
Non-Profiled Deep Learning-Based Side-Channel
Attacks

Benjamin Timon

UL Transaction Security, Singapore
benjamin.timon@ul.com

Abstract. Deep Learning has recently been introduced as a new alter-
native to perform Side-Channel analysis [1]. Until now, studies have been
focused on applying Deep Learning techniques to perform Profiled Side-
Channel attacks where an attacker has a full control of a profiling device
and is able to collect a large amount of traces for different key values in
order to characterize the device leakage prior to the attack. In this pa-
per we introduce a new method to apply Deep Learning techniques in a
Non-Profiled context, where an attacker can only collect a limited num-
ber of side-channel traces for a fixed unknown key value from a closed
device. We show that by combining key guesses with observations of Deep
Learning metrics, it is possible to recover information about the secret
key. The main interest of this method, is that it is possible to use the
power of Deep Learning and Neural Networks in a Non-Profiled scenario.
We show that it is possible to exploit the translation-invariance property
of Convolutional Neural Networks [2] against de-synchronized traces and
use Data Augmentation techniques also during Non-Profiled side-channel
attacks. Additionally, the present work shows that in some conditions,
this method can outperform classic Non-Profiled attacks as Correlation
Power Analysis. We also highlight that it is possible to target masked im-
plementations without leakages combination pre-preprocessing and with
less assumptions than classic high-order attacks. To illustrate these prop-
erties, we present a series of experiments performed on simulated data
and real traces collected from the ChipWhisperer board and from the
ASCAD database [3]. The results of our experiments demonstrate the
interests of this new method and show that this attack can be performed
in practice.

Keywords: side-channel attacks, deep learning, machine learning, non-
profiled attacks, profiled attacks

1 Introduction

Side-Channel attacks, introduced in 1996 by P. Kocher [4], exploit side-
channel leakages such as power consumption from a device to extract
secret information. Side-Channel attacks can be classified into two classes:

– Profiled Attacks such as Template Attacks [5], Stochastic attacks [6,7]
or Machine-Learning-based attacks [8,9,10].

– Non-Profiled Attacks such as Differential Power Analysis (DPA) [11],
Correlation Power Analysis (CPA) [12], or Mutual Information Anal-
ysis (MIA) [13].

To mount a Profiled Side-Channel attack, one needs to have access to
a pair of identical devices: One closed target device, with limited control
and running a cryptographic operation with a fixed key value k∗ ∈ K,
where K is the set of possible key values. One profiling device, with full
knowledge and control of the inputs and keys. In such a context, a Profiled
Attack is performed in two steps:

1. A profiling phase, while the leakage of the targeted cryptographic
operation is profiled for all possible key values k ∈ K using side-
channel traces collected from the profiling device.

2. An attack phase, where traces collected from the target device are
classified based on the leakage profiling in order to recover the secret
key value k∗.

During the profiling phase, a set of side-channel traces is collected for each
possible key value k ∈ K. Usually, a divide-an-conquer strategy is applied,
and one has for instance K = {0, . . . , 255} meaning that 256 sets of traces
are collected to perform the profiling. For Template Attacks, during the
profiling phase, one computes a multivariate gaussian model Mk for each
possible key value which characterizes the leakage of the cryptographic
operation when the key k is used. During the attack phase, we select the
model which best fits the side-channel traces collected from the target
device to reveal the correct key k∗. Profiled attacks are considered as
the most powerful form of side-channel attacks as the attacker is able to
characterize the side-channel leakage of the device prior to the attack.
However, the profiling phase requires to have access to a profiling device,
which is a strong assumption that cannot be always met in practice.

Indeed, for closed products (for example smart cards running banking
applications) an attacker does not have control of the keys and is usually
limited by a transaction counter which caps the number of side-channel
traces that can be collected. In such a context, Profiled attacks cannot be
performed. However, Non-Profiled attacks such as DPA, CPA, or MIA can
still threaten the device. The only assumption for Non-Profiled attacks is
that the attacker is able to collect several side-channel traces of a cryp-
tographic operation with a fixed unknown key value k∗ ∈ K and known

2

random inputs (or outputs) from the targeted device. The attacker then
combines key hypotheses with the use of statistical distinguishers such as
Pearson’s Correlation or Mutual Information to infer information about
the secret k∗ from the side-channel traces.

Our contribution Recently, Deep Learning has been introduced as an
interesting alternative to perform Profiled Side-Channel attacks [1,2].
However, the studies only focused on applying Deep Learning to per-
form Profiled Side-Channel attacks. As mentioned previously, mounting
a Profiled attack requires to have access to a profiling device, which is a
strong assumption. In this paper, we present a new side-channel attack
method to apply Deep Learning techniques in a Non-Profiled scenario.
The main interest of this method, is that it is possible to use Deep Learn-
ing techniques and Neural Networks even when profiling is not possible.
We show for instance that — as in the Profiled context [2] — it is pos-
sible to use the translation-invariance property of Convolutional Neural
Networks, as well as Data Augmentation even in a Non-Profiled context.
This leads to results showing that in some cases, this attack method can
outperform some classic Non-Profiled attacks as CPA. We also study the
efficiency of this attack against High-Order protected implementations,
and show that this method is able to break masked implementations with
a reasonable number of traces and without leakages combination pre-
processing. All these points are supported by experiments performed on
simulated data and traces from the ASCAD database and collected from
the ChipWhisperer-Lite board [14].

Outline The paper is organized as follows: In Section 2, Deep Learning
and Deep Learning-based Side-Channel attacks are described. In Section
3, we present our method to apply Deep Learning techniques in a Non-
Profiled scenario with illustrations and examples. In Section 4, we give
more detailed results from experiments performed on simulated data and
traces collected from the ChipWhisperer board and from the ASCAD
database. Finally, in Section 5 we conclude and summarize the interests
of this new attack.

3

2 Deep Learning-Based Side-Channel attacks

2.1 Deep Learning

Deep Learning is a branch of Machine Learning which uses deep Neural
Networks (NN) and which has been applied to many fields such as image
classification, speech recognition or genomics. [15,16,17]. In this section,
we give a brief description of Deep Learning for data classification. In
such a case, the objective is to classify some data x ∈ RD based on their
labels z(x) ∈ Z, where D is the dimension of the data to classify and Z
is the set of classification labels. For simplicity’s sake, we can consider
Z = {0, 1, . . . , U − 1} with U is the number of classification labels. We
also define the function L : RD −→ R|Z| as:

L(x)[i] =

{
1 if i = z(x)

0 otherwise

which can be seen as a vector representation of the label z(x). A Neural
Network is a function N : RD −→ R|Z| which takes as input a data to
classify x ∈ RD, and outputs a score vector y = N(x) ∈ R|Z|. Addition-
ally, one can define an error function ∆ : RD −→ R for instance as the
Euclidean distance1 between the output of the Neural Network and the
vector representation of the label:

∆(x) =

(|Z|∑
i=1

(L(x)[i]− N(x)[i])2
) 1

2

.

Deep Learning can be used to train neural networks to classify data based
on their label. We consider we have a set of M training samples X =
(xi)16i6M whose the corresponding labels are known. To quantify the
classification error of the network, one can use a so called loss function.
The loss can be defined for instance as the average error1 over all the
training samples xi:

loss(X) =
1

M

M∑
i=1

∆(xi).

