
SoK: unraveling Bitcoin smart contracts

Nicola Atzei1, Massimo Bartoletti1, Tiziana Cimoli1, Stefano Lande1,
Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Università degli Studi di Trento, Trento, Italy

Abstract. Albeit the primary usage of Bitcoin is to exchange currency,
its blockchain and consensus mechanism can also be exploited to securely
execute some forms of smart contracts. These are agreements among mu-
tually distrusting parties, which can be automatically enforced without
resorting to a trusted intermediary. Over the last few years a variety of
smart contracts for Bitcoin have been proposed, both by the academic
community and by that of developers. However, the heterogeneity in
their treatment, the informal (often incomplete or imprecise) descrip-
tions, and the use of poorly documented Bitcoin features, pose obstacles
to the research. In this paper we present a comprehensive survey of smart
contracts on Bitcoin, in a uniform framework. Our treatment is based
on a new formal specification language for smart contracts, which also
helps us to highlight some subtleties in existing informal descriptions,
making a step towards automatic verification. We discuss some obstacles
to the diffusion of smart contracts on Bitcoin, and we identify the most
promising open research challenges.

1 Introduction

The term “smart contract” was conceived in [43] to describe agreements between
two or more parties, that can be automatically enforced without a trusted in-
termediary. Fallen into oblivion for several years, the idea of smart contract has
been resurrected with the recent surge of distributed ledger technologies, led by
Ethereum and Hyperledger. In such incarnations, smart contracts are rendered
as computer programs. Users can request the execution of contracts by sending
suitable transactions to the nodes of a peer-to-peer network. These nodes col-
lectively maintain the history of all transactions in a public, append-only data
structure, called blockchain. The sequence of transactions on the blockchain de-
termines the state of each contract, and, accordingly, the assets of each user.

A crucial feature of smart contracts is that their correct execution does not
rely on a trusted authority: rather, the nodes which process transactions are as-
sumed to be mutually untrusted. Potential conflicts in the execution of contracts
are resolved through a consensus protocol, whose nature depends on the specific
platform (e.g., it is based on “proof-of-work” in Ethereum). Ideally, contracts
execute correctly whenever the adversary does not control the majority of some
resource (e.g., computational power for “proof-of-work” consensus).

http://www.ethereum.org/
https://www.hyperledger.org/

The absence of a trusted intermediary, combined with the possibility of
transferring money given by blockchain-based cryptocurrencies, creates a fertile
ground for the development of smart contracts. For instance, a smart contract
may promise to pay a reward to anyone who provides some value that satisfies
a given public predicate. This generalises cryptographic puzzles, like breaking a
cipher, inverting a hash function, etc.

Since smart contracts handle the ownership of valuable assets, attackers may
be tempted to exploit vulnerabilities in their implementation to steal or tamper
with these assets. Although analysis tools [17,30,34] may improve the security of
contracts, so far they have not been able to completely prevent attacks. For in-
stance, a series of vulnerabilities in Ethereum contracts [10] have been exploited,
causing money losses in the order of hundreds of millions of dollars [3–5].

Using domain-specific languages (possibly, not Turing-complete) could help
to overcome these security issues, by reducing the distance between contract
specification and implementation. For instance, despite the discouraging limita-
tions of its scripting language, Bitcoin has been shown to support a variety of
smart contracts. Lotteries [6, 14, 16, 36], gambling games [32], contingent pay-
ments [13, 24, 35], and other kinds of fair multi-party computations [8, 31] are
some examples of the capabilities of Bitcoin as a smart contracts platform.

Unlike Ethereum, where contracts can be expressed as computer programs
with a well-defined semantics, Bitcoin contracts are usually realised as crypto-
graphic protocols, where participants send/receive messages, verify signatures,
and put/search transactions on the blockchain. The informal (often incomplete
or imprecise) narration of these protocols, together with the use of poorly doc-
umented features of Bitcoin (e.g., segregated witnesses, scripts, signature mod-
ifiers, temporal constraints), and the overall heterogeneity in their treatment,
pose serious obstacles to the research on smart contracts in Bitcoin.

