
Proofs of Catalytic Space

February 17, 2018

Abstract

Proofs of space (PoS) [DFKP15] are proof systems where a prover can
convince a verifier that he “wastes” disk space. PoS were introduced as
a more ecological and economical replacement for proofs of work which
are currently used to secure blockchains like Bitcoin. In this work we
investigate extensions of PoS which allow the prover to embed useful data
into the dedicated space, which later can be recovered.

The first contribution of this paper is a security proof for the PoS
from [DFKP15] in the random oracle model (the original proof only
applied to a restricted class of adversaries which can store a subset of the
data an honest prover would store). When this PoS is instantiated with
recent constructions of maximally depth robust graphs, our proof implies
basically optimal security.

As a second contribution we introduce and construct proofs of cat-
alytic space (PoCS), which are defined like classical PoS, but most of
the space required by the prover can at the same time be used to store
useful data. Our first construction has almost no overhead (i.e., the useful
data is almost as large as the dedicated space), whereas our second con-
struction has a slightly larger overhead, but allows for efficient updates
of the data. Our constructions are extensions of the [DFKP15] PoS, and
our tight proof for the PoS extends (non-trivially) to the PoCS.

As our last contribution we construct a proof of replication (PoR),
coming up with such an object has recently been stated as an open prob-
lem in the Filecoin paper. Also this construction (and its proof) are
extensions of the [DFKP15] PoS.

Contents

1 Introduction 2
1.1 Proofs of Space (PoS) . 2
1.2 An Uncoditional Security Proof for the [DFKP15] PoS 4
1.3 Embedding Useful Data into a PoS 4

2 Comparison With Previous Work 6

1

3 Basic Notation and Definitions 9
3.1 Notation . 9
3.2 Random Oracles . 9
3.3 Commitments . 10
3.4 Random Strings are Incompressible 10

4 Overview of Our Modes and Protocols 10
4.1 The Mode EPoS◦ . 11
4.2 The Mode EPoR . 11
4.3 The Mode EPoCSφ . 11
4.4 The Mode EPoCSF

. 12
4.5 The Protocols PoS◦,PoCSφ and PoR 13

5 The Main Proof Ideas 15

6 The Graph Pebbling Game Φ and its Hardness 17
6.1 The Pebbling Game Φ(G, VC) . 17
6.2 Depth Robust Graphs . 18
6.3 Φ(G, VC) is Hard if G is Depth Robust 18

7 PoS Security of PoS◦ 19
7.1 The Labelling Game ΛPoS◦(G, VC , w) 19
7.2 Φ Hardness Implies ΛPoS◦ Hardness 20

8 PoS Security of PoCSφ and PoR 24
8.1 The Labelling Games ΛPoCSφ and ΛPoR 24
8.2 Φ Hardness Implies ΛPoR and ΛPoCSφ Hardness 25

A Discussion and Motivation 29
A.1 The Quest for a Sustainable Blockchain 29
A.2 Proofs of Space (PoS) . 30

B PoCSF, a PoCS with Efficient Updates 31
B.1 The Protocol PoCSF . 31
B.2 The Labelling Game ΛPoCSF

(G, VC , w, κ) 32
B.3 Φ Hardness Implies ΛPoCSF

Hardness 33

1 Introduction

1.1 Proofs of Space (PoS)

A proof of space (PoS) [DFKP15, RD16, AAC+17] is an interactive proof system
in which a prover P can convince a verifier V that it “wastes” a large amount of
disk-space. PoS were suggested as an alternative to proofs of work (PoW), which
are currently used for securing blockchains including Bitcoin and Ethereum.
PoS-based proposals include Spacemint [PPK+15] and the chia network [chi17].

2

Some more discussion on sustainable blockchains and PoS which is not crucial
for following this work is given in the Appendices §A.1 and §A.2.

The core of the pebbling-based PoS [DFKP15, RD16] is a mode of operation
EPoS◦ which is specified by a directed acyclic graph (DAG) G = (V,E) with a
dedicated set VC ⊆ V of |VC | = N “challenge nodes”. The constructions in
[DFKP15, RD16] mostly differ in what type of graphs are used. The only input
EPoS◦ takes is a short statement χ which is used to sample a hash function
Hχ (modelled as random oracle in all our proofs), and it outputs a large file
` = {`i}i∈VC which P must store. P sends a commitment φ` to ` to V. To check
the prover really stores this file, the verifier can occasionally send a random
challenge i ∈ VC to the prover, who then must open the label `i ∈ ` of this file.
If such audits happen sufficiently often, the rational thing for P to do is to store
`, and not recompute labels as they are requested.

The high level proof structure of this PoS, denoted PoS◦, is illustrated in
Figure 1, the underlying mode of operation, denoted EPoS◦ , is illustrated in
Figure 2.

Prover P Verifier V

random oracle H : {0, 1}∗ → {0, 1}w

shared inputs: a DAG G = (V,E), VC ⊆ V, |V | = N , of indegree δ.

parameters: block size w, data/waste ratio κ (only in PoCSF),

µ controlling soundness of exectution phase.

data d = (d1, . . . , dN), di ∈ {0, 1}κ·w

χ← {0, 1}w

c← V µC

accept if verify(φ`, c,o) = 1

(φ`, φ
+
`) := commit(`)

` := EPoXX(χ) (cf. Figure 2)

store

χ ∈ {0, 1}w, ` = {`′i}i∈VC ∈ {0, 1}N ·λ
φ+
` ∈ {0, 1}(N−1)·w (cf. Remark 4)

store

χ ∈ {0, 1}w, φ` ∈ {0, 1}w

o := open(`, φ+
` , c)

initialization phase
statement χ

commitment φ`

prove that φ`”mostly correct”

cf. Remark 3

execution phase

challenge c

answer o

Figure 1: Illustration of protocol structure of the proof of space PoS◦, our proofs
of catalytic space PoCSF,PoCSφ and the proof of replication PoR (replace PoXX
in the figure with any of those). In PoCSF κ is a parameter, in PoCSφ,PoR set
κ = 1 and for PoS◦ set κ = 0 (i.e., d is empty) in the figure. The label size λ is
w(κ+ 1) in PoCSF and w in PoS◦,PoR and PoCSφ.

3

1.2 An Uncoditional Security Proof for the [DFKP15] PoS

Informally, the security we want from a PoS is as follows: if a malicious prover
P̃ dedicates slightly less space than the honest prover would after the initializa-
tion phase, say (1 − ε) · N instead N for some small ε > 0, then it should be
“expensive” for him to pass the audit. Note that P̃ can always pass the audit by
simply recomputing the entire ` right before the audit, so the best we can hope
for is that passing the audit is almost as expensive for P̃ as it is to compute the
entire `.

The first contribution in this paper is a security proof that shows PoS◦ is
a secure PoS in the random oracle model (Corollary 11 in §7.2). The existing
proof from [DFKP15] only showed security against restricted adversaries who
store a subset of the data ` an honest prover would store, but didn’t imply
anything against more general adversaries who can store an arbitrary function
of this data. We discuss this in more detail in §5.

When we instantiate EPoS◦ with recent constructions of depth-robust graphs,
the security we get is basically optimal. Informally, for any ε > 0, we can chose
parameters such that any cheating prover who dedicates only an 1−α fraction of
the required space will fail to efficiently answer an α−ε fraction of the challenges
(which simply ask to open some blocks in the file ` the prover is committed to).
Thus, if say α = 2ε, the prover fails on an ε fraction, and we can amplify this
to be overwhelmingly close to 1 by using O(1/ε) challenges in parallel. Above,
with ”efficiently recover”, we mean it needs parallel time N ,1 this is basically
optimal in terms of time complexity, as running the entire initialization phase
takes only (sequential) time 4N . We will discuss how our proof compares with
existing results in more detail in §2.

The efficiency of our schemes (i.e., proof size, proof generation time, proof
verification time) are all in O(logN), where the hidden constant depends on the
above mentioned ε (i.e., the constant grows as ε goes to 0).

1.3 Embedding Useful Data into a PoS

The file ` := EPoS◦(χ) the prover is supposed to store just wastes disk space,
and cannot be used for anything useful. This makes sense, as after all a PoS is
supposed to prove the dedicated space is “wasted”.

In this paper we investigate the setting where the space dedicated towards
the PoS can at the same time be used to encode some useful data d. We iden-
tify two applications for such objects, “proofs of replication” (PoR), which were
(informally) introduced in the Filecoin paper [Lab17] and “proofs of catalytic
space” (PoCS), which we introduce and motivate in this work. The naming of
the latter is inspired by “catalytic space computations” [BCK+14, BKLS16],
which are computations that can be done in small space, but only if one is
additionally given “catalytic space”. This space is initially filled with arbitrary

1Our proof is in the random oracle model, and parallel time N means N rounds of queries,
where in each round one can make many queries in parallel. In sequential time just one query
is allowed.

4

EPoS◦ : The proof of space from [DFKP15]
instantiated with (a toy example of) a depth-
robust graph.

EPoR: Our proof of replication is similar to
EPoCSφ , but the data is XOR’ed to the lables as
the computation goes on, not just at the end.

χ `1 `2 `3 `4 `5 `6Hχ

EPoCSφ : Our proof of catalytic space where
the data is committed by a standard Merkle
tree commitment φd. The hash function for
this commitment depends on χ, the hash func-
tion for the labelling also on φd.

EPoCSF
: Our efficiently updatable proof of

catalytic space where the catalytic data com-
mitted via random invertible function F.

`i = Hχ(i, `p1 , . . . , `pδi) VC = {3, 4, 5, 6}

`i = Hχ(i, `p1 , . . . , `pδi) for all i ∈ V
`′i = `i ⊕ Fχ(dĩ) for i ∈ VC

χ

`1 `2 `3 `4 `5 `6

`′3 `′4 `′5 `′6

d1 d2 d4d3

Fχ

`i = Hχ,φd
(i, `p1 , . . . , `pδi) for all i ∈ V

`′i = `i ⊕ dĩ for i ∈ VC

χ

`1 `2 `3 `4 `5 `6

`′3 `′4 `′5 `′6

d1 d2 d4d3

φd

Hχ

`i =

{
Hχ,φd

(i, `p1 , . . . , `pδi) if i ∈ V \ VC
Hχ,,φd

(i, `p1 , . . . , `pδi)⊕ dĩ if i ∈ VC

χ d1 d2 d4d3

φd

Hχ

`1 `2 `3 `4 `5 `6

Figure 2: Illustration the graph based modes of operation used in the proof of
space PoS◦, proof of catalytic space PoCSφ and its efficiently updatable variant
PoCSF and the proof of replication PoR. We use a toy example of a depth robust
DAG G = (V,E), V = {1, . . . , 6} with VC = {3, . . . , 6} being the challenge nodes.
The embedded data is shown in blue, the labels the prover stores are in red.
The values represented by all nodes are in {0, 1}w, except the bold nodes in
PoCSF, where the di are in {0, 1}w·κ and the `i`

′
i, i ∈ VC are in {0, 1}w·(κ+1).