Based on these definitions, data classification using Deep Learning is com-
posed of two steps:

1 The error and loss functions presented here are given only as examples. There exist
actually many different error/loss functions which can be used when performing
Deep Learning.

4

– A training/learning phase: for a chosen number of iterations called
epochs, the DL method processes the set of training samples X and
automatically tunes the network internal parameters by applying the
Stochastic Gradient Descent algorithm [18] to minimize the loss func-
tion output.

– A classification phase: to classify a data x whose the corresponding
label is unknown, one computes ` = argmax

j∈K
N(x)[j]. The classifica-

tion is successful if ` = z(x).

Multi Layer Perceptron A Multi Layer Perceptron (MLP) is a type
of Neural Network which is composed of several perceptron units [19].
As shown on Fig. 1, a perceptron P : Rn −→ R takes as input a vector
x ∈ Rn and outputs a weighted sum evaluated through an activation
function denoted A:

P(x) = A
(n∑
i=1

wixi
)
.

Common activation functions are for instance the Rectified Linear func-
tion (relu), or the Hyperbolic Tangent function (tanh).

𝐴

𝑥1

∑

𝑤1

𝑤2

𝑤𝑛

𝑥2

𝑥𝑛

…

𝐴(𝑤𝑖 . 𝑥𝑖

𝑛

𝑖=1

)

Fig. 1: Perceptron unit diagram.

A Multi Layer Perceptron is a Neural Network which is a combination
of many perceptron units organized in layers as shown in Fig. 2. Each

5

perceptron output of one layer is connected to each perceptron of the
next layer. A MLP is composed of an input layer, and output layer and a
series of intermediate layers called hidden layers. Each layer is composed
of one or several perceptron units. During the training of a MLP, the
weights of the network are tuned in order to minimize the loss function.

Input layer Hidden layer Output layer

Fig. 2: Multi Layer Perceptron with 1 hidden layer.

CNN Convolutional Neural Networks is a family of deep Neural Net-
works which combines two types of layers called Convolutional layers and
Pooling layers and has shown good results specially in the field of image
recognition [20,21]. Convolutional layers apply convolution operations to
the input by sliding a set of filters along the traces as shown on Fig.
3. The filters weights are shared across the space which allows to learn
translation-invariant features. During the training of a CNN, the filters
weights are tuned in order to minimize the loss function.

6

2

4

3

-1

5

8

-2

4

1

3

1 0 1

0 1 0

1 1 0

5 7 2

3 2 4

8 4 3

Input data

Filters

Filtered data

Fig. 3: Convolution operation using 3 filters of size 3.

The pooling layers are non-linear layers used to reduce the spatial
size of the data. It therefore reduces the amount of computation in the
network. It first partitions the input into a set of non-overlapping areas
of same dimensions. For each area, the pooling operation outputs a single
value which summarizes the input data in this area. The most common
types of pooling operations are the Max Pooling operation which outputs
the max value of each area and the Average Pooling operation which
outputs the average of each area. Fig. 4 gives an example of Max Pooling
operation. The input matrix is divided into non-overlapping areas of size
(2× 2) and the pooling operation outputs the max values of each area.

5 8 1 5

2 4 2 3

6 3 0 7

9 5 2 4

8 5

9 7

Fig. 4: Max Pooling operation example.

7

The CNN architecture has a natural translation-invariance property
due to the use of pooling operations and shared weights applied across
space during the convolution operations. Therefore, CNN is particularly
interesting when dealing with de-synchronized side-channel traces as it
is able to learn and detect features even if the traces are not perfectly
aligned [2].

2.2 Deep Learning in practice

Many open-source Deep Learning frameworks such as Keras [22] or Ten-
sorFlow provide user friendly API to build, train and test Deep Learning
architectures. For this paper we decided to use Keras and all results pre-
sented in the paper were obtained using this framework. After defining the
Neural Network architecture the user only needs to provide the training
data set and labels to the framework in order to perform the DL training
which is managed automatically by the framework.

Loss and Accuracy During a Deep Learning training, it is possible to
monitor the loss and accuracy of the training. As introduced in Section
2.1, the loss quantifies the classification error of the network. The accuracy
at a given epoch can be defined for instance as the proportion of training
samples that are correctly classified by the Neural Network. Both metrics
give information about the evolution of the training. A decreasing loss and
increasing accuracy usually indicate that the network is properly learning
the data, except in case of overfitting where the Neural Network actually
memorizes the data instead of learning the targeted features. In the rest
of the paper, we denote as loss ∈ Rne and acc ∈ Rne the loss and accuracy
over the epochs of a Deep Learning training, where ne is the number of
epochs used during the training.

Keras offers several options to compute the loss and the accuracy
during a Deep Learning training [22]. For the loss function it is for instance
possible to use the mean squared error or the categorical crossentropy. For
the accuracy one can use for example the categorical accuracy or the top-
k categorical accuracy. The choice of the loss function can have a big
impact on the learning efficiency. For all results presented in Section 3
and Section 4, we used the mean squared error loss function and the
categorical accuracy as we observed that this combination provided good
results during our experiments.

Validation data In addition to training samples and labels, it is also pos-
sible to provide validation samples and labels to the DL training method.

8

The validation set is usually a separated set of data which is only used
to monitor the training efficiency but is not used for the training itself. It
is important that none of the validation samples are part of the training
set. When validation samples are used, it is then possible to monitor the
validation loss lossval ∈ Rne and validation accuracy accval ∈ Rne over
the epochs which are computed using the validation data. Observing the
validation metrics lossval and accval in addition to the metrics loss and
acc gives a better overview of the training evolution. If for instance, acc
increases but accval stays stable or decreases, it could mean that overfit-
ting happens and that the network only memorizes the training samples
and is not able to classify data outside the training set. On the other
hand, if both acc and accval increase, and both loss and lossval decrease
over the epochs, it indicates that the network learns properly the targeted
features and that there is no overfitting.

In the rest of the paper we denote by:

acc, loss = DL(X,Y, ne)

a Deep Learning training over ne epochs, using the set X as training
samples and the set Y as training labels. The accuracy acc ∈ Rne and
loss loss ∈ Rne of the training are returned as output of this process. In
a similar way, we denote by:

acc, loss, accval, lossval = DL(X,Y,Xval, Yval, ne)

a Deep Learning training using validation samples and labels Xval and
Yval, and returns as output the corresponding training and validation
losses and accuracies.

2.3 Profiled Deep Learning Side-Channel attacks

In this section, we remind how Deep Learning can be applied to per-
form Profiled Side-Channel attacks [1,2,3]. We consider that the attacker
has access to a pair of identical devices: a target device running a crypto-
graphic operation with a fixed unknown key k∗ ∈ K and a profiling device
with knowledge and control of the keys and inputs. We consider that a
divide-and-conquer strategy is applied and that K = {0, 1, . . . , 255}. The
goal of the attack is to recover the secret key byte k∗. The method pro-
posed in [1] is to perform a Profiled attack similar to a Template Attack
[5], but using Deep Learning training as a profiling method instead of
using Multivariate gaussian profiling as in Template Attacks.

