multiplication of
a 2s-complement number a by an unsigned number b. In that case we always use the 2s-complement
number as a and the unsigned number as b, and we modify the procedure above by computing the
sign extension of all the numbers bi · a, namely replicating the top bit in each number all the way to
the largest bit position. For example, if we have a 2-bit 2s-complement number (a1 a0) and a three-bit
unsigned number (b2 b1 b0), then we compute and add the three integers (considered as 2s-complement
numbers):

b0 · a = b0a1 b0a1 b0a1 b0a0
2b1 · a = b1a1 b1a1 b1a0 0
4b2 · a = b2a1 b2a0 0 0 .

We did not implement a 2s-complement by 2s-complement multiplication, since we did not need it for
the current project.

17

5.4 Comparing Two Integers

The procedure for integer comparison is somewhat similar to integer addition. We have two integers
in binary, a = (at−1, . . . , a1, a0) and b = (bt−1, . . . , b1, b0), and we want to compute the two integers
x = max(a, b) = (xt−1 . . . x0) and y = min(a, b) = (yt−1 . . . y0), as well as the two indicator bits
µ = (a > b) and ν = (b > a) (note that when a = b, both µ, ν are zero).

We begin by computing for every i < t the bits ei := ai + bi + 1 (which is 1 iff ai = bi) and
gi := ai + aibi (one iff ai > bi). We then compute the products e∗i =

∏
j≥i ej and g∗i = gi ·

∏
j>i ej ,

and the bits g̃i =
∑

j≥i g
∗
1 (one iff at−1...i > bt−1...i). Computing the products e∗i , g

∗
i is done using a

recursive procedure somewhat similar to ComputeAllProducts from Section 4. Finally we compute the
results by setting µ := g̃0, ν := 1 + g̃0 + e∗0, and for i = 0, . . . , t − 1 we set xi := (ai + bi)g̃i + bi and
yi := xi + ai + bi.

Note that we use all the g∗i ’s but only e∗0 for computing the output results, hence we somewhat
optimized our procedure for computing these products by skipping the computation of e∗i ’s that are
never used.

We remark that the last product (ai+bi)g̃i means that our procedure may use depth one more than
the minimum possible. Using the absolutely smallest possible depth is challenging, straightforward
solutions would take O(t2) multiplications (vs. O(t) multiplications in the procedure above). While
getting minimal depth with O(t) multiplications is possible in theory, the procedure for doing this is
overly complex (and extremely hard to parallelize), so we opted for a simpler procedure with slightly
non-optimal depth. (Also, as opposed to the addition procedure from above, the simple procedure
that we implemented here does not vary depending on the level of the input ciphertexts for ai, bi.)

5.5 Accumulating the bits in a ciphertext

As described in Section 3.2, when computing the category counters we at some point have 64 cipher-
texts, with ciphertext Cm encrypting in each slot i the indicator bits χi,m, and we want to sum-up
these indicator bits (over the integers) and compute the 64 counters Pm

∑
i χi,m. While this is theo-

retically just an instance of adding many numbers (these numbers being the bits χi,m), there are two
properties of this instance that require special optimization:

• The input bits to be added are not aligned in the same slots of different ciphertexts, but rather
spread across the different slots of the same ciphertext.

• We need to perform this add-many-numbers procedure on 64 different lists in parallel, so we
have an opportunity to use SIMD operations.

We therefore implemented a special-purpose shift-and-add procedure to do the accumulation, combin-
ing the addition operations that we need to make with the “matrix transpose” that transforms the
input counter-per-ciphertext with different bits across the slots into a ciphertext-per-bit-position in
the output with the different counters across the slots.

At every step in this procedure we keep a current list of (encrypted) arrays of integers in binary
representation. Each array in the list is represented by a vector of ciphertexts (c0, c1, . . .), one per bit
position, and the integers in the array are the different slots of

∑
i 2i · ci. Initially the list consists

of 64 arrays, each array corresponding to the different slots of one of the input ciphertexts, and the
integers all bits (so each array is represented by length-1 vector). As the computation progresses,
the integers represent partial sums (so their bitsize is getting larger), correspondingly the arrays have
fewer integers in them (since the number of partial sums is getting smaller), and also the number of
arrays get smaller (as we pack more counters across the slots).