(potentially incompressible) data, and must be in the same state after the com-
putation finishes. It thus functions like a catalyst in chemical reactions.

We introduce three new proof systems which allow for such embedded data.
Two of them are intended to be used as PoCS, denoted PoCSφ and PoCSF. The
PoCSF scheme has a worse “rate” than PoCSφ, by which we mean the ratio
‖d‖/‖`‖ of embedded data vs. dedicated space, but unlike PoCSφ, it allows for
efficient updates of the embedded data. The third scheme we introduce is called
PoR and is intended to be used as a PoR. Our new proof systems are derived
from the [DFKP15] PoS PoS◦ by replacing its underlying mode EPoS◦ by another
mode of operation EPoXX ∈ {EPoCSφ ,EPoCSF

,EPoR}. These modes take as input
χ (just like EPoS◦), and additionally some data d = {di}i∈VC and output a file
` := EPoXX(χ,d) to be stored. The data d can be recovered from ` at any time.
These four modes are all illustrated in Figure 2.

5

Properties of PoS, PoCS and PoR. We observe that a PoCS or a PoR
necessarily is also a PoS as defined in [DFKP15], and we (non trivially) extend
our security proof for PoS◦ to prove that also the schemes PoCSφ,PoCSF,PoR
constitute PoS (The final bound for PoS◦,PoCSφ,PoR is stated in Corallary 11
in §8.2, the bound for PoCSF is in Corollary 19 in §B.3.) On the other hand, we
observe that being a PoS with the option to embed useful data is not sufficient
to constitute a good PoCS or PoR. Moreover the “whish list” of properties one
might have for PoCS and PoR is somewhat contradictory. We observe that our
PoR is not a good PoCS and vice versa, as we’ll discuss next.

The most important property we want from a PoCS is that any particular
block of data from d = {di}i∈VC cannot be recovered too efficiently from `. The
reason is that otherwise the PoCS wouldn’t compose: a malicious prover P̃ could
run a PoCS for some statement χ, and at the same time using the embedded
data d for a PoCS for other statement χ′, thus pretending to dedicate more
space than it does. To prevent this, we want the PoCS to lock the catalytic
data, by which we mean accessing any particular block di ∈ d should be almost
as expensive as recovering the entire d from `. On the other hand, in a PoR,
being able to recover any data block efficiently is actually a nice feature.

In a typical application of a PoR, the data d is not chosen by P but provided
by V, together with some replication parameter r ∈ N (and statement χ). P will
then run the PoR for various statements χ1, . . . , χr (generated from χ), each
embedding d. Informally, the security property we want is that a prover who
later successfully passes the audits must have stored r redundant copies of d.
Note that this implies that PoR is a PoS.

In §4, where we define our modes, we’ll explain in more detail how they fail
to be good PoCS or PoR. In this work we do not provide formal definitions of
the above mentioned “locking” and “replication” property, and it indeed seems
non-trivial to come up with the right definitions here. Summing up, in this work
we prove that the PoS from [DFKP15] and our three new proof systems that
allow for embedding useful data are indeed PoS (which is a necessary property
for being a PoR or PoCS), but we do not prove that any of them has the locking
or replication property. We only show in §4 that each of our constructions
fails to have one or the other. There certainly are more properties one might
need from a PoR or PoCS in particular applications that we have not identified,
coming up with the right definitions and constructions satisfying them seems
like a promising research agenda.

2 Comparison With Previous Work

We somewhat divert from [DFKP15] when formally defining the security as a
PoS. In [DFKP15], a PoS is defined to be (N0, N1, T)-secure if an adversary who
stores a file ˜̀ of size N0 (recall that we measure size in blocks, typically of size
something like w = 256 bits) after the initialization phase, uses N1 space and
T time during the proof executing phase, will fail in making the verifier accept
with overwhelming probability. We will shortly discuss the three instantiations

6

of the PoS◦ construction that so far have been suggested, and what security
has been proven for them. Those just differ in the graphs G = (V,E) and
the dedicated set of challenge vertices VC ⊆ V, |VC | = N . We also mention
the total number of edges |E|, as this basically determines the efficiency of the
initialization procedure, and the indegree δ, as this determines the size of the
proofs and also the time to generate and verify proof.

The [DFKP15] Constructions and Proofs. In [DFKP15] two PoS were
proposed, the first is

(Θ(N/ log(N)), N/ log(N),∞)-secure with |V | = N, δ = 2, |E| = 2N

and based on a graph with high space pebbling complexity by Paul, Tarjan and
Celoni [PTC77], the second uses a rather sophisticated construction combining
random bipartite graphs, superconcentrators and depth-robust graphs [EGS75]
and is

(Θ(N),∞,Θ(N))-secure with |V | = N, δ ∈ O(log logN), |E| ∈ O(N log logN))

The [RD16] Construction and Proof. Ren and Devadas [RD16] propose a
very elegant instantiation of PoS◦ using stacked expanders and give a proof for
it which in terms of security improves upon both constructions from [DFKP15]
(just |E| is asymptotically larger). For any α ∈ [0, 0.5], their proof implies
security (almost)

(α ·N, (1− α) ·N,∞)-secure with|V | = N logN, δ = 2, |E| = 2N logN

For say α = 1/3, this means an adversary storing N0 = N/3 blocks after
initialization, must use at least N1 = 2N/3 space during execution. Their
construction is a stack of log(N) expanders of indegree 2, and VC is the graph
on top of this stack.

Our Proof. In this work we use the depth-robust graphs from [ABP17] to
instantiate PoS◦, and also our three new constructions which allow to embed
useful data. For any ε > 0, we can instantiate it as to get

(N · (1− ε),∞, N)-security with|V | = 4N, δ ∈ O(log(N)), |E| ∈ N logN

This might not seem terribly impressive, note that unlike [RD16] we don’t claim
any lower bound on N1, the space a cheating adversary must dedicate during
proof execution. And asymptotically, |E| is larger than in the second construc-
tion of [DFKP15] which (ignoring constants) has the same security. But as we’ll
explain next, we improve upon all existing constructions in three crucial points.

1. Unconditional Proof: Our proof holds unconditionally (in the random
oracle model), whereas [DFKP15, RD16] only argued security against re-
stricted adversaries who store a subset of the file an honest prover would

7

store. Let us mention that for such relaxed adversaries, we can also prove
bounds on the space a successful prover needs during execution.2

2. Tight Bound: We get tight security: for any constant ε > 0, we can
instantiate our PoS to be ((1 − ε) · N,∞, N) secure. Equivalently, an
adversary storing just an ε fraction less than the honest prover, and which
can run in time T = N , will still fail to make the verifier accept with
overwhelming probability.

Having such a tight bound is crucial for many applications, as it means
we get security against an adversary dedicating an (1− ε) fraction of the
space for any ε > 0. Note that even the (proof of the) [RD16] construction
doesn’t imply any security against adversary who dedicates just N0 =
N/2, i.e., half the claimed space.

3. Security Against Parallelism: The security we prove even holds if we
strengthen the meaning of the parameter T from “total number of oracle
queries”, to “total number of parallel oracle queries”, where each parallel
query can contains many inputs, as long as in total they are bound by an
exponential.

This stronger security notion implies that even massive parallelism doesn’t
help a potential adversary. This is useful in a setting where the timepoint
at which audits happen is not known to the prover (in proofs of replication
this can be achieved), and we have a bound on the latency of network
between prover and verifier (so the prover cannot make T = N sequential
computations in time less than this latency). Here we can be sure a
prover who passes the audits really dedicates the claimed space, and does
not simply reinitalize the entire space once the audit starts fast enough
using massive parallelism. Compare this to the construction from [RD16],
which can be initalized in sequential time log(N) using parallelism N .

We will not use the formalism from [DFKP15] to quantify security outside of
this subsection, but in our security statements explicitly state what is achieved,
which should be easier to parse. The PoS security of EPoS◦ is stated in Corol-
lary 11, The PoS security of EPoCSφ and EPoR in Corollary 16 and the PoS
security of EPoCSF

in Corallary 19.

2Basically, for this restricted class of adversaries, whatever bound on time and/or space is
proven for the underlying graph translates to a time and/or space bound for the construction.
Our unconditional proof only translates parallel time complexity. The graphs we use to
instantiate our construction are depth-robust, and such graphs are known [ABP17] to have
high “cumulative pebbling complexity”, which (for restricted adversaries as just mentioned)
translates to the fact that if adversary runs in T rounds during proof execution, it must use
Ω(N2/T) space on average during this computation.

8

3 Basic Notation and Definitions

3.1 Notation

For an object X, ‖X‖ denotes its bitlength, for a set x, |x| is the number of

elements in x. For an integer m we denote [m]
def
= {1, 2, . . . ,m} and for a, b ∈ R

we denote [a, b]
def
= {c : a ≤ c ≤ b}. With {0, 1}≤m we denote the set of strings

of length ≤ m.
We typically use small greek letters ι, δ, ω, µ, ν, ε, . . . for our parameters used

to quantify security, efficiency etc.. An exception is N which throughout denotes
the space requirement of a prover. All these parameters are values in N except
ε which is in [0, 1]. For the security games considered in this paper we use
capital greek letters Φ,Λ. The sans-serif font is used for interactive systems
like parties V,P, P̃,A (modelled as randomized interactive Turing machines),
functions H,F, g, f or algorithms like commitments discussed below (V,P and P̃
are reserved for an honest verifier, an honest prover, and a potentially malicious
prover, respectively). We use bold letters `,d,o, c, . . . for sets (usually ordered)
of values, except for graph notation where we use simply G = (V,E) to denote
a graph with vertices V and directed edges E.

We will often consider a subset VC ⊂ N, |VC | = N of challenge nodes. It
will be convenient to define concise notion for mapping VC to [N], which we do
using a tilde, i.e.,

VC = (v1, . . . , vN) ⇒ (ṽ1, . . . , ṽN) = (1, . . . , N) (1)

3.2 Random Oracles

Fresh Random Oracles. If H is a fixed random oracle and z ∈ {0, 1}∗, we
denote with Hz the function Hz(·) = H(z, ·). If z is random and long enough
(concretely, the amount of non-uniform advice an adversary has on H is a not
too large exponential in ‖z‖), we can treat Hz as a fresh uniformly random
oracle [DGK17]. We do this repeatedly in this work without always explicitly
mentioning it.

The Parallel Random Oracle Model. We prove security of our schemes in
the parallel random oracle model, where in every round an adversary can output
a set x1, . . . , xi of queries, and it receives the outputs H(x1), . . . ,H(xi) at the
beginning of the next round. For us the number of rounds will be important,
but the total number of queries is secondary. Although also the total number
of queries must be bound, in our proofs it can be as large as exponential in
the block size w, and for the basic PoS◦, the number of queries during the
initialization phase can be even unbounded (not so for the other schemes). We
will denote the number of oracle queries to H an adversary is allowed to make
in the initialization and proof execution phase by qH1 and qH2 , respectively.

