
Bloom Filter Encryption and Applications to Efficient
Forward-Secret 0-RTT Key Exchange

David Derler1,‡, Kai Gellert2, Tibor Jager2, Daniel Slamanig3, and Christoph
Striecks3

1 DFINITY
david@dfinity.org

2 University of Wuppertal, Germany
{kai.gellert, tibor.jager}@uni-wuppertal.de

3 AIT Austrian Institute of Technology
{daniel.slamanig, christoph.striecks}@ait.ac.at

Abstract. Forward secrecy is considered an essential design goal of modern key
establishment (KE) protocols, such as TLS 1.3, for example. Furthermore, ef-
ficiency considerations such as zero round-trip time (0-RTT), where a client is
able to send cryptographically protected payload data along with the very first
KE message, are motivated by the practical demand for secure low-latency com-
munication.
For a long time, it was unclear whether protocols that simultaneously achieve
0-RTT and full forward secrecy exist. Only recently, the first forward-secret 0-
RTT protocol was described by Günther et al. (EUROCRYPT 2017). It is based
on Puncturable Encryption. Forward secrecy is achieved by “puncturing” the se-
cret key after each decryption operation, such that a given ciphertext can only
be decrypted once (cf. also Green and Miers, S&P 2015). Unfortunately, their
scheme is completely impractical, since one puncturing operation takes between
30 seconds and several minutes for reasonable security and deployment parame-
ters, such that this solution is only a first feasibility result, but not efficient enough
to be deployed in practice.
In this paper, we introduce a new primitive that we term Bloom Filter Encryption
(BFE), which is derived from the probabilistic Bloom filter data structure. We
describe different constructions of BFE schemes, and show how these yield new
puncturable encryption mechanisms with extremely efficient puncturing. Most
importantly, a puncturing operation only involves a small number of very effi-
cient computations, plus the deletion of certain parts of the secret key, which
outperforms previous constructions by orders of magnitude. This gives rise to the
first forward-secret 0-RTT protocols that are efficient enough to be deployed in
practice. We believe that BFE will find applications beyond forward-secret 0-RTT
protocols.

Keywords: Bloom filter encryption � Bloom filter � 0-RTT � forward secrecy �
key exchange � puncturable encryption

This is a major extension of a paper which appears in Advances in Cryptology - EUROCRYPT

2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29-May 3, 2018, Proceedings.
‡ Work done while with Graz University of Technology.

1

mailto:david.derler@tugraz.at
mailto:kai.gellert@uni-wuppertal.de
mailto:tibor.jager@uni-wuppertal.de
mailto:daniel.slamanig@ait.ac.at
mailto:christoph.striecks@ait.ac.at

1 Introduction

One central ingredient to secure today’s Internet are key exchange (KE) protocols with
the most prominent and widely deployed instantiations thereof in the Transport Layer
Security (TLS) protocol [45]. Using a KE protocol, two parties (e.g., a server and a
client) are able to establish a shared secret (session key) which afterwards can be used
to cryptographically protect data to be exchanged between those parties. The process of
arriving at a shared secret requires the exchange of messages between client and server,
which adds latency overhead to the protocol. The time required to establish a key is usu-
ally measured in round-trip times (RTTs). A novel design goal, which was introduced
by Google’s QUIC protocol [47] and is also adopted in TLS version 1.3 [45], aims at
developing zero round-trip time (0-RTT) protocols with strong security guarantees. So
far, quite some effort was made in the cryptographic literature, e.g. [49,35], and, in-
deed, 0-RTT protocols are probably going to be used heavily in the future Internet as
TLS version 1.3 adoption is growing rapidly. Besides TLS 1.3, Google’s QUIC protocol
is used on Google webservers and within the Chrome and Opera browsers to support
0-RTT. Unfortunately, none of the above mentioned protocols are enjoying 0-RTT and
full forward secrecy at the same time. Only recently, Günther, Hale, Jager, and Lauer
(GHJL henceforth) [33] made progress and proposed the first 0-RTT key exchange pro-
tocol with full forward secrecy for all transmitted payload messages. However, although
their 0-RTT protocol offers the desired features, their construction is not yet practical.

In more detail, GHJL’s forward-secret 0-RTT key-exchange solution is based on
puncturable encryption (PE), which they showed can be constructed in a black-box
way from any selectively secure hierarchical identity-based encryption (HIBE) scheme.
Loosely speaking, PE is a public-key encryption primitive which provides a Puncture
algorithm that, given a secret key and a ciphertext, produces an updated secret key
that is able to decrypt all ciphertexts except the one it has been punctured on. PE has
been introduced by Green and Miers [31] (GM henceforth) who provide an instantia-
tion relying on a binary-tree encryption (BTE) scheme—or selectively secure HIBE—
together with a key-policy attribute-based encryption (KP-ABE) [30] scheme for non-
monotonic (NM) formulas with specific properties. In particular, the KP-ABE needs to
provide a non-standard property to enhance existing secret keys with additional NOT
gates, which is satisfied by the NM KP-ABE in [44]. Since then, PE has proved to be a
valuable tool to construct public-key watermarking schemes [20], forward-secret proxy
re-encryption [24]4, or to achieve chosen-ciphertext security for fully-homomorphic
encryption [17]. However, the mentioned PE instantiations from [17,20] are based on
indistinguishability obfuscation and, thus, do not yield practical schemes at all.

When looking at the two most efficient PE schemes available, i.e., GM and GHJL,
they still come with severe drawbacks. In particular, puncturing in GHJL is highly in-
efficient and takes several seconds to minutes on decent hardware for reasonable de-
ployment parameters. In the GM scheme, puncturing is more efficient, but the cost of
decryption is very significant and increases with the number of puncturings. More pre-
cisely, cost of decryption requires a number of pairing evaluations that depends on the
number of puncturings, and can be in the order of 210 to 220 for realistic deployment

4 We note that [24] uses the same techniques as in GHJL.

2

parameters. These issues make both of them especially unsuitable for the application in
forward-secret 0-RTT key exchange in a practical setting.

Contributions. In this paper, we introduce Bloom filter encryption (BFE), which can
be considered as a variant of PE [31,20,17,33]. The main difference to other existing
PE constructions is that in case of BFE, we tolerate a non-negligible correctness error.5

This allows us to construct PE with highly efficient puncturing and in particular where
puncturing only requires a few very efficient operations, i.e., to delete parts of the secret
key, but no further expensive cryptographic operations. Altogether, this makes BFE a
very suitable building block to construct practical forward-secret 0-RTT key exchange.
In more detail, our contributions are as follows:

– We formalize the notion of BFE by presenting a suitable security model. The intu-
ition behind BFE is to provide highly efficient decryption and puncturing. Interest-
ingly, puncturing mainly consists of deleting parts of the secret key. This approach
is in contrast to existing puncturable encryption schemes, where puncturing and/or
decryption is a very expensive operation.

– We propose efficient constructions of BFE. First, we present a direct construc-
tion which uses ideas from the Boneh-Franklin identity-based encryption (IBE)
scheme [12]. This construction allows us to achieve constant size public keys. Sec-
ond, we present a black-box construction from a ciphertext-policy attribute-based
encryption (CP-ABE) scheme that only needs to be small-universe (i.e., bounded)
and to support threshold policies, which allows us to achieve constant size cipher-
texts. Third, we describe a generic construction from identity-based broadcast en-
cryption (IBBE), which is efficiently instantiable with the IBBE scheme by Deler-
ablée [22]. This construction allows us to simultaneously achieve compact public
keys and constant size ciphertexts. Finally, we propose time-based BFE (TB-BFE),
an enhancement of BFE which additionally provides forward secrecy and thus pre-
vents message suppression attacks, and provide a generic construction of TB-BFE
from selectively-secure HIBEs.

– We adapt the Fujisaki-Okamoto (FO) transformation [25] to obtain CCA security
in the random oracle model (ROM) to the BFE setting. This is technically non-
trivial, and therefore we consider it as another interesting aspect of this work. In
particular, the original FO transformation [25] works only for schemes with perfect
correctness. Recently, Hofheinz et al. [37] described a variant which works also for
schemes with negligible correctness error. We formalize additional properties that
are required to apply the FO transform, and show that our CPA-secure constructions
satisfy them. This serves as a template that allows an easy application of the FO
transform in a black-box manner to BFE schemes. Moreover, we also discuss how
to achieve CCA security in the standard model.

– We provide a construction of a forward-secret 0-RTT key exchange protocol (in
the sense of GHJL) from TB-BFE. Furthermore, we give a detailed comparison
of (TB-)BFE with other PE schemes and discuss the efficiency in the context of
the proposed application to forward-secret 0-RTT key exchange. In particular, our

5 We discuss below why this is not only tolerable, but actually a very reasonable approach for
applications like 0-RTT key exchange.

3

construction of forward-secret 0-RTT key-exchange from TB-BFE has none of the
drawbacks mentioned in the introduction (at the cost of a somewhat larger secret
key, that, however, shrinks with the number of puncturings). Consequently, our
forward-secret 0-RTT key exchange can be seen as a significant step forward to
construct very practical forward-secret 0-RTT key exchange protocols.

On tolerating a non-negligible correctness error for 0-RTT. The huge efficiency
gain of our construction stems partially from the relaxation of allowing a non-negligible
correctness error, which, in turn, stems from the potentially non-negligible false-positive
probability of a Bloom filter. While this is unusual for classical public-key encryption
schemes, we consider it as a reasonable approach to accept a small, but non-negligible
correctness error for the 0-RTT mode of a key exchange protocol, in exchange for the
huge efficiency gain.

For example, a 1/10000 chance that the key establishment fails allows to use 0-RTT in
9999 out of 10000 cases on average, which is a significant practical efficiency improve-
ment. Furthermore, the communicating parties can implement a fallback mechanism
which immediately continues with running a standard 1-RTT key exchange protocol
with perfect correctness, if the 0-RTT exchange fails. Thus, the resulting protocol can
have the same worst-case efficiency as a 1-RTT protocol, while most of the time 0-RTT
is already sufficient to establish a key and full forward secrecy is always achieved.

Compared to other practical 0-RTT solutions, note that both TLS 1.3 [45] and
QUIC [47] have similar fallback mechanisms. Furthermore, to achieve at least a very
weak form of forward secrecy, they define so called tickets [45] or server configura-
tion (SCFG) messages [47], which expire after a certain time. Forward secrecy is only
achieved after the ticket/SCFG message has expired and the associated secrets have
been erased. Therefore the lifetime should be kept short. If a client connects to a server
after the ticket/SCFG message has expired, then the fallback mechanism is invoked and
a full 1-RTT handshake is performed. In particular for settings where a client connects
only occasionally to a server, and for reasonably chosen parameters and a moderate life
time of the ticket/SCFG message, which at least guarantees some weak form of forward
secrecy, this requires a full handshake more often than with our approach.

Finally, note that puncturable encryption with perfect (or negligible) correctness
error inherently seems to require secret keys whose size at least grows linearly with the
number of puncturings. This is because any such scheme inherently must (implicitly
or explicitly) encode information about the list of punctured ciphertexts into the secret
key, which lower-bounds the size of the secret key [41]. By tolerating a non-negligible
correctness error, we are also able to restrict the growth of the secret key to a limit which
seems tolerable in practice.

Remark on forward secrecy and time-based constructions. In the literature, time-
based puncturable encryption schemes are often termed puncturable forward-secure
encryption schemes [31,33], which may seem confusing as the puncturable encryption
schemes already provide mechanisms to achieve forward secrecy. The motivation for
why time-based constructions was initially introduced is along the same lines and goes
back to Green and Miers [31]. They described a message suppression attack against the
forward secrecy of puncturable encryption. An adversary that suppresses message de-

4

livery can break forward secrecy of the primitive by compromising the receiving party’s
secret at a later point in time, and retroactively decrypting all suppressed messages.

Hence, Green and Miers proposed to construct a time-based construction where the
attack is only feasible until both parties move to the next time slot, achieving a form
of delayed forward secrecy. As the time-based constructions were inspired by forward-
secure encryption, the qualifier “forward-secure” was added to the primitive’s name.
For a detailed discussion on the meaning of forward secrecy in non-interactive settings
such as 0-RTT, we refer to a recent work by Gellert and Boyd [14].

We believe a distinction between time-based and non-time-based constructions is
meaningful. It makes explicit that the non-time-based constructions puncture out ci-
phertexts, in order to remove decryption capability for this ciphertext. In contrast, time-
based constructions additionally allow to puncture time slots, which removes decryp-
tion capability for all possible ciphertexts from previous time slots. For our construc-
tions this also makes it possible to keep the size of secret keys smaller, as we explain in
Section 4.

Differences to the conference version [23]. In contrast to the conference version [23],
this extended version contains some additions and updates. First, we chose to present
all constructions explicitly as Bloom Filter Key Encapsulation Mechanisms (BFKEMs)
instead of referring to them as Bloom Filter Encryption (cf. Section 2 for a discussion).
Second, we provide an additional generic construction of a BFKEM from identity-based
broadcast encryption (IBBE) in Section 3.4. Furthermore, we have corrected some am-
biguities and minor issues within the definitional framework. Third, we provide a more
elaborate discussion on the choice of parameters to provide more insights and decision
support for the practical application of our proposals.

Follow-up work. After the conference version of this paper, there was some follow-up
work which we want to mention for completeness. Aviram et al. in [3] study practical
forward secrecy for 0-RTT in TLS 1.3 and in particular the session resumption fea-
ture of TLS 1.3. Lauer et al. [40] introduce a single-pass circuit construction protocol
with forward secrecy for Tor, called Tor 0-RTT (T0RTT), which they construct from
BFE. Dallmeier et al. [21] use BFE to implement the first fully forward-secret 0-RTT
key exchange in Google’s QUIC protocol and analyze its performance. Finally, there
is follow-up work on puncturable encryption from Sun et al. [?] providing further con-
structions with negligible correctness error and different trade-offs.

Outline. The remainder of this paper is organized as follows. In Section 2, we introduce
the concept of Bloom filter encryption including a discussion on how to choose suitable
Bloom filter parameters for our schemes. In Section 3, we present three constructions
of Bloom filter encryption alongside with a modified Fujisaki-Okamoto transforma-
tion to achieve CCA security for our schemes. In Section 4, we formally define time-
based Bloom filter encryption and present a generic construction based on hierarchical
identity-based encryption. Section 5 explains that our time-based construction can be
used to construct forward-secret 0-RTT key exchange. In Section 6, we compare com-
putational efficiency and parameter size of our constructions with existing constructions
in literature. Section 7 concludes the results of our work.

5

2 Bloom Filter Encryption

Notation. Let λ ∈ N be the security parameter. For a finite set S , we denote by s←$ S
the process of sampling s uniformly from S. For an algorithm A, let y←$ A(λ, x) be
the process of running A on input (λ, x) with access to uniformly random coins and
assigning the result to y. (We may omit to mention the λ-input explicitly and assume
that all algorithms take λ as input.) To make the random coins r explicit, we write
A(λ, x; r). We say an algorithmA is probabilistic polynomial time (PPT) if the running
time of A is polynomial in λ. A function f is negligible if its absolute value is smaller
than the inverse of any polynomial (i.e., if ∀ c ∃ k0 ∀ λ ≥ k0 : |f(λ)| < 1/λc).
Furthermore, for n ∈ N, let [n] := {1, . . . , n} and let BilGen be an algorithm that, on
input a security parameter 1λ, outputs (q, e,G1,G2,GT , g1, g2)←$ BilGen(1λ), where
G1, G2, GT are groups of prime order q with bilinear map e : G1 × G2 → GT and
generators gi ∈ Gi for i ∈ {1, 2}. Finally, we will use square brackets to access the
individual bits of bitstrings, i.e., T [i] denotes the i-th bit of a bitstring T = {0, 1}m, for
m ∈ N.

Bloom Filter Encryption. The key idea behind Bloom Filter Encryption (BFE) is that
the key pair of such a scheme is associated to a Bloom filter (BF) [10], a probabilistic
data structure for the approximate set membership problem with a non-negligible false-
positive probability in answering membership queries. A BF initially represents a bit
array of m bits, all set to 0. Insertion takes an element and inputs it to k different hash
functions each mapping the element to one of the m array positions, which are then
set to 1. When querying the BF on an element, it is considered to be in the BF if all
positions obtained by evaluating the hash evaluations are set to 1. The initial secret key
sk output by the key generation algorithm of a BFE scheme corresponds to an empty
BF. Encryption takes a message M and the public key pk, samples a random element
s (acting as a tag for the ciphertext) corresponding to the universe U of the BF and
encrypts a message using pk with respect to the k positions set in the BF by s. A
ciphertext is then basically identified by s and decryption works as long as at least one
index pointed to by s in the BF is still set to 0. Puncturing the secret key with respect
to a ciphertext (i.e., the tag s of the ciphertext) corresponds to inserting s in the BF
(i.e., updating the corresponding indices to 1 and deleting the corresponding parts of
the secret key). This basically means updating sk such that it no longer can decrypt any
position indexed by s.

A note on modeling BFE. For 0-RTT key establishment, our prime application in this
paper, we do not need a full-blown encryption scheme, but only a key-encapsulation
mechanisms (KEM) to transport a symmetric encryption key. Consequently, we chose
to focus on what we call Bloom Filter Key Encapsulation Mechanisms (BFKEMs). We
stress that defining BFKEM instead of BFE does not represent any limitation, as any
KEM can generically be converted into a secure full-blown encryption scheme [25].
Conversely, any secure encryption scheme trivially yields a secure KEM. For the rea-
sons mentioned before we, henceforth, may thus use the terms BFE and BFKEM in-
terchangeably. Nonetheless, for completeness, we give stand-alone definitions of BFE
tolerating a non-negligible correctness error in Appendix A.

6

2.1 Formal Definition of Bloom Filters

A Bloom filter (BF) [10] is a probabilistic data structure for the approximate set mem-
bership problem. It allows a succinct representation T of a set S of elements from a
large universe U . For elements s ∈ S a query to the BF always answers 1 (“yes”),
i.e., its false-negative probability is 0. Ideally, a BF would always return 0 (“no”) for
elements s 6∈ S, but the succinctness of the BF comes at the cost that for any query to
s 6∈ S the answer can be 1, too, but only with small probability (called the false-positive
probability).

We will only be interested in the original construction of Bloom filters [10], and
omit a general abstract definition. Instead we describe the construction from [10] di-
rectly. For a general definition we refer to [43].

Definition 1 (Bloom Filter). A Bloom filter B for set U consists of algorithms B =
(BFGen,BFUpdate,BFCheck), which are defined as follows.

BFGen(m, k): This algorithm takes as input two integers m, k ∈ N. It first samples
k universal hash functions H1, . . . ,Hk, where Hj : U → [m], defines H :=
(Hj)j∈[k] and T := 0m, and outputs (H,T).