In each step we perform partial addition, adding each group of r partial sums into a single larger
sum. We first apply r rotations to all the ciphertexts representing all the arrays, so as to align the

18

numbers that we need to add. These rotations mean that we are using fewer slots to hold these partial
sums (since we only use one of each r slots as the “pivot” where addition is to take place). So we can
pack some number p ≤ r of these sums and apply the add-many-numbers procedure to all of them in
a SIMD manner. This cuts the number of arrays by a p factor, and change the size of arrays by a p/r
factor. (Each array is cut by a factor of r because we add r partial sums into one, but increased by a
factor of p as we pack multiple arrays into one.)

The procedure that we actually implemented is slightly different, in that in the first few steps we
consider the different bit positions as different arrays (so we always work with bits rather than larger
integers) and just remember for each array the power of two that it should be multiplied by. Only
after we complete the “transpose” part of this transformation and have just one slot per counter, we
add together all the relevant integers (shifted as needed to account for the powers of two). Specifically,
we begin with 64 arrays, each containing 1800 single-bit integers. Then we perform these steps: of
four steps:

1. In the first step we group r1 = 15 bits together for addition (yielding 4-bit numbers), and pack
p1 = 14 arrays together. This yields 4 · d64/14e = 20 new arrays (of bits), and the data for each
category counter is spread across 1800/15 = 120 slots.

2. In the second step we group r2 = 12 bits together for addition (again melding 4-bit numbers),
and pack p2 = 5 them together. This yields 4 · d20/5e = 16 arrays of bits, and the data for each
category counter is spread across only 120/12 = 10 slots.

3. In the this step we group r2 = 10 bits together for addition (again yielding 4-bit numbers), and
no further packing is needed. This yields again 4 · 16 = 64 arrays of bits, but now the data for
each category counter is all in just one slot position.

4. We note that our current 64 ciphertexts encrypt shifted bits, i.e., bits that should be multiplied
by some powers of two. No shift amount corresponds to more than twelve ciphertexts, so we can
re-arrange these 64 bits in just 12 integers. Then we call our add-many-numbers procedure to
add these 12 integers thereby completing the accumulation of the category counters.

The specific choices of r1 = 15, p1 = 14 and r2 = 12, p1 = 5 were made so that the shift operations
involved in aligning numbers before addition could be implemented with 1D rotation operations.
These operations map directly to automorphisms in the underlying cryptosystem, rather than the
more expensive general-purpose shifts.

6 Solving a Linear System

The last thing that our solution needs to do, after setting the linear system A~w′ = ~b, is to solve it and
output the solution vector ~w′. But solving a linear system homomorphically is complex, even if it is
only a 6-by-6 system as in our application. Moreover, the linear system that we computed was just
an approximation (due mostly to the low-precision inherent in our table-based approach to computing
inversion and logarithms). Hence we must ensure that our homomorphic solver is numerically stable,
making it harder still.

Instead, in our program we opted for simply sending A and~b to the client, having the client decrypt
and solve in the clear. This “solution”, however, leaks information about the input data beyond what
is implied by the vector ~w′. This extra leakage is perhaps acceptable in the context of our application
to logistic regression on medical data, but surely there are applications where such a solution will not
be acceptable. So we would like to find a feasible solution that will eliminate the extra leakage, simpler
than implementing a homomorphic stable linear solver.

19

6.1 Randomized Encoding with Rational Reconstruction

An appealing approach for addressing this issue is to use randomized encoding (cf. [2]). Namely,
consider the function that we want to compute, f(A,~b) = A−1~b, as a function over the rational
numbers with bounded integer inputs. We would like to apply a randomized transformation to the
input u := enc(A,~b;R), such that (i) it is possible to “decode” A−1~b from u; (ii) u does not yield
any more information5 on A,~b than what is implied by ~w′ = A−1~b; and (iii) computing enc(·) is
substantially easier than computing f(·) itself.