9

Profiling phase For the profiling phase, a set of N traces Tk = {Ti,k | i =
1, . . . , N} is collected from the profiling device for each key k ∈ K leading
to a set X of (N × 256) training traces:

X =
255⋃
k=0

Tk .

The set of training labels Y is defined as the set of keys z(Ti,k) = k cor-
responding to the training traces. To profile the leakage, a Deep Learn-
ing training DL(X,Y, ne) is performed using the Side-Channel traces as
training data in order to build a Neural Network N able to classify the
side-channel traces based on their corresponding key values.

Attack phase To recover the secret key value k∗ ∈ K using M side-
channel traces (Ti)16i6M collected from the target device, one first eval-
uates each trace Ti using the trained Neural Network to get M score
vectors yi = N(Ti) ∈ R|K|. One can then selects the key k which leads to
the highest summed score:

k = argmax
j∈K

(M∑
i=1

yi
)
[j].

The attack is successful if k = k∗.

Interests Previous publications studied the interest of using Deep Learn-
ing to perform Profiled Side-Channel attacks. In [1], Maghrebi et al.
showed that different type of Neural Networks such as CNN and MLP
can outperform other Profiled attacks such as Template Attacks in some
cases. In [2], the authors showed that the translation-invariance property
of CNN networks can be used against de-synchronized traces to improve
the attack results. Moreover, they showed that Data Augmentation can
also be applied to artificially increase the size of the training set and im-
prove the learning phase and attack results. However, all these studies
focused only on applying Deep Learning to perform Profiled attacks.

3 Non-Profiled Deep Learning Side-Channel attacks

In this section we present our attack method to apply Deep Learning
techniques in a Non-Profiled context. In the first subsection, we describe
the principle of the attack. In the following subsections, we further discuss
about some specific points of the attack and provide illustrations. More
advanced experiments of the attack are presented in Section 4.

10

3.1 Deep Learning Power Analysis

For the rest of the paper, we consider a Non-Profiled Side-Channel at-
tack scenario. In such context, an attacker collects N side-channel traces
(Ti)16i6N corresponding to the manipulation of a sensitive value F (di,k

∗)
where (di)16i6N are known random values and k∗ ∈ K is the fixed secret
value. Usually such an attack is performed following a divide-an-conquer
strategy, and one has for instance |K| = 256 with di and k∗ 8-bit values.
For the rest of the paper we focus on the AES algorithm. In this case,
the target function F can be chosen as the AES Sbox function, meaning
that F (di,k

∗) = Sbox(di ⊕ k∗).
For a classic Non-Profiled attack such as CPA, for each key hypoth-

esis k ∈ K the attacker computes a series of hypothetical intermediate
values (Vi,k)16i6N such that Vi,k = F (di, k) and then applies a leak-
age model, for instance the Hamming Weight (HW) leakage model to
get series of hypothetical power consumption values (Hi,k)16i6N such
that Hi,k = HW (Vi,k). The attacker then computes the correlation be-
tween the series (Hi,k)16i6N and the collected side-channel traces. For
the correct key value k∗, the series of intermediate values will be cor-
rectly guessed, and it will lead to a high correlation if the leakage model
is well-chosen. For all the other key candidates, the guessed intermediate
values will be wrong and therefore not correlated to the traces, leading
to low correlation values. The attacker is able to discriminate the correct
key value by selecting the key leading to the highest correlation.

To apply Deep Learning in a Non-Profiled context, our idea is to
combine CPA-like hypotheses with Deep Learning trainings. For each
key hypothesis k ∈ K the attacker computes the series (Vi,k)16i6N and
(Hi,k)16i6N . He then performs a Deep Learning training using the traces
(Ti)16i6N as training data, and the series (Hi,k)16i6N as the correspond-
ing labels. As for a CPA attack, for the correct key value k∗, the series
of intermediate values will be correctly guessed, and therefore the labels
used for the Deep Learning training will be correct. If the DL architec-
ture is able to learn the targeted features, this should lead to a successful
training and to good training metrics such as a decreasing loss and in-
creasing accuracy over the epochs when the correct key k∗ is used to
compute the labels. On the other hand, for all the other key candidates,
the series of intermediate values will be incorrect, and this should lead to
unsuccessful trainings. The attacker can then discriminate the correct key
value from the other candidates by selecting the key leading to the best
Deep Learning training metrics. A description of different Deep Learning

11

metrics which can be used is given in Section 3.2. We will use the acronym
DLPA (Deep Learning Power Analysis) for this new attack method. Al-
gorithm 1 summarizes the DLPA procedure to perform a Non-Profiled
attack using Deep Learning:

Algorithm 1 DLPA
Inputs: N traces (Ti)16i6N and corresponding plaintexts (di)16i6N . Number of
epochs ne.

1: Set training data as X = (Ti)16i6N

2: for k ∈ K do
3: Compute the series of hypothetical values (Hi,k)16i6N

4: Set training labels as Y = (Hi,k)16i6N

5: Perform DL training: acc, loss = DL(X,Y, ne)
6: end for
7: return key k which leads to the best DL training metrics

It is important to note that the DLPA attack method is not limited
to a specific type of Neural Network. In the next section, we study some
metrics such as the loss and accuracy which can be used to perform DLPA
with any type of Neural Networks. This provides many possibilities when
performing the attacks as the attacker can adapt the architecture based
on the targeted implementation and device. In this paper, we focus on
two variants of DLPA, using MLP and CNN architectures as underlying
neural networks. To distinguish both variants, MLP-DLPA will refer to
a DLPA process using MLP as Neural Network architecture and CNN-
DLPA will refer to a DLPA attack using CNN.

3.2 Metrics

In this section we study different metrics that can be used to reveal the
correct key value during a DLPA attack. To illustrate how the different
metrics can lead to the recovery of the secret key, we present some results
obtained from a simulation data set. We generated N = 5, 000 simulated
traces as follows:

– 50 samples per trace.
– Sbox leakage set at time sample t = 25 and defined as Sbox(di⊕k∗)+
N (0, 1) with di a known randomized byte and k∗ a fixed key byte.
N (0, 1) corresponds to a Gaussian noise of mean µ = 0 and standard
deviation σ = 1.

– All other points on the traces are chosen as random values in [0; 255].

12

The purpose of this simulation is only to illustrate how some Deep Learn-
ing metrics can be used to discriminate the correct key from the other
candidates. More detailed simulations and results are presented in Sec-
tion 4. Using this simulation data, we performed the attack as defined in
Algorithm 1 and observed the following metrics.

Layers weights The first hidden layer of a Multi Layer Perceptron takes
as input the n samples of a side-channel trace. By definition of the MLP,
each time sample t of the traces is paired with R weights (Wt,j)16j6R

where R is the number of neurons in the first hidden layer. Therefore, the
first hidden layer weights can be seen as a (n×R) matrix W where Wi,j is
the weight of the connection between the ith sample of the trace and the
jth neuron of the first hidden layer. Our observations revealed that the
Deep Learning process will tend to put higher weights on the time samples
corresponding of the side-channel leakage than on the other samples when
the correct key is used to compute the labels. To discriminate the correct
key guess it is then interesting to observe the following metrics for each
time sample t after the Deep Learning training :

S[t] =

R∑
j=1

(Wt,j)
2 (sum of squared weights) ,

P [t] =

R∏
j=1

|Wt,j | (product of weights).