Contributions. This paper is, at the best of our knowledge, the first systematic
survey of smart contracts on Bitcoin. In order to obtain a uniform and precise
treatment, we exploit a new formal model of contracts. Our model is based on a
process calculus with primitives to construct Bitcoin transactions, to put them
on the blockchain, and to search the blockchain for transactions matching given
patterns. Our calculus allows us to give smart contracts a precise operational se-
mantics, which describes the interactions of the (possibly dishonest) participants
involved in the execution of a contract.

We exploit our model to systematically formalise a large portion of the con-
tracts proposed so far both by researchers and Bitcoin developers. In many cases,
we find that specifying a contract with the intended security properties is sig-
nificantly more complex than expected after reading the informal descriptions
of the contract. Usually, such informal descriptions focus on the case where all
participants are honest, neglecting the cases where one needs to compensate for
some unexpected behaviour of the dishonest environment.

Overall, our work aims at building a bridge between research communities:
from that of cryptography, where smart contracts have been investigated first,
to those of programming languages and formal methods, where smart contracts

could be expressed using proper linguistic models, supporting advanced analysis
and verification techniques. We outline some promising research perspectives on
smart contracts, both in Bitcoin and in other cryptocurrencies, where the synergy
between the two communities could have a strong impact in future research.

2 Background on Bitcoin transactions

In this section we give a minimalistic introduction to Bitcoin [21,38], focussing on
the crucial notion of transaction. To this purpose, we rely on the model of Bitcoin
transactions in [11]. Here, instead of repeating the formal machinery of [11], we
introduce the needed concepts through a series of examples. We will however
follow the same notation of [11], and point to the formal definitions therein, to
allow the reader to make precise the intuitions provided in this paper.

Bitcoin is a decentralised infrastructure to securely transfer currency (the
bitcoins, B) between users. Transfers of bitcoins are represented as transactions,
and the history of all transactions is stored in a public, append-only, distributed
data structure called blockchain. Each user can create an arbitrary number of
pseudonyms through which sending and receiving bitcoins. The balance of a user
is not explicitly stored within the blockchain, but it is determined by the amount
of unspent bitcoins directed to the pseudonyms under her control, through one
or more transactions. The logic used for linking inputs to outputs is specified by
programmable functions, called scripts.

Hereafter we will abstract from a few technical details of Bitcoin, e.g. the
fact that transactions are grouped into blocks, and that each transaction must
pay a fee to the “miner” who appends it to the blockchain. We refer to [11] for a
discussion on the differences between the formal model and the actual Bitcoin.

2.1 Transactions

In their simplest form, Bitcoin transactions allow to transfer bitcoins from one
participant to another one. The only exception are the so-called coinbase trans-
actions, which can generate fresh bitcoins. Following [11], we assume that there
exists a single coinbase transaction, the first one in the blockchain. We represent
this transaction, say T0, as follows:

T0

in: ⊥
wit: ⊥
out: (λx. x < 51, 1B)

The transaction T0 has three fields. The fields in and wit are set to ⊥, meaning
that T0 does not point backwards to any other transaction (since T0 is the first
one on the blockchain). The field out contains a pair. The first element of the
pair, λx. x < 51, is a script, that given as input a value x, checks if x < 51
(this is just for didactical purposes: we will introduce more useful scripts in a
while). The second element of the pair, 1B, is the amount of currency that can
be transferred to other transactions.

Now, assume that participant A wants to redeem 1B from T0, and transfer
that amount under her control. To do this, A has to append to the blockchain a
new transaction, e.g.:

TA

in: T0

wit: 42
out: (λx.versigkA (x), 1B)

The field in points to the transaction T0 in the blockchain. To be able to
redeem from there 1B, A must provide a witness which makes the script within
T0.out evaluate to true. In this case the witness is 42, hence the redeem succeeds,
and T0 is considered spent. The script within TA .out is the most commonly used
one in Bitcoin: it verifies the signature x with A’s public key. The message against
which the signature is verified is the transaction3 which attempts to redeem TA .