If we had such randomized encoding, we could choose the randomness R and evaluate homomor-
phically enc(A,~b;R), send the encrypted u back to the client, who could decrypt u and decode ~w′

from it. We note that the linear-system-solver function f(·) is in NC1, so theoretically we could apply
generic randomized encoding solutions here. This solution yields a very low-depth encoding, but the
size of the encoding is exponential in the depth of the circuit for f , so we do not expect them to be
practical.

Below we describe a randomized encoding for the linear-system-solver function f , that uses only
integer addition and multiplication. This encoding can therefore be implemented using the binary
arithmetic routines that we described in Section 5. However we did not implement that idea in our
solution, we expect it to be doable but it will add a significant overhead (see below).

Our first observation is that if we wanted to compute the linear-system-solver function modulo
some prime q then it would be easy to randomize (when A is invertible): All we need is to choose a
random invertible R ∈ Zn×nq and set A∗ := RA mod q and ~b∗ := R~b mod q. On one hand A∗ is just a

random invertible function modulo q, and on the other hand (A∗)−1 ~b∗ = A−1~b (mod q).
However, in our case we want to find the solution over the rational numbers, not modulo some q.

Our second observation is that we can apply here the tool of rational reconstruction (cf. [25, Ch 4.6]).
Recall that rational reconstruction is an efficient procedure (denoted below by RationalRec(·)), such
that

∀a, b, q ∈ Z s.t. |a| · |b| < q/2, RationalRec(q, ab−1 mod q) = (a, b),

provided that ab−1 is defined modulo q. In other words, the procedure gets as input a modulus q
and an element z ∈ Zq, and it is guaranteed to output the unique solution (a, b) to az = b (mod q)
satisfying |a| · |b| < q/2, if such a solution exists.

In our application we are given A,~b with some precision p, and the rational solution that we seek
is

~w′ = A−1~b = adj(A)~b/det(A).

Every entry of ~w′ is of the form x/d, where d = det(A) and x is one entry in adj(A)~b. Since all the
entries in A, ~B are smaller than 2p, then d and all the entries of adj(A)~b are smaller in magnitude than
(
√
n2p)n. If we choose q > 2(

√
n2p)2n = 22np+1nn, then given the solution A−1~b mod q with entries of

the form xd−1 ∈ Zq, we could use rational reconstruction to get the rational numbers x/d. We could

therefore get our randomized encoding by randomizing A,~b modulo this large q.
But this solution is still not good enough, randomizing mod q implies in particular that we need

to implement a homomorphic mod-q operation, which is expensive (even when q is in the clear). Our
next observation is that we can replace the reduction mod-q by adding a large enough multiple of q.
Recall that for any fixed integer x, if we choose a random s from a large enough domain (relative
to |x|/q) then the random variable x + qs depends only on the value of x mod q, and is essentially
independent of x div q. Specifically, if we have a bound |x|/q < B and we choose s at random from
[B · 2k], then the result is almost independent of x÷ q, up to statistical distance of at most 2k.

5This property is formulated by requiring a simulator that can only see ~w′ and can output the same distribution as
enc(A,~b;R)

20

Parameters: dimension n, precision p, security parameter k.

Let m := max(n, d2np+1
k e)

REncSolver (input: Invertible matrix A ∈ Zn×n2p , vector ~b ∈ Zn2p):

1. Choose m random primes q1, . . . , qm of bitsize n2k.
2. For each qi do
3. Choose a random invertible matrix R ∈ Zn×nq1

4. Choose a random matrix Si ∈ Zn×n
n2p+k and a random vector ~ti ∈ Zn

n2p+k .

5. Compute A∗i := Ri ×A′ + qSi and ~bi
∗

:= Ri × ~b′ + q~ti.

6. Output {(qi, A∗i , ~b∗i)}mi=1

DecSolver(input: {(qi, A∗i , ~b∗i)}mi=1):

7. Solve ~w∗i = (A∗i)
−1 ~b∗i (mod q)i for all i

8. Use Chinese remaindering to recover ~w∗ modulo q =
∏
i qi

9. Apply rational reconstruction and output ~w := RationalRec(q, ~w∗).

Figure 1: Randomized encoding for the rational linear-system solver, f(A,~b) = A−1~b.