9

3.3 Commitments

We will make extensive use of a Merkle-tree commitment scheme, which allows
to compute a short commitment to a long string, and later efficiently open any
particular location of that long string. It is specified by a triple of algorithms
commit, open, verify which use a hash-function H : {0, 1}∗ → {0, 1}w as a building
block. For the security as a commitment scheme, it’s sufficient for H to be
collision resistant. In our proofs we will sometimes need to extract committed
values from the commiting party, for this we must assume H is given as an oracle
so our reduction can observe all queries.

If it’s relevant what hash function is used it’s shown as superscript (otherwise
one can just assume any collision-resistant hash function is used). A party A
which wants to commit to values x = (x1, . . . , xm) invokes

(φx, φ
+
x) := commitH(x)

here φ+
x ∈ {0, 1}(m−1)w denotes the values of all inner nodes in the Merkle-tree,

which are required to later efficiently open any position in x, and φx ∈ {0, 1}w
is the value at the root, which is the commitment.

Once A announces φx it is committed to x. It can then open any subset
i ⊆ [m] of the committed values (i.e., {xi}i∈i) by invoking

o := openH(x, φ+
x , i) ∈ {0, 1}≤|i|dlog(m)e·w .

Everyone can verify that o is the correct opening by invoking verifyH(φx, i,o)
and accepting iff this value is 1.

3.4 Random Strings are Incompressible

In our proofs we’ll repeatedly use the following fact, which states that a random
string cannot be compressed.

Fact 1 (statement from [DTT10]). For any randomized encoding procedure enc :
{0, 1}r × {0, 1}n → {0, 1}m and decoding procedure dec : {0, 1}r × {0, 1}m →
{0, 1}n where

Pr
x←{0,1}n,ρ←{0,1}r

[dec(ρ, enc(ρ, x)) = x] ≥ δ

we have m ≥ n− log(1/δ).

4 Overview of Our Modes and Protocols

In this section we will formally define the mode EPoS◦ underlying the PoS
from [DFKP15] and our new modes EPoR,EPoCSφ ,EPoCSF

as illustrated in Fig-
ure 2. The actual protocols using those modes as illustrated in Figure 1 will
then be defined in §4.5 (PoS◦,PoR,PoCSφ), and §B.1 (PoCSF). As we define
the modes, we will also continue our discussion from §1 showing how they (fail
to) perform as PoCS or PoR. In particular, we’ll show that our mode EPoR is

10

not locking (and thus not suitable as PoCS), whereas EPoCSφ ,EPoCSF
do not im-

ply replication. All the modes are defined over a DAG G = (V,E), for i ∈ V
we denote with parents(i) = {j : (j, i) ∈ E} the parents of i, and we define
`parents(i) = {`j : j ∈ parents(i)}.

4.1 The Mode EPoS◦

In the basic PoS the file ` := EPoS◦(χ) contains the “labels” of nodes in VC ,
where the labels of the nodes of the underlying DAG G = (V,E) are computed
in topological order by hashing (using a fresh random oracle sampled using χ)
the labels of its parents

∀i ∈ V : `i = Hχ(i, `parents(i)) , `
def
= {`i}i∈VC (EPoS◦) (2)

The most obvious way to somehow embed data d = {di}i∈[N] into this basic PoS
is to simply XOR the data blocks to the labels in VC . There are two natural
ways to do this, XOR the data to the labels as the computation goes on, or
first compute the labels and then XOR the data to it. The first approach is
basically what we do in our construction PoR, and the second in PoCSφ. Before
computing the labels, we first commit to d, and then sample a fresh random
oracle to compute the labels using this commitment. We’ll explain below why
without this trick our constructions would miserably fail to be PoS.

4.2 The Mode EPoR

In our PoR ` := EPoR(χ,d), the data d = {di}i∈[N] is first committed

(φd, φ
+
d) := commitHχ(d) .

Then φd is used to sample a fresh random oracle Hχ,φd
(·) = Hχ(φd, ·), which is

then used to compute the labels. For labels of a node i ∈ VC , one additionally
XORs the data block dĩ (recall that {̃i}i∈VC = [N]) to the label right after it
has been computed.

`i =

{
Hχ,φd

(i, `parents(i)) if i ∈ V \ VC
Hχ,φd

(i, `parents(i))⊕ dĩ if i ∈ VC
, ` = {`i}i∈VC (EPoR)

(3)

4.3 The Mode EPoCSφ

In our PoCS ` := EPoCSφ(χ,d) one first computes φd as above, uses this to
sample a fresh random oracle Hχ,φd

to compute labels (as in the basic PoS◦),
and only then XORs the data to the labels to be stored

∀i ∈ V : `i = Hχ,φd
(i, `parents(i)) (4)

∀i ∈ VC : `′i = `i ⊕ dĩ , ` = {`′i}i∈VC (EPoCSφ) (5)

11

As mentioned above, the fact that the random oracle Hχ,φd
used to computed

the labels depends on the commitment φd to d is crucial, let us sketch why.
Assume we’d change Hχ,φd

to Hχ in the definition of EPoCSφ . Now a malicious
prover (in the protocol PoCSφ to be defined in §4.5) could set the `′i to be stored
to whatever it wants (and thus also store them using low space). Only after
choosing the `′i, it then fixes the data d = {di}i∈[N] by “equivocating” it, i.e.,
setting it as dĩ := `′i ⊕ `i, so everything is consistent. This malicious behaviour
(not using any space) cannot be distinguished from honest behaviour, thus it’s
not a PoS.3

Now let us observe that PoCSφ is not a good PoR, as it doesn’t imply repli-

cation. A prover who is supposed to compute and store `i := PoCSφ(χi,d) for
r statements χ1, . . . , χr but the same d can instead store d once in the clear,
and for then for each χj only store the labels {`i}i∈VC as in eq.(4) instead
{`′i = `i ⊕ dĩ}i∈VC , i.e., avoid the XORing step of eq.(5). Note that this prover
has only stored one copy of d, instead of storing it r times redundantly, while
it can still pass the audits for all χi, i ∈ [r] because it can compute the correct
labels `′i using its single copy of d as `′i = `i⊕ dĩ. The prover here doesn’t seem
to gain much, in particular it doesn’t save on space by deviating from the honest
behaviour. But in a PoR we probably want to enforce replication, or at least
argue that it’s not rational for a prover to deviate, and there are settings where
deviating as just explained can be rational. Assume the prover has large remote
storage space, but only low bandwidth to access it. By deviating as explained,
it can use the space for the r proofs without large communication, in particular,
without ever having to send d to the disk.

In the other direction one can argue that EPoR is not a good PoCS as given
all labels {`i}i∈V as in eq.(3), one can efficiently recover the embedded data as
dĩ = `i ⊕ Hχ,φd

(i, `parents(i)), so it doesn’t provide the locking property we want
from a PoCS. The above argument highlights a problem with the PoCS security
of EPoR, but is not totally convincing, as the prover actually only needs to store
the `i for i ∈ VC (not all i ∈ V), so it couldn’t necessarily recover those labels
efficiently.

4.4 The Mode EPoCSF

Besides PoCSφ, we propose a second PoCS PoCSF, which allows for efficient
updates. Instead of committing to d and using this commitment to sample
the random oracle Hχ,φd

for computing the labels as in PoCSφ, in PoCSF the
labels are computed directly using Hχ, i.e., independently of d. To prevent the
“equivocation” attack outlined above, in PoCSF the prover samples (using χ) a
random invertible function Fχ : {0, 1}(κ+1)·w → {0, 1}κ·w and applies it to the
data before XORing it to the label, where κ is a parameter discussed below.
The labels `i, i ∈ V \ VC have length w bits, the labels `i, i ∈ VC are (κ+ 1) ·w

3In our proofs we will actually assume the prover is honest during initialization, which can
be done wlog. as we’ll outline in Remark 3 because cheating can be easily detected. This is
not the case for the outlined here, as “equivocating” the di’s is indistinguishable from being
honest behaviour.

12

bits long. Below Hχ : {0, 1}≤ι → {0, 1}(κ+1)·w, and Hχ(·)|w means we cap the
output after w bits.

`i =

{
Hχ(i, `parents(i)) if i ∈ VC
Hχ(i, `parents(i))|w if i ∈ V \ VC

(6)

∀i ∈ VC : `′i = `i ⊕ Fχ(dĩ) , ` = {`′i}i∈VC (EPoCSφ) (7)

A random invertible function Fχ as used in this construction can be constructed
efficiently, and with almost no loss in concrete security (which is crucial for our
application) instantiated from a random oracle [KPS13].

PoCSφ has a better rate than PoCSF. In PoCSφ we have rate ‖d‖‖`‖ = 1, so

the stored file ` is as big as the data d that can be recovered from it.4 The

rate of PoCSF is only ‖d‖‖`‖ = κ
κ+1 . For efficiency reasons the κ can’t be too large

(κ ≈ 10 is reasonable, then the size of ` is ≈ 10% larger than d).
But unlike PoCSφ, PoCSF allows for fast updates of the catalytic data: if

P wants to change a single data block dĩ (embedded in `′i = `i ⊕ Fχ(dĩ)) to d′
ĩ

then it can simply replace the label `′i with `′i ⊕ Fχ(dĩ) ⊕ Fχ(d′
ĩ
). It then must

also update the commitment (φ`, φ
+
`), but this takes only time log(N). For this

update P actually needs to know the currently embedded data block dĩ. There
are natural settings where d is readily available in the clear. For example if the
catalytic data d encoded in ` is used as backup, and a working copy of d is
available in the clear. So we think this feature might be useful. As this mode
is somewhat different than the other three modes considered, we mostly define
and analyze the PoS◦,PoR,PoCSφ together, but we’ll postpone the definition
and proofs on PoCSF to §B.

Remark 2 (efficiently updatable PoR). Looking at Figure 2, one might wonder
why there’s no mode EPoRF

, where the data d is first pre-processed by Fχ as
in EPoCSF

, but then XORed to the labels right after they are computed (as in
EPoR). The reason is that the only advantage of preprocessing d using Fχ as
in EPoCSF

instead of committing to it as in EPoCSφ is the fact that it makes
updating data blocks cheap. But if we XOR the data to the labels right after it
has been computed as in EPoR, then updating a block in label `i, will also change
all subsequent labels `j , j > i, even if the hash function used to compute labels
is independent of d. Thus, this update is not cheap after all. We leave it as
an open problem to construct a candidate for a PoR where data blocks can be
efficiently updated.

4.5 The Protocols PoS◦,PoCSφ and PoR

The protocols we consider in this work are a generalization of the pebbling-
based PoS from [DFKP15] PoS◦, where we allow the prover to chose and embed
additional data d into the file ` to be stored. We define PoS◦,PoCSφ,PoR

4The prover also must store opening information φ+` for a Merkle commitment, but as we’ll
discuss in Remark 4 this is small compared to `.

13

together as they are very similar (PoCSF is somewhat different, and only defined
in §B), we use PoXX ∈ {PoS◦,PoCSφ,PoR} as placeholder for any of those
constructions.

w, µ : A block length w (w = 256 is a typical value) and a statistical security
parameter µ.