Now, to transfer 1B to another participant B, A can append to the blockchain
the following transaction:

TB

in: TA

wit: sigkA (TB)

out: (λx.versigkB (x), 1B)

where the witness sigkA (TB) is A’s signature on TB (but for the wit field itself).
The ones shown above represent just the simplest cases of transactions. More

in general, a Bitcoin transaction can collect bitcoins from many inputs, and split
them between one or more outputs; further, it can use more complex scripts,
and specify time constraints on when it can be appended to the blockchain.

Following [11], hereafter we represent transactions as tuples of the form
(in,wit, out, absLock, relLock), where:

– in contains the list of inputs. An input (T, i) refers to the i-th output of
transaction T.

– wit contains the list of witnesses, of the same length as the list of inputs. For
each input (T, i) in the in list, the witness at the same index must make the
i-th output script of T evaluate to true.

– out contains the list of outputs. Each index refers to a pair (λz.e, v), where
the first component is a script, and the second is a currency value.

– absLock and relLock indicate absolute and relative time constraint on when
the transaction can be added to the blockchain.

In transaction fields, we represent a list `1 · · · `n as 1 7→ `1, . . . , n 7→ `n, or just as
`1 when n = 1. We denote with T̃v

A the canonical transaction, i.e. the transaction

with a single output of the form (λς.versigkA (ς), vB), and with all the other fields

empty (denoted with ⊥).

3 Actually, the signature is not computed on the whole redeeming transaction, but
only on a part of it, as shown in Section 2.3.

T1

in: · · ·
wit: · · ·
out: 1 7→ (λx.versigk(x), v1B)

2 7→ (λx, x′.e1, v2B)

T2

in: 1 7→ (T1, 1)
wit: 1 7→ σ1

out: 1 7→ (λx.e2, v1B)
relLock: 1 7→ t

T3

in: 1 7→ (T1, 2) 2 7→ (T2, 1)
wit: 1 7→ σ2, σ

′
2 2 7→ σ3

out: 1 7→ (λx.e3, (v1 + v2)B)
absLock: t′

Fig. 1: Three Bitcoin transactions.

Example 1. Consider the transactions in Figure 1. In T1 there are two outputs:
the first one transfers v1B to any transaction T′ which provides as witness a
signature of T′ with key k; the second output can transfer v2B to a transaction
whose witness satisfies the script e1. The transaction T2 tries to redeem v1B from
the output at index 1 of T1, by providing the witness σ1. Since T2.relLock(1) = t,
then T2 can be appended only after at least t time units have passed since the
transaction in T2.in(1) (i.e., T1) appeared on the blockchain. In T3, the input 1
refers to the output 2 of T1, and the input 2 refers to the output 1 of T2. The
witness σ2 and σ′2 are used to evaluate T1.out(2), replacing the occurrences of x
and x′ in e1. Similarly, σ3 is used to evaluate T2.out(1), replacing the occurrences
of x in e2. The transaction T3 can be put on the blockchain only after time t′. ut

2.2 Scripts

In Bitcoin, scripts are small programs written in a non-Turing equivalent lan-
guage. Whoever provides a witness that makes the script evaluate to “true”, can
redeem the bitcoins retained in the associated (unspent) output. In the abstract
model, scripts are terms of the form λz.e, where z is a sequence of variables
occurring in e, and e is an expression with the following syntax:

e ::= x | k | e+ e | e− e | e = e | e < e | if e then e else e |
|e| | H(e) | versigk(e) | absAfter t : e | relAfter t : e

Besides variables x, constants k, and basic arithmetic/logical operators, the
other expression are peculiar: |e| denotes the size, in bytes, of the evaluation of
e; H(e) evaluates to the hash of e; versigk(e) evaluates to true iff the sequence
of signatures e (say, of length m) is verified by using m out of the n keys in k.
For instance, the script λx.versigk(x) is satisfied if x is a signature on the re-
deeming transaction, verified with the key k. The expressions absAfter t : e and
relAfter t : e define absolute and relative time constraints: they evaluate as e if
the constraints are satisfied, otherwise they evaluate to false.