Hence instead of computing homomorphically the reduced matrix RA mod q, we note that each
entry in RA is smaller than n2pq in absolute value. We can therefore choose a random integer matrix
S ∈ [n2p+k] and compute RA+ qS over the integers (and similarly for ~b).

This solution is almost plausible, but it requires integer arithmetic with very large numbers, even
if n and p are small. In our application we have n = 6 and p = 7, so q = 66 · 22·6·7+1 ≈ 2100. And even
choosing a measly statistical parameter k = 10, the entries of RA+ qS would be integers with about
120 bits.

Our final observation, therefore, is that we could express R and S relative to an appropriate CRT
basis, thereby replacing each big-integer operation by a moderate number of operations on much
smaller integers. Specifically, we choose many “smallish” primes qi, for each one choose a random
Ri ∈ Zn×nqi and Si ∈ [n2p+k]n×n and compute homomorphically A∗i = RiA + qiSi (and similarly for
~b). As above, the client who decrypts the A∗i ’s only get RiA mod qi, then compute RA mod q (where
q =

∏
qi

and R ≡ Rq (mod qi)) and proceed as before.
One drawback with this approach is that we may end up choosing a modulus qi that divides

det(A), in which case RiA mod qi will reveal mod-qi linear correlations between the columns of A. We
therefore must choose the qi’s of size slightly larger than 2k, to ensure the same level of protection
against this threat as we get against leakage from the A∗i ’s. Setting qi ≈ n2k would mean that we only
need to work with integers of total size about n22p+2k. In our setting with n = 6, p = 7 we can choose
the (admittedly weak) k = 15 and work with 42-bit numbers, which is expensive but doable. (With
18-bit qi’s, we would need six of them to reach the size of q that we need.) Our randomized encoding
procedure is described in Figure 1. From the discussion above we have:

Claim 1 The function REncSolver from Figure 1 is a randomized encoding for the function f(A,~b) =
A−1~b over the rational numbers, where A is invertible and A,~b are bounded. �

6.2 Are We Still Leaking Too Much?

We end this section by pointing out that the above solution is a randomized encoding for the exact
solution function vector A−1~b, which by itself may already leak information. In particular it usually

21

reveals the determinant det(A) (or a factor of it), just by taking the common denominator of all the
entries in the solution vector. In the current application, what we really want to compute is the
limited precision solution function, that rounds the exact solution to some given precision. (We can
even tolerate small error in the solution.) We do not know of any feasible randomized encoding for
this limited precision function.

7 Implementation and Performance Results

All of our testing was done on an Intel Xeon E5-2698 v3 (which is a Haswell processor), with two
sockets and sixteen cores per socket, running at 2.30GHz. The machine has 250GB of main memory,
the compiler was GCC version 4.8.5, and we used NTL version 10.5.0 and GnuMP version 6.0.

Parameters. We worked with the cyclotomic ring Z[X]/Φm(X) with m = 215 − 1 = 32767 (so
φ(m) = 27000) The largest modulus q in the moduli-chain was about 1030-bit long, corresponding to
about 80 bits of security. The plaintext space was set to 211 = 2048 (but as we explained in Section 3,
most of the computation was done with plaintext space modulo 2). This gave as a total of 1800
plaintext slots, arranged in a 30× 6× 10 hypercube with the first two 30× 6 being “good dimensions”
and the last being a “bad dimension”.6 Each plaintext slot held a degree-15 extension of the ring Z211

(or an element of GF (215) when we used it for mod-2 computation).
This means that we could pack as many as 15 · 1800 = 27000 integers in a single ciphertext each

up to 11-bit long. But in our application we only packed in each of our ciphertext either up to 27000
bits, or up to 180 11-bit integers, depending on the phase of the computation.