G : A directed acyclic graph G = (V,E) with max. indegree δ and a designated
set VC ⊆ V of “challenge nodes” of size N = |VC |.

H : A hash function, which for the proof is modelled as a random oracle H :
{0, 1}≤ι → {0, 1}w which takes inputs of length at most ι = (δ + 2) · w
bits.

The space required by the honest prover is ≈ N ·w = |VC | ·w bits (we’ll discuss
the exact space requirement in Remark 4).

Initialization. V picks a random statement χ ∈ {0, 1}w and sends it to P.
If PoXX 6= PoS◦, the prover P can choose any data d = {di}i∈[N], di ∈ {0, 1}w

and then computes the file to store (if PoXX = PoS◦, d is empty)

` := EPoXX(χ,d)

as shown in Figure 2 and explained in eq.(2)-(4).
Finally P computes the commitment (φ`, φ

+
`) := commit(`) for all the labels

i ∈ VC , sends the short commitment φ` to V and locally stores the opening
information φ+

` . This concludes the initialization if we assume P is honest
during this phase (we’ll discuss the general case in Remark 3).

At the end of the initalization phase the verifier stores the short strings
χ, φ`. The prover stores χ, φ+

` and additionally a large file ` = {`i}i∈VC of size
‖`‖ = w ·N .

Proof execution. The protocol where P(`, χ, φ+
`) convinces V(χ, φ`) that

it stores ` is very simple. V samples a few nodes from the challenge set
c = (c1, . . . , cµ) ⊂ VC at random, and sends the challenge c to P. P sends
openings o := open(`, φ+

` , c) to the labels {`ĩ}i∈c to V, who then accepts iff
verify(φ`, c,o) = 1.

Remark 3 (prover is honest during initialization). For most of the paper we
will assume that even a malicious prover P̃ follows the protocol during the ini-
tialization phase (i.e., behaves like the honest P). Of course we can’t make this
assumption in practice, that’s why pebbling-based PoS have an extra communi-
cation round at the end of the initialization phase where – for some statistical
security parameter ν – V challenges P̃ to open ν labels and their parents to check
that they were correctly computed. For this, P̃ initially sends a commitment to
all nodes V , not just VC , and (except for PoS◦) also a commitment to d. If P̃
committed to labels {`∗i }i∈V where it cheated on an ε fraction of the lables, i.e.,
for PoS◦ this means we have `∗i 6= Hχ(i, `∗p1 , . . . , `

∗
pδi

), then P̃ will fail to pass

14

this check with probability 1 − (1 − ε)ν . P̃ can still get away with cheating at
a small fraction of labels, but one can easily take care of this in the proof by
assuming that storing such inconsistent labels can be done by P “for free”. As
this is a minor technicality in the proof, we ignore this as not to obfuscate the
main technical contributions.

Remark 4 (P’s space). The size of the file ` is N · w bits, which is basically
the same as the (N − 1) · w bits required to store the opening info φ+

` of the
Merkle-tree commitment to `: on the 0’th level of the tree (the leaves) we have
the N labels, then on level 1 we have N/2 values, on level 2 we have N/4 values,
etc., for a total of N/2 +N/4 + . . .+ 2 + 1 = N − 1 labels of internal nodes that
constitute φ+

` . But the prover can decide to not store levels 1 . . . k, thus saving
only (N − 1)/2k blocks, while all values in the omitted layers can be recomputed
by hashing at most 2k leaf values (i.e., values from `). Thus, for say k = 5,
the Merkle tree requires just a 1/32 fraction of the space of `, but requires to
hash 32 values. In practice that wouldn’t be expensive as those leave labels can
always be stored consecutively on a disk, and thus reading them comes at small
cost compared to reading the first random block (and hashing 32 blocks is not
expensive compared to a disk access). In the discussions in this writeup we will
thus mostly ignore the space required for storing this opening information φ+

` .

5 The Main Proof Ideas

In this section we’ll discuss the main ideas used in the proofs of this paper,
and give an overview of the work we borrowed ideas from. Pebbling is a game
played on directed acyclic graphs (DAG), where a player can put pebbles on
nodes of the graph according to some rules, and its goal is usually to pebble
some particular node or set of nodes using as few “resources” as possible. There
are various pebbling games one can consider, in this work we just consider the
basic black-pebbling game, where the player can put a pebble on a node if
all of its parents have pebbles. The resource considered is typically time (i.e.,
how many rounds it takes) or space (i.e., the maximum number of pebbles
on the graph at any time), or combinations thereof. For example cumulative
space (the sum of the number of pebbles on the graph over all rounds) [ABP17]
and sustained space (the number of rounds at which many pebbles were on the
graph) [ABP18] have been suggested to model memory-hard functions. Another
important distinction is between sequential and parallel strategies; a parallel
player can – in every round – put as many pebbles on the graph as he wants,
whereas a sequential player can put only one. For reasons discussed below, in
this paper we will consider time complexity in the parallel black-pebbling
model.

As pebbling is a simple combinatorial game, it’s often possible to prove un-
conditional lower bounds on the resources required to pebble some graphs, and
in some cases one can prove that these bounds imply lower bounds for problems
in more interesting computational models. In particular, if the pebbling game
considered is “deterministic” in the sense that the player is initially given the

15

graph and a designated set of nodes to pebble, then one can use an elegant proof
strategy (coined “ex-post facto” in the paper [DNW05] that introduced it) to
translate basically any pebbling lower bound to a corresponding lower bound
in the random oracle model for computing the “labels” of the designated set of
nodes, where the label of a node is the output of the random oracle on input
the labels of its parents.5

Pebbling games capture most constructions of so called memory-hard func-
tions (MHFs), which are functions that require a lot of memory to be computed.
One distinguishes between data-independent MHFs, where the memory access
pattern is independent of the functions input, and more general data-dependent
MHFs. The pebbling game capturing data-independent MHFs is deterministic,
but for data-dependent MHFs it’s randomized, for this reason almost all secu-
rity proofs for data-dependent MHFs need to make additional assumptions on
the adversary. An exception is the recent security proof for the data-dependent
MHF called SCRYPT [ACP+17], which proves that SCRYPT has high cumula-
tive memory complexity in the parallel random-oracle model. Despite the fact
that here the underlying pebbling game is randomized, their proof does not need
to make any assumptions on the adversarial behaviour.

Like data-dependent MHFs, also the pebbling game (called Φ and defined
in §6.1) underlying pebbling-based PoS [DFKP15, RD16] is randomized. Prior
to this work no pebbling-based PoS had an unconditional security proof in the
random oracle model; one had to assume that an adversarial prover only stores
a subset of the data the honest prover would store, but not arbitrary functions
of this data.6

The key observation that allows us to translate pebbling-lower bounds for a
“randomized” pebbling game like Φ to lower bounds for the “labelling game”
ΛPoS◦ in the random oracle model (this game is defined in §7.1) is already
implicit in [ACP+17], and goes as follows: If the complexity we consider is
time complexity in the parallel black-pebbling game, then the optimal pebbling
strategy is oblivious to the randomness (which in our game is a random node
we need to pebble). Concretely, the strategy minimizing the number of rounds
required is to put in every round a pebble on every possible node (i.e., every node
whose parents are pebbled). We observe that the reason “ex-post facto” proofs
can’t be done for randomized pebbling games is that the adversaries’ pebbling
strategy can depend on the game’s randomness, but as just outlined, for parallel

5The high-level idea of an “ex-post-facto” proof is to look at the execution of the game in
the random oracle model and translate this to a pebbling strategy, where every time a label
is computed, we put a pebble on the corresponding node. Now, if the resources (where a
round the pebble game translates to a round of queries to the random oracle, and a pebble
translates to space requrired to store one label) required by the labelling game are smaller
than in the derived pebbling game, we can use the adversary in the labelling game to compress
the random oracle. But this is impossible as a uniformly random string cannot be compressed,
so we have a contradiction, and the labelling game must have used at least as many resources
as the lower bound for the corresponding pebbling game dictates.

6In [DFKP15] some combinatorial conjectures were statet which – if true – would have
implied that restricting adversaries like this is without loss of generality. But these conjectures
have been beautifully refuted in [MZ17].

16

time complexity we can assume the adversary is oblivious to the randomness,
and this allows us to push through a pretty standard ex-post facto type proof
(proof of Theorem 10 in §7.2) showing that lower bounds on the hardness of
the game Φ imply lower bounds on the game ΛPoS◦ , which captures the security
of PoS◦ as a PoS. Very informally, the proof is a compression argument, which
uses an adversary that is “too successful” in computing the labels of nodes it
is being challenged on into a compressing encoding algorithm for the random
oracle H. As a random oracle is incompressible, such an encoding cannot exist,
and we get a contradiction.

In Theorem 15 in §8.2 we extend this proof from the basic PoS◦ to the
modes PoCSφ and PoR. The problem we face is that now, the values this “too
successful” adversary predicts are not just outputs (i.e., labels `i as in EPoS◦)
of the random oracle H, but now they are of the form `i ⊕ dĩ, where dĩ is
chosen by the adversary itself. Thus we can’t readily use the fact that we
learned them to compress H. To solve this problem, we use the fact that in
PoCSφ,PoR, the adversary must first commit to the di’s, and this commitment
is then used to sample a fresh random oracle to compute the labels. We let our
encoding algorithm first runs this adversary who chooses the di’s and computes
the commitment. From this adversary we can extract all the di’s. Once these
are known, the encoding proceeds basically as for the basic PoS◦.

Extending the proof to show that our efficiently updatable PoCS PoCSF
is a PoS is much more challenging, and is done in the last section §B of this
paper. Here the labels of the “too succesful” adversary predicts are of the form
`i ⊕ F(dĩ), but the adversary has not committed to the di’s before computing
the di’s. The key idea is to replace in the security game the random invertible
function F : {0, 1}λ−w → {0, 1}λ with the composition of two randomly sampled
functions g(f(·)), where f : {0, 1}λ−w → {0, 1}w/2, g : {0, 1}w/2 → {0, 1}λ, and
argue that with high probability this game will behave like the original one (in
particular, the adversary is almost as successful here). In this new game, we
can recover `i from the labels the adversary predicts, which now are of the form
`i⊕g(f(dĩ)), if additionally given only the short w/2 bit string f(dĩ), this is good
enough to get compression and again push through an ex-post-facto type proof.

6 The Graph Pebbling Game Φ and its Hardness

In this section we define a pebbling game Φ and show it’s hard if instantiated
with depth-robust graphs. Later we will prove that hardness of Φ implies hard-
ness of games capturing the PoS security of our schemes.

6.1 The Pebbling Game Φ(G, VC)

The game is parameterized by a DAG G = (V,E), a subset VC ⊆ V of |VC | = N
challenge nodes, and an integer s, 0 ≤ s ≤ N . It is played by an adversary given
as a pair AΦ = {A1

Φ,A
2
Φ}.

17

initialization: A1
Φ gets no input, and outputs the initial pebbling configuration,

which is a subset P0 ⊆ V of |P0| = s nodes.

execution: A random challenge node c← VC is chosen.