We performed a MLP-DLPA attack as described in Algorithm 1 using
our simulation traces with ne = 50 epochs per guess. The two weights
metrics obtained for all the 256 key guesses can be observed in Fig. 5.

13

0 5 10 15 20 25 30 35 40 45 50
Time sample

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Su
m

 o
f s

qu
ar

ed
 w

ei
gh

ts

0 5 10 15 20 25 30 35 40 45 50
Time sample

0

1

2

3

4

5

6

7

W
ei

gh
ts

 p
ro

du
ct

1e 50

Wrong key guesses
Good key guess

Fig. 5: MLP-DLPA attack using weights metrics. Left: sum of squared
weights. Right: product of weights.

We can observe that the correct key guess clearly leads to higher values
for the two metrics, at the time sample t = 25 which corresponds to the
location of the Sbox leakage. This means that both metrics can be used to
reveal the correct key candidate by selecting the key guess leading to the
highest values. Additionally, as the highest values are located precisely at
t = 25, this method is also able to reveal the leakage location. Therefore,
DLPA using weights metrics can also be used to reveal points of interest
(we further discuss this application in Section 4.1 when targeting masked
implementations).

However, such metrics are limited to only specific Neural Network ar-
chitectures such as MLP. The following section introduces generic metrics
that can be used for any type of Neural Network.

Loss and accuracy As presented in Section 2.2, the two main metrics
that can be observed to monitor a Deep Learning training are the loss
and the accuracy of the training over the epochs. In this section we show
that these two metrics can also be used to discriminate the correct key
value when performing a DLPA attack. As illustration, we present in
Fig. 6 the losses and accuracies obtained when performing a MLP-DLPA
attack with our simulation data set with ne = 50 epochs per guess. The
figure clearly shows that the training using the correct key value leads to
a higher accuracy and lower loss compared to the trainings for the other
candidates. These metrics can therefore be used to reveal the correct key

14

by selecting the guess leading to the highest accuracy or lowest loss values.
Compared to the weights metrics introduced in the previous section, the
loss and accuracy are generic metrics that can be used with any type of
Neural Networks.

0 5 10 15 20 25 30 35 40 45 50
Epoch number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

0 5 10 15 20 25 30 35 40 45 50
Epoch number

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Wrong key guesses
Good key guess

Fig. 6: Loss (left) and accuracy (right) over the training epochs for all the
key guesses when applying DLPA.

Using validation data We observed that using directly loss and accu-
racy metrics from the training traces can sometimes lead to poor results.
Indeed, in some cases, the neural network is able to lower the loss func-
tion and increase the accuracy even for the wrong key candidates. In such
cases, it is then interesting to use a set of validation traces as explained in
Section 2.2 and to observe the loss or accuracy obtained from this valida-
tion set during the training. The set of N attack traces can be split into
respectively one set of NT training traces, and one set of NV validation
traces with NT +NV = N . Algorithm 2 summarizes this variant of DLPA
using validation data which can lead to better results in some cases.

15

Algorithm 2 DLPA with validation data
Inputs: N traces (Ti)16i6N and corresponding plaintexts (di)16i6N . Number of
epochs ne.

1: Choose NT and NV integers such that N = NT + NV with NT > NV

2: Set training data as X = (Ti)16i6NT

3: Set validation data as Xval = (Ti)NT+16i6N

4: for k ∈ K do
5: Compute the series of hypothetical values (Hi,k)16i6N

6: Set training labels as Y = (Hi,k)16i6NT

7: Set validation labels as Yval = (Hi,k)NT+16i6N

8: Perform DL training: acc, loss, accval, lossval = DL(X,Y,Xval, Yval, ne)
9: end for

10: return key k which leads to the best DL metrics

There is no rule concerning the choice of NT and NV but we usually
wants that NT > NV . It is also important to choose a good trade off
between training and validation data. If NV is too high, not enough traces
are available for the training. If NV is too low, then the attack may fails
as not enough validation traces are available to reveal the good key value.

To simulate conditions where validation data is useful, we generated
a set of simulation traces similar as previously, but this time composed
of N = 8, 000 traces of n = 1, 000 points and we added a slight artificial
de-synchronization to the traces. We then applied a MLP-DLPA attack
with and without validation data with ne = 150 epochs per guess and
compared the results. When using validation data, we split the 8, 000
attack traces into NT = 6, 500 training traces and NV = 1, 500 validation
traces. Results are presented in Fig. 7.

16

0 20 40 60 80 100 120 140
Epoch number

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

0 20 40 60 80 100 120 140
Epoch number

0.46

0.48

0.50

0.52

0.54

0.56

Va
lid

at
io

n
ac

cu
ra

cy

Wrong key guesses
Good key guess

Fig. 7: Comparison of DLPA with and without validation data. Left:
Training accuracies with no validation data. Right: Validation accuracies.

We can observe that when no validation data is used, all accuracies
tend towards 1 and that it is not possible to distinguish the correct key
value. On the other hand, when validation data is used, the validation
accuracy reveals the correct key value after a few epochs. It confirms that
in some cases it can be useful to use some of the attack traces as validation
data and study the corresponding validation metrics to reveal the key.

Summary In this section we presented different metrics which can be
used to reveal the correct key value when performing DLPA. Some met-
rics, such as the first layer weights of MLP networks are specific to some
architectures and some metrics like the loss and accuracy are generic met-
rics which can be used with any type of networks. We showed with our
examples that all these metrics can be used to reveal the correct key. For
the rest of the paper, we decided to use the accuracy as the main metric
to determine if the attack is successful. It means that we will consider
that a DLPA attack is successful when the training with the good key
guess leads to the highest accuracy.

3.3 Labels

For a Profiled Deep Learning attack, it is possible to use directly the Sbox
output values Sbox(d⊕k) as labels for the Deep Learning training without
applying any additional function to the Sbox output. However, for a Non-
Profiled Deep Learning attack, it is not possible to use directly the values

17

Sbox(di ⊕ k) as labels for the attack. Indeed, if one uses the identity
labeling Hi,k = Sbox(di ⊕ k), the partition of the attack traces derived
from this labeling method will be equivalent for all the key guesses. In
other words, the partition of the traces

Pk = {E(k)
u | u ∈ {0, . . . , 255}}

defined by the sets

E(k)
u = {Ti ∈ (Ti)16i6N | Sbox(di ⊕ k) = u}

is the same for all key guesses k. This means that from one key guess to
another, there is no difference in the partition of the attack traces, and
that only the labels are permuted which does not impact the training
metrics. It means that using the identity labeling Hi,k = Sbox(di⊕k) will
naturally lead to similar Deep Learning metrics for all the key candidates,
making it impossible to discriminate the correct key value. That is why
it is necessary to apply a non-injective function to the Sbox output to
compute the labels so that the partition of the attack traces is different
from one guess to another. We propose hereafter two methods:

Hamming Weight labeling One solution is to use labels based on the
Hamming Weight of the guessed value:

Hi,k = HW (Vi,k).

Binary labeling During our experiments, we noticed that using only
two labels derived from the guessed values is also a good alternative.
We propose two binary labeling methods to perform DLPA based on the
Least Significant bit (LSB) and Most Significant bit (MSB) of the guessed
value:

Hi,k =

{
0 if Vi,k < 127

1 otherwise
(MSB labeling) ,

Hi,k = Vi,k mod 2 (LSB labeling).