BFUpdate(H,T, u): Given H = (Hj)j∈[k], T ∈ {0, 1}m, and u ∈ U , this algorithm
defines the updated state T ′ by first assigning T ′ := T . Then, it sets T ′[Hj(u)] := 1
for all j ∈ [k], and finally returns T ′.

BFCheck(H,T, u): Given H = (Hj)j∈[k], T ∈ {0, 1}m, and u ∈ U , this algorithm
returns a bit b :=

∧
j∈[k] T [Hj(u)].

Relevant properties of Bloom filters. Let us summarize the properties of Bloom filters
relevant to our work.

Perfect completeness. A Bloom filter always “recognizes” elements that have been
added with probability 1. More precisely, let S = (s1, . . . , sn) ∈ Un be any vector
of n elements of U . Let (H,T0)←$ BFGen(m, k) and define

Ti = BFUpdate(H,Ti−1, si) for i ∈ [n].

Then for all s∗ ∈ S and all (H,T0)←$ BFGen(m, k) with m, k ∈ N, it holds that

Pr [BFCheck(H,Tn, s
∗) = 1] = 1,

where the probability is taken over the random coins of BFGen.
Compact representation of S. Independent of the size of the set S ⊂ U and the rep-

resentation of individual elements of U , the size of representation T is a constant
number of m bits. A larger size of S increases only the false-positive probability,
as discussed below, but not the size of the representation.

Bounded false-positive probability. The probability that an element which has not yet
been added to the Bloom filter is erroneously “recognized” as being contained in
the filter can be made arbitrarily small, by choosing m and k adequately, given (an
upper bound on) the size of S.

7

More precisely, let S = (s1, . . . , sn) ∈ Un be any vector of n elements of U . Then
for any s∗ ∈ U \ S , the false positive probability µ is bounded by

µ := Pr [BFCheck(H,Tn, s
∗) = 1] ≤

(
1− e−

(n+1/2)k
m−1

)k
,

where (H,T0)←$ BFGen(m, k), Ti = BFUpdate(H,Ti−1, si) for i ∈ [n], and the
probability is taken over the random coins of BFGen. See Goel and Gupta [29] for
a proof of this bound.

Discussion on the choice of parameters. In order to provide a first intuition on the
concrete selection of Bloom filter parameters and their impact on the size of ciphertexts,
public- and secret keys for BFE, we subsequently give some examples.

Suppose we are given an upper bound n on the number of elements inserted into the
Bloom filter, and an upper bound p on the false positive probability for this number of
elements that we can tolerate. Our goal is to determine the size m of the Bloom filter
and the number k of hash functions to achieve a false positive probability of µ ≤ p with
respect to n. As already mentioned above, Goel and Gupta [29] proved that the false
positive probability µ of a Bloom filter is strictly bounded by

µ ≤
(
1− e−

(n+1/2)k
m−1

)k
.

Hence, if we set

m :=

⌈
−(n+ 1/2) log2 p

ln 2

⌉
+ 1 and k :=

⌈
(m− 1) ln 2

n+ 1/2

⌉
, (1)

then due to our choice of k we obtain

(n+ 1/2)k

m− 1
≤

(n+ 1/2) (m−1) ln 2
n+1/2

m− 1
= ln 2

and therefore

µ ≤
(
1− e−

(n+1/2)k
m−1

)k
≤ 1

2k
.

Furthermore, due to the choice of m in (1), we obtain a bound on k as

k ≥ (m− 1) ln 2

n+ 1/2
≥

(
−(n+1/2) log2 p

ln 2

)
ln 2

n+ 1/2
= − log2 p

which yields the desired bound µ ≤ 2−k ≤ p on the false positive probability of the
Bloom filter.

Table 1 lists m and k for different values of p and n. In order to give an intuition
of the impact of different choices of p and n, Table 1 also lists the size of ciphertexts,
secret-, and public keys, when the BFE construction in Section 3.1 is instantiated for
these parameters using the pairing-friendly BLS12-381 curve, which provides a secu-
rity level of about “120-bit”.

8

blog2(p)c dlog2(n)e dlog2(m)e k |C| |pk| |sk|
−7 16 20 8 215 B 215 B 30.14 MB
−7 20 24 8 215 B 215 B 482.22 MB
−7 24 28 8 215 B 215 B 7.53 GB
−7 30 34 8 215 B 215 B 482.22 GB
−10 16 20 11 260 B 260 B 43.06 MB
−10 20 24 11 260 B 260 B 688.89 MB
−10 24 28 11 260 B 260 B 10.76 GB
−10 30 34 11 260 B 260 B 688.89 GB
−16 16 21 17 350 B 350 B 68.89 MB
−16 20 25 17 350 B 350 B 1.08 GB
−16 24 29 17 350 B 350 B 17.22 GB
−16 30 35 17 350 B 350 B 1.08 TB
−20 16 21 21 410 B 410 B 86.11 MB
−20 20 25 21 410 B 410 B 1.35 GB
−20 24 29 21 410 B 410 B 21.53 GB
−20 30 35 21 410 B 410 B 1.35 TB

Table 1. Bloom filter parameters and size of public keys, secret keys, and ciphertexts of
the construction from Section 3.1 (with 120-bit security level and using the pairing-friendly
BLS12-381 curve) for different choices of the false positive probability p and the number of
inserted elements n.

Here we need to emphasize that initially the secret key (representing the empty BF)
has its maximum size, but every puncturing (i.e., addition of an element to the BF),
reduces the size of the secret key. Moreover, we stress that the false-positive probability
represents an upper bound as it assumes that all n elements are added to the BF. The
false positive probability before n insertions, as a function of the number of inserted
elements and for given parameters m and k, is discussed below. Finally, we note that
when we use our time-based BFE approach (TB-BFE) from Section 4, we can even
reduce the secret key size by reducing the maximum number of puncturings at the cost
of switching the time intervals more frequently.
False-positive probability p before n insertions. So far we have argued that we can
bound the probability of an non-inserted element being recognized by a BF after n
elements have been added to the BF. However, we stress that this probability is far
lower if only a fraction of the n elements have been added. We can illustrate this by
computing the false-positive probability of an element after only α < n insertions.

Lemma 1. Let (H,Tα) be a Bloom filter where α random elements have been added.
The false-positive probability of a random element u ∈ U being recognized by the
Bloom filter is

Pr[BFCheck(H,Tn, u)] =

(
1−

(
1− 1

m

)αk)k
.

We prove the above lemma in Appendix B.

9

To give some intuition how the false-positive probability evolves over time, we plot
the above function for n = 220 and k ∈ {8, 11, 17, 21} in Figure 1. Furthermore, we
provide plots for n ∈ {216, 224, 230} in Appendix C. It is clearly visible that the false-
positive probability is overwhelmingly low if only a fraction of the n elements have
been added to the Bloom filter.

20 23 26 29 212 215 218

number of inserted elements α

2−452

2−401

2−350

2−299

2−248

2−197

2−146

2−95

2−44

ex
pe

ct
ed

fa
ls

e-
po

si
tiv

e
pr

ob
ab

ili
ty

k = 8

k = 11

k = 17

k = 21

Fig. 1. The false-positive probability of a random element after α elements have been added to a
Bloom filter with n = 220 for k ∈ {8, 11, 17, 21}.

A remark on Bloom filters in adversarial environments. For our bounds of the cor-
rectness error in the BFKEM, we assume that the puncturing inserts random elements
(ciphertexts) into the BF. Now, an adversary could more efficiently exhaust a BF by a
clever choice of the ciphertexts and thus violating our bounds. This would essentially
represent a denial-of-service (DoS) attack on the scheme. We, however, stress that this
class of attacks is hard to prevent in our application in general and thus we do not
consider this as an attack vector. Nevertheless, one approach to counter such types of
attacks on BFs is the concept of adversarial resilient Bloom-filters introduced by Naor
and Yogev in [43]. However, the efficient approach to construct such BFs in [43] re-
quires a secret (unknown to the adversary) to evaluate BF queries, and thus would not
applicable in our setting. Naor and Yogev additionally provide a construction secure
against unbounded adversaries, which however requires to know the precise set S up-

10

front. This is not the case in our application and we leave the study of BFs in adversarial
environments for application in BFE for future work.

2.2 Formal Model of a BFKEM

Subsequently, we introduce the formal model for BFKEM, which is a KEM-variant of
puncturable encryption (PE) [31,20,17,33] with the difference that with BFKEM we
tolerate a non-negligible correctness error. Our Definition 2 below is a variant of the
one in [33], except that we allow the key generation to take the additional parametersm
and k (of the BF) as input, which specify the correctness error. As already mentioned in
the introduction, resorting to present BFKEMs instead of BFE does not represent any
limitation.

Definition 2 (BFKEM). A Bloom Filter key encapsulation scheme (BFKEM) with key
space K is a tuple (KGen,Enc,Punc,Dec) of PPT algorithms:

KGen(1λ,m, k) : Takes as input a security parameter λ, parameters m and k and out-
puts a secret and public key (sk, pk) (we assume that K is implicit in pk, and that
pk is implicit in sk).

Enc(pk) : Takes as input a public key pk and outputs a ciphertext C and a symmetric
key K.

Punc(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs an updated
secret key sk′.

Dec(sk, C) : Takes as input a secret key sk, a ciphertext C and deterministically com-
putes and outputs a symmetric key K or ⊥ if decapsulation fails.

Correctness. We start by defining correctness of a BFKEM scheme. Basically, here
one requires that a ciphertext can always be decapsulated with unpunctured secret keys.
However, we allow that if punctured secret keys are used for decapsulation then the
probability that the decapsulation fails is bounded by some non-negligible function in
the scheme’s parameters m, k.

Definition 3 (Correctness). We require that the following holds for all λ,m, k ∈ N
and any (sk, pk)←$ KGen(1λ,m, k).

For any (arbitrary interleaved) sequence of invocations of

skj+1←$ Punc(skj , Cj),

where j ∈ {1, . . . , n}, sk1 := sk, and (Cj ,Kj)←$ Enc(pk), it holds that

Pr [Dec(skn+1, C
∗) 6= K∗] ≤

(
1− e−

(n+1/2)k
m−1

)k
+ ε(λ),

where (C∗,K∗)←$ Enc(pk) and ε(·) is a negligible function in λ. The probability is
over the random coins of KGen, Punc, and Enc.

Remark 1. The bound
(
1− e−

(n+1/2)k
m−1

)k
is motivated by the bound achievable by

Bloom filters, cf. Equation (1) and the subsequent discussion.

11

2.3 Additional Properties of a BFKEM

In this section, we will define additional properties of a BFKEM that we will use for the
application to 0-RTT key exchange from [33] and to construct a CCA-secure BFKEM
via the Fujisaki-Okamoto (FO) transformation, as described in Section 3.2. We will
show below that our constructions of CPA-secure BFKEMs satisfy these additional
properties, and thus are suitable for our variant of the FO transformation, and to con-
struct 0-RTT key exchange.
Extended correctness. Intuitively, we first require an extended variant of correctness
which demands that (1) decapsulation always yields a failure when attempting to de-
capsulate under a secret key previously punctured for that ciphertext. This is analogous
to [33]. Second, we additionally demand that (2) decapsulating an honest ciphertext
with the unpunctured key does always succeed and (3) if decryption does not fail, then
the decapsulated value must match the key returned by the Enc algorithm, for any key
sk′ obtained from applying any sequence of puncturing operations to the initial secret
key sk.

Definition 4 (Extended Correctness). We require that the following holds for all λ,m,
k, n ∈ N and any (sk, pk)←$ KGen(1λ,m, k).

For any (arbitrary interleaved) sequence of invocations of

skj+1←$ Punc(skj , Cj)

where j ∈ {1, . . . , n}, sk1 := sk, and (Cj ,Kj)←$ Enc(pk), it holds that:

1. Impossibility of false-negatives:
Dec(skn+1, Cj) = ⊥ for all j ≤ n.

2. Perfect correctness of the initial secret key:
Dec(sk, C) = K for all (C,K)←$ Enc(pk).

3. Semi-correctness of punctured secret keys:
If Dec(skj+1, C) 6= ⊥ then Dec(skj+1, C) = Dec(sk, C).

Separable randomness. We require that the encapsulation algorithm Enc essentially
reads the key K in (C,K)←$ Enc(pk) directly from its random input tape. Intuitively,
this will later enable us to make the randomness r used by the encapsulation algorithm
Enc dependent on the key K computed by Enc.

Definition 5 (Separable Randomness). Let BFKEM = (KGen,Enc,Punc,Dec) be a
BFKEM. We say that BFKEM has separable randomness, if one can equivalently write
the encapsulation algorithm Enc as

(C,K)←$ Enc(pk) = Enc(pk; (r,K)),

for uniformly random (r,K) ∈ {0, 1}ρ+λ, where Enc(·; ·) is a deterministic algorithm
whose output is uniquely determined by pk and the randomness (r,K) ∈ {0, 1}ρ+λ.

Remark. We note that one can generically construct a separable BFKEM from any
non-separable BFKEM. Given a non-separable BFKEM with encapsulation algorithm
Enc, a separable BFKEM with encryption algorithm Enc′ can be obtained as follows:

12

Enc′(pk; (r,K′)) : Run (C,K)←$ Enc(pk; r), set C ′ := (C,K⊕ K′) return (C ′,K′).

We need separability in order to apply our variant of the FO transformation, which is
the reason why we have to make it explicit. Alternatively, we could have started from
a non-separable BFKEM and applied the above construction. However, this adds an
additional component to the ciphertext, while the construction given in Section 3.1 will
already be separable, such that we can avoid this overhead.
Publicly-checkable puncturing. Finally, we need that it is efficiently checkable whe-
ther the decapsulation algorithm outputs ⊥ = Dec(sk, C), given not the secret key
sk, but only the public key pk, the ciphertext C to be decrypted, and the sequence
C1, . . . , Cw at which the secret key sk has been punctured.

Definition 6 (Publicly-Checkable Puncturing). Let Q = (C1, . . . , Cw) be any list of
ciphertexts. We say that BFKEM allows publicly-checkable puncturing, if there exists
an efficient algorithm CheckPunct with the following correctness property.

1. Run (sk, pk)←$ KGen(1λ,m, k).
2. Compute (Ci,Ki)←$ Enc(pk) and sk = Punc(sk, Ci) for i ∈ [w].
3. Let C be any string. We require that

⊥ = Dec(sk, C) ⇐⇒ ⊥ = CheckPunct(pk,Q, C).

From a high-level perspective, this additional property will be necessary to simulate the
decryption oracle properly in the CCA security experiment when our variant of the FO
transformation is applied. Together with the second and third property of Definition 4,
it replaces the perfect correctness property required in the original FO transformation.
Min-entropy of ciphertexts. Following [37], we require that ciphertexts of a rand-
omness-separable BFKEM have sufficient min-entropy, even if K is fixed:

Definition 7 (γ-Spreadness). Let BFKEM = (KGen,Enc,Punc,Dec) be a random-
ness-separable BFKEM with ciphertext space C. We say that BFKEM is γ-spread, if for
any honestly generated pk, any key K and any C ∈ C

Pr
r←$ {0,1}ρ [C = Enc(pk; (r,K))] ≤ 2−γ .

2.4 Security Definitions

We define three security properties for BFKEMs. The two “standard” security no-
tions are indistinguishability under chosen-plaintext (IND-CPA) and chosen-ciphertext
(IND-CCA) attacks. In addition, we define one-wayness under chosen-plaintext attacks
(OW-CPA). The latter is the weakest notion among the ones considered in this paper,
and implied by both IND-CPA and IND-CCA, but sufficient for our generic construction
of IND-CCA-secure BFKEMs.
Indistinguishability-based security. Figure 2 defines the IND-CPA and IND-CCA
experiments for BFKEMs. The experiments are similar to the security notions for con-
ventional KEMs, but the adversary can arbitrarily puncture the secret key via the Punc
oracle and retrieve the punctured secret key via the Corr oracle, once it has been punc-
tured on the challenge ciphertext C∗.

13

ExpT
A,BFKEM(λ,m, k):

(sk, pk)←$ KGen(1λ,m, k), (C∗,K0)←$ Enc(pk),Q ← ∅
K1←$ K, b←$ {0, 1}
b∗←$ AO,Punc(sk,·),Corr(pk, C∗,Kb)

where O ← {Dec′(sk, ·)} if T = IND-CCA and O ← ∅ otherwise.
Dec′(sk, C) behaves as Dec but returns ⊥ if C = C∗

Punc(sk, C) runs sk←$ Punc(sk, C) andQ ← Q∪ {C}
Corr returns sk if C∗ ∈ Q and ⊥ otherwise

If b∗ = b then return 1
return 0

Fig. 2. Indistinguishability-based security for BFKEMs.

Definition 8 (Indistinguishability-Based Security of BFKEM). For T ∈ {IND-CPA,
IND-CCA}, we define the advantage of an adversaryA in the T experiment ExpT

A,BFKEM
(λ,m, k) as

AdvT
A,BFKEM(λ,m, k) :=

∣∣∣∣Pr [ExpT
A,BFKEM(λ,m, k) = 1

]
− 1

2

∣∣∣∣ .
A Bloom Filer key-encapsulation scheme BFKEM is T ∈ {IND-CPA, IND-CCA} se-
cure, if AdvT

A,BFKEM(λ,m, k) is a negligible function in λ for allm, k > 0 and all PPT
adversaries A.

One-wayness under chosen-plaintext attack. Figure 3 defines the OW-CPA experi-
ment. The experiment is similar to the IND-CPA experiment, except that the goal of the
adversary is to recover the encapsulated key, given a random challenge ciphertext.

ExpOW-CPA
A,BFKEM(λ,m, k):

(sk, pk)←$ KGen(1λ,m, k), (C∗,K0)←$ Enc(pk),Q ← ∅
K∗0←$ APunc(sk,·),Corr(pk, C∗)

where Punc(sk, C) runs sk←$ Punc(sk, C) andQ ← Q∪ {C}
Corr returns sk if C∗ ∈ Q and ⊥ otherwise

If K∗0 = K0 then return 1
return 0

Fig. 3. OW-CPA security for BFKEMs.

Definition 9 (One-Wayness Under Chosen-Plaintext Attack). We define the advan-
tage of an adversary A in experiment ExpOW-CPA

A,BFKEM(λ,m, k) as

AdvOW-CPA
A,BFKEM(λ,m, k) := Pr

[
ExpOW-CPA

A,BFKEM(λ,m, k) = 1
]
.

A BFKEM is OW-CPA secure, if AdvOW-CPA
A,BFKEM(λ,m, k) is a negligible function in λ

for all m, k > 0 and all PPT adversaries A.

14

Relation to “standard KEM security”. We would like to point out that it is possible
to remove both the puncture and corrupt oracle and immediately send the secret key
(punctured at the challenge ciphertext) to the adversary. However, this security defini-
tion is only equivalent to our security definition if an adversary cannot detect in which
order ciphertexts have been punctured. That is, this security definition only provides
reasonable security for schemes where the secret key does not reveal the order of punc-
turings. A formalization of this can be found in [26].