A2
Φ gets as input P0 and the challenge c. It then proceeds in rounds,

starting at round 1.

In round i, A2
Φ can place (arbitrary many) pebbles on the nodes of V

to update the pebbling configuration from Pi−1 to P ′i according to the
following rule: a pebble can be placed on node v ∈ V only if all the
parents of v are pebbled in Pi−1. It then can remove any number of
pebbles to get the configuration Pi ⊆ P ′i .

Definition 5 (hardness of the game Φ). For s, t ∈ N, ε ∈ [0, 1], we say AΦ

does (s, t, ε)-win the pebbling game Φ(G, VC) (as defined above) if the probability
(over the choice of c and AΦ’s random coins) that A2

Φ puts a pebble on c in t−1
rounds or less is at most ε.

We say Φ(G, VC) is (s, t, ε)-hard if no such AΦ exists, that is, no adversary
can pebble an ε fraction of VC in t rounds or less, having only s initial pebbles.

Remark 6 (greedy is best). We observe that the optimal strategy for A2
Φ is

trivial: the greedy strategy, where in every round A2
Φ puts pebbles on all nodes

possible and never removes a pebble, is at least as good as any other strategy.
This greedy strategy is oblivious to the challenge c, which will be crucial in our
proofs.

6.2 Depth Robust Graphs

Definition 7 (depth-robust graphs). A DAG G = (V,E) on V = |N | nodes is
(e, d)-depth robust if after removing any subset of e ·N nodes, there remains a
path of length d ·N .

Such graphs were first considered by Erdős et al. [EGS75], and recent work
has made them more practical, cf. [ABH17, ABP18] and references therein.
Concretely, for any ε > 0, [ABP18] constructs a family {GεN}N∈N of graphs
of indegree O(logN) (here the hidden constant depends on ε) which, for any
e, d, e+ d ≤ 1− ε are (e, d)-depth robust.

Note that any graph, even the complete graph (which has indegree N −1) is
only (e, d) depth-robust for e+d = 1. It is maybe surprising that one gets almost
as good depth-robustness as the complete graph with only O(logN) indegree
(one the negative side, it’s known that Ω(logN) indegree is necessary for this).
Let us mention that the indegree of the G we use to instantiate our schemes is
important as the efficiency of our schemes (in particular the proof size) depends
linearly on it.

6.3 Φ(G, VC) is Hard if G is Depth Robust

Let us observe that the ΛPoS◦(G, VC) cannot be (s = N · ce, t, ε = ce)-hard for
any ce ∈ [0, 1] even for tiny t = 1, as one always can simply put those s initial

18

pebbles on an ce fraction of VC , and this ε = ce fraction is then already pebbled
in round 1. By the lemma below, using the depth-robust graphs Gε′4N the game
becomes hard – i.e. we need t ≥ N rounds – for just a slightly larger fraction
ε = ce + 4ε′.

Lemma 8 (hardness of Φ with the depth-robust graphs from [ABP18]). For
any N ∈ N, ε′ > 0 consider the graph Gε′4N from [ABP18], which is (e, d)-depth
robust for any e+ d ≥ 1− ε′. Let VC ⊂ V, |VC | = N be the N topologically last
nodes in V . Then, for any ce ∈ [0, 1] the game Φ(Gε′4N , VC) is (s, t, ε)-hard with

s = N · ce , t = N , ε = ce + 4ε′

Proof. We can assume ε′ ≤ 1/4 as the statement is void for ε < 0. Let e = ce/4,
then s = e · 4N and e ≤ 1/4 (as ce ≤ 1, which holds as for s ≥ N the statement
is void). e+ d ≥ 1− ε′ implies d ≥ 1− e− ε′. After removing s nodes (i.e., an
e fraction) from V , by the (e, d) depth-robustness, there’s still a path P ⊂ V of
length at least d · 4N ≥ 4N(1− e− ε′) ≥ 2N in V \ S (second inequality using
e ≤ 1/4 and ε′ ≤ 1/4). All but 4N(e + ε′) of VC must lie on this path (as the
path contains all but 4N(e+ ε′) of the vertices), i.e.,

|VC ∩ P |
N

≥ N − 4N(e+ ε′)

N
= 1− 4e− 4ε′ = 1− ce − 4ε′

The nodes in VC ∩ P are all at the end of the path P (as VC was chosen
topologically last in V), and as |P | ≥ 2N, |VC | = N , each node in VC ∩ P
has depth at least N in P , thus the number of sequential pebbling queries
required to put a pebble on any of those nodes is t > N . Equivalently, only an

ε = 1 − |VC∩P |N ≤ ce + 4ε′ fraction of VC can be pebbled in t rounds or less, as
claimed. �

7 PoS Security of PoS◦

In this Section we state and prove our main technical result Theorem 1, which
states that hardness of the pebbling game Φ implies hardness of a game ΛPoS◦

capturing the PoS security of PoS◦. We start with defining the the ΛPoS◦ game

7.1 The Labelling Game ΛPoS◦(G, VC , w)

The game is parameterized by a DAG G = (V,E), a subset VC ⊆ V of |VC | = N
challenge nodes and a block size w. Moreover a function H∗ : {0, 1}≤ι →
{0, 1}w, ι = (δ + 2) · w. Let

∀i ∈ V : `i = H∗(i, `parents(i)) (8)

(note that these are the labels PoS◦(χ) would compute if Hχ = H∗). The game
is played by an adversary APoS◦ = {A1

PoS◦
,A2

PoS◦
}

19

initialization: A1
PoS◦

is given oracle access to H∗. It outputs a string (the initial
state) S0 of length ‖S0‖ = m bits (A1

PoS◦
is computationally unbounded).

execution: A random challenge node c← VC is chosen.

A2
PoS◦

gets as input S0 and the challenge c. It then proceeds in rounds,
starting at round 1.

In round i, APoS◦ gets as input its state Si−1. It can either decide to stop
the game by outputting a single guess `guess (for `c), or it can make one
parallel oracle query: on query (x1, . . . , xqi) it receives (y1, . . . , yqi) where
yi = H∗(xi). It can do any amount of computation before and after this
query, and at the end of the round output its state Si for the next round.

Definition 9 (hardness of the game ΛPoS◦). For m, t, qH2 , w, α ∈ N and pH, epsilon ∈
[0, 1], we say APoS◦ = (A1

PoS◦
,A2

PoS◦
) does (m, t, ε, p, qH2)-win the labelling game

ΛPoS◦(G, C, w) (as defined above) if for all but a pH fraction of H∗ the following
holds: for at most an ε fraction of challenges c, A2

PoS◦
correctly guesses c’s label

(i.e., `guess = `c) in round t or earlier. Moreover A2
PoS◦

makes at most qH2 queries
to H∗. We say ΛPoS◦(G, VC , w) is (m, t, ε, pH, qH)-hard if no such APoS◦ exists.

7.2 Φ Hardness Implies ΛPoS◦ Hardness

Before we show that lower bounds in the pebbling game Φ translate to lower
bounds on the labelling game ΛPoS◦ , let us first mention the other (trivial)
direction.

Any pebbling strategy AΦ = {A1
Φ,A

2
Φ} can be transformed into a labelling

strategy APoS◦ = {A1
PoS◦

,A2
PoS◦
} which has the same parallel time complexity

and which uses w bits of space in its initial state S0 for pebble in the initial
state P0. The idea is to simply have APoS◦ mimic AΦ’s strategy, computing a
label whenever AΦ places a pebble.

Proposition 1 ((trivial) hardness of ΛPoS◦ implies hardness of Φ). If an AΦ

exists that (s, t, ε)-wins the pebbling game Φ(G = (V,E), VC), then an APoS◦

exists which (m, t, ε, qH2)-wins the ΛPoS◦(G, VC , w) labelling game for any w, qH2 =
|V | and

m = s · w

Proof. By Remark 6 we can assume A2
Φ is a “greedy” adversary who never

deletes pebbles, and thus puts at most |V | pebbles on G during the entire game.
If A1

Φ outputs an initial pebbling P0, then A1
PoS◦

will output an initial state that
contains all the labels of the pebbles in P0

S0 = {`v : v ∈ P0} .

Note that |S0| = w · |P0| ≤ w · s as claimed. A2
PoS◦

will also be greedy, i.e.,
store all the labels it ever computes. In step i, when A2

Φ puts fresh pebbles on
Pi \ Pi−1, A2

PoS◦
makes a parallel query to H∗ to compute all the new labels

{`v : v ∈ Pi \ Pi−1}. In the round where A2
Φ puts a pebble on c, A2

PoS◦
can

compute and output `guess = `c. �

20

Proving the other direction – that pebbling lower bounds imply lower bounds
on the labelling game – is more challenging.

Theorem 10 (hardness of Φ implies hardness of ΛPoS◦). For any α > 0, if the
pebbling game Φ(G, VC) is (s, t, ε)-hard, then the labelling game ΛPoS◦(G, VC , w)
is (m, t, ε, 2−α, qH2)-hard where

m ≥ s · (w − 2(logN + log qH2))− α

Before we get to proof of this theorem, let us state what security it implies
for PoS◦ using the hardness of Φ as stated in Lemma 8.

Corollary 11 (of Thm. 10 and Lem. 8). For Gε′4N , VC as in Lemma 8, and any
ce ∈ [0, 1],

ΛPoS◦(Gε
′

4N , VC , w) is (m, t, ε, 2−α, qH2)-hard

whith m = N · ce · (w − 2(logN + log qH2))− α , t = N , ε = ce + 4ε′

Let us observe that the hardness as stated is basically optimal. For slightly
larger m = N · ce (i.e., if we ignore the additive log terms), it means and
adversary dedicating N ·(1−4ε′−∆) ·w (instead N ·w) space after initialization
will fail to answer a ∆ fraction of the challenges in parallel time < N . Note that
in 4N = |V | sequential time every challenge can be answered with no storage at
all by recomputing the entire labelling. As always, by challenging this adversary
on O(1/∆) queries in parallel we can amplify the probability of the adversary
failing to answer fast arbitrary close to 1.

Proof of Theorem 10. To prove the theorem we assume an adversary APoS◦ =
(A1

PoS◦
,A2

PoS◦
) exists who (m, t, ε, 2−α, qH2)-wins the labelling game. LetH,Pr[H∗ ∈

H] ≥ 2−α be the subset of H∗ for which APoS◦ can win the labelling game like
that, i.e., using an initial state of ≤ m bits, in ≤ t rounds, and for an ≥ ε
fraction of challenges where A2

PoS◦
makes ≤ qH2 queries to H∗ (cf. Definition 14).

We will consider the random experiment where for a given H∗ ∈ H, we first
run A1

PoS◦
to get S0, and then we run A2

PoS◦
on all challenges in parallel. This

will define a set F of “fresh” labels, which are labels that occur during the
execution before they have been actually computed (and thus intuitively must
somehow have been stored in the initial state S0). We then prove two claims.