7.1 Results for the Logistic-Regression Application

Single-threaded timing. A single-thread execution of the program took just under five hours, from
key-generation and encryption of the data up to and including the computation of the matrix A and
vector ~v. Homomorphic processing took just under 280 minutes of this time, and fifteen minutes were
spent packing and encrypting the raw data. The program used only about 4.5GB of RAM. Only 25%
of the processing time was spent on the application logic, and about 75% (210 minutes) was spent in
65 bootstrapping operations (so under 3 minutes per operation). The timing results for the different
phases of the computation are described in table 1:

• Computing the correlations and extracting its binary representation (corrBinary) took almost
no time, only 16 seconds;

• About 125 minutes (45% of the processing time) was spent comparing the correlation numbers
and computing the indexes of the five fields most correlated to the disease (topIndexes);

• Once we found the indexes, it took 33 minutes (12%) to extract the actual data corresponding
to these fields (extractCols);

• Then it took 47 minutes (17%) to compute the 64 bucket counters and their binary expansion
(bucketCounters);

• Computing the vectors ~v and ~y using table lookup operations (compV&Y) took another hour
(22%);

6The distinction between “good” and “bad” dimensions in HElib is that 1D-rotations along a good dimension take a
single automorphism, while along a bad dimension it takes two automorphisms and some constant multiplies to zero out
some data.

22

threads: 1 2 4 8 16 30

corrBinary .25 .18 .13 .13 .1 .1

topIndexes 125 72 42 35 24 24

extractCols 33 20 13 11 8.5 8.7

bucketCounters 47 28 18 16 12 12

compV&Y 60 35 20 16 10 10

compA&b 12 7.7 5.3 5 3.8 3.8

total 278 163 99 83 59 59

recrypt 210 119 70 56 38 38

Table 1: Timing results (minutes) of different phases of the logistic-regression program

• Finally, computing the matrix A and vector ~b from the vectors ~v, ~y (compA&b) took only 12
minutes (4%).

Multi-threaded timing. Multi-threading was very effective in reducing the computation time up
to eight threads, but using more threads did not help very much (and above sixteen threads the
runtime leveled off completely). The processing time dropped to 83 minutes with eight threads and
just under one hour with sixteen threads. The RAM consumption increased somewhat, from 4.5GB
with one thread to 5.5GB with sixteen. The fraction of time spend on bootstrapping dropped slightly,
from 75% with one thread to 64% with sixteen, indicating that multi-threading during bootstrapping
was somewhat more effective than in other parts of the computation. The ratio between different
phases of the computation did not change much when switching to multi-threaded implementation.
See more details in table 1.

7.1.1 Is this Procedure Accurate Enough?

How good is the solution that we obtained from this procedure? As was done in the iDASH competition
itself, we measured our solution using the metric of “area under curve” (AUC). The given data consisted
of genomic data variables, and a target attribute representing cancer. A random model is expected
to give AUC result of 0.5. One of the attributes in this data was the BRCA gene, and taking only
that attribute already gives AUC result close to 0.6. On the other hand even the best plaintext-based
logistic-regression model only yields AUC of about 0.7 on that dataset. Hence the game for this
dataset was to get as far above 0.6 as possible.7 We tested our solution by running it on sub-sampled
data from the training dataset, and the AUC results were usually close to 0.65. This appears similar
to other solutions that were submitted to the iDASH competition.

7.2 Timing results for the Various Components

Since our application used a large setting of parameters (m = 215−1) and spent most of its time
bootstrapping, the performance results above do not tell the story of how the different components
perform for smaller parameters or when bootstrapping is not needed. These numbers are reported in
Table 2, with (a) reporting the number of native multiplications and circuit depth for the different
operations, while in (b)-(d) we report some performance numbers in various settings.

The addition operations we tested added two n-bit numbers to get their n+ 1-bit sum, while the
multiplication operations multiplied two n-bit numbers but only computed the lower n bits of the

7These numbers are said to be typical for genomic data, but it probably means that this is not a good dataset on
which to develop an approximation procedure. Still this is what we had, so this is what we used.

23

result. In the tests below we varied the security level (when processing 8-bit numbers), the number of
input bits (at security level 125), and also tested the effect of multithreading.

The runtime of the operations range from a few seconds for addition and comparison in the smaller
settings to about one minute for multiplication and table lookup in the larger setting. Some trends
that can be seen in these numbers include the following:

• As expected, the running times of the various operations grow quasi-linearly with the cyclotomic
index m (which is more or less proportional to the security level).

• As the input bitsize grows, the number of native multiplications (and hence the running time) is
roughly quadratic for addition, linear for comparison, and roughly n2.3 for multiplication. (For
table lookup, of course the number of products grows exponentially with the bitsize, since the
table itself grows exponentially with the number of bits in the index.)