3 BFKEM Constructions

In this section, we present different BFKEM constructions. We start with a CPA se-
cure version inspired by the hashed Boneh-Franklin identity-based encryption (IBE)
scheme [12] in Section 3.1 and then show how we can obtain a CCA secure variant
via the Fujisaki-Okamoto (FO) transform [25] in the random oracle model (ROM) in
Section 3.2. Then, in Section 3.3 we present a construction of a CPA secure BFKEM
from ciphertext-policy attribute-based encryption (CP-ABE) schemes and discuss how
to obtain CCA security via the FO transform in the ROM. Finally, in Section 3.4 we
present a CPA secure BFKEM from identity-based broadcast encryption (IBBE) and
discuss how to obtain CCA security via the FO transform in the ROM or the CHK
transform [16] without requiring random oracles.

3.1 BFKEM from Hashed IBE

Construction. In the sequel, let Params := (q, e,G1,G2,GT , g1, g2)←$ BilGen(1λ),
and gT = e(g1, g2). We will always assume that all algorithms described below im-
plicitly receive these parameters as additional input. Let B = (BFGen,BFUpdate,
BFCheck) be a Bloom filter for set G1. Furthermore, let G : N → G2 and E : GT →
{0, 1}λ be cryptographic hash functions (which will be modeled as random oracles [7]
in the security proof).

Let BFKEM = (KGen,Enc,Punc,Dec) be defined as follows.

KGen(1λ,m, k) : This algorithm first generates a Bloom filter instance by running
(H,T)←$ BFGen(m, k). Then it chooses α←$ Zq , and computes and returns

sk := (T, (G(i)α)i∈[m]) and pk := (gα1 , H).

Remark. The reader familiar with the Boneh-Franklin IBE scheme [12] may note
that the secret key contains m elements of G2, each essentially being a secret key
of the Boneh-Franklin scheme for “identity” i, i ∈ [m], with respect to “master
public-key” gα1 .

Enc(pk) : This algorithm takes as input a public key pk of the above form. It samples
a uniformly random key K←$ {0, 1}λ and exponent r←$ Zq . Then it computes
ij := Hj(g

r
1) for (Hj)j∈[k] := H , then yj = e(gα1 , G(ij))

r for j ∈ [k], and finally

C :=
(
gr1, (E(yj)⊕ K)j∈[k]

)
.

It outputs (C,K) ∈ (G1 × {0, 1}kλ)× {0, 1}λ.

15

Remark. Note that for each j ∈ [k], the tuple (gr1, E(yj) ⊕ K) is essentially a
“hashed Boneh-Franklin IBE” ciphertext, encrypting K for “identity” ij = Hj(g

r
1)

and with respect to master public key gα1 , where the identity is derived determin-
istically from a “unique” (with overwhelming probability) ciphertext component
gr1 . Thus, the ciphertext C essentially consists of k Boneh-Franklin ciphertexts that
share the same randomness r, each encrypting the same key K for an “identity”
derived deterministically from gr1 .
Note also that this construction of Enc satisfies the requirement of separable ran-
domness from Definition 5. Furthermore, ciphertexts are γ-spread according to
Definition 7 with γ = log2 p, because gr1 is uniformly distributed over G1.

Punc(sk, C) : Given a ciphertext C :=
(
gr1, (E(yj)⊕ K)j∈[k]

)
and secret key sk =

(T, (sk[i])i∈[m]), the puncturing algorithm first computes T ′ = BFUpdate(H,
T, gr1). Then, for each i ∈ [m] it defines

sk′[i] :=

{
sk[i] if T ′[i] = 0, and
⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm returns

sk′ := (T ′, (sk′[i])i∈[m]).

Remark. Note that the above procedure is correct even if the procedure is ap-
plied repeatedly with different ciphertexts C, since the BFUpdate algorithm only
changes bits of T from 0 to 1, but never from 1 to 0. So we can delete a secret key
element sk[i] once T ′[i] has been set to 1. Furthermore, we have sk′[i] = ⊥ ⇐⇒
T ′[i] = 1. Intuitively, this will ensure that we can use this key to decrypt a ci-
phertext C :=

(
gr1, (E(yj)⊕ K)j∈[k]

)
if and only if BFCheck(H,T, gr1) = 0,

where (H,T) is the Bloom filter instance contained in the public key. Note also
that the puncturing algorithm essentially only evaluates k universal hash functions
H = (Hj)j∈[k] and then deletes a few secret keys, which makes this procedure
extremely efficient. Finally, observe that the filter state T can be efficiently re-
computed given only public information, namely the list of hash functions H con-
tained in pk and the sequence of ciphertexts C1, . . . , Cw on which a secret key has
been punctured. This yields the existence of an efficient CheckPunct according to
Definition 6.

Dec(sk, C) : Given a secret key sk = (T, (sk[i])i∈[m]) and a ciphertext C := (C[0],
C[i1], . . . , C[ik]) it first checks whether BFCheck(H,T,C[0]) = 1, and outputs
⊥ in this case. Otherwise, note that BFCheck(H,T,C[0]) = 0 implies that there
exists at least one index i∗ with sk[i∗] 6= ⊥. It picks the smallest index i∗ ∈
{i1, . . . , ik} such that sk[i∗] = G(i∗)α 6= ⊥, computes

yi∗ := e(gr1, G(i
∗)α),

and returns K := C[i∗]⊕ E(yi∗).

Remark. If BFCheck(H,Tn, C[0]) = 0, then the decryption algorithm performs
a “hashed Boneh-Franklin” decryption with a secret key for one of the identities.

16

Note that Dec(skn, C) 6= ⊥ ⇐⇒ BFCheck(H,T,C[0]) = 0, which guarantees
the first extended correctness property required by Definition 4. It is straightforward
to verify that the other two extended correctness properties of Definition 4 hold as
well.

Design choices. We note that we have chosen to base our BFKEM on hashed Boneh-
Franklin IBE instead of standard Boneh-Franklin for two reasons. First, it allows us
to keep ciphertexts short and independent of the size of the binary representation of
elements of GT . This is useful, because the recent advances for computing discrete
logarithms in finite extension fields [39] apply to the target group of state-of-the-art
pairing-friendly elliptic curve groups. Recent assessments of the impact of these ad-
vances by Menezes et al. [42] as well as Barbulescu and Duquesne [4] suggest that for
currently used efficient curve families such as BN [6] or BLS [5] curves a conserva-
tive choice of parameters for the 128 bit security level yields sizes of GT elements of
≈ 4600 − 5500 bits. The hash function allows us to “compress” these group elements
in the ciphertext to 128 bits (the size of a symmetric encryption key). Even if future
research enables the construction of bilinear maps where elements of GT can be repre-
sented by 2λ bits for λ-bit security (which is optimal), it is still preferable to hash group
elements to λ bits to reduce the ciphertext by a factor of about 2. Second, by modelling
E as a random oracle, we can reduce security to a weaker complexity assumption.
Correctness error of this scheme. We will now explain that the correctness error
of this scheme is essentially identical to the false-positive probability of the Bloom
filter, up to a statistically small distance which corresponds to the probability that two
independent ciphertexts share the same randomness r.

For m, k ∈ N, let (sk0, pk)←$ KGen(1λ,m, k), let U := {C : (C,K)←$ Enc(pk)}
denote the set of all valid ciphertext with respect to pk. Let S = (C1, . . . , Cn) be a
list of n ciphertexts, where (Ci,Ki)←$ Enc(pk), and run ski = Punc(ski−1, Ci) for
i ∈ [n] to determine the secret key skn obtained from puncturing sk0 iteratively on all
ciphertexts Ci ∈ S.

Now let us consider the probability

Pr [Dec(skn, C
∗) 6= K∗ : (C∗,K∗)←$ Enc(pk), C∗ 6∈ S]

that a newly generated ciphertext C∗ 6∈ S is not correctly decrypted by skn. To this
end, let C∗[0] = gr

∗

1 denote the first component of ciphertext C∗ = (gr
∗

1 , C
∗
1 , . . . , C

∗
k),

and likewise let Ci[0] denote the first component of ciphertext Ci for all Ci ∈ S . Writ-
ing skn = (Tn, (skn[i])i∈[m]) and pk = (gα1 , H), one can now verify that we have
Dec(skn, C

∗) 6= K∗ ⇐⇒ BFCheck(H,Tn, C
∗[0]) = 1, because BFCheck(H,Tn,

C∗[0]) = 0 guarantees that there exists at least one index j such that skn[Hj(C
∗[0])] 6=

⊥, so correctness of decryption follows essentially from correctness of the Boneh-
Franklin scheme. Thus, we have to consider the probability that BFCheck(H,Tn, C∗[0])
= 1. We distinguish between two cases:

1. There exists an index i ∈ [n] such that C∗[0] = Ci[0]. Note that this implies
immediately that BFCheck(H,Tn, C∗[0]) = 1. However, recall that C∗[0] = gr

∗

1

is a uniformly random element of G1. Therefore the probability that this happens
is upper bounded by n/q, which is negligibly small.

17

2. C∗[0] 6= Ci[0] for all i ∈ [n]. In this case, as explained in Section 2.1, the soundness
of the Bloom filter guarantees that

Pr[BFCheck(H,Tn, C
∗[0]) = 1] ≤

(
1− e−

(n+1/2)k
m−1

)k
≤ 2−k.

In summary, the correctness error of this scheme from the discussion in Section 2.1
is approximately 2−k + n/q. Since n/q is negligibly small, this essentially amounts
to the correctness error of the Bloom filter, which in turn depends on the number of
ciphertexts n, and the choice of parameters m, k.
Flexible instantiability of this scheme. Our scheme is highly parameterizable in the
sense that we can adjust the size of keys and ciphertexts by adjusting the correctness
error (determined by the choice of parameters m, k that in turn determine the false-
positive probability of the Bloom filter) of our scheme.
Additional properties. As already explained in the remarks after the description of
the individual algorithms of BFKEM, the scheme satisfies the requirements of Defini-
tions 4, 5, 6, and 7.
IND-CPA-security. We base IND-CPA-security on a bilinear computational Diffie-
Hellman variant in the bilinear groups generated by BilGen.

Definition 10 (BCDH [12]). We define the advantage of adversary A in solving the
BCDH problem with respect to BilGen as

AdvBCDH
A,BilGen(λ) := Pr [e(g1, h2)

rα←$ A(Params, gr1, g
α
1 , g

α
2 , h2)] ,

where Params = (p, e,G1,G2,GT , g1, g2)←$ BilGen(1λ), and (gr1, g
α
1 , g

α
2 , h2)←$ G2

1×
G2

2.

Theorem 1. From each efficient adversary B that issues u queries to random oracle E
we can construct an efficient adversary A with

AdvIND-CPA
B,BFKEM(λ,m, k) ≤ ku ·AdvBCDH

A,BilGen(λ).

Proof. Algorithm A receives as input a BCDH-challenge tuple (gr1, g
α
1 , g

α
2 , h2). It runs

adversary B as a subroutine by simulating the ExpIND-CPA
B,BFKEM(λ,m, k) experiment, in-

cluding random oracles G and E, as follows.
First, it definesQ := ∅, runs (H,T)←$ BFGen(m, k), and defines the public key as

pk := (gα1 , H). Note that this public key is identically distributed to a public key output
by KGen(1λ,m, k). In order to simulate the challenge ciphertext, the adversary chooses
a random key K←$ {0, 1}λ and k uniformly random values Yj ←$ {0, 1}λ, j ∈ [k], and
defines the challenge ciphertext as C∗ := (gr1, (Yj)j∈[k]). Finally, it outputs (pk, C∗,K)
to B.

Whenever B queries Punc(sk, ·) on input C = (C[0], . . .), then A updates T by
running T = BFUpdate(H,T,C[0]), and Q ← Q∪ {C}.

Whenever a random oracle query to G : N → G2 is made (either by A or B), with
input ` ∈ N, then A responds with G(`), if G(`) has already been defined. If not, then
A chooses a random integer r`←$ Zq , and returns G(`), where

G(`) :=

{
h2 · gr`2 if ` ∈ {Hj(g

r
1) : j ∈ [k]}, and

gr`2 otherwise.

18

This definition of G allows A to simulate the Corr oracle as follows. When B queries
Corr, then it first checks whether C∗ ∈ Q, and returns ⊥ if this does not hold. Other-
wise, note that we must have ∀j ∈ [k] : T [Hj(g

r
1)] = 0, where H = (Hj)j∈[k] and

T [`] denotes the `-th bit of T . Thus, by the simulation of G described above, A is able
to compute and return G(`)α = (gr`2)α = (gα2)

r` for all ` with ` 6∈ {Hj(g
r
1) : j ∈ [k]},

and therefore in particular for all ` with T [`] = 1. This enables the perfect simulation
of Corr.

Finally, whenever B queries random oracle E : GT → {0, 1}λ on input y, then A
responds with E(y), if E(y) has already been defined. If not, thenA chooses a random
string Y ←$ {0, 1}λ, assigns E(y) := Y , and returns E(y). Now we have to distinguish
between two types of adversaries.

1. A Type-1 adversary B never queries E on input of a value y, such that there ex-
ists j ∈ [k] such that y = e(gα1 , G(Hj(g

r
1)))

r. Note that in this case the value
Y ′j := E(e(gα1 , G(Hj(g

r
1)))

r) remains undefined for all j ∈ [k] throughout the
entire experiment. Thus, information-theoretically, a Type-1 adversary receives no
information about the key encrypted in the challenge ciphertext C∗, and thus can
only have advantage AdvIND-CPA

B,BFKEM(λ,m, k) = 0, in which case the theorem holds
trivially.

2. A Type-2 adversary queries E(y) such that there exists j ∈ [k] with y = e(gα1 , G(
Hj(g

r
1)))

r. A uses a Type-2 adversary to solve the BCDH challenge as follows.
At the beginning of the game, it picks two indices (u∗, j∗)←$ [u] × [k] uniformly
random. When B outputs y in its u∗-th query to E, then A computes and outputs
W := y ·e(gα1 , gr2)−r` . Since B is a Type-2 adversary, we know that at some point it
will query E(y) with y = e(gα1 , G(Hj(g

r
1)))

r for some j ∈ [k]. If this is the u∗-th
query and we have j = j∗, which happens with probability 1/(uk), then we have

W = y · e(gr1, gα2)−r` = e(gα1 , G(Hj(g
r
1)))

r · e(gα1 , gr2)−r`

= e(gα1 , h2 · g
r`
2)r · e(gα1 , gr2)−r` = e(gα1 , h2)

r · e(gα1 , g
r`
2)r · e(gα1 , gr2)−r`

and thus W is a solution to the given BCDH instance. Note that r` is chosen in the
simulation and therefore known. ut

OW-CPA-Security. The following theorem can either be proven analogous to Theo-
rem 1, or based on the fact that IND-CPA-security implies OW-CPA-security. Therefore
we give it without proof.

Theorem 2. From each efficient adversary B that issues u queries to random oracle E
we can construct an efficient adversary A with

AdvOW-CPA
B,BFKEM(λ,m, k) ≤ uq ·AdvBCDH

A,BilGen(λ).

Remark 2. The construction presented above allows to switch the roles of G1 and G2,
i.e., to switch all elements in G1 to G2 and vice versa. This might be beneficial regarding
the size of the secret key when instantiating our construction using a bilinear group
where the representation of elements in G2 requires more space than the representation
of elements in G1.

19

3.2 CCA-Security of the BFKEM from Hashed IBE via Fujisaki-Okamoto

We obtain a CCA-secure BFKEM by adopting the Fujisaki-Okamoto (FO) transforma-
tion [25] to the BFKEM setting. Since the FO transformation does not work generically
for any BFKEM, we have to use the additional requirements on the underlying BFKEM
that have been defined in Section 2.3. These additional properties enable us to overcome
the difficulty that the original Fujisaki-Okamoto transformation from [25] requires per-
fect correctness. We remark that Hofheinz et al. [38] give a new, modular analysis of
the FO transformation, which also works for public key encryption schemes with negli-
gible correctness error, however, it is not applicable to BFKEMs, because, due to their
non-negligible correctness error, the bounds given in [38] provide insufficient security
in this case.

Construction. Let BFKEM = (KGen,Enc,Punc,Dec) be a BFKEM with separable
randomness according to Definition 5. This means that we can write Enc equivalently
as (C,K)←$ Enc(pk) = Enc(pk; (r,K)) for uniformly random (r,K)←$ {0, 1}ρ+λ.
In the sequel, let R be a hash function (modeled as a random oracle in the security
proof), mapping R : {0, 1}∗ → {0, 1}ρ+λ. We construct a new scheme BFKEM′ =
(KGen′,Enc′,Punc′,Dec′) as follows.

KGen′(1λ,m, k) : This algorithm is identical to KGen.
Enc′(pk) : Algorithm Enc′ samples K←$ {0, 1}λ. Then it computes (r,K′) := R(K) ∈
{0, 1}ρ+λ, runs (C,K)←$ Enc(pk; (r,K)), and returns (C,K′).

Punc′(sk, C) : This algorithm is identical to Punc.
Dec′(sk, C) : This algorithm first runs K←$ Dec(sk, C), and returns ⊥ if K = ⊥. Oth-

erwise, it computes (r,K′) = R(K), and checks consistency of the ciphertext by
verifying that (C,K) = Enc(pk; (r,K)). If this does not hold, then it outputs ⊥.
Otherwise it outputs K′.

Correctness error and extended correctness. Both the correctness error and the ex-
tended correctness according to Definition 4 are not affected by the Fujisaki-Okamoto
transform. Therefore these properties are inherited from the underlying scheme. The
fact that the first property of Definition 4 is satisfied makes the scheme suitable for the
application to 0-RTT key establishment.

IND-CCA-security. The security proof reduces security of our modified scheme to the
OW-CPA-security of the scheme from Section 3.

Theorem 3. Let BFKEM = (KGen,Enc,Punc,Dec) be a BFKEM scheme that satis-
fies the additional properties of Definitions 4 and 6, and which is γ-spread according
to Definition 7. Let BFKEM′ = (KGen′,Enc′,Punc′,Dec′) be the scheme described in
Section 3.2. From each efficient adversaryA that issues at most qO queries to oracleO
and qR queries to random oracle R, we can construct an efficient adversary B with

AdvIND-CCA
A,BFKEM′(λ,m, k) ≤ qR ·AdvOW-CPA

B,BFKEM(λ,m, k) + qO/2
γ .

Proof. We proceed in a sequence of games. In the sequel, Oi is the implementation of
the decryption oracle in Game i.