The first shows how the above execution translates into a strategy to (|F |, t, ε)-
win he the pebbling game, as this game is (s, t, ε)-hard, we have |F | ≥ s. The
second claim shows how to compress H∗ by almost |F | · w bits when given the
initial state S0. As most functions are incompressible, we get m = ‖S0‖ ' s ·w.
We now give the detailed proof.

As outlined above, consider any H∗ ∈ H, and let S0 ← A1
PoS◦

be the initial
state. Let V ′C ⊆ VC be the set of challenges which A2

PoS◦
(S0, ·) answers correctly

in t rounds or less, as H∗ ∈ H we have |V ′C | ≥ ε|VC |. In the proof we’ll consider
two algorithms

21

A
‖
PoS◦

runs A2
PoS◦

in parallel for all possible challenges c ∈ VC . Concretely, A
‖
PoS◦

invokes |VC | instances of A2
PoS◦

(S0, c), one for every challenge c ∈ VC .

In each round, A
‖
PoS◦

collects the queries made by all the instances of

A2
PoS◦

that have not yet terminated, then makes one parallel query to
H∗ containing all the collected queries, and forwards the corresponding

answers to the A2
PoS◦

instances. We let A
‖
PoS◦

run for t rounds, and then
stop.

LG computes the labels `1, `2, . . . , `|V | in topological order, making sequential
queries to H∗.

We refer to a query that correctly computes a label as in eq.(8), i.e., a query of
the form

`i = H∗(i, `parents(i))

as a real query. For i ∈ V , we say i is fresh if in some round A
‖
PoS◦

uses a

label `i as (part of an) input to a query or the thread A2
PoS◦

(S0, i) outputs `i as
its guess `guess = `i (note that then i ∈ V ′C) before this label `i was received as
output of a real query. Let F ⊆ V denote the (indices of) the fresh labels. Thus,

{`i}i∈F are all the labels that appear during A
‖
PoS◦

’s execution before they have
been computed, i.e., received as output on a real query.

Claim 12. There is an adversary AΦ that (s′, t, ε)-wins the pebbling game
Φ(G, VC) with s′ = |F | initial pebbles (thus |F | ≥ s).

Proof of Claim. Consider an A1
Φ which choses an initial pebbling P0 = F . Then

A2
Φ in round i puts a pebble on v if A

‖
PoS◦

received `v as output of a real query
in round i. By construction this is a valid parallel black pebbling.

We claim that this A2
Φ puts a pebble on every node in V ′C in t steps or

less, and thus (s, t, ε)-wins Φ(G, VC). To see this, consider any c ∈ V ′C . If
c ∈ F = P0 it’s pebbled already in round 1. Otherwise, if c ∈ V ′C \ F , the label
`guess = `c output by the thread A2

PoS◦
(S0, c) was not fresh, and thus must have

been received as output of a real query in some round j ≤ t. By construction
this A2

Φ will have put a pebble on c in round no later than j. �

Now that we have shown |F | ≥ s, the next step is to lower bound ‖S0‖, the
bitlength of the initial state, in terms of |F |. For this, we show how to compress
the function table of H∗ given S0 by almost by almost |F | · w bits. Using the
fact that a random oracle is incompressible (cf. Fact 1 in §3), we’ll then derive
a lower bound ‖S0‖ ' |F | · w. Let

[H∗] ∈ {0, 1}(2
ι+1−1)×w

denote the function table of H∗ : {0, 1}≤ι → {0, 1}w.

22

Claim 13. There exists an ecoding (enc, dec) which correctly decodes an 2−α

fraction of the tables

Pr
H∗

[dec(enc([H∗])) = [H∗]] ≥ 2−α

and the length of the encoding is

‖enc([H∗], S0)‖ ≤ ‖[H∗]‖+ ‖S0‖ − |F | · (w − 2(logN + log qH2))

Before we prove this claim, let us observe this implies the statement of the
theorem by using Fact 1, which implies

‖S0‖ ≥ |F | · (w − 2(logN + log qH2))− α .

Proof of Claim. The encoding enc/dec will correctly decode all the [H∗] which
are in H. For this, enc([H∗]) first determines if H∗ ∈ H, and if this is not the
case outputs whatever (say the bit 0).

Let B denote the following computation: we first invoke A
‖
PoS◦

(S0, VC) fol-

lowed by LG , we’ll denote with q ≤ N ·(qH2 +1) the number of distinct H∗ queries
made during B’s execution (at most qH2 for each invocation of the N invocations

of A
‖
PoS◦

and N more for LG).
Let the list c contain all the outputs of H∗ queries made during B. The

outputs in c are stored in the order the queries were made, and if a query is
repeated, the output is not stored.

Let c denote the function table of H∗ with the |c| w-bit entries that are in c
removed.

Note that given c, c, S0, VC′ we can recover [H∗] by running B using c to
answer all the oracle queries. After this, we have learned all the inputs corre-
sponding to the outputs stored in c, and thus know which queries were deleted
from [H∗] to get c. Thus now we can recover all of [H∗]. We haven’t compressed
anything yet (as ‖c‖ + ‖c‖ = ‖[H∗]‖, or as all elements in those sets and the
table are w bit strings, equivalently |c| + |c| = |[H∗]|). Next we’ll show how to
compress c into a smaler cF which, with some short extra information bF , will
suffice to answer all H∗ queries made during B correctly.

Recall that F ⊆ V are the fresh queries. Consider i ∈ F , at some point
during the evaluation of B the real query `i = H∗(i, `parents(i)) is made (the only
reason we invoke LG as part of B is to ensure this query is made at some point).
As i ∈ F , at the point where this query is made for the first time, we have
already observed the value `i as part of some query input. Let cF denote c, but
with the |F | entries corresponding to the real queries of i ∈ F deleted. With this
cF we can answer all of B’s queries if we’re given some extra information which,
for every i ∈ F , tells as at which point during the execution of B we observe
`i, and where the corresponding real query is made. This extra information
requires at most 2 log q bits for every i ∈ F , let bF denote a string encoding this
information, we now define the encoding as

enc([H∗]) = (S0, cF , bF , c)

23

The decoding dec(S0, cF , bF , c) reconstructs [H∗] as outlined above. As

‖cF ‖+ ‖c‖ = ‖[H∗]‖ − w · |F |
‖bF ‖ ≤ |F | · 2 log q′ ≤ |F | · 2(logN + log q)

the encoding length is

‖enc([H∗], S0)‖ ≤ ‖S0‖+ ‖[H∗]‖ − |F | · (w − 2(logN + log q))

as claimed. �

�

8 PoS Security of PoCSφ and PoR

In this section we extend the result from the previous section, and show that
hardness of Φ implies hardness of games ΛPoCSφ and ΛPoR, which capture the
PoS security of our constructions PoCSφ and PoR. We start with defining the
games

8.1 The Labelling Games ΛPoCSφ and ΛPoR

Let PoXX ∈ {PoCSφ,PoR}. The game is parameterized by a DAG G = (V,E),
a subset VC ⊆ V of |VC | = N challenge nodes and a block size w. Moreover
a function H∗ : {0, 1}≤ι → {0, 1}w, ι = (δ + 2) · w. The game is played by an
adversary APoXX = {A1

PoXX,A
2
PoXX}.

initialization: A1
PoXX is given oracle access to H∗. It can choose any data

d = {di}i∈VC , di ∈ {0, 1}w, which defines labels ` to store as in eq.(3)
and eq.(4), but using H∗ instead Hχ. Recall that for this we first com-

pute (φd, φ
+
d) := commitH∗(d), now let H∗,φd

be the function H∗,φd
(·) ≡

H∗(φd, ·), and then compute ` as
(If PoXX = PoR) ` = {`i}i∈VC where

`i =

{
H∗,φd

(i, `parents(i)) if i ∈ V \ VC
H∗,φd

(i, `parents(i))⊕ dĩ if i ∈ VC

(If PoXX = PoCSφ) ` = {`′i}i∈VC where

∀i ∈ V : `i = H∗,φd
(i, `parents(i))

∀i ∈ VC : `′i = `i ⊕ dĩ

A1
PoXX outputs a string (the initial state) S0 of length ‖S0‖ = m bits.

execution: A random challenge node c← VC is chosen.

A2
PoXX gets as input S0 and the challenge c. It then proceeds in rounds,

starting at round 1.

24

In round i, APoXX gets as input its state Si−1. It can either decide to stop
the game by outputting a single guess `guess (for `c in PoR or `′c in PoCSφ),
or it can make one parallel oracle query: on query (x1, . . . , xqi) it receives
(y1, . . . , yqi) where yi = H∗(xi). It can do any amount of computation
before and after this query, and at the end of the round output its state
Si for the next round.

Definition 14 (hardness of the games ΛPoXX ∈ {ΛPoR,ΛPoCSφ}). For m, t, qH1 , q
H
2 , w ∈

N and pH, ε ∈ [0, 1], we say APoXX = (A1
PoXX,A

2
PoXX) does (m, t, ε, pH, q

H
1 , q

H
2)-win

the labelling game ΛPoXX(G, VC , w) (as defined above) if for all but a pH frac-
tion of H∗ the following holds: for at most an ε fraction of challenges c, A2

PoXX

correctly guesses c’s label (i.e., `guess = `c) in round t or earlier. Moreover
A1
PoXX and A2

PoXX make at most qH1 and qH2 queries to H∗, respectively. We say
ΛPoXX(G, VC , w) is (m, t, ε, pH, q

H
1 , q

H
2)-hard if no such APoXX exists.

8.2 Φ Hardness Implies ΛPoR and ΛPoCSφ Hardness

Theorem 15 (hardness of Φ implies hardness of ΛPoR&ΛPoCSφ). For any α > 0,
if the pebbling game Φ(G, VC) is (s, t, ε)-hard, then the labelling game ΛPoR(G, VC , w)

and also the labelling game ΛPoCSφ(G, VC , w) is (m, t, ε, 2−α + qH1
2
/2w, qH1 , q

H
2)-

hard where
m ≥ s · (w − 2(logN + log qH2))− α

Before we get to proof of this theorem, let us state what security it implies
for PoR and PoCSφ using the hardness of Φ as stated in Lemma 8.

Corollary 16 (of Thm. 10 and Lem. 8). For Gε′4N , VC as in Lemma 8, and any
ce ∈ [0, 1],

ΛPoCSφ(Gε
′

4N , VC , w) and ΛPoR(Gε
′

4N , VC , w) are (m, t, ε, 2−α, qH2)-hard

whith m = N · ce · (w − 2(logN + log qH2))− α , t = N , ε = ce + 4ε′

Proof. We assume the reader is familiar with the proof of Theorem 10, as we
will only explain how that proof needs to be adapted.

The proof of Theorem 10 goes through almost unchanged for PoXX ∈ {PoR,PoCSφ}
instead of PoS◦, the point where it fails is when we need to compress fresh labels.
In the proof of Theorem 10 every fresh label `i, i ∈ F allowed us to compress
one element of H∗. Now the situation is seemingly more complicated. For con-
creteness, let’s consider PoR. Now even if the encoding enc observes a fresh

label `i when invoking A
‖
PoR (which is defined analogous to A

‖
PoS◦

in the proof of
Theorem 10), it’s not clear how to compress one entry of H∗,φd

’s function table
as now

`i = H∗,φd
(i, `parents(i))⊕ dĩ

only provides an output that is blinded with dĩ. If we could make sure the
encoding and decoding enc/dec knew the d, this problem would disappear.