To illustrate the importance of the labeling method, we performed the
same attack as in Section 3.2 but using the identity labeling (Hi,k =
Sbox(di ⊕ k)). The comparison of accuracies obtained when using the
identity labeling and binary labeling is presented in Fig. 8.

18

0 5 10 15 20 25 30 35 40 45 50
Epoch number

0.005

0.010

0.015

0.020

0.025

Ac
cu

ra
cy

0 5 10 15 20 25 30 35 40 45 50
Epoch number

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Wrong key guesses
Good key guess

Fig. 8: MLP-DLPA using two different labeling methods. Left: Identity
labeling . Right: Binary labeling (MSB).

As expected, the left graph shows that all key guesses lead to similar
accuracies when using the identity labeling. All accuracies are not per-
fectly identical even when using the identity labeling as the Deep Learn-
ing training is not a deterministic process. Indeed, the training always
depends on the weights initialization as well as the shuffling of the input
data during the different epochs, which explains the slight differences be-
tween the accuracies even though the identity labeling is used. However,
using the identity labeling will always lead to similar accuracies mak-
ing it impossible to distinguish the correct key value. That is why it is
necessary to use other labeling methods, such as the Hamming Weight
or Binary labeling methods. During our experiments, the binary labeling
usually provided better results than using Hamming Weight labels. For
the rest of the paper, all the results presented were obtained using the
binary labeling.

3.4 High-Order attacks

High-Order CPA attacks A common countermeasure to protect cryp-
tographic implementations against Profiled and Non-Profiled attacks is to
conceal the sensitive intermediate values with masks. In the following, we
focus on Boolean masking, which is commonly used to protect symmetric
algorithms like AES [23]. In the case of Boolean masking, a sensitive in-
termediate value, for instance the AES Sbox output, is never manipulated
in plain, but instead, is represented as a XOR of s+ 1 shares as follows:

19

S = Sbox(d⊕ k)⊕m1 ⊕ · · · ⊕ms

The values m1, . . . ,ms are called the masks and S is called the masked
value. Each mask mi is generated as a random value for each execution of
the algorithm, making the leakages uncorrelated to the sensitive values.
However, High-Order attacks such as High-Order CPA have been devel-
oped to target such implementations [24,25,26,27]. A High-Order attack
is usually composed of two steps:

– A pre-processing phase: the leakages of the masks are combined with
the leakage of the masked value using combination functions such as
the absolute difference or centered product [27].

– The attack phase: a statistical distinguisher, for instance the Pearson’s
Correlation is used to extract information from the combined leakages
traces.

In the rest of the paper, we focus on two practical cases, where an Sbox
operation is protected respectively by 1 and 2 random masks as follows:

S = Sbox(d⊕ k)⊕m1 ,

S = Sbox(d⊕ k)⊕m1 ⊕m2.

A high-order attack targeting a 1-mask protected implementation is called
a second order attack, and a third order attack corresponds to a high-
order attack targeting an implementation protected with 2 masks.

Leakages combination For a second order attack, one needs to combine
the leakage of the mask m1 with the leakage of the masked Sbox value
Sbox(d⊕k)⊕m1. If the locations of the mask and masked value are known,
then one only needs to combine these two leakage locations together. If the
locations of the mask and masked value leakages are unknown, a solution
is to combine all the possible couples of points in the trace together. If
the traces are of size n, such processing will lead to combined traces of
size n×(n−1)

2 . Therefore, for large traces, such processing can become too
complex and not practical.

High-Order DLPA In [1] and [3], the authors successfully attacked
first order protected AES implementations, showing that it is possible
to break 1-mask protected implementations using CNN and MLP net-
works in a Profiled attack context. Our experiments presented in Section

20

4 show that it is possible to break implementations protected with 1 and
2 masks using Deep Learning also in a Non-Profiled context with a rea-
sonable number of traces. In comparison with High-Order CPA, DLPA
does not requires to combine the leakages prior to the attack. Moreover,
we show in Section 4.1 that MLP-DLPA can also be used to highlight
areas of interest, for instance masks leakages locations, by studying the
MLP weights as introduced in Section 3.2.

3.5 CNN and Data Augmentation

In [2], Cagli et al. highlighted that due to its translation-invariance prop-
erty, the CNN architecture is naturally able to extract information even
from de-synchronized traces. Additionally, they showed that Data Aug-
mentation can also be performed to artificially increase the training set
size which can lead to more efficient trainings and better results during
the attack.

The results presented in Section 4 demonstrate that these properties
are also applicable when performing DLPA attacks in a Non-Profiled con-
text: first, our experiments show that CNN-DLPA leads to good results
against de-synchronized traces due to the translation-invariance property
of the CNN architecture. Additionally, the results indicate that Data Aug-
mentation can also significantly improve the results of MLP-DLPA and
CNN-DLPA attacks. Using these properties, we show in Section 4 that
DLPA can outperform CPA when attacking de-synchronized traces.

4 Experiments

In this section we further study the efficiency and interests of the DLPA
attack method. We focus on the application of MLP-DLPA against masked
implementations and the application of DLPA with Data Augmentation
against de-synchronized traces. Additionally we present some compar-
isons of DLPA with CPA. We perform these experiments using 3 types of
side-channel traces:

– Simulated traces.
– Traces collected from the ChipWhisperer-Lite board [14].
– Traces from the public side-channel database ASCAD [3].

4.1 Simulations

High-Order DLPA The simulation results presented in Section 3 al-
ready demonstrate the efficiency of DLPA against unprotected (non-
masked) implementations. In this section we focus on attacking simulated

21

masked implementations. We study the efficiency of MLP-DLPA when
targeting an AES Sbox output protected with 1 and 2 random masks. A
similar procedure as in Section 3.2 was used to generate simulated traces.
The only difference is that for this experiment, random masks values are
added to the simulation traces. To simulate a 1-mask protected Sbox, we
generated traces as follows:

– 50 samples per trace.
– Masked Sbox leakage set at t = 25 and defined as Sbox(di ⊕ k∗) ⊕
m1 + N (0, 1) with di and m1 randomized bytes and k∗ a fixed key
byte.

– Mask leakage set at t = 15 and defined as m1 +N (0, 1).
– All other points on the traces are chosen as random values in [0; 255].

We applied MLP-DLPA as in Algorithm 1 with ne = 50 epochs per
guess on N = 5, 000 simulated traces. In Fig. 9 we present the results of
this attack:

0 5 10 15 20 25 30 35 40 45 50
Time sample

1

2

3

4

5

6

7

8

Su
m

 o
f s

qu
ar

ed
 w

ei
gh

ts

m1 sbox m1

0 10 20 30 40 50
Epoch number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Wrong key guess
Good key guess

Fig. 9: MLP-DLPA applied to 1-mask protected Sbox. Left: Sum of
squared weights. Right: accuracy over the epochs.

The attack is successful as the training with the good key value leads
to the highest accuracy after less than 10 epochs per guess. Moreover, we
can observe that the sum of squared weights metric reveals two distinct
peaks, which correspond to the precise leakage locations of the mask and
protected Sbox leakages.