20

Game 0. This is the original IND-CCA security experiment from Definition 8, played
with the scheme described above. In particular, the decryption oracleO0 is implemented
as follows (we omit the check for C = C∗):

O0(C)

K←$ Dec(sk, C)
If K = ⊥ then return ⊥
(r,K′) = R(K)
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

Recall that K0 denotes the encapsulated key computed by the IND-CCA experiment.
K0 is uniquely defined by the challenge ciphertext C∗ via K0 := Dec(sk0, C

∗), where
sk0 is the initial (non-punctured) secret key, since the scheme satisfies extended cor-
rectness (Definition 4, second property). Let A0 denote the event that A ever queries
K0 to random oracle R. Note that A has zero advantage in distinguishing K′ from
random, until A0 occurs, because R is a random function. Thus, we have Pr[A0] ≥
AdvIND-CCA

A,BFKEM′(λ,m, k). In the sequel, we denote with Ai the event that A ever queries
K0 to random oracle R in Game i.
Game 1. This game is identical to Game 0, except that after computing K←$ Dec(sk, C)
and checking whether K 6= ⊥, the experiment additionally checks whether the adver-
sary has ever queried random oracle R on input K, and returns⊥ if not. More precisely,
the experiment maintains a list

LR = {(K, (r,K′)) : A queried R(K) = (r,K′)}

to record all queries K made by the adversary to random oracle R, along with the cor-
responding response (r,K′) = R(K). The decryption oracleO1 uses this list as follows
(boxed statements highlight changes to O0):

O1(C)

K←$ Dec(sk, C)

If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
(r,K′) = R(K)
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

Note that Games 0 and 1 are perfectly indistinguishable, unless A ever outputs a ci-
phertext C with O1(C) = ⊥, but O0(C) 6= ⊥. Note that this happens if and only if
A outputs C such that C = Enc(pk; (r,K)), where r is the randomness defined by
(r,K′) = R(K), but without prior query of R(K).

The random oracle R assigns a uniformly random value r ∈ {0, 1}ρ to each query,
so, by the γ-spreadness of BFKEM, the probability that the ciphertext C output by the
adversary “matches” the ciphertext produced by Enc(pk; (r,K)) is 2−γ . Since A issues
at most qO queries to O1, this yields Pr[A1] ≥ Pr[A0]− qO/2γ .

21

Game 2. We make a minor conceptual modification. Instead of computing (r,K′) =
R(K) by evaluating R, O2 reads (r,K′) from list LR. More precisely:

O2(C)

K←$ Dec(sk, C)
If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.

If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

By definition of LR it always holds that (r,K′) = R(K) for all (K, (r,K′)) ∈ LR.
Indeed (r,K′), is uniquely determined by K, because (r,K′) = R(K) is a function.
Since R is only evaluated by O1 if there exists a corresponding tuple (K, (r,K′)) ∈ LR
anyway, due to the changes introduced in Game 1, oracle O2 is equivalent to O1 and
we have Pr[A2] = Pr[A1].

Game 3. This game is identical to Game 2, except that wheneverA queries a ciphertext
C to oracleO3, thenO3 first runs the CheckPunct algorithm associated to BFKEM (cf.
Definition 6). If CheckPunct(pk,Q, C) = ⊥, then it immediately returns⊥. Otherwise,
it proceeds exactly like O2. More precisely:

O3(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk, C)
If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

Recall that by public checkability (Definition 6) we have ⊥ = Dec(sk, C) ⇐⇒
⊥ = CheckPunct(pk,Q, C). Therefore the introduced changes are conceptual, and
Pr[A3] = Pr[A2].

Game 4. We modify the secret key used to decrypt the ciphertext. Let sk0 denote the
initial secret key generated by the experiment (that is, before any puncturing operation
was performed).O4 uses sk0 to compute K←$ Dec(sk0, C) instead of K←$ Dec(sk, C),
where sk is a possibly punctured secret key. More precisely:

22

O4(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk0, C)

If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

For indistinguishability from Game 3, we show that O4(C) = O3(C) for all cipher-
texts C. Let us first consider the case Dec(sk, C) = ⊥. Then public checkability
guarantees that O4(C) = O3(C) = ⊥, due to the fact that Dec(sk, C) = ⊥ ⇐⇒
CheckPunct(pk,Q, C) = ⊥.

Now let us consider the case Dec(sk, C) 6= ⊥. In this case, the semi-correctness
of punctured keys (3rd requirement of Definition 4) guarantees that Dec(sk, C) =
Dec(sk0, C) = K 6= ⊥.

After computing Dec(sk0, C),O4 performs exactly the same operations asO3 after
computing Dec(sk, C). Thus, in this case both oracles are perfectly indistinguishable,
too. This yields that the changes introduced in Game 4 are purely conceptual, and we
have Pr[A4] = Pr[A3].
Remark. Due to the fact that we are now using the initial secret key to decrypt C, we
have reached a setting where, due to the perfect correctness of the initial secret key sk0,
essentially a perfectly-correct encryption scheme is used – except that the decryption
oracle implements a few additional abort conditions. Thus, we can now basically apply
the standard Fujisaki-Okamoto transformation, but we must show that we are also able
to simulate the additional abort imposed by the additional consistency checks properly.
To this end, we first replace these checks with equivalent checks before applying the
FO transformation.
Game 5. We replace the consistency checks performed by O4 with an equivalent
check. More precisely, O5 works as follows:

O5(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk0, C)

If @(r,K′) : ((K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))) then return ⊥

Return K′ such that (K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))

This is equivalent, so that we have Pr[A5] = Pr[A4].
Game 6. Observe that in Game 5 we check whether there exists a tuple (r,K′) with
(K, (r,K′)) ∈ LR and (C,K) = Enc(pk; (r,K), where K must match the secret key
computed by K←$ Dec(sk0, C).

In Game 6, we relax this check. We test only whether there exists any tuple (K̃, (r̃,
K̃′)) ∈ LR such that (C, K̃) = Enc(pk; (r̃, K̃) holds. Thus, it is not explicitly checked

23

whether K̃ matches the value K←$ Dec(sk0, C). Furthermore, the corresponding value
K̃′ is returned. More precisely:

O6(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk0, C)

If @(r̃, K̃′) : ((K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))) then return ⊥

Return K̃′ such that (K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))

By the perfect correctness of the initial secret key sk0, we have

(C, K̃) = Enc(pk; (r̃, K̃)) =⇒ Dec(sk0, C) = K̃,

so that we must have K = K̃. O6 is equivalent to O5, and Pr[A6] = Pr[A5].
Game 7. This game is identical to Game 6, except that we change the decryption
oracle again. Observe that the value K computed by K←$ Dec(sk0, C) is never used by
O6. Therefore the computation of K←$ Dec(sk0, C) is obsolete, and we can remove it.
More precisely, O7 works as follows.

O7(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
If @(r̃, K̃′) : ((K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))) then return ⊥
Return K̃′ such that (K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))

We have only removed an obsolete instruction, which does not change the output dis-
tribution of the decryption oracle. Therefore O7 simulates O6 perfectly, and we have
Pr[A7] = Pr[A6].
Reduction to OW-CPA-security. Now we are ready to describe the OW-CPA-adv-
ersary B. B receives (pk, C∗). It samples a uniformly random key K′←$ {0, 1}λ and
runs the IND-CCA-adversary A as a subroutine on input (pk, C∗,K′). Whenever A
issues a Punc- or Corr-query, then B forwards this query to the OW-CPA-experiment
and returns the response. In order to simulate the decryption oracle O, adversary B
implements the simulated oracleO7 from Game 7 described above. WhenA terminates,
then B picks a uniformly random entry (K̂, (r̂, K̂′))←$ LR, and outputs K̂.
Analysis of the reduction. Let Q̂ denote the event that A ever queries K0 to random
oracleR. Note thatB simulates Game 7 perfectly untilA7 occurs, thus we have Pr[Q̂] ≥
Pr[A7]. Summing up, the probability that the value K̂ output by B matches the key
encapsulated in C∗ is therefore at least

Pr[Q̂]

qR
≥

AdvIND-CCA
A,BFKEM′(λ,m, k)− qO/2γ

qR
.

ut

24

Remark on the tightness. Alternatively, we could have based the security of our
IND-CCA-secure scheme on the IND-CPA (rather than OW-CPA) security of BFKEM′.
In this case, we would have achieved a tighter reduction, as we would have been able to
avoid guessing the index (K̂, (r̂, K̂′))←$ LR, at the cost of requiring stronger security
of the underlying scheme.

From IND-CCA-secure KEMs to IND-CCA-secure encryption. It is well-known that
IND-CCA-secure KEMs can be generically transformed into IND-CCA-secure encryp-
tion schemes, by combining it with a CCA-secure symmetric encryption scheme [25].
This construction applies to BFKEMs as well.

3.3 BFKEM from CP-ABE

We now present an alternative, generic construction of a BFKEM from ciphertext-
policy attribute-based encryption (CP-ABE) [8]. In particular, the construction can be
instantiated with any small-universe (i.e., bounded) CP-ABE scheme6 that is adaptively
secure, supports at least OR-policies, and allows to encrypt messages from an exponen-
tially large space. We note that since the formulation of KEMs in context of ABE is
not widely used, we opt to start from a CP-ABE scheme which we implicitly turn into
a KEM in the construction via the folklore compiler to obtain KEMs from encryptions
schemes.

In contrast to the basic BFKEM construction in Section 3.1, we are able to gener-
ically obtain constant-size ciphertexts (independent of the parameters m and k) if the
underlying CP-ABE scheme beyond possessing the aforementioned properties, is also
compact, i.e., provides constant-size ciphertexts, (as e.g. [18] and [2] which are ob-
tained from static and parameterized assumptions, respectively). Compact-size cipher-
texts come at the cost of increased secret key size in existing schemes (at least quadratic
in the number of attributes). However, for forward-secret 0-RTT key-exchange storage
cost at the server is less expensive than communication bandwidth and thus can be
considered a viable trade-off.

CP-ABE. Before we describe our construction let us briefly recall CP-ABE. Therefore,
let U be the universe of attributes and we require only small-universe constructions, i.e.,
U is fixed at setup and |U| is polynomially bounded in the security parameter λ (in our
BFKEM construction we will have |U| = m). Intuitively, in a CP-ABE scheme secret
keys are issued with respect to attribute sets U′ ⊆ U and messages are encrypted with
respect to access structures (policies) defined over U. Decryption works iff the attributes
in the secret key satisfy the policy used to produce the ciphertext. Let us discuss this a
bit more formally.

Definition 11 (Access Structure [8]). Let U be the attribute universe. A collection
A ∈ 2U of non-empty sets is an access structure on U. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets. A collection
A ∈ 2U is called monotone if ∀ B,C ∈ A : if B ∈ A and B ⊆ C, then C ∈ A.

6 Note that any large universe CP-ABE scheme yields a small-universe CP-ABE scheme but not
vice-versa.

25

Subsequently, we do not require arbitrary monotone access structures, but only OR-
policies (i.e., threshold policies with threshold 1). In particular, for some attribute set
U′ := (u1, . . . , un) ⊆ U we consider policies of the form u1 OR . . . OR un, repre-
senting an access structure A := 2U

′ \ ∅.

Definition 12 (CP-ABE). A ciphertext-policy attribute-based encryption scheme is a
tuple CP-ABE = (Setup,KGen,Enc,Dec) of PPT algorithms:

Setup(1λ,U) : Takes as input a security parameter λ and an attribute universe de-
scription U and outputs a master secret and public key (msk,mpk). We assume
that all subsequent algorithms will implicitly receive the master public key mpk
(public parameters) as input which implicitly fixes a message spaceM.

KGen(msk,U′) : Takes as input the master secret key msk and a set of attributes U′ ⊆
U and outputs a secret key skU′ .

Enc(M,A) : Takes as input a message M ∈M and an access structure A and outputs
a ciphertext C.

Dec(skU′ , C) : Takes as input a secret key skU′ and a ciphertext C and outputs a mes-
sage M or ⊥ in case of decryption does not work.

Correctness of CP-ABE requires that for all λ, all attribute sets U, all (msk,mpk)
←$ Setup(1λ,U), all M ∈ M, all A ∈ 2U \ ∅, all U′ ∈ A, all skU′ ←$ KGen(msk,U′)
we have that Pr[Dec(skU′ ,Enc(M,A)) =M] = 1.

Security of CP-ABE. Figure 4 defines adaptive IND-T with T ∈ {CPA,CCA} security
for CP-ABE. We stress that we use a formalization for small-universe schemes where
the size of U is polynomially bounded in the security parameter λ (for large universe U
is not required for Setup). We denote this value by n and consider the attribute set to be
U = {1, . . . , n}.

ExpIND-T
A,CP-ABE(λ, n):

(msk,mpk)←$ Setup(1λ,U)
b←$ {0, 1},Q ← ∅
(M0,M1,A∗)←$ AO,KGen(msk,·)(mpk)

where O ← Dec(·, ·) if T = CCA2 and O ← ∅ otherwise.
KGen(msk,U′) returns skU′ and setsQ ← Q∪ U′

if M0,M1 /∈M ∨ |M0| 6= |M1| ∨ A∗ ∩Q 6= ∅, let C∗ ← ⊥
else, let C∗←$ Enc(Mb,A∗)
b∗←$ AO,KGen(msk,·)(C∗)

where O ← Dec′(·, ·) if T = CCA2 and O ← ∅ otherwise.
Dec′(U′, C) returns Dec(KGen(msk,U′), C) if C 6= C∗

and ⊥ otherwise.
KGen(msk,U′) returns skU′ if U′ /∈ A∗ and ⊥ otherwise

return 1, if b∗ = b
return 0

Fig. 4. IND-T security for small-universe CP-ABE: T ∈ {CPA,CCA}.

26

Definition 13 (IND-T Security of CP-ABE). We define the advantage of an adversary
A in the IND-T experiment ExpIND-T

A,CP-ABE(λ, n) as

AdvIND-T
A,CP-ABE(λ, n) :=

∣∣∣∣Pr [ExpIND-T
A,CP-ABE(λ, n) = 1

]
− 1

2

∣∣∣∣ .
A ciphertext-policy attribute-based encryption scheme CP-ABE is IND-T, T ∈ {CPA,
CCA}, secure, if AdvIND-T

A,CP-ABE(λ, n) is a negligible function in λ for all n > 0 and all
PPT adversaries A.

Intuition of the BFKEM construction. The intuition of constructing a CPA-secure
BFKEM from CP-ABE is very simple. Basically, we map the indicesm in T ∈ {0, 1}m
of a Bloom filter (H,T) to the attribute universe U. Then we generate for every at-
tribute i ∈ [m] (we consider U = {1, . . . ,m}) a secret key sk{i}, set our secret key
of the BFKEM scheme to be sk := (T, (sk{1}, . . . , sk{m})) and delete msk. Encryp-
tion is with respect to the attributes given by the indices I obtained from sending a
randomly sampled tag r through the hash functions Hj , j ∈ [k] of the Bloom filter.
Decryption works by using one secret key sk{i} indexed by I. Puncturing a ciphertext
simply amounts to discarding all the secret keys sk{i} indexed by I.

Construction. Subsequently, we describe the generic CPA-secure BFKEM construc-
tion from a CP-ABE scheme ABE. We, thereby, require a CP-ABE with exponentially
large message space M, and assume that the key space K of the BFKEM scheme is
equivalent toM.

KGen(1λ,m, k) : Runs ((Hj)j∈[k], T)←$ BFGen(m, k). Then it runs (msk,mpk)←$

ABE.Setup(1λ, [m]), and for all i ∈ [m] : sk{i}←$ ABE.KGen(msk, {i}). Finally
it sets and outputs

sk := (T, (sk{i})i∈[m]) and pk := (mpk, (Hj)j∈[k]).

Enc(pk) : Takes as input a public key pk. It samples uniformly at random a key K←$ M,
as well as a value r←$ {0, 1}λ, computes ∀j ∈ [k] : ij = Hj(r), sets U′ =
{i1, . . . , ik} and A = 2U

′ \ ∅. Finally, it computes C ′←$ ABE.Enc(K,A) and out-
puts (C,K) where ciphertext C := (r, C ′).

Remark. We remark that if a CP-ABE is used where K andM are different, one
can use standard randomness extraction techniques to extract a key k ∈ K from a
uniformly random message m ∈M.

Punc(sk, C) : Takes as input a secret key sk := (T, (sk{i})i∈[m]) and ciphertext C :=

(r, C ′). It computes T ′←$ BFUpdate((Hj)j∈[k], T, r) and for each i ∈ [m] it de-
fines

sk′{i} :=

{
sk{i} if T ′[i] = 0, and
⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, it returns an updated secret key
sk′ = (T ′, (sk′{i})i∈[m]).

27

Dec(sk, C) : Takes as input a secret key sk and a ciphertext C := (r, C ′). It computes
∀j ∈ [k] : ij = Hj(r) and takes the first element sk{ij} from (sk{i})i∈[m] with
sk{ij} 6= ⊥. If such an sk{ij} exists it outputs K←$ ABE.Dec(sk{ij}, C

′) and ⊥
otherwise.

Correctness error of this scheme. Under the same argumentation as in the correctness
proof in Section 3.1, we obtain that the correctness error is approximately 2−k + n/2λ.

CPA security. We directly relate the CPA-security of our construction to the hardness
of breaking CPA-security for the underlying CP-ABE.

Theorem 4. From each efficient adversary B against CPA-security of our BFKEM, we
can construct an efficient adversary A which breaks CPA-security of the underlying
CP-ABE, with

AdvIND-CPA
A,CP-ABE(λ, n) ≥ AdvIND-CPA

B,BFKEM(λ,m, k).

Proof. We present a reduction which uses an adversary B against CPA-security of the
BFKEM to break CPA-security of the CP-ABE. First, we engage with a CPA challenger
for a CP-ABE with respect to universe [m] to obtain mpk. Then we complete the setup
by running the following KeyGen′ algorithm and obtain pk:

KeyGen′(mpk,m, k) : Runs ((Hj)j∈[k], T)←$ BFGen(m, k), sets

pk := (mpk, (Hj)j∈[k]),

and outputs pk.

Then, we choose (K0,K1)←$ M×M, r←$ {0, 1}λ, and compute ∀j ∈ [k] : ij =

Hj(r), set U′ = {i1, . . . , ik}, let A = 2U
′ \ ∅. We output (K0,K1,A) to the challenger

to obtain C ′∗. We start B on (pk, (r, C ′∗),K0) and simulate the oracles as follows:

Punc(sk, C) : Set P← P ∪ {C}, and T ← BFUpdate((Hj)i∈[k], T, r).
Corr : If C∗ /∈ P return ⊥. Otherwise, ∀j ∈ [k] : ij = T [j], and, for all ij = 0 obtain

skj ← KGen(j) using the key generation oracle provided by the challenger and
return sk← (T, {skj}j∈[k],ij=0).

If B eventually outputs a bit b∗ we output b∗ to break CPA-security of the CP-ABE
scheme with the same probability as B breaks the CPA-security of the BFKEM. Note
that the Corr oracle can only be called after the challenge ciphertext C∗, and, therefore
r, is determined. This ensures that we only request ”allowed” keys via the KGen oracle
provided by the challenger.