25

We fix this problem as follows. We define A
‖
PoR analogous to A

‖
PoS◦

, i.e., it

runs A2
PoR(S0, c) on all challenges c ∈ VC in parallel. But additionally, at the

very beginning (before invoking the A2
PoR’s), it invokes A1

PoR, but only runs it
to the point where the commitment φd is received as on output of H∗ (recall
we assume A1

PoR follows the protocol, so this commitment must be computed at
some point).

This way enc/dec, wo invoke A
‖
PoR, learn the entire d, as it can be extracted

from the H∗ queries leading to φd. At the same time A1
PoR will almost certainly

not have made any H∗,φd
(·) = H∗(φd, ·) queries as φd is uniform and we stop

executing A1
PoR once φd is received. This is necessary, so a label that was fresh

without running A1
PoR first, will still be fresh if we do run A1

PoR.
The above argument works as long as A1

PoR doesn’t find a collision in H∗
(otherwise we can’t extract a unique d). For this reason in the theorem security

holds only for a slightly smaller pH = 2−α + qH1
2
/2w fraction of the H∗ than the

pH = 2−α fraction we got for the ΛPoS◦ game in Theorem 10. �

References

[AAC+17] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko,
Krzysztof Pietrzak, and Leonid Reyzin. Beyond hellman’s time-
memory trade-offs with applications to proofs of space. In ASI-
ACRYPT (2), volume 10625 of Lecture Notes in Computer Science,
pages 357–379. Springer, 2017.

[ABH17] Joël Alwen, Jeremiah Blocki, and Ben Harsha. Practical graphs
for optimal side-channel resistant memory-hard functions. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 17, pages 1001–1017. ACM Press, Octo-
ber / November 2017.

[ABP17] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust
graphs and their cumulative memory complexity. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 3–32. Springer, Heidelberg,
May 2017.

[ABP18] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained
space complexity. In EUROCRYPT, Lecture Notes in Computer
Science, 2018.

[ACP+17] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin,
and Stefano Tessaro. Scrypt is maximally memory-hard. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 33–62.
Springer, Heidelberg, May 2017.

26

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and
Florian Speelman. Computing with a full memory: catalytic space.
In STOC, pages 857–866. ACM, 2014.

[BKLS16] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speel-
man. Catalytic space: Non-determinism and hierarchy. In STACS,
volume 47 of LIPIcs, pages 24:1–24:13. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Va-
sudevan. Proofs of useful work. IACR Cryptology ePrint Archive,
2017:203, 2017.

[bur] Burstcoin. http://burstcoin.info.

[chi17] Chia Network. https://chia.network/, 2017.

[CKWN16] Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and
Arvind Narayanan. On the instability of bitcoin without the block
reward. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
16, pages 154–167. ACM Press, October 2016.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and
Krzysztof Pietrzak. Proofs of space. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 585–605. Springer, Heidelberg, August 2015.

[DGK17] Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks
in the concrete: Random oracles with auxiliary input, revisited.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part II, volume 10211 of LNCS, pages 473–495.
Springer, Heidelberg, May 2017.

[DNW05] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs
of work. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of
LNCS, pages 37–54. Springer, Heidelberg, August 2005.

[DPS16] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably
secure proofs of stake. Cryptology ePrint Archive, Report 2016/919,
2016. http://eprint.iacr.org/2016/919.

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space
tradeoffs for attacks against one-way functions and PRGs. In Tal
Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 649–
665. Springer, Heidelberg, August 2010.

[EGS75] Paul Erdoes, Ronald L. Graham, and Endre Szemeredi. On sparse
graphs with dense long paths. Technical report, Stanford, CA, USA,
1975.

27

[KN] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency
with proof-of-stake.

[KPS13] Eike Kiltz, Krzysztof Pietrzak, and Mario Szegedy. Digital sig-
natures with minimal overhead from indifferentiable random in-
vertible functions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 571–588.
Springer, Heidelberg, August 2013.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Ro-
man Oliynykov. Ouroboros: A provably secure proof-of-stake
blockchain protocol. In Jonathan Katz and Hovav Shacham, edi-
tors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388.
Springer, Heidelberg, August 2017.

[Lab17] Protocol Labs. Filecoin: A decentralized storage network.
https://filecoin.io/filecoin.pdf, 2017.

[Mic16] Silvio Micali. ALGORAND: the efficient and democratic ledger.
CoRR, abs/1607.01341, 2016.

[MJS+14] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan
Katz. Permacoin: Repurposing bitcoin work for data preservation.
In 2014 IEEE Symposium on Security and Privacy, pages 475–490.
IEEE Computer Society Press, May 2014.

[MO16] Tal Moran and Ilan Orlov. Rational proofs of space-time. Cryp-
tology ePrint Archive, Report 2016/035, 2016. https://eprint.

iacr.org/2016/035.

[MZ17] Daniel Malinowski and Karol Zebrowski. Disproving the conjectures
from ”on the complexity of scrypt and proofs of space in the parallel
random oracle model”. In ICITS, volume 10681 of Lecture Notes in
Computer Science, pages 26–38. Springer, 2017.

[PPK+15] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, Jol Alwen, Georg
Fuchsbauer, and Peter Gai. Spacemint: A cryptocurrency based on
proofs of space. Cryptology ePrint Archive, Report 2015/528, 2015.
https://eprint.iacr.org/2015/528.

[PTC77] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni.
Space bounds for a game on graphs. Mathematical systems the-
ory, 10(1):239–251, 1976–1977.

[RD16] Ling Ren and Srinivas Devadas. Proof of space from stacked ex-
panders. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part I, volume 9985 of LNCS, pages 262–285. Springer, Heidelberg,
October / November 2016.

28

[The14] The NXT Community. Nxt whitepaper. https://bravenewcoin.

com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf, July
2014.

A Discussion and Motivation

A.1 The Quest for a Sustainable Blockchain

PoW based blockchains, most notably Bitcoin, have been critisized as the mining
process (required to secure the blockchain) results in a massive energy waste.
This is not only problematic ecologically, but also economically, as it requires
high rewards for the miners to compensate for this energy loss.7

Proofs of Stake. The idea behind “Nakamoto consensus” used in Bitcoin,
is to randomly chose a miner to generate the next block, where the proba-
bility of any miner to be chosen is proportional to its hashing power. The
most investigated idea to replace PoWs in blockchains are “proofs of stake”
(PoStake), where the general idea is to choose the winner proportional to the
fraction of coins they hold. At first, this idea looks extremely promising, but
it seems to be really difficult to actually realize it in a secure and efficient way.
Some early ad-hoc implementations of PoStake based blockchain include Peer-
coin [KN] and NXT [The14]. More recent proposals come with security proofs
in various models [Mic16, DPS16, KRDO17], but those protocols are fairly com-
plicated, and basically run a full blown byzantine agreement protocol amongst
rotating subsets of the miners, thus losing the appealing simplicity of Bitcoin,
where a winning miner simply gossips the next block and no other interaction
is required.

Space as a Resource. After time, space is the best investigated resource
in computational complexity, thus it’s a natural idea to somehow try to use
disk space as a resource for mining, which has the potential to give blockchains
which are much more sustainable than PoW based designs, while avoiding at
least some of the technical issues that PoStake has. Permacoin [MJS+14] is a
proposal which requires a miner to dedicate disk space, but it’s still a proof of
work based design, only now the computation itself (which is a so called “proof
of retrievability”) requires access to a large disk. A proposal which mostly uses
space as resource is Burstcoin [bur], this design is poorly document, but it seems
to have security and efficiency issues.8 Another suggestion are “proofs of space”

7The block reward currently used as main compensation for miners in Bitcoin is decreasing
(it’s halved every four years), and thus ultimately will be replaced with only transaction fees,
which might create serious problems [CKWN16].

8[PPK+15, Appendix B of the full version] discusses some issues with (our best guess on
what is) Burst and the underlying proof system called “proofs of capacity” (PoC). In a nut-
shell, PoC are rather inefficient as the prover needs to access a constant (albeit small) fraction
of the entire space for generating a proof, and verification requires over a Million hashes. As
to security, PoC allow for strong time-memory trade-offs (a recent ad-hoc fix https://www.

29

(PoS), which are the topic of this paper and we’ll discuss them in more detail
below in §A.2.

Useful Proofs. While PoStake aim to avoid wasting significant resources for
mining in the first place, another approach to minimize the footprint of mining
is to use the resources required to sustain the blockchain for something useful. A
intriguing idea is to use the computing power wasted for PoWs for solving actual
computational problems, we refer the reader to [BRSV17] and the references
therein. In this work we also follow this approach and construct “proofs of
catalytic space” (PoCS), which are defined like PoS, but where most of the
space required by the prover can be used to store useful data. This holds the
potential for blockchain designs which are even more sustainable than pure PoS-
based blockchains.

A.2 Proofs of Space (PoS)

Proofs of space (PoS) [DFKP15] are proofs systems that were developed to serve
as a replacement for PoW in blockchain designs. The first proposal of a PoS-
based blockchain is Spacemint [PPK+15], a recent ongoing effort which combines
PoS with some type of proofs of sequential work is the chia network [chi17].

A PoS [DFKP15] is a two stage protocol between a prover P and a verifier V.
The first phase is an intialization protocol which is run only once, after which P
has initalized its space. Then there’s a proof execution phase which typically is
run many times, in which an honest prover P can efficiently convince the verifier
that dedicates the space. The verifier V is required to be very efficient during
both phases, this means it can be polynomial in some security parameter, but
should be almost independent (i.e., depend at most polylogarithmically) on the
size N of the space committed by the prover. The honest prover P is required to
be very efficient during the execution phases. During the initialization P cannot
be very efficient, as it must at the very least overwrite all of the claimed space,
but it shouldn’t require much more than that.9

To date two very different types of PoS have been suggested. PoS-based
on hard to pebble graphs [DFKP15, RD16] and PoS-based on inverting ran-
dom functions [AAC+17], the new proofs systems – for proofs of catalytic space
(PoCS) and proofs of replication (PoR) – we propose in this work extend the
pebbling-based PoS. We leave it as an open problem to extend the [AAC+17]
PoS to PoR and PoCS, this would be very interesting as although the [AAC+17]
PoS has worse asymptotic security than pebbling-based PoS, but it’s much more
efficient (with proofs of length a few hundred bits, and proof generation and

burst-coin.org/wp-content/uploads/2017/07/The-Burst-Dymaxion-1.00.pdf claims to ad-
dress at least the most obvious time-memory attacks outlined in [PPK+15]). But most worry-
ingly, the blockchain designs seems to have no mechanisms to address nothing-at-stake issues,
which are responsible for the most delicate and complicated issue of any blockchain design
not based on proofs of work.