• Our table lookup implementation is embarrassingly parallel, and indeed we get nearly linear
speedup in the number of threads. For the other operations the speedup is less pronounced.
From one to eight threads we only get more or less 3X speedup, and above eight threads there
are almost no additional gains.

8 Conclusions and Discussion

In this work we investigated the question of whether “full blown FHE” can be used for a realistic use
case. We devised a procedure to compute an approximate logistic regression model on encrypted data,
and demonstrated that this can be achieved in a matter of a few hours (or even just one hour if we
use multithreading).

In the course of this work we developed many new tools for homomorphic computations. Many of
these tools are general-purpose (such as binary arithmetic, table lookup, etc.), but some are specific to
the current setting (e.g., specific data packing and movement schemes). Our experience in this work
leads us to believe that the answer to our motivating question is “Yes, but just barely.”

We stress that the main roadblock is not performance: devising a logistic regression model in a
matter of hours may be perfectly acceptable in many settings. (And clusters or hardware acceleration
can sometimes be brought to bear as well.) The main problem was the lack of good development
and support tools, developing an FHE application feels a lot like programming using only assembly
language. (Indeed the reason we did not submit our work to the iDASH competition last year was
because it was not debugged in time.)

Using FHE in real-world settings will require much more library and development support, and
many more FHE toolboxes beyond the few that we implemented in this work. We believe that this is
an important project, and expect to continue working along these directions.

References

[1] Y. AONO, T. HAYASHI, L. T. PHONG, and L. WANG. Privacy-preserving logistic regression
with distributed data sources via homomorphic encryption. IEICE Transactions on Information
and Systems, E99.D(8):2079–2089, 2016.

[2] B. Applebaum. Randomized encoding of functions. In Cryptography in Constant Parallel Time,
Information Security and Cryptography, pages 19–31. Springer, 2014.

[3] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu. Private database queries using somewhat
homomorphic encryption. In ACNS, volume 7954 of Lecture Notes in Computer Science, pages
102–118. Springer, 2013.

24

(a) Number of native multiplications and circuit depth for different bit sizes
addition comparison table lookup multiplication

bitsize # mults depth # mults depth # mults depth # mults depth

4 12 3 17 3 18 2 14 3

8 45 4 37 4 292 3 79 6

12 96 4 58 4 205 8

16 166 5 81 5 411 10

(b) Performance for single-threaded 8-bit operations at different security settings
security cyclotomic addition comparison table lookup multiplication
param m (φ(m)) time RAM time RAM time RAM time RAM

70 8191 (8190) 1.8 153 1.4 142 12.8 342 2.9 180

85 11441 (10752) 3.7 277 2.9 262 28.5 568 6.2 318

210 15709 (15004) 3.8 295 3.0 275 28.5 639 6.3 343

440 32767 (27000) 9.2 610 7.2 576 68.2 1232 15.0 697

(c) Multithreaded performance for 8-bit operations m = 15709 (security=210).
addition comparison table lookup multiplication

threads time RAM time RAM time RAM time RAM

1 3.8 295 3.0 275 28.5 639 6.3 343

2 3.7 306 1.8 282 14.9 646 5.0 350

4 2.7 315 1.2 300 8.1 658 3.3 369

8 1.8 347 1.0 341 4.6 691 2.0 400

16 1.1 350 1.0 339 2.8 741 1.9 470

32 1.1 353 1.0 334 1.9 867 1.9 607

(d) Performance for single-threaded operations with different input sizes
(encrypted at level 13, m = 15709, security parameter 125).

addition comparison table lookup multiplication
bitsize time RAM time RAM time RAM time RAM

4 1.3 359 2.0 355 2.5 375 1.4 368

8 5.5 415 4.4 387 43.1 937 9.1 486

12 12.0 482 6.8 419 23.7 636

16 21.3 564 9.4 451 47.4 880

Table 2: Complexity measures and performence results. Time in seconds, RAM in MB.

25

[4] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp.
In R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 868–886. Springer, 2012.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory, 6(3):13, 2014.