Obtaining CCA-security. The construction satisfies the additional properties of Defi-
nitions 4, 5, and 6 with the same arguments as in Section 3.1. Additionally, γ-spreadness
(Def. 7) is given by construction: The randomness r is chosen uniformly at random from
{0, 1}λ. Thus, we can apply the Fujisaki-Okamoto [25] transform the same way as done
in Section 3.2 to achieve CCA security.

28

3.4 BFKEM from IBBE

In this section, we present our generic construction of a BFKEM from any identity-
based broadcast encryption (IBBE) scheme. We note that taking the path via IBBE
allows us to simultaneously obtain small ciphertexts and small public keys.
Identity-Based Broadcast Encryption. We recall the basic definition of IBBE and its
security.

Definition 14 (IBBE). An identity-based broadcast encryption (IBBE) scheme is a tu-
ple IBBE = (Setup,Extract,Enc,Dec) consisting of four probabilistic polynomial-
time algorithms with the following properties:

Setup(1λ, k) : Takes as input the security parameter λ and the maximal number of
receivers k and outputs a master public key pk and a master secret key msk. We
assume that pk implicitly defines the identity space ID.

Extract(msk, IDi) : Takes as input the master secret key msk and an user identity IDi
and outputs and user private key skIDi .

Enc(pk,S) : Takes as input the master public key pk and a set of user identities S and
outputs a ciphertext C and a key K.

Dec(skIDi ,S, C) : Takes as input a user secret key skIDi , a set of user identities S and
a ciphertext C and outputs the key K.

Correctness for IBBE requires that for all λ, for all polynomially bounded k in λ, for
all (pk,msk)←$ Setup(1λ, k), for all S = {ID1, . . . , IDi} ∈ IDi with i ≤ k, for all
(C,K)←$ Enc(pk,S), it holds for all IDS ∈ S that

Pr [Dec(Extract(msk, IDS),S, C) = K] = 1.

ExpIND-sID-CPA
A,IBBE (λ, k)

S∗ = {ID∗1, . . . , ID∗s}←$ A(1λ)
(pk, sk)←$ Setup(1λ, k)
(C∗,K0)←$ Enc(pk,S∗)
K1←$ K, b←$ {0, 1}
b∗←$ AExtract(sk,·)(pk, C∗,Kb)
Extract(sk, j) returns skIDj ←

$ Extract(sk, j) if j /∈ S∗ and ⊥ otherwise.
return 1, if b∗ = b
return 0

Fig. 5. IND-sID-CPA security for IBBE.

Definition 15 (IND-sID-CPA-security of IBBE). We define the advantage of an adver-
sary A in the IND-sID-CPA experiment ExpIND-sID-CPA

A,IBBE (λ, k) as

AdvIND-sID-CPA
A,IBBE (λ, k) :=

∣∣∣∣Pr [ExpIND-sID-CPA
A,IBBE (λ, k) = 1

]
− 1

2

∣∣∣∣ .
29

We say that an identity-based broadcast encryption scheme IBBE is IND-sID-CPA-
secure, if the advantage AdvIND-sID-CPA

A,IBBE (λ, k) is a negligible function in λ for all k > 0
and all PPT adversaries A.

Construction. Let B = (BFGen,BFUpdate,BFCheck) be a Bloom filter and let IBBE
= (Setup, Extract, Enc, Dec) be an identity-based broadcast encryption scheme. We
construct a Bloom Filter Key Encapsulation Mechanism BFKEM = (KGen,Enc,Punc,
Dec) as follows:

KGen(λ,m, k) : The key generation algorithm generates a Bloom filter instance by
running (H,T)←$ BFGen(m, k) and generates an IBBE instance by invoking (pkIBBE,
msk)←$ IBBE.Setup(λ, k). For each i ∈ [m] it calls

ski←$ IBBE.Extract(msk, i).

Finally, it sets

pk := (H, pkIBBE) and sk :=
(
T, (ski)i∈[m]

)
.

Remark. Observe that the maximum number of recipients is set to the Bloom filter’s
optimal number of universal hash functions k and the user identity space is bound to
the Bloom filter’s entries m.

Enc(pk) : Given a public key pk = (H, pkIBBE), it samples a random value r←$ {0, 1}λ
and generates indices ij := Hj(r) for (Hj)j∈[k] := H . Then it invokes (K, C ′)←$ IBBE.
Enc(pkIBBE,S), where S := {ij}j∈[k]. Finally, it outputs (C,K), where ciphertext
C := (r, C ′).

Punc(sk, C) : Given a secret key sk = (T, (ski)i∈[m]) and a ciphertext C = (r, C ′), it
invokes T ′ = BFUpdate(H,T, r) and defines

sk′i :=

{
ski, if T ′[i] = 0

⊥, if T ′[i] = 1.

Finally, the algorithm returns sk′ = (T ′, (sk′i)i∈[m]).

Remark. From an IBBE’s point of view, the puncturing procedure removes participants
from the broadcast network by deleting their respective user private keys.

Dec(sk, C) : The input is a secret key sk = (T, (ski)i∈[m]) and ciphertext C = (r, C ′).
Again, let S := {ij}j∈[k]. If BFCheck(H,T, r) = 0, then the algorithm returns ⊥.
Else, there exists at least one index n ∈ S such that skn 6= ⊥. The algorithm picks the
smallest index n that meets the previous requirements, computes

K := IBBE.Dec(skn,S, C ′)

and returns K.

Remark. This algorithm essentially checks, if an user secret key of the user identities
in set S still exists. If so, the ciphertext can be decrypted.

30

Correctness error. With exactly the same arguments as for the scheme from Sec-
tion 3.1, one can verify that the correctness error of this scheme is essentially identical
to the false positive probability of the Bloom filter, unless a given ciphertextC = (r, C ′)
has a value of r which is identical to the value of r of any previous ciphertext. Since r
is uniformly random in {0, 1}λ, this probability is approximately 2−k + n · 2−λ.
IND-CPA-security. We prove the IND-CPA security of our construction, if the IBBE
is IND-sID-CPA-secure.

Theorem 5. From each efficient adversaryB against IND-CPA-security of our BFKEM,
we can construct an efficient algorithm A against the IND-sID-CPA-security of the un-
derlying IBBE scheme with advantage

AdvIND-sID-CPA
A,IBBE (λ, k) ≥ AdvIND-CPA

B,BFKEM(λ,m, k).

Proof. We proceed by presenting a reduction which uses an adversary B against the
IND-CPA-security of the BFKEM to break the IND-sID-CPA-security of the IBBE.
The reduction together with B then forms A. In order to engage with the IND-CPA
Challenger (C henceforth), we need to commit to a set of recipients S∗ we will attack.

We generate a new Bloom filter instance by invoking (H,T)←$ BFGen(m, k) and
sample an additional random value r∗←$ {0, 1}λ. Next, we compute indices ij :=
Hj(r

∗) where (Hj)j∈[k] := H are the k universal hash functions of the Bloom fil-
ter. We define S∗ := {ij}j∈[k] and forward the set to C. Note that |S| = k.

The challenger C generates a master public key pk and a master secret key msk
by invoking IBBE.Setup(λ, k) and sends us the master public key pk. Additionally, C
prepares a challenge by running (C ′,K0)←$ IBBE.Enc(pk,S∗) and sampling K1←$ K,
where K is the symmetric key space. The challenger sends us the challenge (C ′,Kb),
where b is a bit drawn uniformly at random.

We will initialize the adversary B with input (pk, C∗ = (r∗, C ′),Kb). In the sequel
B has access to several oracles, which we simulate as follows:

– Punct(C = (r, C ′)): We invoke T := BFUpdate(H,T, r) and set Q := Q∪ {C}.
– Corr : If C∗ /∈ Q, return ⊥. Else query skj := Extract(j) for all j ∈ [k] such that
T [j] = 0. Note, that we are allowed to call Extract on all user identities, since punc-
turing at C∗ removes all troublesome secret keys. We return (T, {skj}j∈[k]∧T [j]=0)
to A.

Eventually, B will output a bit b∗ which we will forward to the challenger C. Since all
queries are perfectly simulated, we get

AdvIND-sID-CPA
A,IBBE (λ, k) ≥ AdvIND-CPA

B,BFKEM(λ,m, k).

This concludes the proof. ut

CCA security. IND-CCA security can be achieved with the modified Fujisaki–Okamoto
transformation described in Section 3.2. The IBBE-based construction satisfies the ad-
ditional properties of Definitions 4, 5, and 6 with the same arguments as in Section 3.1.
Additionally, γ-spreadness (Def. 7) is given by construction: The randomness r is cho-
sen uniformly at random from {0, 1}λ.

31

Separable randomness is not achieved as the symmetric key K algebraically depends
on the IBBE (i.e., the symmetric key K is chosen by the IBBE and not by the generic
construction).7 It is, however, possible to transform any non-separable BFKEM into
a separable BFKEM as shown in Section 2.3. Note that this transformation adds an
additional component of size λ to the ciphertext.

Thus, we can apply the Fujisaki-Okamoto transform the same way as done in Sec-
tion 3.2 to achieve CCA security. One notable drawback is that the transformation re-
quires that the encapsulation procedure be run once during each decapsulation. Should
the encapsulation procedure be computationally expensive and should the application
strive for high efficiency, it might be worth considering a different approach for achiev-
ing IND-CCA security.

A different approach to achieve IND-CCA security for our construction would be to
directly use an IND-sID-CCA-secure IBBE. This can for example be achieved by using
a variant of the CHK transformation [16] sketched in [22]. The basic idea is to derive
one of the broadcasted identities from a verification key of a strongly unforgeable one-
time signature (sOTS) scheme, which then in turn is used to sign the ciphertext. A rea-
sonable choice for the signature scheme might be the Boneh–Lynn–Shacham signature
scheme [13], which is strongly unforgeable due to its unique ciphertexts, or the sOTS
due to Groth [32] which avoids pairing evaluations. Drawbacks of the transformation
include an expansion of the ciphertext as both the signature verification key and the sig-
nature must be included. A formal description and security proof of the transformation
can be found in [26].

4 Time-Based Bloom Filter Encryption

For a standard BFKEM scheme, we have to update the public key after the secret key has
been punctured n-times, because otherwise the false-positive probability would exceed
an acceptable bound. In this section, we describe a construction of a scheme where the
lifetime of the public key is split into time slots. Ciphertexts are associated with time
slots, which assumes loosely synchronized clocks between sender and receiver of a
ciphertext. The main advantage is that for a given bound on the correctness error, we are
able to handle about the same number of puncturings per time slot as the basic scheme
during the entire life time of the public key. We call this approach time-based Bloom
filter encryption. It is inspired by the time-based approach used to construct puncturable
encryption in [31,33], which in turn is inspired by the construction of forward-secure
public-key encryption by Canetti, Halevi, and Katz [15].

Note that a time-based BFKEM (TB-BFKEM) scheme can trivially be obtained
from any BFE scheme, by assigning an individual public/secret key pair for each time
slot. However, if we want to split the life time of the public key into, say, 2t time
slots, then this would of course increase the size of keys by a factor 2t. Since we want

7 Depending on the instantiation, it might still be possible to directly achieve separable ran-
domness. For this to work, the IBBE would need separable keys, that is, if we can equiva-
lently write (K, C)←$ IBBE.Enc(mpk,S) = IBBE.Enc′(mpk,S;K) for uniformly random
K←$ {0, 1}λ, where Enc′ is a deterministic algorithm. This property is not necessarily given
for IBBEs.

32

to enable a fine-grained use of time slots, to enable a very large number of puncturings
over the entire lifetime of the public key without increasing the false positive probability
beyond an unacceptable bound, we want to have 2t as large as possible, but without
increasing the size of the public key beyond an acceptable bound. To this end, we give
a direct construction which increases the size of secret keys only by an additive amount
of additional group elements, which is only logarithmic in the number of time slots.
Thus, for 2t time slots we have to add merely about t elements to the secret key, while
the size of public keys remains even constant. Recall also, that due to the time slots,
a TB-BFKEM helps to counter message suppression attacks by achieving a form of
delayed forward secrecy.

4.1 Formal Model of TB-BFKEM

Likewise to considering our BFKEMs as an instantiation of a puncturable KEM with
non-negligible correctness error, we can view the time-based approach analogously as
an instantiation of a forward-secret BFKEM [33] with non-negligible correctness error,
henceforth referred to as TB-BFKEM. We chose to align our model with the existing
formal framework for puncturable forward-secret KEMs. It is essentially our BFKEM
Definition 2, augmented by time slots and an additional algorithm PuncInt that allows
to puncture a secret key not with respect to a given ciphertext in a given time slot, but
with respect to an entire time slot.

Definition 16 (TB-BFKEM). A puncturable forward-secret key encapsulation (TB-
BFKEM) scheme is a tuple of the following PPT algorithms:

KGen(1λ,m, k, t) : Takes as input a security parameter λ, parameters m and k for the
Bloom filter, and a parameter t specifying the number of time slots. It outputs a
secret and public key (sk, pk), where we assume that the key-space K is implicit in
pk and that pk is implicit in sk.

Enc(pk, τ) : Takes as input a public key pk and a time slot τ and outputs a ciphertext
C and a symmetric key K.

PuncCtx(sk, τ, C) : Takes as input a secret key sk, a time slot τ , a ciphertext C and
outputs an updated secret key sk′.

Dec(sk, τ, C) : Takes as input a secret key sk, a time slot τ , a ciphertext C and deter-
ministically computes and outputs a symmetric key K or ⊥ if decapsulation fails.

PuncInt(sk, τ) : Takes as input a time slot τ and a secret key sk for any time slot ≤ τ ,
and outputs an updated secret key sk′ for the time slot τ + 1.

Correctness. Essentially, the correctness definition is based on that of a BFKEM, but
additionally considers time slots (see also [33]).

Definition 17 (Correctness). We require that the following holds for all λ,m, k, t ∈ N,
for all z ∈ N with z ≤ t, and any (sk, pk)←$ KGen(1λ,m, k, t).

– For any ordered sequence τ1, . . . , τz with 1 ≤ τ1 < . . . < τz ≤ t and

ski+1←$ PuncInt(ski, τi)

where i ∈ {1, . . . , z} and sk1 := sk, and

33

– for any arbitrary interleaved sequence of invocations of

skz+1,j+1←$ PuncCtx(skz+1,j , τz + 1, Cj)

where j ∈ {1, . . . , n}, skz+1,1 := skz+1, and (Cj ,Kj)←$ Enc(pk, τz + 1)

it holds that

Pr [Dec(skz+1,n+1, τz + 1, C∗) 6= K∗] ≤
(
1− e−

(n+1/2)k
m−1

)k
+ ε(λ)

where (C∗,K∗)←$ Enc(pk, τz + 1) and ε(·) is a negligible function in λ. The proba-
bility is over the random coins of KGen and the random coins of Enc used to compute
C1, . . . , Cn and C∗.

4.2 Additional Properties of a TB-BFKEM

Again, we will require additional properties for the TB-BFKEM, similar to those from
Section 2.3.

Definition 18 (Extended Correctness). We require that the following holds for all
λ,m, k, t, n ∈ N, for all z ∈ N with z ≤ t, and any (sk, pk)←$ KGen(1λ,m, k, t).

– For any ordered sequence τ1, . . . , τz with 1 ≤ τ1 < . . . < τz ≤ t and

ski+1←$ PuncInt(ski, τi)

where i ∈ {1, . . . , z} and sk1 := sk, and
– for any arbitrary interleaved sequence of invocations of

skz+1,j+1←$ PuncCtx(skz+1,j , τz + 1, Cj)

where j ∈ {1, . . . , n}, skz+1,1 := skz+1, and (Cj ,Kj)←$ Enc(pk, τz + 1)

it holds that:

1. No false-negatives in the current time interval:
Dec(skz+1,n+1, τz + 1, Cj) = ⊥ for all j ∈ [n]

2. No false-negatives with respect to ciphertexts from previous intervals:
Dec(skz+1,n+1, τ

∗, C) = ⊥ for all (C,K)←$ Enc(pk, τ∗) with τ∗ < τz + 1.
3. Perfect correctness of the initial secret key:

Dec(sk, τ, C) = K for all 1 ≤ τ ≤ t and all (C,K)←$ Enc(pk, τ).
4. Semi-correctness of punctured secret keys:

For all 1 ≤ τ ≤ t holds: If Dec(skz+1,j+1, τ, C) 6= ⊥ then Dec(skz+1,j+1, τ, C) =
Dec(sk, τ, C).

Definition 19 (Separable Randomness). Let TB-BFKEM = (KGen,Enc,PuncCtx,
Dec,PuncInt) be a TB-BFKEM. We say that TB-BFKEM has separable randomness, if
one can equivalently write the encapsulation algorithm Enc as

(C,K)←$ Enc(pk, τ) = Enc(pk, τ ; (r,K)),

for uniformly random (r,K) ∈ {0, 1}ρ+λ, where Enc(·, ·; ·) is a deterministic algorithm
whose output is uniquely determined by pk, τ and the randomness (r,K) ∈ {0, 1}ρ+λ.

34

Definition 20 (Publicly-Checkable Puncturing). Let {Qτj}kj=1 be any list of lists
of ciphertexts {(Cτj ,1, . . . , Cτj ,wj)}kj=1. We say that TB-BFKEM allows publicly-
checkable puncturing, if there exists an efficient algorithm CheckPunct with the fol-
lowing correctness property.

1. Run (sk, pk)←$ KGen(1λ,m, k, t).
2. For j ∈ [k] do

– Compute Ci←$ Enc(pk, τj) and sk = PuncCtx(sk, τj , Ci) for i ∈ [wj].
– Compute sk←$ PuncInt(sk, τj)

3. Let C and τ be any string. We require that

⊥ = Dec(sk, τ, C) ⇐⇒ ⊥ = CheckPunct(pk, τ, {Qτj}kj=1, C).

Definition 21 (γ-Spreadness). Let TB-BFKEM = (KGen,Enc,PuncCtx,Dec,Punc-
Int) be a randomness-separable TB-BFKEM with ciphertext space C. We say that it is
γ-spread, if for any honestly generated pk, any key K, any τ and any C ∈ C

Pr
r←$ {0,1}ρ [C = Enc(pk, τ ; (r,K))] ≤ 2−γ .

4.3 Security Definitions

The security of a TB-BFKEM scheme is defined in a selective-time experiment, where
the adversary has to commit to a time slot τ∗ to attack before seeing the parameters of
the scheme. We present the IND-CPA and IND-CCA experiments in Figure 6.