In Figure 2 we recap from [11] the semantics of script expressions. The func-
tion J·KT,i,ρ takes three parameters: T is the redeeming transaction, i is the index
of the redeeming witness, and ρ is a map from variables to values. We use ⊥
to represent the “failure” of the evaluation, H for a public hash function, and
size(n) for the size (in bytes) of an integer n. The function verk(σ,T, i) verifies
a sequence of signatures σ against a sequence of keys k (see Section 2.3) All the

JxKT,i,ρ = ρ(x) JkKT,i,ρ = k Je ◦ e′KT,i,ρ = JeKT,i,ρ ◦⊥ Je′KT,i,ρ (◦ ∈ {+,−,=, <})

Jif e0 then e1 else e2KT,i,ρ = if Je0KT,i,ρ then Je1KT,i,ρ else Je2KT,i,ρ

J|e|KT,i,ρ = size(JeKT,i,ρ) JH(e)KT,i,ρ = H(JeKT,i,ρ) Jversigk(e)KT,i,ρ = verk(JeKT,i,ρ,T, i)

JabsAfter t : eKT,i,ρ = if T.absLock ≥ t then JeKT,i,ρ else ⊥

JrelAfter t : eKT,i,ρ = if T.relLock(i) ≥ t then JeKT,i,ρ else ⊥

Fig. 2: Semantics of script expressions.

semantic operators used in Figure 2 are strict, i.e. they evaluate to ⊥ if some of
their operands is ⊥. We use syntactic sugar for expressions, e.g. false denotes
1 = 0, true denotes 1 = 1, while e and e′ denotes if e then e′ else false.

Example 2. Recall the transactions in Figure 1. Let e1 (the script expression
within T1.out(2)) be defined as e1 = absAfter t′ : versigk(x) and H(x′) = h, for h
and t′ constants such that T3.absLock ≥ t′. Further, let σ2 and σ′2 (the witnesses
within T3.wit(1)) be respectively sigk(T3) and s, where sigk(T3) is the signature
of T3 (excluding its witnesses) with key k, and s is a preimage of h, i.e. h = H(s).
Let ρ = {x 7→ sigk(T3), x′ 7→ s}. To redeem T1.out(2) with the witness T3.wit(1),
the script expression is evaluated as follows:

JabsAfter t′ : versigk(x) and H(x′) = hKT3,1,ρ

= Jversigk(x) and H(x′) = hKT3,1,ρ as T3.absLock ≥ t′

= Jversigk(x)KT3,1,ρ ∧ JH(x′) = hKT3,1,ρ

= verk(ρ(x),T3, 1) ∧ (JH(x′)KT3,1,ρ = JhKT3,1,ρ)

= verk(sigk(T3),T3, 1) ∧ (H(ρ(x′)) = h) as ρ(x) = sigk(T3)

= true as ρ(x′) = s ut

2.3 Transaction signatures

The signatures verified with versig never apply to the whole transaction: the
content of wit field is never signed, while the other fields can be excluded from the
signature according to some predefined patterns. To sign parts of a transaction,
we first erase the fields which we want to neglect in the signature. Technically,
we set these fields to the “null” value ⊥ using a transaction substitution.

A transaction substitution {f 7→ d} replaces the content of field f with d. If
the field is indexed (i.e., all fields but absLock), we denote with {f (i) 7→ d} the
substitution of the i-th item in field f , and with {f (6= i) 7→ d} the substitution
of all the items of field f but the i-th. For instance, to set all the elements of
the wit field of T to ⊥, we write T{wit 7→ ⊥}, and to additionally set the second
input to ⊥ we write T{wit 7→ ⊥}{in(2) 7→ ⊥}.

In Bitcoin, there exists a fixed set of transaction substitutions. We represent
them as signature modifiers, i.e. transaction substitutions which set to ⊥ the

fields which will not be signed. Signatures never apply to the whole transaction:
modifiers always discard the content of the wit, while they can keep all the
inputs or only one, and all the outputs, or only one, or none. Modifiers also
take a parameter i, which is instantiated to the index of the witness where the
signature will be included. Below we only present two signature modifiers, since
the others are not commonly used in Bitcoin smart contracts.