22

We performed similar experiment on a 2-masks protected Sbox which
we simulated as follows:

– 50 samples per trace
– Masked Sbox leakage set at t = 25 and defined as Sbox(di ⊕ k∗) ⊕
m1 ⊕m2 + N (0, 1) with di, m1 and m2 randomized bytes and k∗ a
fixed key byte.

– First mask leakage set at t = 15 and defined as m1 +N (0, 1).
– Second mask leakage set at t = 5 and defined as m2 +N (0, 1).
– All other points on the traces are chosen as random values in [0; 255].

We applied MLP-DLPA with ne = 50 epochs per guess on N = 10, 000
simulated traces. The results of the attack are presented in Fig. 10.

0 5 10 15 20 25 30 35 40 45 50
Time sample

2

4

6

8

10

12

14

16

Su
m

 o
f s

qu
ar

ed
 w

ei
gh

ts

m2 m1 sbox m1 m2

0 10 20 30 40 50 60 70 80 90 100
Epoch number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Wrong key guesses
Good key guess

Fig. 10: MLP-DLPA applied to 2-masks protected Sbox. Left: Sum of
squared weights. Right: accuracy over the epochs.

The attack is successful after around 40 epochs per guess. The first
layer weights also reveal the location of the masks and protected Sbox
leakages. As a conclusion, these two experiments demonstrate that it is
possible to target masked implementations with DLPA. In comparison
with high-order CPA attacks, this method does not require to combine the
leakage points together. Additionally, it shows that applying MLP-DLPA
can also reveal the locations of the masks and masked values leakages.
This means that DLPA could also be applied as a reverse engineering
method to reveal points of interests and to reveal information about the

23

implementation. DLPA could therefore be combined with other High-
Order attacks: for instance the leakages locations revealed by the DLPA
could be combined and attacked by a High-Order CPA attack.

CNN-DLPA and Data Augmentation In this section we study the
efficiency of CNN-DLPA with and without Data Augmentation when ap-
plied on de-synchronized traces. We simulated unprotected Sbox traces
similar as in Section 3.2, with only two differences:

– We introduced an artificial jitter in order to simulate de-synchronization.
Each trace was shifted left or right by a random value chosen in the
interval [−6; 6].

– The noise level was increased toN (0, 20) instead ofN (0, 1) previously.

We applied 3 attacks on N = 2, 000 de-synchronized traces:

– A CPA attack, in order to evaluate the efficiency of a classic Non-
Profiled attack against these de-synchronized traces. This will be our
reference.

– A CNN-DLPA attack without Data Augmentation.
– A CNN-DLPA attack with Data Augmentation.

For the third attack we performed Data Augmentation using a method
similar to the Shifting Deformation presented in [2]. We decided to fix the
Data Augmentation factor to 10, meaning that after DA, the training set
to perform the attack is composed of N ′ = 2, 000×10 = 20, 000 traces. We
performed each attack 50 times, each time with a new set of simulated
traces, and studied the success rate of these attacks. The CNN-DLPA
attacks were performed as in Algorithm 1, with ne = 50 epochs per guess.
For the CPA, the guess leading to the highest correlation was selected as
the best candidate to compute the success rate over the iterations. For the
CNN-MLP attacks, we selected the best candidate based on the highest
accuracy and the lowest loss to compute the corresponding success rates.
The results of the attacks are presented in Fig. 11.

24

0 10 20 30 40 50
Epoch number

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

ce
ss

 R
at

e

Accuracy SR
Loss SR

Accuracy SR with DA
Loss SR with DA

CPA SR

Fig. 11: Comparison of success rates between CNN-DLPA (with and with-
out DA) and CPA against de-synchronized traces.

We observe that due to the de-synchronization of the Sbox leakage,
the CPA only leads to a success rate of around 0.25. Without Data Aug-
mentation, we can observe that CNN-DLPA leads to better results, spe-
cially when the accuracy metric is used. This is due to the translation-
invariance property of the CNN architecture which compensates the effect
of the traces de-synchronization. Moreover, when Data Augmentation is
applied, the results are clearly improved, leading to success rates of 1
after only a few epochs per guess.

These results show that DLPA can outperform other Non-Profiled at-
tacks as CPA in some cases, for example when applied on de-synchronized
traces. In this case, it shows that the natural translation-invariance of
the CNN architecture can be used in order to mount CNN-DLPA at-
tacks that can provide successful results against de-synchronized traces.
It also demonstrates that as for Profiled Deep Learning attacks [2], Data
Augmentation can also be performed in Non-Profiled scenarios in or-
der to improve attacks efficiency. Therefore, CNN-DLPA combined with
Data Augmentation can be considered as an interesting alternative when
performing Non-Profiled attacks on traces which cannot be perfectly re-
synchronized.

25

4.2 ChipWhisperer

We used the ChipWhisperer-Lite board [14] in order to validate the effi-
ciency of the DLPA method when applied on non-simulated traces with
different levels of protections. First, we targeted an unprotected Sbox op-
eration with and without de-synchronization. We studied the efficiency of
an MLP-DLPA attack in this context, with and without Data Augmen-
tation in comparison with a classic CPA attack. Then, we targeted two
masked Sbox implementations protected respectively with 1 and 2 masks.

Implementations We implemented an AES Sbox operation Sbox(di ⊕
k∗) in C. For the masked implementations, we used a masked re-computed
Sbox as described in [23], meaning that the Sbox value Sbox(di ⊕ k∗) is
never manipulated in plain. For the 1-mask protected implementation, we
collected traces containing the execution of the following operations:

– Copy of the mask m1 in memory.
– Copy of s = Sbox(d⊕ k∗)⊕m1 in memory.

Similarly, for the 2-masks protected implementation, we collected traces
containing the execution of the following operations:

– Copy of the mask m1 in memory.
– Copy of the mask m2 in memory.
– Copy of s = Sbox(d⊕ k∗)⊕m1 ⊕m2 in memory.

For the tests against the unprotected implementation, we simply col-
lected traces of the copy of s = Sbox(d ⊕ k∗) in memory. For the three
implementations, we fixed a window of 500 points containing only the
targeted operations. For the 1 and 2 masks protected implementation, a
first order CPA was applied in order to validate that the implementations
does not have first order leakages. Moreover, for the 2-masks protected
implementation, we also performed a second order CPA attack to verify
that the implementation does not have second order leakages.

Unprotected implementation without de-synchronization We col-
lected N = 3, 000 traces of the unprotected implementation from the
ChipWhisperer-Lite. We then performed a first order CPA and a MLP-
DLPA attack. The results are presented in Fig. 12.

26

0 50 100 150 200 250 300 350 400 450 500
Time sample

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
rre

la
tio

n

0 5 10 15 20 25 30 35 40 45 50
Epoch number

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Wrong key guesses
Good key guess

Fig. 12: Attack on CW unprotected implementation without de-
synchronization. Left: First-Order CPA. Right: MLP-DLPA.

As expected, the CPA attack is successful as the targeted implemen-
tation is unprotected. We can observe that the DLPA attack is also suc-
cessful with only 3, 000 traces which shows that the attack is feasible with
a very reasonable number of traces even on non-simulated traces.