Exps-T
A,TB-BFKEM(λ,m, k, t):

τ∗←$ A(1λ)
(sk, pk)←$ KGen(1λ,m, k, t), (C∗,K0)←$ Enc(pk, τ∗)
K1←$ K, b←$ {0, 1},QC ← ∅,Qτ ← ∅
b∗←$ AO,PuncCtx(sk,·,·),PuncInt(sk,·),Corr(pk, C∗,Kb)

where O ← {Dec′(sk, ·)} if T = IND-CCA and O ← ∅ otherwise.
Dec′(sk, τ, C) behaves as Dec but returns ⊥ if C = C∗ and τ = τ∗

PuncCtx(sk, τ, C) runs sk←$ PuncCtx(sk, τ, C) andQC ← QC ∪ {(C, τ)}
PuncInt(sk, τ) runs sk←$ PuncInt(sk, τ) andQτ ← Qτ ∪ {τ}
Corr returns sk if (C∗, τ∗) ∈ Q or τ∗ ∈ Qτ and ⊥ otherwise

return 1, if b∗ = b
return 0

Fig. 6. Security for TB-BFKEM: T ∈ {IND-CPA, IND-CCA}.

Definition 22 (s-T-Security of TB-BFKEM). We define the advantage of an adver-
sary A in the s-T experiment Exps-T

A,TB-BFKEM(λ,m, k, t) as

Advs-T
A,TB-BFKEM(λ,m, k, t) :=

∣∣∣∣Pr [Exps-T
A,TB-BFKEM(λ,m, k, t) = 1

]
− 1

2

∣∣∣∣ .
A puncturable forward-secret key-encapsulation scheme TB-BFKEM is s-T, T ∈ {
IND-CPA, IND-CCA}, secure, if Advs-T

A,TB-BFKEM(λ,m, k, t) is a negligible function
in λ for all m, k, t > 0 and all PPT adversaries A.

35

4.4 A Generic Time-Based BFKEM Construction

Before we can present our construction, we recall hierarchical identity-based key en-
capsulation schemes (HIB-KEMs). HIB-KEMs represent a building block of our con-
struction.
HIB-KEMs. Below we present the basic definition and the security properties of HIB-
KEMs.

Definition 23. A (t′ + 1)-level hierarchical identity-based key encapsulation scheme
(HIB-KEM) with identity space D≤t′+1, ciphertext space C, and key space K consists
of the following four algorithms:

HIBGen(1λ) : Takes as input a security parameter and outputs a key pair (mpk, skε).
We say that mpk is the master public key, and skε is the level-0 secret key.

HIBDel(skd′ , d) : Takes as input secret key skd′ and d ∈ D, and outputs a secret key
skd′|d. (We refer to | as concatenation.)

HIBEnc(mpk,d) : Takes as input the master public key mpk and an identity d ∈
D≤t′+1 and outputs a ciphertext C ∈ C and a key K ∈ K.

HIBDec(skd, C) : Takes as input a secret key skd and a ciphertext C, and outputs a
value K ∈ K ∪ {⊥}, where ⊥ is a distinguished error symbol.

Correctness for HIB-KEM. We require that for all λ ∈ N, for all (mpk, skε)←$

HIBGen(1λ), for all d ∈ D, for all skd′|d←$ HIBDel(skd′ , d), for all d ∈ D≤t′+1, for
all (C,K)←$ HIBEnc(mpk,d), we have that HIBDec(skd, C) = K holds.
Security definition for HIB-KEM. As for our generic construction we will essentially
follow the proof strategy of the BFKEM construction and thus will rely on the weak no-
tion of one-wayness under selective-ID and chosen-plaintext attacks (OW-sID-CPA) for
HIB-KEM. We note that any IND-sID-CPA secure HIB-KEM also satisfies this notion
of OW-sID-CPA security.

ExpOW-sID-CPA
A,HIB-KEM (λ)

d∗←$ A(1λ)
if d∗ /∈ D return 0
(mpk, skε)←$ HIBGen(1λ), (C,K)←$ HIBEnc(mpk,d∗)
K∗←$ A(mpk, C)
return 1, if K∗ = K
return 0

Fig. 7. OW-sID-CPA security.

Definition 24 (OW-sID-CPA Security of HIB-KEM). We define the advantage of an
adversary A in the OW-sID-CPA experiment ExpOW-sID-CPA

A,HIB-KEM (λ) as

AdvOW-sID-CPA
A,HIB-KEM (λ) := Pr

[
ExpOW-sID-CPA

A,HIB-KEM (λ) = 1
]
.

We call a HIB-KEM OW-sID-CPA secure, if AdvOW-sID-CPA
A,HIB-KEM (λ) is a negligible function

in λ for all PPT adversaries A.

36

Time slots. We will construct a TB-BFKEM scheme that allows to use t = 2t
′

time
slots. We associate the i-th time slot with the string in {0, 1}t′ that corresponds to the
canonical t′-bit binary representation of integer i.

Following [15,31,33], each time slot forms a leaf of an ordered binary tree of depth
t′. The root of the tree is associated with the empty string ε. We associate the left-
hand descendants of the root with bit string 0, and the right-hand descendant with 1.
Continuing this way, we associate the left descendant of node 0 with 00 and the right
descendant with 01, and so on. We continue this procedure for all nodes, until we have
constructed a complete binary tree of depth t′. Note that two nodes at level j ≤ t′ of
the tree are siblings if and only if their first j − 1 bits are equal, and that each bit string
in {0, 1}t′ is associated with a leaf of the tree. Note also that the leafs in the tree are
ordered, in the sense that the leftmost leaf is associated with 0t

′
, its right neighbor with

0t
′−11, and so on.

Intuition of the construction. The basic idea behind the construction combines the
binary tree approach of [15,31,33] with the BF-KEM construction described in Sec-
tion 3.1. We use a HIB-KEM with identity space

D = D1 × · · · × Dt′+1 = {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
t′ times

×[m].

Each bit vector τ ∈ D1 × · · · ×Dt′ = {0, 1}t
′

corresponds to one time slot, and we set
Dt′+1 = [m], where m is the size of the Bloom filter. The hierarchical key delegation
property of the HIB-KEM enables the following features:

First, given a HIB-KEM key skτ for some “identity” (= time slot) τ ∈ {0, 1}t′ , we
can derive keys for all Bloom filter bits from skτ by computing

skτ |d←$ HIBDel(skτ , d) for all d ∈ [m].

Second, in order to advance from time slot τ to τ + 1, we first compute

skτ |d←$ HIBDel(skτ , d) for all d ∈ [m].

As soon as we have computed all Bloom filter keys for time slot τ , we “puncture” the
tree “from left to right”, such that we are able to compute all skτ ′ with τ ′ > τ , but
not any skτ ′ with τ ′ ≤ τ . Here, we proceed exactly as in [15,31,33]. That is, in order
to puncture at time slot τ , we first compute the HIB-KEM secret keys associated to all
right-hand siblings of nodes that lie on the path from node τ to the root (if existent),
and then we delete all secret keys associated to nodes that lie on the path from node τ
to the root, including skτ itself. This yields a new secret key, which contains m level-
(t′ + 1) HIB-KEM secret keys plus at most t′ HIB-KEM secret keys for levels ≤ t′,
even though we allow for 2t

′
time slots.

Construction. Let (HIBGen,HIBDel,HIBEnc,HIBDec) be a (t′+1)-level HIB-KEM
with key space K and identity space D = D1 × · · · × Dt′+1, where D1 = · · · =
Dt = {0, 1}, Dt′+1 = [m], and m is the size of the Bloom filter. Since we will
only need selective security, one can instantiate such a HIB-KEM very efficiently,
for example in bilinear groups based on the Boneh-Boyen-Goh [11] scheme, or based

37

on lattices [1]. In the sequel, we will write {0, 1}t′ shorthand for D1 × · · · × Dt′ ,
but keep in mind that the HIB-KEM supports more fine-grained key delegation. Let
B = (BFGen,BFUpdate,BFCheck) be a Bloom filter for set {0, 1}λ. Furthermore, let
G′ : K → {0, 1}λ be a hash function (which will be modeled as a random oracle [7] in
the security proof).

We define TB-BFKEM = (KGen,Enc,PuncCtx,Dec,PuncInt) as follows.
KGen(1λ,m, k, t = 2t

′
) : This algorithm first runs ((Hj)j∈[k], T)←$ BFGen(m, k) to

generate a Bloom filter, and (mpk, skε)←$ HIBGen(1λ) to generate a key pair. Finally,
the algorithm generates the keys for the first time slot. To this end, it first computes the
HIB-KEM key for identity 0t

′
by recursively computing

sk0d ←$ HIBDel(sk0d−1 , 0) for all d ∈ [t].8

Then it computes the m Bloom filter keys for time slot 0t
′

by computing

sk0t′ |d←$ HIBDel(sk0t′ , d) for all d ∈ [m],

and setting skBloom := (sk0t′ |d)d∈[m]. Finally, it punctures the secret key skε at position
0t
′
, by computing

sk0d−11←$ HIBDel(sk0d−1 , 1) for all d ∈ [t′],

and setting sktime := (sk0d−1|1)d∈[t′]. The algorithm outputs

sk := (T, skBloom, sktime) and pk := (mpk, (Hj)j∈[k]).

Enc(mpk, τ) : On input mpk and time slot identifier τ ∈ {0, 1}t′ , this algorithm first
samples a random string c←$ {0, 1}λ and a random key K←$ {0, 1}λ. Then it defines
k HIB-KEM identities as dj := (τ,Hj(c)) ∈ D for j ∈ [k], and generates k HIB-
KEM key encapsulations as

(Cj ,Kj)←$ HIBEnc(mpk,dj) for j ∈ [k].

Finally, it outputs the ciphertext C := (c, (Cj , G
′(Kj)⊕ K)j∈[k]).

Note that the ciphertexts essentially consists of k + 1 elements of {0, 1}λ, plus k
elements of C, where k is the Bloom filter parameter.
PuncCtx(sk, C) : Given a ciphertext C := (c, (Cj , G

′(Kj) ⊕ K)j∈[k]), and secret key
sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m], the puncturing algorithm first
computes T ′ = BFUpdate((Hj)j∈[k], T, c). Then, for each i ∈ [m], it defines

sk′τ |i :=

{
skτ |i if T ′[i] = 0, and
⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm sets sk′Bloom = (sk′τ |d)d∈[m]

and returns sk′ = (T ′, sk′Bloom, sktime).

8 Implicitly, we set ε := 00.

38

Remark. We note again that the above procedure is correct even if the procedure is
applied repeatedly, with the same arguments as for the construction from Section 3.1.
Also, the puncturing algorithm essentially only evaluates k universal hash functions and
then deletes a few secret keys, which makes this procedure extremely efficient.
Dec(sk, C) : Given sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m] and ci-
phertext C := (c, (Cj , Gj)j∈[k]). If skτ |Hj(c) = ⊥ for all j ∈ [k], then it outputs ⊥.
Otherwise, it picks the smallest index j such that skτ |Hj(c) 6= ⊥, computes

Kj = HIBDec(skτ |Hj(c), Cj),

and returns K = Gj ⊕G′(Kj).
Remark. Again we have Dec(sk, C) 6= ⊥ ⇐⇒ BFCheck(H,T, c) = 0, which
guarantees extended correctness in the sense of Definition 18.
PuncInt(sk, τ) : Given a secret key sk = (T, skBloom, sktime) for time interval τ ′ ≤ τ ,
the time puncturing algorithm proceeds as follows. First, it resets the Bloom filter by
setting T := 0m. Then it uses the key delegation algorithm to first compute skτ . This
key can be computed from the keys contained in sktime, because sk is a key for time
interval τ ′ ≤ τ . Then it computes

skτ |d←$ HIBDel(skτ , d) for all d ∈ [m],

and redefines skBloom := (skτ |d)d∈[m]. Finally, it updates sktime by computing the HIB-
KEM secret keys associated to all right-hand siblings of nodes that lie on the path from
node τ to the root and adds the corresponding keys to sktime. Then it deletes all keys
from sktime that lie on the path from τ to the root.
Remark. Note that puncturing between time intervals may become relatively expen-
sive. Depending on the choice of Bloom filter parameters, in particular on m, this may
range between 215 and 225 HIBKEM key delegations. However, the main advantage of
BFKEM over previous constructions of puncturable encryption is that these computa-
tions must not be performed “online”, during puncturing, but can actually be computed
separately (for instance, parallel on a different computer, or when a server has low
workload, etc.).
Correctness error of this scheme. Note that within each time slot we can use the
same argumentation as for the scheme from Section 3.1 and one can verify that the
correctness-error probability of this scheme is essentially identical to the false-positive
probability of the Bloom filter, unless a given ciphertext C = (c, (Cj , Gj)j∈[k]) has
a value of c which is identical to the value of c of any previous ciphertext. Since c is

uniformly random in {0, 1}λ, this probability is bounded by
(
1− e−

(n+1/2)k
m−1

)k
+ n ·

2−λ. Furthermore, due to the perfect correctness of the underlying HIB-KEM scheme,
this yields the error-correctness bound of TB-BFKEM.

More formally, we have that for all λ,m, k, t′ ∈ N, for all t = 2t
′
, for all z ∈ N

with z ≤ t, and any (sk, pk)←$ KGen(1λ,m, k, t):

– For any ordered sequence τ1, . . . , τz ∈ {0, 1}t
′

and

ski+1←$ PuncInt(ski, τi)

39

where i ∈ {1, . . . , z} and sk1 := sk, and
– for any arbitrary interleaved sequence of invocations of

skz+1,j+1←$ PuncCtx(skz+1,j , τz + 1, Cj)

where j ∈ {1, . . . , n}, skz+1,1 := skz+1, and (Cj ,Kj)←$ Enc(pk, τz + 1)

it holds that

Pr [Dec(skz+1,n+1, τz + 1, C∗) 6= K∗] ≤
(
1− e−

(n+1/2)k
m−1

)k
+ n · 2−λ

where (C∗,K∗)←$ Enc(pk, τz + 1), due to the perfect correctness of HIB-KEM, the
bounded false-positive probability property of the underlying Bloom filter (depending
on m and k, see Section 2.1), and the bounded negligible loss n · 2−λ occurred due to
collisions of uniform c-values in the ciphertexts.

Concerning the extended correctness, see that

1. Dec(skz+1,n+1, τz+1, Cj) = ⊥ for all j ∈ [n], i.e., no false-negatives in the current
time interval due to the perfect-completeness property of the BF B and deleting the
respective HIB-KEM secret keys.

2. Dec(skz+1,n+1, τ
∗, C) = ⊥ for all (C,K)←$ Enc(pk, τ∗) with τ∗ < τz + 1, i.e.,

no false-negatives with respect to ciphertexts from previous intervals due to the
security properties of HIB-KEM.

3. Dec(sk, τ, C) = K for all 1 ≤ τ ≤ t and all (C,K)←$ Enc(pk, τ), i.e., perfect cor-
rectness of the initial secret key due to the perfect correctness property of HIB-KEM
and perfect completeness of B.

4. For all 1 ≤ τ ≤ t holds: If Dec(skz+1,j+1, τ, C) 6= ⊥ then Dec(skz+1,j+1, τ, C) =
Dec(sk, τ, C), i.e., semi-correctness of punctured secret keys due to perfect correct-
ness property of HIB-KEM and perfect completeness of B.

CPA Security. Below we state theorem for CPA security of our scheme.

Theorem 6. From each efficient adversary B that issues u queries to random oracle
G′ we can construct an efficient adversary A with

Advs-IND-CPA
B,TB-BFKEM(λ,m, k) ≤ uk ·AdvOW-sID-CPA

A,HIB-KEM (λ).

The proof is almost identical to the proof of Theorem 1 and a straightforward reduction
to the security of the underlying HIB-KEM. We sketch it below.

Proof (Sketch). We sketch the proof of Theorem 6. Recall that a ciphertext has the form

C := (c, (Cj , G
′(Kj)⊕ K)j∈[k]).

Essentially, one argues exactly as in Theorem 1 that the adversary receives no infor-
mation about the key K encapsulated by the Bloom filter encryption scheme, unless it
ever queries Kj to random oracle G′ for some j ∈ [k]. Therefore assume that B queries
some Kj to G′ in its u∗-th query.

40

At the beginning of the reduction, A first guesses index j←$ [k] and u∗←$ [u]. It
also samples the random string c←$ {0, 1}λ used for the challenge BFKEM ciphertext
at the beginning of the game, generates a Bloom filter

((Hj)j∈[k], T)←$ BFGen(m, k),

and requests a challenge ciphertext for identity d∗ = (τ∗|Hj(c)), where τ∗ is the time
slot selected by B. The challenge ciphertext received back from the HIB-KEM exper-
iment is then embedded in the TB-BFKEM challenge ciphertext. The PuncCtx and
PuncInt(sk, ·) queries of B can trivially be simulated by A. The Corr queries can be
answered using the HIBDel oracle provided by the OW-sID-CPA security experiment
of the HIB-KEM.

When B makes its u∗-th query to G′ on value K′, thenA terminates and outputs K′.
We know that any non-trivial adversary B queries Kj toG′ for some j. IfA has guessed
u∗ and j correctly, which happens with probability 1/(uk), then it holds that K′ = Kj ,
which yields the claim. ut

CCA Security. In order to apply the Fujisaki-Okamoto [25] transform in the same
way as done in Section 3.2 to achieve CCA security, we need to show that the time
based variants of the properties presented in Section 2.3 are satisfied (i.e., Defini-
tions 18, 19, 20, and 21). First, using a full-blown HIBE as a starting point yields
a separable HIB-KEM as discussed in Section 2.3. Hence, the separable randomness
(Def. 19) is satisfied. Moreover, the publicly-checkable puncturing (Def. 20) is given
by construction (as in Section 3.1). Regarding extended correctness (Def. 18), the im-
possibility of false-negatives is given by construction, the perfect correctness of the
non-punctured secret key is given by the perfect correctness of the HIBE and the semi-
correctness of punctured secret keys is given by construction. Finally, γ-spreadness
(Def. 21) is also given by construction: the ciphertext component c is chosen uniformly
at random from {0, 1}λ. Consequently, all properties are satisfied. We note that one
could omit c in the ciphertext if the concretely used HIBE ciphertexts are already suf-
ficiently random. Considering the HIBE of Boneh-Boyen-Goh [11], HIBE ciphertexts
are of the form (gr, (hI11 · · ·h

It
t ·h0)r, H(e(g1, g2)

r)⊕K), for honestly generated fixed
group elements g, g1, g2, h0, . . . , ht, universal hash function H , fixed K and fixed in-
tegers I1, . . . , It. Consequently, we have that the ciphertext has at least min-entropy
log2 q with q being the order of the groups. We want to mention that also many other
HIBE construction satisfy the required properties, including, for example [27,48,19].

Remark on CCA Security. Alternatively to applying the FO transform to a TB-
BFKEM satisfying the additional properties of extended correctness, separable ran-
domness, publicly checkable puncturing and γ-spreadness to obtain CCA security, we
can add another HIBE level to obtain IND-CCA security via the CHK transform [15]
in the standard model, and thus to avoid random oracles if required.9

9 We note, however, that one cannot straightforwardly apply the CHK transform in a black-box
way, but needs to take care that all k HIB-KEM ciphertexts Cj , j ∈ [k] need to use the same
verification key of the strong one-time signature used to sign the overall ciphertext.