The modifier aai only sets the first witness to i, and the other witnesses
to ⊥ (so, all inputs and all outputs are signed). This ensures that a signature
computed for being included in the witness at index i can not be used in any
witness with index j 6= i:

aai(T) = T{wit(1) 7→ i}{wit(6= 1) 7→ ⊥}

The modifier sai removes the witnesses, and all the inputs but the one at
index i (so, a single input and all outputs are signed). Differently from aai, this
modifier discards the index i, so the signature can be included in any witness:

sai(T) = aa1(T{wit 7→ ⊥}{in(1) 7→ T.in(i)}{in(6= 1) 7→ ⊥}
{relLock(1) 7→ T.relLock(i)}{relLock(6= 1) 7→ ⊥})

Signatures carry information about which parts of the transaction are signed:
formally, they are pairs σ = (w, µ), where µ is the modifier, and w is the signature
on the transaction T modified with µ. We denote such signature as sigµ,ik (T),
where k is a key, and i is the index used by µ, if any. Verification of a signature
σ for index i is denoted by verk(σ,T, i). Formally:

sigµ,ik (T) = (sigk(µi(T)), µ) verk(σ,T, i) = verk(w, µi(T)) if σ = (w, µ)

where sig and ver are, respectively, the signing function and the verification
function of a digital signature scheme.

Multi-signature verification verk(σ,T, i) extends verification to the case where
σ is a sequence of signatures and k is a sequence of keys. Intuitively, if |σ| = m
and |k| = n, it implements a m-of-n multi-signature scheme, evaluating to true
if all the m signatures match (some of) the keys in k. The actual definition also
takes into account the order of signatures, as formalised in Definition 6 of [11].

2.4 Blockchain and consistency

Abstracting away from the fact that the actual Bitcoin blockchain is formed by
blocks of transactions, here we represent a blockchain B as a sequence of pairs
(Ti, ti), where ti is the time when Ti has been appended, and the values ti are
increasing. We say that the j-th output of the transaction Ti in the blockchain
is spent (or, for brevity, that (Ti, j) is spent) if there exists some transaction Ti′
in the blockchain (with i′ > i) and some j′ such that Ti′ .in(j′) = (Ti, j).

We now describe when a pair (T, t) can be appended to B = (T0, t0) · · · (Tn, tn).
Following [11], we say that T is a consistent update of B at time t, in symbols
B B (T, t), when the following conditions hold:

1. for each input i of T, if T.in(i) = (T′, j) then:

(a) T′ corresponds to one of the transactions in B;

(b) (T′, j) is unspent in B;

(c) the witness T.wit(i) makes the script in T′.out(j) evaluate to true;

2. the time constraints absLock and relLock in T are satisfied at time t ≥ tn;

3. the sum of the amounts of the inputs of T is greater or equal4 to the sum of
the amount of its outputs.

We assume that each transaction Ti in the blockchain is a consistent update of
the sequence of past transactions T0 · · ·Ti−1. The consistency of the blockchain
is actually ensured by the Bitcoin consensus protocol.

Example 3. Recall the transactions in Figure 1. Assume a blockchain B whose
last pair is (T1, t1) and t1 ≥ t′, while T2 and T3 are not in B.

We verify that (T2, t2) is a consistent update of B, assuming t2 = t1 + t and
that σ1 is the signature of T2 with (the private part of) key k. The only input
of T2 is (T1, 1). Conditions 1a and 1b are satisfied, since (T1, 1) is unspent in
B. Condition 1c holds because versigk(σ1) evaluates to true. Condition 2 holds:
indeed the relative timelock in T2 is satisfied because t2 − t1 ≥ t. Condition 3
holds because the amount of the input of T2, i.e. v1B, is equal to the amount
of its output. Note instead that (T3, t2) would not be a consistent update of B,
since it violates condition 1a on the second input.

Now, let B′ = B(T2, t2). We verify that (T3, t3) is a consistent update of
B′ , assuming t3 ≥ t2, e1 as in Example 2, and e2 = versigk′(x). Further, let
σ2 = sigk(T3), let σ′2 = s, and σ3 = sigk′(T3). Conditions 1a and 1b hold,

because T1 and T2 are in B′ , and the referred outputs are unspent. Condition 1c
holds because the output scripts T1.out(2) and T2.out(1) against σ2, σ

′
2 and σ3

evaluate to true. Condition 2 is satisfied at t3 ≥ t2 ≥ t1 ≥ t′. Finally, condition 3
holds because the amount (v1 + v2)B in T3.out(1) is equal to the sum of the
amounts in T1.out(2) and T2.out(1). ut

3 Modelling Bitcoin contracts

In this section we introduce a formal model of the behavior of the participants
in a contract, building upon the model of Bitcoin transactions in [11].