Unprotected implementation with de-synchronization As the Chip-
Whisperer traces are by default almost perfectly synchronized, it is nec-
essary to add artificial de-synchronization in order to study the efficiency
of DLPA against de-synchronized traces. We decided to add artificial de-
synchronization after the collection of the traces by shifting each trace left
or right by a random number of points chosen in the interval [−15; 15].
We applied this software de-synchronization to the 3, 000 traces from
the previous experiment. We then performed three attacks against these
N = 3, 000 de-synchronized traces:

– A first order CPA attack
– A MLP-DLPA attack without Data Augmentation
– A MLP-DLPA attack with Data Augmentation

We used the same process as in section 4.1 to perform the Data Aug-
mentation. This time, the Data Augmentation factor was set to 20, mean-
ing that the Data Augmentation process led to N ′ = 3, 000×20 = 60, 000
data augmented traces. The two DLPA attacks were performed using

27

ne = 50 epochs per guess. The results of the 3 attacks are presented in
Fig. 13.

0 50 100 150 200 250 300 350 400 450 500
Time sample

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Co
rre

la
tio

n

0 5 10 15 20 25 30 35 40 45 50
Epoch number

0.48

0.50

0.52

0.54

0.56

Ac
cu

ra
cy

0 5 10 15 20 25 30 35 40 45 50
Epoch number

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Ac
cu

ra
cy

Wrong key guesses
Good key guess

Fig. 13: Attack on CW unprotected implementation with de-
synchronization. Left: CPA. Center: MLP-DLPA without DA. Right:
MLP-DLPA with DA.

We can observe that even though the implementation is not protected,
the CPA is not successful due to the de-synchronization of the traces.
Similarly, the MLP-DLPA attack without Data Augmentation fails to
reveal the correct key value. However, we can observe that when using
Data Augmentation, the MLP-DLPA is successful and reveals the correct
key after a few epochs per guess. It further confirms our results from
simulation and shows that Data Augmentation can significantly improve
the results of DLPA attacks in a Non-Profiled context using a very limited
number of collected traces. Additionally, it also demonstrates that using
Data Augmentation should not be limited to the CNN architecture, but
can also be used successfully with MLP networks.

Masked implementations We then applied MLP-DLPA attacks against
the 1 and 2 masks protected implementations. For the 1-mask protected
implementation, we performed the attack on N = 5, 000 traces collected
from the ChipWhisperer with ne = 150 epochs per guess. As mentioned
previously, we also performed first order CPA to validate that the imple-
mentation does not have first-order leakages. The results are presented in
Fig. 14.

28

0 50 100 150 200 250 300 350 400 450 500
Time sample

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Epoch number

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Wrong key guesses
Good key guess

Fig. 14: Attack on CW 1-mask protected implementation. Left: First-
Order CPA. Right: MLP-DLPA.

As expected, the first order CPA result confirms that the implemen-
tation does not have first order leakages. We can observe that the MLP-
DLPA attack is successful and reveals the correct key value after only
a few epoch per guess. It demonstrates that DLPA can break masked
implementations using very reasonable number of traces collected from a
device.

We then targeted the 2-masks protected Sbox implementation. We
performed a first order and a second order CPA attack on the traces
to validate that the implementation does not have first or second order
leakages. The first order attack led to results similar to the left graph
of Fig. 14 confirming that the implementation does not have first order
leakages. To reduce the complexity of the second order attack and of the
DLPA, we limited the number of points to 150 points per trace containing
the leakages of the two masks as well as the leakage of the masked Sbox.
We then combined all the possible couple points from this window using
the absolute difference combination function leading to combined traces
of size 150×149

2 = 11, 175 samples. We then performed a second order
attack on these combined traces. The MLP-DLPA attack was performed
without pre-processing, directly on the raw traces of 150 points with
ne = 100 epochs per guess. Both attacks were performed using 50, 000
traces collected from the ChipWhisperer-Lite. The results of the second
order attack and of the MLP-DLPA attack are presented in Fig. 15.

29

0 2000 4000 6000 8000 10000
Time sample

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n

0 10 20 30 40 50 60 70 80 90 100
Epoch number

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Ac
cu

ra
cy

Wrong key guesses
Good key guess

Fig. 15: Attack on CW 2-masks protected implementation. Left: Second-
Order CPA. Right: MLP-DLPA.

It can be observed that the MLP-DLPA attack reveals the correct key
value after around 50 epochs per guess. On the other hand, the second
order CPA is not successful. The result of the second order CPA applied
on 50, 000 traces from the ChipWhisperer gives a high level of confidence
that the implementation does not have second order leakages. This shows
that the MLP-DLPA method is able to combine the leakages of 3 differ-
ent shares to reveal the secret key, even on non-simulated data, with a
reasonable number of traces and without traces pre-processing.

4.3 ASCAD

ASCAD is a public database recently introduced by Prouff et al. in [3]
to provide a common set of side-channel traces for research on Deep
Learning-based Side-Channel attacks. The targeted implementation is a
first order protected Software AES implementation running on an 8-bit
ATMega8515 board. The main database ASCAD.h5 is composed of two
set of traces: a profiling set of 50, 000 traces to train Deep Learning ar-
chitectures and an attack set of 10, 000 traces to test the efficiency of the
trained Neural Networks. Each trace of the database is composed of 700
samples focusing on the processing of the third byte of the masked state
Sbox(p[3] ⊕ k[3]) ⊕ r[3] where p, k and r are respectively the plaintext,
the key and the mask values. In [3] Prouff et al. focused on providing
reference results for Profiled Deep Learning attacks using the profiling

30

and attack sets of the ASCAD database. In this section, we validate our
Non-Profiled Deep Learning attack using this public database.

For both the profiling set and the attack set of ASCAD.h5, the same
16-byte fixed key is used while the plaintexts and masks are randomized.
Therefore, as the key is always fixed, both the attack set and profiling set
can be considered as traces obtained from a closed device to perform a
Non-Profiled attack. We decided to use the profiling set to perform our
experiment as it contains more traces than the attack set. We applied
a MLP-DLPA attack on the first 20, 000 traces of the profiling set of
ASCAD.h5 with ne = 50 epochs per guess. The result of this attack is
presented in Fig. 16.

0 5 10 15 20 25 30 35 40 45 50
Epoch number

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Ac
cu

ra
cy

Wrong key guesses
Good key guess

Fig. 16: MLP-DLPA attack on ASCAD.

The results show a clear success of the attack with 20, 000 traces from
the ASCAD.h5 database. It further confirms the validity of the method as
well as its interest. The execution times of this attack and of previous
attacks are given in the next section.

4.4 Complexity

One drawback of DLPA is that it is necessary to perform a Deep Learn-
ing training for each key guess. When using 8-bit key guesses, it means
that 256 trainings are necessary. This suggests that most of the time

31

DLPA will be slower than first order CPA, due to the multiple train-
ings needed for DLPA. However, for high order attacks, we showed that
DLPA does not require to combine leakage points together before the at-
tack. As an example, to perform a second order attack on the ASCAD
traces, as the location of the leakages are unknown, one would need to
perform a leakage combination on 700 points for each trace. This means
that a total 700×699

2 = 244, 650 points per traces must be processed dur-
ing pre-processing and during the attack phase which would lead to a
high complexity. On the other hand, DLPA does not requires any pre-
processing and it able to reveal the secret key after only a few epochs.
If we limit our attack on ASCAD to only 5 epochs per guess, the attack
only requires around 10 minutes on our setup and is still successful. For
comparison, we performed a second order CPA on the ASCAD traces by
combining all the 244, 650 couples of point for each trace. The execution
times of this CPA attack and of different DLPA attacks are summarized in
Table. 1. We recorded these values when running the attacks in Python
on our personal computer with 32 GB of RAM, a GeForce GTX 1080
GPU and a Intel Xeon E5-2687W CPU.