41

5 Forward-Secret 0-RTT Key Exchange

In [33] (with full version in [34]), Günther, Hale, Jager, and Lauer (GHJL) provide
a formal model for forward-secret one-pass key exchange (FSOPKE) by extending the
one-pass key exchange [36] by Halevi and Krawczyk. They provide a security model for
FSOPKE which requires both forward secrecy and replay protection from the FSOPKE
protocol and captures unilateral authentication of the server and mutual authentication
simultaneously.

We recap the definition of FSOPKE with a slightly adapted KGen and correctness
notion to allow for a non-negligible correctness error, which constitutes the main dif-
ference to the work of [33,34]. We remark that we do not change the security model of
[34, Sec. 3.2] (i.e., the new input parameters added to KGen do only affect FSOPKE
correctness and not the FSOPKE security model).

In particular, we now take into account the maximum number of server and client
runs n ∈ N and a false-positive probability p of succeeding the runs (in computing the
same session key for a particular time step). Looking ahead, this changes are necessary
to instantiate FSOPKE with our TB-BFKEM. (See Sec. 2.1 for parameter selections
of n and p and corresponding BF parameter m and k if one wants to instantiate the
FSOPKE with a BF.)

Definition 25 (FSOPKE). An FSOPKE scheme FSOPKE providing mutual or uni-
lateral (server-only) authentication consists of the PPT algorithms (FSOPKE.KGen,
FSOPKE.RunC,FSOPKE.RunS,FSOPKE.TimeStep):

FSOPKE.KGen(1λ, r, τmax, n, p) : Takes as input a security parameter 1λ, a role r ∈
{server, client}, the maximum number of time slots τmax ∈ N, and the maximum
number of server and client runs n ∈ N with false-positive probability p, outputs
public and secret keys (pk, sk) for a specific role r (we assume that the key-space
K is implicit in pk).

FSOPKE.RunC(sk, pk) : Takes as input a secret key sk, a public key pk, and outputs
a (potentially modified) secret key sk′, a session key K ∈ {0, 1}∗ ∪ {⊥}, and a
message M ∈ {0, 1}∗ ∪ {⊥}.

FSOPKE.RunS(sk, pk,M) : Takes as input a secret key sk, a public key pk, and a
message M ∈ {0, 1}∗ and outputs a (potentially modified) secret key sk′ and a
session key K ∈ {0, 1}∗ ∪ {⊥}.

FSOPKE.TimeStep(sk, r) : Takes as input a secret key sk and an according role r ∈
{client, server} and outputs a (potentially modified) secret key sk′.

Server and client flow within an FSOPKE scheme. A server and a client are engaging
in an FSOPKE scheme as follows. According to their role, a server (i.e., when the role
is server) and a client (i.e., when the role is client) execute

(pks, sks,1,1)← FSOPKE.KGen(1λ, server, τmax, n, p),

(pkc, skc,1,1)← FSOPKE.KGen(1λ, client, τmax, n, p)

to generate initial public and private keys for a server and client, respectively (where
λ, τmax, n, and p are pre-determined). For all i ∈ [τmax] and j ∈ [n], by exe-
cuting sks,i+1,1 ← FSOPKE.TimeStep(sks,i,j , server) and skc,i+1,1 ← FSOPKE.

42

TimeStep(skc,i,j , client), the server and the client progresses from one time slot i to
the next slot i + 1 to receive (potentially modified) secret keys sks,i+1,1 and skc,i+1,1,
respectively.

Similarly, within a time step i ∈ [τmax] and for all j ∈ [n− 1], the client proceeds
with

(skc,i,j+1,Kc,i,j ,M)← FSOPKE.RunC(skc,i,j , pks),

for client’s private key skc,i,j and a server’s public key pks, to receive a (potentially
modified) secret key skc,i,j+1, a session key Kc,i,j , and a message M (e.g., a cipher-
text) which is transmitted to the server (associated to pks). The server obtains M and
executes

(sks,i,j+1,Ks,i,j)← FSOPKE.RunS(sks,i,j , pkc,M),

for the server’s secret key sks,i,j and the client’s public key pkc to receive a (potentially
modified) secret key sks,i,j+1 and a session key Ks,i,j .

By our adapted correctness notion of the FSOPKE (see Def. 26 below), we have that
Kc,i,j = Ks,i,j except with potentially non-negligible probability (bounded by µ(n, p)+
ε(λ), for a potential non-negligible function µ(·, ·) that only depends on n and p, as well
as a negligible function ε(·) that depends on λ).

Definition 26 ((Non-negligible) correctness of FSOPKE). For all λ, τmax, n ∈ N
and false-positive probability p, for all

(pks, sks,1,1)← FSOPKE.KGen(1λ, server, τmax, n, p),

(pkc, skc,1,1)← FSOPKE.KGen(1λ, client, τmax, n, p),

for all i ∈ [τmax − 1] and all j ∈ [n], for any

sks,i+1,1 ← FSOPKE.TimeStep(sks,i,j , server),

skc,i+1,1 ← FSOPKE.TimeStep(skc,i,j , client),

for all j ∈ [n− 1] and i ∈ [τmax], for any

(skc,i′,j′+1,Kc,i′,j′ ,M)← FSOPKE.RunC(skc,i′,j′ , pks),

(sks,i′,j′+1,Ks,i′,j′)← FSOPKE.RunS(sks,i′,j′ , pkc,M) (if mutual auth.),

(sks,i′,j′+1,Ks,i′,j′)← FSOPKE.RunS(sks,i′,j′ ,⊥,M) (if unilateral auth.),

for all j′′ ∈ [n] and i′′ ∈ [τmax], we have that

Pr [Ks,i′′,j′′ 6= Kc,i′′,j′′] ≤ µ(n, p) + ε(λ),

where µ(·, ·) is some (possibly non-negligible) function that depends on n and p, and
ε(·) is a negligible function that depends on λ.

Security of FSOPKE. The security model of FSOPKE is the same as in defined in [34,
Section 3.2] and we omit it here. (See that the additional parameter n and p only affect
correctness.) All security guarantees from [34, Theorem 2] directly translate to our
FSOPKE construction and we restate the security claim in Corollary 1. (However, we
have to argue about the correctness property of our FSOPKE construction where we
now allow for a potential non-negligible correctness probability depending on λ, n, and
p compared to perfect correctness of the FSOPKE scheme of [34, Def. 12].)

43

5.1 Construction of an unilateral FSOPKE scheme from a TB-BFKEM

The unilateral-authenticated10 FSOPKE construction in [33,34] builds on PFSKEM;
our TB-BFKEM is defined analogously (cf. Def. 16), but we have to account for the
non-negligible correctness errors (in particular, for parameters n and p).

Let TB-BFKEM = (KGen,Enc,PuncCtx,Dec,PuncInt) be a TB-BFKEM. We
construct an FSOPKE FSOPKE = (FSOPKE.KGen,FSOPKE.RunC,FSOPKE.RunS,
FSOPKE.TimeStep) as follows:

FSOPKE.KGen(1λ, r, τmax, n, p) : On input security parameter 1λ, role r ∈ {ser-
ver, client}, maximum number of time steps τmax ∈ N, maximum number of server
and client runs n ∈ N with false-positive probability p, proceed as follows:
- if r = server, then compute (PK,SK1,1)← KGen(1λ,m, k, τmax) (for suitable

choices of m, k according to Sec. 2.1 depending on n and p) and set pks :=
(PK, τmax) and sks,1,1 := (SK1,1, 1, τmax), and output (pks, sks,i,1).

- if r = client, then set (pkc, skc,1,1) := (⊥, 1).
FSOPKE.RunC(skc,i,j , pks) : Outputs (skc,i,j+1,Kc,i,j ,M) as follows: for skc,i,j = i

and pks = (PK, τmax), if i > τmax, then set (skc,i,j+1,Kc,i,j ,M) := (skc,i,j ,⊥,
⊥), otherwise obtain (C,Kc,i,j) ← Enc(pks, i) and set (skc,i,j+1,Kc,i,j ,M) :=
(τ,Kc,i,j , C).

FSOPKE.RunS(sks,i,j , pkc,M) : Outputs (sks,i,j+1,Ks,i,j) as follows: for sks,i,j =

(SKi,j , i, τmax) and pkc = ⊥, if SKi,j ,= ⊥ or i > τmax, then set (sks,i,j+1,Ks,i,j)
:= (sks,i,j ,⊥) and abort. Obtain Ks,i,j ← Dec(SKi,j ,M). If Ks,i,j = ⊥, then set
(sks,i,j+1,Ks,i,j) = (sks,i,j ,⊥), otherwise obtain SKi,j+1 ← PuncCtx(SKi,j ,
M) and set (sks,i,j+1,Ks,i,j) = ((SKi,j+1, i, τmax),Ks,i,j).

FSOPKE.TimeStep(sk{s,c},i,j , r) : Outputs sk{s,c},i+1,1 as follows:

- if r = server, then for sks,i,j = (SKi,j , i, τmax): if i ≥ τmax, then set sks,i+1,1 :=
(⊥, i+ 1, τmax) and abort, otherwise compute SKi+1,1 ← PuncInt(SKi,j , i)
and set sks,i+1,1 := (SKi+1,1, i+ 1, τmax) and abort.

- if r = client, then for skc,i,j = i, set skc,i+1,1 := i+ 1.

Correctness of FSOPKE. Since the underlying TB-BFKEM scheme TB-BFKEM has
a potential non-negligible error correctness that is bounded by µ′(m, k) + ε′(λ), this
directly translates to the correctness of the FSOPKE scheme FSOPKE in the sense
that the TB-BFKEM-decapsulation Dec fails with potential non-negligible probability
µ(n, p)+ε(λ) ≤ µ′(m, k)+ε′(λ) which in turn translates to FSOPKE.RunS returning
(sks,i,j+1,Ks,i,j 6= Kc,i,j) with potential non-negligible probability depending on λ, n,
and p.

Security guarantees hold due to [34, Theorem 2]. (In particular, see that the param-
eters n and p we introduce in our FSOPKE definition above only affect the correctness
error of the FSOPKE and all FSOPKE security guarantee are required to be indepen-
dent not only of the time steps (as discussed in [34]), but also independent of n and p.)
We state the following corollary:

10 That is server-side authentication only.

44

Corollary 1. Let TB-BFKEM be a TB-BFEKEM as defined in Def. 16 with advantage
function Advs-IND-CCA

A,TB-BFKEM(λ,m, k, t) (cf. Def. 22). For any PPT adversary B in the
FSOPKE-sec security experiment defined in [34, Def. 11], we have

AdvFSOPKE-sec
B,FSOPKE (λ) ≤ τmax · nI · ns ·Advs-IND-CCA

A,TB-BFKEM(λ,m, k, t),

for FSOPKE’s advantage function AdvFSOPKE-sec
B,FSOPKE (λ) as defined in [34, Def. 11], for

τmax the maximum number of time slots per session, nI the maximum number of iden-
tities, and ns the maximum number of sessions (where nI and ns are given as in [34,
Sec. 3.2]). Furthermore, m and k depend on n and p as described in Sec 2.1.

6 Analysis

BFKEM. Finally, we compare our different BFKEM instantiations as presented in Sec-
tion 3 regarding their time and space complexity (also see Table 2). Regarding compu-
tational efficiency of Dec and Punc, all schemes are roughly the same. The space com-
plexity in the direct construction is optimal with respect to the size of public and secret
keys, and we achieve ciphertexts of size O(k). Our construction based on CP-ABE can
achieve constant size ciphertexts when instantiated with an ABE scheme that achieves
constant size ciphertexts. We, however, note that all ABE schemes achieving constant
size ciphertext we are aware of (i.e., [18,2]) come at the cost of large public and secret
keys. Those key sizes also carry over to our BFKEM construction. Finally, our con-
struction from IBBE can be viewed as the dual to our direct construction in terms of
space complexity. That is, the scheme based on IBBE is optimal regarding the size of
ciphertexts and secret keys, while it requires O(k) sized public keys.

Scheme |pk| |sk| |C| Dec Punc

direct O(1) O(m) O(k) O(k) O(k)
ABE [18,2] O(m) O(m2) O(1) O(k) O(k)
IBBE [22] O(k) O(m) O(1) O(k) O(k)

Table 2. Performance Comparison

When taking concrete values regarding space complexity into account, our IBBE based
construction is the favorable one. In particular, when we use the IBBE by Delerablée
[22] (for convenience we recall it in Appendix D), we obtain ciphertexts C ∈ {0, 1}λ×
G1×G2 and secret keys sk ∈ {0, 1}m×Gm1 . That is, ciphertexts are shorter and secret
key entries are only half the size of the ones in our direct construction. It is, however,
important to note that those efficiency gains come at the cost of a stronger assumption
(whose validity was analyzed in the generic bilinear group model in [22]).

TB-BFKEM. In Table 3, we provide an overview of all existing practically instantiable
approaches to construct a PFSKEM and compare them to the TB-BFKEM proposed in
this paper.11 We compare all schemes for an arbitrary number ` of time slots, where for
11 We consider all but the PE schemes from indistinguishability obfuscation [20,17].

45

sake of simplicity we assume ` = 2t for some integer t, (corresponding to our time-
based BFKEM) and only count the expensive cryptographic operations, i.e., such as
group exponentiations and pairings.

Scheme |pk| |sk| |C| Dec PuncCtx PuncInt

` = 2t time slots (PFSKEM/TB-BFKEM)

GM (t+ 5)|G1| (2t+ 3p+ 5)|G2| 3|G1|+ |GT | O(p) O(1) O(t2)
GHJL (t+ 35)|G2| ≤ 3(p · 2λ+ t)|G2| 6|G1|+ 2|Zq| O(λ2) O(λ2) O(t2)

Ours (t+ 4)|G2| (2me−kp/m + t(2 + t))|G2| 2|G1|+ (4k + 2)λ O(k) O(k) O(t2 +m)

Table 3. Overview of the existing approaches to PFSKEM (resp. TB-BFKEM). By p we denote
the number of times a secret key has already been punctured, and by ` we denote the maximum
number of time slots. We consider the GHJL [33] instantiation with the BKP-HIBE of [9], the
GM [31] and our instantiations with the BBG-HIBE [11], though other HIBE schemes may lead
to different parameters. Finally, note that p ≤ 220, k and m refer to the parameters in the Bloom
filter, where k is some orders of magnitude smaller than λ, i.e., k = 10 vs. λ = 128, and |Gi|
denotes the bitlength of an element from Gi.

To quickly summarize the schemes: The most interesting characteristic of our ap-
proach compared to previous approaches is that our scheme allows to offload all ex-
pensive operations to an offline phase, i.e., to the puncturing of time intervals. Here,
in addition to the O(w2) operations which are common to all existing approaches, we
have to generate a number of keys, linear in the size m of the Bloom filter. We believe
that accepting this additional overhead in favor of blazing fast online puncturing and
decryption operations is a viable tradeoff. For the online phase, our approach has a ci-
phertext size depending on k (where k = 10 is a reasonable choice), decryption depends
on k, the secret key shrinks with increasing amount of puncturings and one does only
require to securely delete secret keys during puncturing.12 In contrast, decryption and
puncturing in GHJL is highly inefficient and takes several seconds to minutes on decent
hardware for reasonable deployment parameters as it involves a large amount of O(λ2)
HIBE delegations and consequently expensive group operations. In the GM scheme13,
puncturing is efficient, but the size of the secret key and thus cost of decryption grows
in the number of puncturings p. Hence, it gets impractical very soon. More precisely,

12 First, note that all constructions have to implement a secure-delete functionality for secret keys
within puncturing anyways. Second, note that the question regarding which data structures to
choose so that implementations can actually benefit from the shrinking keys is out of scope
here. Note that low-level optimizations for sparse files are typically implemented by modern
operating systems and file systems [28]. This way one would even benefit when the memory
for the secret keys is allocated as a single monolithic block and the deleted keys are simply
zeroed out.

13 Although GM supports an arbitrary number d of tags in a ciphertext, we consider the scheme
with only using a single tag (which is actually favourable for the scheme) to be comparable to
GHJL as well as our approach.

46

cost of decryption requires a number of pairing evaluations that depends on the number
of puncturings, and can be in the order of 220 for realistic deployment parameters.

7 Conclusion

In this paper we introduced the new notion of Bloom filter encryption as a variant of
puncturable encryption which tolerates a non-negligible correctness error. We presented
various BFKEM constructions. The first one is a simple and very efficient construction
which builds upon ideas known from the Boneh-Franklin IBE. It achieves constant size
public keys. The second one is a generic construction from CP-ABEs, where a suitable
choice of the CP-ABE achieves constant size ciphertexts are available. Those constant
size ciphertexts, however, come at the cost of larger keys in existing schemes. The third
one is a generic construction from IBBEs, which can be instantiated with the IBBE by
Delerablée [22]. This instantiation simultaneously yields constant size ciphertexts and
compact public keys. Furthermore, we extended the notion of BFKEM to the forward-
secrecy setting and also presented a construction of what we call a time-based BFKEM
(TB-BFKEM). This construction is based on HIBEs and in particular can be instantiated
very efficiently using the Boneh-Boyen-Goh HIBE [11]. Our time-based BFKEM can
directly be used to instantiate forward-secret 0-RTT key exchange (fs 0-RTT KE) as
in [33].

From a practical viewpoint, our motivation stems from the observation that forward-
secret 0-RTT KE requires very efficient decryption and puncturing. Our framework—
for the first time—allows to realize practical forward-secret 0-RTT KE, even for larger
server loads: while we only require to delete secret keys upon puncturing, puncturing
in [33] requires, besides deleting secret-key components, additional computations in
the order of seconds to minutes on decent hardware. Likewise, when using [31] in the
forward-secret 0-RTT KE protocol given in [33], one requires computations in the order
of the current number of puncturings upon decryption, while we achieve decryption
independent of this number. Finally, we believe that BFE will find applications beyond
forward-secret 0-RTT KE protocols.
Acknowledgments. We thank the anonymous reviewers of the Journal of Cryptology
for their valuable comments. This research was supported by the European commission
through H2020 under grant agreement n◦644962 (PRISMACLOUD), grant agreement
n◦653454 (CREDENTIAL), n◦802823 (REWOCRYPT), ECSEL-JU 2018 program under
grant agreement n◦826610 (COMP4DRONES), project IOT4CPS funded by the Austrian
“ICT of the future” program of the Austrian Research Promotion Agency (FFG) and
the Federal Ministry of Austria for Climate Action, Environment, Energy, Mobility,
Innovation and Technology (BMK), by the Austrian Science Fund (FWF) and netidee
SCIENCE under grant agreement P31621-N38 (PROFET), and the German Research
Foundation (DFG), project JA 2445/2-1.