We start by formalising a simple language of expressions, which represent
both the messages sent over the network, and the values used in internal com-
putations made by the participants. Hereafter, we assume a set Var of variables,
and we define the set Val of values comprising constants k ∈ Z, signatures σ,
scripts λz.e, transactions T, and currency values v.

4 The difference between the amount of inputs and that of outputs is the fee paid to
the miner who publishes the transaction.

JνK = ν Jsigµ,ik (T)K = sigµ,ik (JTK) Jversigk(E,T, i)K = verk(JEK, JTK, i)

JT{f (i) 7→ E}K = JTK{f (i) 7→ JEK} J(E,E′)K = (JEK, JE′K)

JE ◦ E′K = JEK ◦ JE′K for ◦ ∈ { and , or ,+ , . . . } Jnot EK = ¬JEK

JEK = JE1K · · · JEnK if E = E1 · · ·En

Fig. 3: Semantics of contract expressions.

Definition 1 (Contract expressions). We define contract expressions through
the following syntax:

E, T ::= ν value (ν ∈ Val)

| x variable (x ∈ Var)

| sigµ,ik (T) signature (µ signature modifier)

| versigk(E,T, i) (multi) signature verification

| T{f (i) 7→ E} transaction field update

| (E,E) pair

| E and E | E or E | not E logical expressions

| E + E | · · · arithmetic expressions

where E denotes a finite sequence of expressions (i.e., E = E1 · · ·En). We define
the function J·K from (variable-free) contract expressions to values in Figure 3.
As a notational shorthand, we omit the index i in sig (resp. versig) when the
signed (resp. verified) transactions have a single input.

Intuitively, when T evaluates to a transaction T, the expression T{f (i) 7→ E}
represents the transaction obtained from T by substituting the field f (i) with
the sequence of values obtained by evaluating E. For instance, T{wit(1) 7→ σ}
denotes the transaction obtained from T by replacing the witness at index 1 with
the signature σ. Further, sigµ,ik (T) evaluates to the signature of the transaction
represented by T, and versigk(E,T, i) represents the m-of-n multi-signature veri-
fication of the transaction represented by T. Both for the signing and verification,
the parameter i represents the index where the signature will be used. We assume
a simple type system (not specified here) that rules out ill-formed expressions,
like e.g. k{wit(1) 7→ T}.

We formalise the behaviour of a participant as an endpoint protocol, i.e. a
process where the participant can perform the following actions: (i) send/re-
ceive messages to/from other participants; (ii) put a transaction on the ledger;
(iii) wait until some transactions appear on the blockchain; (iv) do some internal
computation. Note that the last kind of operation allows a participant to craft
a transaction before putting it on the blockchain, e.g. setting the wit field to her
signature, and later on adding the signature received from another participant.

Definition 2 (Endpoint protocols). Assume a set of participants (named
A, B, C, . . .). We define prefixes π, and protocols P ,Q,R, . . . as follows:

π ::= A !E send messages to A

| A ?x receive messages from A

| put T append transaction T to the blockchain

| ask T as x wait until all transactions in T are on the blockchain

| check E test condition

P ::=
∑
i∈I πi . P i guarded choice (I finite set)

| P | P parallel composition

| X(E) named process

We assume that each name X has a unique defining equation X(x) = P where
the free variables in P are included in x. We use the following syntactic sugar:

– τ , check true, the internal action;
– 0 ,

∑
∅ P , the terminated protocol (as usual, we omit trailing 0s);

– if E then P else Q , check E .P + check not E .Q;
– π1.Q1 + P ,

∑
i∈I∪{1} πi.Qi, provided that P =

∑
i∈I πi.Qi and 1 6∈ I;

– let x = E in P , P {E/x}, i.e. P where x is replaced by E.