Implementation Attack Nb traces Nb samples Nb epochs Time (hours)

CW 1-mask MLP-DLPA 5,000 500 150 0.92
CW 2-masks MLP-DLPA 50,000 150 100 5.14

ASCAD MLP-DLPA 20,000 700 50 1.19
ASCAD MLP-DLPA 20,000 700 5 0.17
ASCAD 2nd order CPA 1,000 700 N/A 2.16

Table 1: Execution times comparison.

The table shows that DLPA attacks can be performed in reasonable
time and are therefore practical. All experiments were performed using
many epochs per guess, but it can be observed that most of the time,
only a few epochs were needed to reveal the correct key value. It means
that these attacks can be performed faster than the results of the table by
reducing the number of epochs per guess. For the results on ASCAD, the
comparison with the second order CPA shows that the DLPA attack is
faster than the second order CPA as no leakages combination is needed.
The second order CPA applied on only 1, 000 traces takes more than 2
hours due to the high number of points during and after pre-processing,
while only 10 minutes are needed to reveal the correct key value with

32

DLPA. This further confirms that DLPA can be an interesting alternative
for instance when performing Non-Profiled High-Order attacks.

5 Conclusion

In this paper we introduced a new attack method to apply Deep Learn-
ing techniques in a Non-Profiled context. We showed that it is possible
to use Deep Learning and Neural Networks even when attacking a closed
device where no profiling is possible. The possibility to use Deep Learning
for Non-Profiled attacks offers several benefits: we showed that even in
a Non-Profiled context, the translation-invariance property of Convolu-
tional Neural Networks can be exploited against de-synchronized traces
and that it is possible to perform Data Augmentation with MLP and
CNN architectures to improve the results of Non-Profiled attacks. Using
these properties, we obtained results where Non-Profiled Deep Learning-
based attacks can outperform classic Non-Profiled attacks as CPA. This
new attack method can also be applied to break high-order protected im-
plementation, without applying any leakage combination pre-processing.
The complexity snapshot that we provide, shows that this attack method
is practical and may even be more efficient than some existing attacks
in some cases, for instance when attacking masked implementations. Fi-
nally, this attack can be implemented in a few lines of code using Deep
Learning frameworks such as Keras.

References

1. H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic imple-
mentations using deep learning techniques.” Cryptology ePrint Archive, Report
2016/921, 2016. https://eprint.iacr.org/2016/921.

2. E. Cagli, C. Dumas, and E. Prouff, Convolutional Neural Networks with Data
Augmentation Against Jitter-Based Countermeasures, pp. 45–68. Cham: Springer
International Publishing, 2017.

3. Emmanuel Prouff and Remi Strullu and Ryad Benadjila and Eleonora Cagli and
Cecile Dumas, “Study of Deep Learning Techniques for Side-Channel Analysis and
Introduction to ASCAD Database.” Cryptology ePrint Archive, Report 2018/053,
2018. https://eprint.iacr.org/2018/053.

4. P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems.,” in Advances in Cryptology - CRYPTO ’96 (N. Koblitz, ed.),
vol. 1109 of Lecture Notes in Computer Science, pp. 104–113, Springer, 1996.

5. S. Chari, J. R. Rao, and P. Rohatgi, Template Attacks, pp. 13–28. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2003.

6. J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert, “Univariate side channel at-
tacks and leakage modeling,” Journal of Cryptographic Engineering, vol. 1, p. 123,
Aug 2011.

33

https://eprint.iacr.org/2016/921
https://eprint.iacr.org/2018/053

7. W. Schindler, K. Lemke, and C. Paar, “A stochastic model for differential side
channel cryptanalysis,” in Cryptographic Hardware and Embedded Systems – CHES
2005 (J. R. Rao and B. Sunar, eds.), (Berlin, Heidelberg), pp. 30–46, Springer
Berlin Heidelberg, 2005.

8. G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J. Vandewalle,
“Machine learning in side-channel analysis: a first study,” Journal of Cryptographic
Engineering, vol. 1, p. 293, Oct 2011.

9. L. Lerman, R. Poussier, G. Bontempi, O. Markowitch, and F.-X. Standaert, “Tem-
plate attacks vs. machine learning revisited and the curse of dimensionality in side-
channel analysis,” in Revised Selected Papers of the 6th International Workshop on
Constructive Side-Channel Analysis and Secure Design - Volume 9064, COSADE
2015, (New York, NY, USA), pp. 20–33, Springer-Verlag New York, Inc., 2015.

10. L. Lerman, G. Bontempi, and O. Markowitch, “A machine learning approach
against a masked aes,” Journal of Cryptographic Engineering, vol. 5, pp. 123–139,
Jun 2015.

11. P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances
in Cryptology - CRYPTO ’99 (M. J. Wiener, ed.), vol. 1666 of Lecture Notes in
Computer Science, pp. 388–397, Springer, 1999.

12. E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a Leakage
Model,” in CHES, pp. 16–29, 2004.

13. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, Mutual Information Analysis,
pp. 426–442. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

14. “ChipWhisperer Website.” https://newae.com/tools/chipwhisperer/.
15. C. M. Bishop, Pattern Recognition and Machine Learning (Information Science

and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
16. Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.
17. “Deep Learning website.” http://deeplearning.net/tutorial/tutorial.
18. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.
19. C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY, USA:

Oxford University Press, Inc., 1995.
20. Y. Lecun and Y. Bengio, Convolutional networks for images, speech, and time-

series. MIT Press, 1995.
21. K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” 11

2015.
22. “Keras framework.” http://www.keras.io.
23. M.-L. Akkar and C. Giraud, “An Implementation of DES and AES, Secure against

Some Attacks,” in CHES (Çetin Kaya Koç, D. Naccache, and C. Paar, eds.),
vol. 2162 of Lecture Notes in Computer Science, pp. 309–318, Springer, 2001.

24. T. S. Messerges, “Using Second-Order Power Analysis to Attack DPA Resistant
Software,” pp. 238–251.

25. M. Joye, P. Paillier, and B. Schoenmakers, “On Second-Order Differential Power
Analysis.,” in Cryptographic Hardware and Embedded Systems - CHES 2005 (J. R.
Rao and B. Sunar, eds.), vol. 3659 of Lecture Notes in Computer Science, pp. 293–
308, Springer, 2005.

26. J. Waddle and D. Wagner, “Towards Efficient Second-Order Power Analysis,” in
CHES, pp. 1–15, 2004.

27. E. Prouff, M. Rivain, and R. Bevan, “Statistical Analysis of Second Order Differ-
ential Power Analysis,” IEEE Transactions on Computers, vol. 58, pp. 799–811,
June 2009.

34

https://newae.com/tools/chipwhisperer/
http://deeplearning.net/tutorial/tutorial
http://www.deeplearningbook.org
http://www.keras.io