References
1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert,

H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg, Ger-
many, French Riviera (May 30 – Jun 3, 2010)

47

2. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of predicate
encryption and applications to ABE with various compactness tradeoffs. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 575–601. Springer, Heidelberg,
Germany, Auckland, New Zealand (Nov 30 – Dec 3, 2015)

3. Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and efficient forward security
for TLS 1.3 0-RTT. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS,
vol. 11477, pp. 117–150. Springer, Heidelberg, Germany, Darmstadt, Germany (May 19–23,
2019)

4. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal of Cryp-
tology 32(4), 1298–1336 (Oct 2019)

5. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embed-
ding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 02. LNCS, vol. 2576, pp.
257–267. Springer, Heidelberg, Germany, Amalfi, Italy (Sep 12–13, 2003)

6. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg, Ger-
many, Kingston, Ontario, Canada (Aug 11–12, 2006)

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM
CCS 93. pp. 62–73. ACM Press, Fairfax, Virginia, USA (Nov 3–5, 1993)

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007
IEEE Symposium on Security and Privacy. pp. 321–334. IEEE Computer Society Press,
Oakland, CA, USA (May 20–23, 2007)

9. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message
authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616,
pp. 408–425. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2014)

10. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422–426 (1970)

11. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with constant size ci-
phertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer,
Heidelberg, Germany, Aarhus, Denmark (May 22–26, 2005)

12. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 19–23, 2001)

13. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg, Germany, Gold
Coast, Australia (Dec 9–13, 2001)

14. Boyd, C., Gellert, K.: A modern view on forward security. The Computer Journal (2020), to
appear

15. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg, Germany,
Warsaw, Poland (May 4–8, 2003)

16. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption.
In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222.
Springer, Heidelberg, Germany, Interlaken, Switzerland (May 2–6, 2004)

17. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext secure
fully homomorphic encryption. In: Public-Key Cryptography - PKC 2017. pp. 213–240
(2017)

18. Chen, C., Chen, J., Lim, H.W., Zhang, Z., Feng, D., Ling, S., Wang, H.: Fully secure attribute-
based systems with short ciphertexts/signatures and threshold access structures. In: Dawson,
E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 50–67. Springer, Heidelberg, Germany, San
Francisco, CA, USA (Feb 25 – Mar 1, 2013)

48

19. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidel-
berg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013)

20. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryp-
tographic capabilities. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC. pp. 1115–1127.
ACM Press, Cambridge, MA, USA (Jun 18–21, 2016)

21. Dallmeier, F., Drees, J.P., Gellert, K., Handirk, T., Jager, T., Klauke, J., Nachtigall, S.,
Renzelmann, T., Wolf, R.: Forward-secure 0-RTT goes live: Implementation and perfor-
mance analysis in QUIC. Cryptology ePrint Archive, Report 2020/824 (2020), https:
//eprint.iacr.org/2020/824

22. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private
keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer,
Heidelberg, Germany, Kuching, Malaysia (Dec 2–6, 2007)

23. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and applications
to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 425–455. Springer, Heidelberg, Germany, Tel
Aviv, Israel (Apr 29 – May 3, 2018)

24. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revisiting
proxy re-encryption: Forward secrecy, improved security, and applications. In: Abdalla, M.
(ed.) PKC 2018. LNCS, Springer (2018)

25. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption
schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554. Springer, Hei-
delberg, Germany, Santa Barbara, CA, USA (Aug 15–19, 1999)

26. Gellert, K.: Construction and security analysis of 0-RTT protocols. PhD thesis (2020)
27. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASI-

ACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg, Germany, Queen-
stown, New Zealand (Dec 1–5, 2002)

28. Giampaolo, D.: Practical File System Design with the Be File System. Morgan Kaufmann
Publishers Inc., 1st edn. (1998)

29. Goel, A., Gupta, P.: Small subset queries and bloom filters using ternary associative mem-
ories, with applications. In: Misra, V., Barford, P., Squillante, M.S. (eds.) SIGMETRICS
2010, Proceedings of the 2010 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, New York, New York, USA, 14-18 June 2010.
pp. 143–154. ACM (2010), https://doi.org/10.1145/1811039.1811056

30. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S.
(eds.) ACM CCS 2006. pp. 89–98. ACM Press, Alexandria, Virginia, USA (Oct 30 – Nov 3,
2006), available as Cryptology ePrint Archive Report 2006/309

31. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable encryp-
tion. In: 2015 IEEE Symposium on Security and Privacy. pp. 305–320. IEEE Computer
Society Press, San Jose, CA, USA (May 17–21, 2015)

32. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459.
Springer, Heidelberg, Germany, Shanghai, China (Dec 3–7, 2006)

33. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward secrecy. In:
Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 519–548.
Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017)

34. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward se-
crecy. Cryptology ePrint Archive, Report 2017/223 (2017), http://eprint.iacr.
org/2017/223

49

https://eprint.iacr.org/2020/824
https://eprint.iacr.org/2020/824
https://doi.org/10.1145/1811039.1811056
http://eprint.iacr.org/2017/223
http://eprint.iacr.org/2017/223

35. Hale, B., Jager, T., Lauer, S., Schwenk, J.: Simple security definitions for and constructions
of 0-RTT key exchange. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17. LNCS,
vol. 10355, pp. 20–38. Springer, Heidelberg, Germany, Kanazawa, Japan (Jul 10–12, 2017)

36. Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In: Catalano,
D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 317–334.
Springer, Heidelberg, Germany, Taormina, Italy (Mar 6–9, 2011)

37. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto trans-
formation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 341–371.
Springer, Heidelberg, Germany, Baltimore, MD, USA (Nov 12–15, 2017)

38. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto trans-
formation. Cryptology ePrint Archive, Report 2017/604 (2017), http://eprint.iacr.
org/2017/604

39. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for the
medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 543–571. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18,
2016)

40. Lauer, S., Gellert, K., Merget, R., Handirk, T., Schwenk, J.: T0RTT: Non-interactive im-
mediate forward-secret single-pass circuit construction. Proceedings on Privacy Enhancing
Technologies 2020(2), 336–357 (2020)

41. Lovett, S., Porat, E.: A space lower bound for dynamic approximate membership data struc-
tures. SIAM Journal on Computing 42(6), 2182–2196 (2013)

42. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS advances
on the security of pairing-based cryptography. IACR Cryptology ePrint Archive 2016, 1102
(2016), http://eprint.iacr.org/2016/1102

43. Naor, M., Yogev, E.: Bloom filters in adversarial environments. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 565–584. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 16–20, 2015)

44. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access
structures. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007.
pp. 195–203. ACM Press, Alexandria, Virginia, USA (Oct 28–31, 2007)

45. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Aug
2018), https://rfc-editor.org/rfc/rfc8446.txt

46. Sun, S.F., Sakzad, A., Steinfeld, R., Liu, J., Gu, D.: Public-key puncturable encryption:
Modular and compact constructions. Cryptology ePrint Archive, Report 2020/126 (2020),
https://eprint.iacr.org/2020/126

47. Thomson, M., Iyengar, J.: QUIC: A UDP-Based Multiplexed and Secure Transport. Internet-
Draft draft-ietf-quic-transport-02, Internet Engineering Task Force (Mar 2017), https:
//datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02,
work in Progress

48. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2009)

49. Wu, D.J., Taly, A., Shankar, A., Boneh, D.: Privacy, discovery, and authentication for the
internet of things. In: Askoxylakis, I.G., Ioannidis, S., Katsikas, S.K., Meadows, C.A. (eds.)
ESORICS 2016, Part II. LNCS, vol. 9879, pp. 301–319. Springer, Heidelberg, Germany,
Heraklion, Greece (Sep 26–30, 2016)

50

http://eprint.iacr.org/2017/604
http://eprint.iacr.org/2017/604
http://eprint.iacr.org/2016/1102
https://rfc-editor.org/rfc/rfc8446.txt
https://eprint.iacr.org/2020/126
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-02

A Formal Definitions for Bloom Filter Encryption

Definition 27 (Bloom Filter Encryption). A Bloom Filter encryption (BFE) scheme is
a tuple (KGen,Enc,Punc,Dec) of PPT algorithms:

KGen(1λ,m, k) : Takes as input a security parameter λ, parameters m and k and out-
puts a secret and public key (sk, pk).

Enc(pk,M) : Takes as input a public key pk, a messageM ∈M and outputs a cipher-
text C.

Punc(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs an updated
secret key sk′.

Dec(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs a message
M ∈M or ⊥ if decryption fails.

Definition 28 (Correctness). We require that the following holds for all λ,m, k ∈ N,
all arbitrary sequences of messages (M1, . . . ,Mn,M

∗) ∈ Mn+1 and any (sk, pk)
←$ KGen(1λ,m, k).

For any (arbitrary interleaved) sequence of invocations of

skj+1←$ Punc(skj , Cj),

where j ∈ {1, . . . , n}, sk1 := sk, and Cj ←$ Enc(pk,Mj), it holds that

Pr [Dec(skn+1, C
∗) 6=M∗] ≤

(
1− e−

(n+1/2)k
m−1

)k
+ ε(λ),

where C∗←$ Enc(pk,M∗) and ε(·) is a negligible function in λ. The probability is over
the random coins of KGen, Punc, and Enc.

Note that the correctness is essentially our BFKEM definition ported to the encryp-
tion setting. As in Section 2.3, we can define the extended correctness, seperable ran-
domness, publicly checkable puncturing and γ-spreadness. As this is straightforward,
we do not explicitly repeat the definitions here.
Security notions. Subsequently, in Figure 8, we define the IND-CPA/IND-CCA2-
experiment for BFE. The experiment is identical to IND-CPA/IND-CCA2-security for
conventional public-key encryption, but in addition, the adversary in the second phase
can arbitrarily puncture the secret key and retrieve the punctured secret key as long as
the key has been punctured on the challenge ciphertext C∗. This still should not help
the adversary to obtain any information about the message hidden in C∗.

Definition 29 (IND-T Security of BFE). We define the advantage of an adversary A
in the IND-T-experiment ExpIND-T

A,BFE(λ,m, k) as

AdvIND-T
A,BFE(λ,m, k) :=

∣∣∣∣Pr [ExpIND-T
A,BFE(λ,m, k) = 1

]
− 1

2

∣∣∣∣ .
A Bloom Filter encryption scheme BFE is IND-T-secure, T ∈ {IND-CPA, IND-CCA2},
if AdvIND-T

A,BFE(λ,m, k) is a negligible function in λ for all m, k > 0 and all PPT adver-
saries A.

51

ExpIND-T
A,BFE(λ,m, k):

(sk, pk)←$ KGen(1λ,m, k)
b←$ {0, 1},Q ← ∅
(M0,M1)←$ AO(pk)

where O ← Dec(sk, ·) if T = IND-CCA2 and O ← ∅ otherwise.
if M0,M1 /∈M ∨ |M0| 6= |M1|, then let C∗ ← ⊥
else, let C∗←$ Enc(pk,Mb)

b∗←$ AO,Punc(sk,·),Corr(C∗)
where O ← Dec′(sk, ·) if T = IND-CCA2 and O ← ∅ otherwise.
Dec′(sk, C) behaves as Dec but returns ⊥ if C = C∗

Punc(sk, C) runs sk←$ Punc(sk, C) andQ ← Q∪ {C}
Corr returns sk if C∗ ∈ Q and ⊥ otherwise

return 1, if b∗ = b
return 0

Fig. 8. IND-T-security for BFE: T ∈ {IND-CPA, IND-CCA2}.

B Proof of Lemma 1

We begin by computing the expected number of bits set to one in the BF after α random
elements have been added. Let T0 = b0b1 . . . bm be the sequence of bits of a BF with
sizem. After initialization, we have bi := 0 for all i ∈ [m]. With each added element we
set up to k bits to one, that is we sample k elements a1, . . . , ak ∈ [m] with replacement
and set bai := 1. At the end of α time steps we have at most αk bits equal to one
and at least 1 bit equal to one. Let Xt

i be the event that bi is set at time t, that is,
Xt
i = 1 =⇒ bi = 1 has already been set to one at time t. Thus the number bits set to

one after α time steps is
m∑
i=1

Xαk
i .

To compute the expected number of bits set to one at time t, we need to compute the
expected value of each Xi. Then the expected number of bits set to one after α time
steps is

Xα =

m∑
i=1

Xα
i =

m∑
i=1

Pr[Xα
i] =

m∑
i=1

(
1− Pr[Xα

i]
)
=

m∑
i=1

1−
(
1− 1

m

)αk
= m ·

(
1−

(
1− 1

m

)αk)
.

We can now bound the probability by applying a simple combinatorial argument. When
choosing a random bit bi, we have a probability of Xα/m to choose an index i with
bi = 1. Independently repeating this process k times, leads us to the expected false-
positive probability of a random element u ∈ U being recognized by the Bloom filter:

Pr[BFCheck(H,Tn, u)] =

m ·
(
1−

(
1− 1

m

)αk)
m

k

=

(
1−

(
1− 1

m

)αk)k
.

52

ut

C Growth of the False-Positive Probability

Figures 9, 10, and 11 show the growth of the false-positive probability after α elements
have been added to a Bloom filter with n ∈ 216, 224, 230 for k ∈ {8, 11, 17, 21}. Note
that both axes are scaled logarithmically.

20 22 24 26 28 210 212 214 216

number of inserted elements α

2−364

2−323

2−282

2−241

2−200

2−159

2−118

2−77

2−36

ex
pe

ct
ed

fa
ls

e-
po

si
tiv

e
pr

ob
ab

ili
ty

k = 8

k = 11

k = 17

k = 21

Fig. 9. The false-positive probability of a random element after α elements have been added to a
Bloom filter with n = 216 for k ∈ {8, 11, 17, 21}.

D Identity-based Broadcast Encryption with Constant Size
Ciphertexts and Private Keys

The subsequent construction is the identity-based broadcast encryption scheme by Del-
erablée [22]. The main advantages of her scheme are the constant size ciphertexts and
private keys.

Let (p, e,G1,G2,GT)←$ BilGen(1λ) be public parameters of a bilinear map e :
G1×G2 → GT with prime orders p and |p| = λ. LetH : Z∗q → Z∗q be a cryptographic
hash function. We construct an identity-based broadcast encryption scheme IBBE =
(Setup, Extract, Enc, Dec) as follows:

53

20 23 26 29 212 215 218 221 224

number of inserted elements α

2−480

2−419

2−358

2−297

2−236

2−175

2−114

2−53

28
ex

pe
ct

ed
fa

ls
e-

po
si

tiv
e

pr
ob

ab
ili

ty
k = 8

k = 11

k = 17

k = 21

Fig. 10. The false-positive probability of a random element after α elements have been added to
a Bloom filter with n = 224 for k ∈ {8, 11, 17, 21}.

20 24 28 212 216 220 224 228

number of inserted elements α

2−673

2−596

2−519

2−442

2−365

2−288

2−211

2−134

2−57

ex
pe

ct
ed

fa
ls

e-
po

si
tiv

e
pr

ob
ab

ili
ty

k = 8

k = 11

k = 17

k = 21

Fig. 11. The false-positive probability of a random element after α elements have been added to
a Bloom filter with n = 230 for k ∈ {8, 11, 17, 21}.

54

Setup(λ, k) : The key generation algorithm chooses two generators g1 ∈ G1 and
g2 ∈ G2 and a secret value γ←$ Z∗q . Finally, we set and output the public key pk and
master secret key msk as

pk :=
(
w = gγ1 , v = e(g1, g2), g

γ
2 , . . . , g

γk

2

)
and msk := γ.

Extract(msk, ID) : The key extraction algorithm takes as input the master secret key
msk = γ and an identity ID. Output is an extracted secret key

skID = g
1

γ+H(ID)

1 .

Enc(pk,S) : Given a public key pk = (w, v, gγ2 , . . . , g
γk

2) and a set of identities S =

{IDj}j∈[s] with s ≤ k, it samples a symmetric key K by choosing a secret value ρ←$ Zq
and computing K := vρ = e(g1, g2)

ρ. Finally, the algorithm computes a ciphertext
C = (c1, c2) with

c1 := w−ρ and c2 := g
ρ·
∏s
j=1(γ+H(IDj))

2 .

It outputs (K, C).

Dec(skIDj ,S, C) : Given a ciphertext C = (c1, c2), it computes

K =
(
e
(
c1, g

pi,S(γ)
2

)
· e(skIDj , c2)

) 1∏s
j=1,j 6=iH(IDj) , where

pi,S(γ) =
1

γ

 s∏
j=1,j 6=i

(γ +H(IDj))−
s∏

j=1,j 6=i

H(IDj)

and returns K.

Note that indeed the ciphertext is C ∈ G1 × G2 and an extracted secret key is
skIDj ∈ G1.

Remark on computation of pi,S . The decapsulation algorithm uses a function pwhose
description is dependent of γ. However, neither γ nor any other secret value is needed
to compute it. Instead we can compute gpi,S2 by only using public values.

Let cv(a1, . . . , an) be a function that on input of n values returns the sum of all
possible pairwise distinct v-combinations of the input values, i.e. c2(a, b, c) = ab +
ac+ bc, and let Si = {H(IDj)|j ∈ S \ {i}}. Then we can rewrite

pi,S(γ) =
1

γ

 s∏
j=1,j 6=i

(γ +H(IDj))−
s∏

j=1,j 6=i

H(IDj)

=

1

γ

γs−1 + γs−2c1(Si) + . . .+ γcs−2(Si) + cs−1(Si)−
s∏

j=1,j 6=i

H(IDj)

= γs−2 + γs−3c1(Si) + . . .+ cs−2(Si).

55

In our case it suffices to compute

g
pi,S(γ)
2 = g

γs−2+γs−3c1(Si)+...+cs−2(Si)
2

= gγ
s−2

2 ·
(
gγ

s−3

2

)c1(Si)
· . . . · gcs−2(Si)

2 .

As s ≤ k, all gγ2 -like values are publicly known and thus, gpi,S2 is computable without
any secret knowledge. The given argument also holds for the computation of ciphertext
c2 in the key encapsulation.
Security of the IBBE. In [22] Delerablée also analyzes the security of the above
scheme under the so called (g, f, F)-GDDHE assumption. This is a variant of a gener-
alization of the Diffie-Hellman Exponent Assumption introduced in [11] and analyzed
in the generic bilinear group model in [22]. For the sake of completeness, we restate the
theorem from [22].

Theorem 7. From each efficient adversary B against IND-sID-CPA-security of the
IBBE scheme, we can construct an efficient algorithm A against the (g, f, F)-GDDHE
assumption with advantage

AdvGDDHE
A (g, f, F) ≥ 1

2
·AdvIND-sID-CPA

B,IBBE (λ, k).

56

	Bloom Filter Encryption and Applications to Efficient Forward-Secret 0-RTT Key Exchange