9Though it might be meaningful to intentionally make the initialization phase more ex-
pensive. Some ideas how to do that without at the same time making verification slower are
discussed in [MO16].

30

verification requiring just a small constant number of hash queries). More-
over, unlike pebbling-based PoS, this PoS has a non-interactive initialization
phase, which makes it easier to use it for a blockchain design where we have
no dedicated verifier, and thus the entire proof must somehow be made non-
interactive.10

B PoCSF, a PoCS with Efficient Updates

In §B.1 we first give the specification of PoCSF, our proof of catalytic space
that allows for efficient updates of the catalytic data. The security game ΛPoCSF

capturing the PoS security of PoCSF is then defined in §B.2. In §B.3 we prove
Theorem 18, which states that hardness of the pebbling game Φ implies hardness
of ΛPoCSF

. The PoS security of PoCSF is then derived as Corollary 19 in §B.3.

B.1 The Protocol PoCSF

w, µ : A block length w (w = 256 is a typical value) and a statistical security
parameter µ.

κ, λ : The κ ∈ N specifies the rate (i.e., ‖d‖/‖`‖ is κ/(κ+ 1)), λ
def
= (κ+ 1) · w

is the label length.

G : A DAG G = (V,E) with a designated set VC ⊆ V, |VC | = N of challenge
nodes.

H : A hash function, which for the proof is modelled as a random oracle H :
{0, 1}≤ι → {0, 1}λ which takes inputs of length at most ι = δ · (κ + 1) ·
w + 2 · w = δ · λ+ 2 · w bits.

F : A family of random invertible functions {Fχ}χ∈{0,1}w .

Fχ : {0, 1}λ−w → {0, 1}λ , F−1
χ : {0, 1}λ → {0, 1}λ−w ∪ ⊥

Initialization. V picks a random statement χ and sends it to P. P chooses
any data d = {di}i∈[N], di ∈ {0, 1}κ·w and then computes the file to store as

` := EPoCSF
(χ,d) (cf. §4.4)

P computes (φ`, φ
+
`) := commitHχ(d), sends φ` to VC and locally stores φ+

` .
This concludes the initialization if we assume P is honest (cf. Remark 3 in §4.5).
Thus V stores χ, φ`, the prover stores χ, φ+

` and ` = {`i}i∈VC , `i ∈ {0, 1}λ.

10Concretely, for subtle security reasons Spacemint [PPK+15] (which uses the pebbling-
based PoS) requires the miners to commit to the transcript of a challenge response protocol
which is run during the initialization phase. This is done by uploading this (short) transcript
to the blockchain. The chia-network which are based on [AAC+17] will not require any such
commitments.

31

Proof execution. The protocol where P(`, χ, φ+
`) convinces V(χ, φ`) that

it stores ` is very simple. V samples a few nodes from the challenge set
c = (c1, . . . , cµ) ⊂ [N] at random, and sends the challenge c to P. P sends
openings o := open(`, φ+

` , c) to the labels {`ĩ}i∈c to V, who then accepts iff
verify(φ`, c,o) = 1.

B.2 The Labelling Game ΛPoCSF(G, VC , w, κ)

The game is parameterized by a DAG G = (V,E), a subset VC ⊆ V of |VC | = N
challenge nodes, a block size w and a parameter κ. A function (with range
λ = (κ+ 1) · w)

H∗ : {0, 1}≤ι → {0, 1}λ

and an invertible function

F∗ : {0, 1}λ−w → {0, 1}λ , F−1
∗ : {0, 1}λ → {0, 1}λ−w ∪ ⊥

It is played by an adversary given as a pair APoCSF
= {A1

PoCSF
,A2

PoCSF
}.

initialization: Player A1
PoCSF

is given oracle access to H∗ and F∗/F
−1
∗ . It can

choose any data d = {di}i∈VC , di ∈ {0, 1}λ−w. This then defines labels
` to store as in eq.(6) (but using H∗,F∗ instead of Hχ,Fχ), concretely
` = {`′i}i∈VC where

`i =

{
H∗(i, `parents(i)) if i ∈ VC
H∗(i, `parents(i))|w if i ∈ V \ VC

(9)

and
`′i = `i ⊕ F∗(dĩ) for i ∈ VC

A1
PoCSF

outputs a string (the initial state) S0 of length ‖S0‖ = m bits.

execution: A random challenge node c← VC is chosen.

A2
PoCSF

gets as input S0 and the challenge c. It then proceeds in rounds,
starting at round 1.

In round i, A2
PoCSF

gets as input its state Si−1. It can either decide to
stop the game by outputting a single guess `guess (for `c), or it can make
one parallel oracle query to H∗,F∗,F

−1
∗ : on inputs three tuples of queries

x,x′,y, it gets H∗(x),F∗(x
′),F−1

∗ (y). It can do any amount of computa-
tion before and after this query, and at the end of the round output its
state Si for the next round.

Definition 17 (hardness of the game ΛPoCSF
). For m, t, qH2 , q

F
1 , q

F
2 , w,∈ N and

pH,F, ε ∈ [0, 1], we say APoCSF
= (A1

PoCSF
,A2

PoCSF
) does (m, t, ε, pH,F, q

H
2 , q

F
1 , q

F
2)-

win the labelling game ΛPoCSF
(G, VC , w, κ) (as defined above) if for all but a pH,F

fraction of H∗,F∗ tuples the following holds: for at most an ε fraction of chal-
lenges c, A2

PoCSF
correctly guesses c’s label (i.e., `guess = `c) in round t or earlier.

Moreover A1
PoCSF

makes at mos qF1 queries to F∗/F
−1
∗ and and A2

PoCSF
make at

most qH2 queries to H∗ and qF2 queries to F∗/F
−1
∗ . We say ΛPoCSF

(G, VC , w, κ) is
(m, t, ε, pH,F, q

H
2 , q

F
1 , q

F
2)-hard if no such APoCSF

exists.

32

B.3 Φ Hardness Implies ΛPoCSF Hardness

Theorem 18 (hardness of Φ implies hardness of ΛPoCSF
). For any α > 0, if the

pebbling game Φ(G, VC) is (s, t, ε)-hard, then the labelling game ΛPoCSF
(G, VC , w, κ)

is (m, t, ε, 2−α + q2

2w/2
, qH2 , q

F
1 , q

F
2)-hard where

q
def
= 2(qF1 + logN · qF2) , λ

def
= (κ+ 1) · w

m = s · (λ− w/2− 2 · log(N · qH2))− α (10)

Before we get to proof of this theorem, let us state what security it implies
for PoS◦ using the hardness of Φ as stated in Lemma 8.

Corollary 19 (of Thm. 10 and Lem. 8). For Gε′4N , VC as in Lemma 8, any
ce ∈ [0, 1] and q as in the theorem above,

ΛPoCSF
(Gε

′

4N , VC , w, κ) is (m, t, ε, 2−α +
q2

2w/2
, qH2 , q

F
1 , q

F
2)-hard with

m = N · ce · s · (λ− w/2− 2 · log(N · qH2))− α , t = N , ε = ce + 4ε′

Proof. The proof of this theorem follows the same lines as the proof of Theo-
rem 10. We assume the reader is familiar with the proof of Theorem 10 and
will only discuss how to adapt the proof. In the proof of Theorem 10, for every
fresh i ∈ F , the encoding extracted a label `i before it was received as output
of the oracle query `i = H∗(i, `parents(i)), and thus was able to compress H∗ by
(almost) ‖`i‖ = w bits. Here we can do the same for any i ∈ F ∩ (V \ VC), but
for i ∈ F ∩ VC the label is defined as

`i = H∗(i, `parents(i))⊕ F∗(dĩ) .

Thus when the encoding extracts a fresh label `i ∈ {0, 1}λ for i ∈ F ∩VC , it only
learns the oracle output H∗(i, `parents(i)) blinded with F∗(dĩ), and the encoding
can’t directly compress this value.

In the proof of Theorem 15 we encountered a similar problem. There we
solved this problem by having the encoding initially invoke A1

PoXX, from which
we could then extract all of d. It was crucial to stop the invocation of A1

PoXX

after it queried for φd, because at this point all of d could be extracted, while
almost certainly no queries computing labels were made by A1

PoXX as those are
computed using H∗,φd

, which thus requires knowledge of φd. Unfortunately,
here we can’t pull of that trick again, as now A1

PoCSF
can make all the label

queries as in eq.(9) before it makes any of the F∗ queries determining d, thus
we’ll later not be able to compress the labels.

We could additionally provide dĩ ∈ {0, 1}λ−w to the encoding, but then we’ll
only compress the λ = (κ+ 1) · w bit long label by at most |`i| − |dĩ| = w bits,
which isn’t interesting.11

11I.e., the conclusion we get “compressing” like this is the same as if we use the normal
labelling game, and let the prover store the data in the clear.

33

The key idea to overcome this problem is to first replace the random invert-
ible function F∗ : {0, 1}λ−w → {0, 1}λ with a composed function. For this we
pick random functions

f : {0, 1}λ−w → {0, 1}w/2 , g : {0, 1}w/2 → {0, 1}λ

and define
F̃(x) = g(f(x)) . (11)

Let q denote an upper bound on the number of F∗ (or now F̃) queries made
during encoding, recall that the number is determined by

q = (qF1 +N · qF2)

We’ll observe a collision on f with probability at most q2/2w/2, and conditioned
on no such collision happening, the new game – where we replaced F∗ with F̃ –
behaves like the original ΛPoCSF

game.
If such a collision happens, the encoding declares failure, that’s why in the

statement of the Theorem, the fraction of H∗,F∗ tuples for with the games fail

to be hard is 2−α + q2

2w/2
(not just 2−α as we had for EPoS◦).

If we now observe a label

`i = H∗(i, `parents(i))⊕ F̃(dĩ) = H∗(i, `parents(i))⊕ g(f(dĩ))

we can recover the random oracle output H∗(i, `parents(i)) given just the short

f(di) ∈ {0, 1}w/2 (as H∗(i, `parents(i)) = `i ⊕ g(f(dĩ))), this w/2 bit extra hint is
the reason for the −w/2 term in eq.(10).

There is one more difficulty we have to solve. As as the adversary gets access
not just to F∗, but also F−1

∗ , we have to specify how to answer F̃−1 queries. On
a query F̃−1(y) for some y that has not been observed as output of F̃ before,
we simply output ⊥, this almost perfectly simulates F−1

∗ as the output domain
of F∗ is sparse (only a tiny 2−w fraction of values in the range {0, 1}λ have a
pre-image).

On a query F̃−1(y) where the query F̃(x) = y has been observed before, we
give the corresponding output x. This is a problem if the F̃(x) = y query was
made during the first phase by A1

PoCSF
, but the inverse query F̃−1(y) is made by

an instantiation of A2
PoCSF

during the encoding, as now we’ll have to store the
corresponding x value as part of the encoding. But note that if this happens, we
have observed a y ∈ {0, 1}λ from the function table of g, and thus can compress
it, which “pays” for the x ∈ {0, 1}λ−w bits we need to store. �

34