[6] H. Chen, K. Laine, and R. Player. Simple encrypted arithmetic library - SEAL v2.1. In Finan-
cial Cryptography Workshops, volume 10323 of Lecture Notes in Computer Science, pages 3–18.
Springer, 2017.

[7] J. Chen, Y. Feng, Y. Liu, and W. Wu. Faster binary arithmetic operations on encrypted integers.
In WCSE’17, Proceedings of 2017 the 7th International Workshop on Computer Science and
Engineering, 2017.

[8] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for arithmetic of
approximate numbers. In ASIACRYPT (1), volume 10624 of Lecture Notes in Computer Science,
pages 409–437. Springer, 2017.

[9] J. H. Cheon, M. Kim, and M. Kim. Search-and-compute on encrypted data. In International
Conference on Financial Cryptography and Data Security, pages 142–159. Springer, 2015.

[10] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster packed homomorphic operations
and efficient circuit bootstrapping for TFHE. In ASIACRYPT (1), volume 10624 of Lecture Notes
in Computer Science, pages 377–408. Springer, 2017.

[11] A. Costache, N. P. Smart, S. Vivek, and A. Waller. Fixed-point arithmetic in SHE schemes. In
SAC, volume 10532 of Lecture Notes in Computer Science, pages 401–422. Springer, 2016.

[12] L. Ducas and D. Micciancio. FHEW: bootstrapping homomorphic encryption in less than a
second. In EUROCRYPT (1), volume 9056 of Lecture Notes in Computer Science, pages 617–
640. Springer, 2015.

[13] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM
Symposium on Theory of Computing – STOC 2009, pages 169–178. ACM, 2009.

[14] C. Gentry, S. Halevi, C. S. Jutla, and M. Raykova. Private database access with he-over-oram
architecture. In ACNS, volume 9092 of Lecture Notes in Computer Science, pages 172–191.
Springer, 2015.

[15] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay,
editors, Advances in Cryptology - CRYPTO 2013, Part I, pages 75–92. Springer, 2013.

[16] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and J. Wernsing. Cryptonets:
Applying neural networks to encrypted data with high throughput and accuracy. In ICML,
volume 48 of JMLR Workshop and Conference Proceedings, pages 201–210. JMLR.org, 2016.

[17] S. Halevi and V. Shoup. Algorithms in HElib. In CRYPTO (1), volume 8616 of Lecture Notes in
Computer Science, pages 554–571. Springer, 2014.

[18] S. Halevi and V. Shoup. Bootstrapping for HElib. In EUROCRYPT (1), volume 9056 of Lecture
Notes in Computer Science, pages 641–670. Springer, 2015.

26

[19] S. Halevi and V. Shoup. HElib - An Implementation of homomorphic encryption. https://

github.com/shaih/HElib/, Accessed September 2014.

[20] Integrating Data for Analysis, Anonymization and SHaring (iDASH). https://idash.ucsd.

edu/.

[21] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science (Vol. A), pages 869–941. MIT Press,
Cambridge, MA, USA, 1990.

[22] A. Khedr, P. G. Gulak, and V. Vaikuntanathan. SHIELD: scalable homomorphic implementation
of encrypted data-classifiers. IEEE Trans. Computers, 65(9):2848–2858, 2016.

[23] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure logistic regression based on homomorphic
encryption. Cryptology ePrint Archive, Report 2018/074, 2018. https://eprint.iacr.org/

2018/074.

[24] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine learning.
In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017, pages 19–38. IEEE Computer Society, 2017.

[25] V. Shoup. A computational introduction to number theory and algebra. Cambridge University
Press, 2006.

[26] S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong, and X. Jiang. Healer:
homomorphic computation of exact logistic regression for secure rare disease variants analysis in
gwas. Bioinformatics, 32(2):211–218, 2016.

[27] C. Xu, J. Chen, W. Wu, and Y. Feng. Homomorphically encrypted arithmetic operations over
the integer ring. In F. Bao, L. Chen, R. H. Deng, and G. Wang, editors, Information Security
Practice and Experience, pages 167–181, Cham, 2016. Springer International Publishing. https:
//ia.cr/2017/387.

27