The behaviour of protocols is defined in terms of a LTS between systems, i.e.
the parallel composition of the protocols of all participants, and the blockchain.

Definition 3 (Semantics of protocols). A system S is a term of the form
A1[P 1] | · · · | An[Pn] | (B, t), where (i) all the Ai are distinct; (ii) there exists a
single component (B, t), representing the current state of the blockchain B, and
the current time t; (iii) systems are up-to commutativity and associativity of |.
We define the relation −→ between systems in Figure 4, where matchB(T) is the
set of all the transactions in B that are equal to T, except for the witnesses.
When writing S | S ′ we intend that the conditions above are respected.

Intuitively, a guarded choice
∑
i πi.P i can behave as one of the branches

P i. A parallel composition P |Q executes concurrently P and Q. All the rules
(except the last two) specify how a protocol (π.P + Q) | R evolves within a
system. Rule [Com] models a message exchange between A and B: participant A
sends messages E, which are received by B on variables x. Communication is
synchronous, i.e. A is blocked until B is ready to receive. Rule [Check] allows the
branch P of a sum to proceed if the condition represented by E is true. Rule [Put]

allows A to append a transaction to the blockchain, provided that the update
is consistent. Rule [Ask] allows the branch P of a sum to proceed only when the
blockchain contains some transactions T′1 · · ·T′n obtained by instantiating some
⊥ fields in T (see Section 2). This form of pattern matching is crucial because
the value of some fields (e.g., wit), may not be known at the time the protocol
is written. When the ask prefix unblocks, the variables x in P are bound to

A[B !E. P +R |Q] | B[A ?x. P ′ +R′ |Q′] | S −→ A[P |Q] | B[P ′{JEK/x} |Q′] | S [Com]

JEK = true

A[check E .P +R |Q] | S −→ A[P |Q] | S [Check]

JTK = T B B (T, t)

A[put T. P +R |Q] | S | (B, t) −→ A[P |Q] | S | (B(T, t), t)
[Put]

JT K = T1 · · ·Tn ∀i ∈ 1..n : matchB(Ti) = T′i 6= ⊥
A[ask T as x. P +R |Q] | S | (B, t) −→ A[P {T′

1···T
′
n/x} |Q] | S | (B, t)

[Ask]

X(x) = P A[P {JEK/x} |Q] | S −→ S ′

A[X(E) |Q] | S −→ S ′
[Def]

t′ > 0

S | (B, t)
t′
−→ S ′ | (B, t + t′)

[Delay]

Fig. 4: Semantics of endpoint protocols.

T

in: (TA , 1)
wit: ⊥
out: (λςς ′.versigkAkB (ςς ′), 1B)

T′A
in: (T, 1)
wit: ⊥
out: (λς.versigkA (ς), 1B)

T′B
in: (T, 1)
wit: ⊥
out: (λς.versigkB (ς), 1B)

Fig. 5: Transactions of the näıve escrow contract.

T′1 · · ·T′n , so making it possible to inspect their actual fields. Rule [Def] allows a
named process X(E) to evolve as P , assuming a defining equation X(x) = P .
The variables x in P are substituted with the results of the evaluation of E.
Such defining equations can be used to specify recursive behaviours. Finally,
rule [Delay] allows time to pass5.

Example 4 (Näıve escrow). A buyer A wants to buy an item from the seller
B, but they do not trust each other. So, they would like to use a contract to
ensure that B will get paid if and only if A gets her item. In a näıve attempt to
realise this, they use the transactions in Figure 5, where we assume that (TA , 1)
used in T.in, is a transaction output redeemable by A through her key kA . The
transaction T makes A deposit 1B, which can be redeemed by a transaction
carrying the signatures of both A and B. The transactions T′A and T′B redeem
T, transferring the money to A or B, respectively.

The protocols of A and B are, respectively, PA and QB :

PA = put T{wit 7→ sigaakA (T)}. P ′

P ′ = τ.B ! sigaakA (T′B) + τ.B ?x. put T′A{wit 7→ sigaakA (T′A)x}

QB = ask T.
(
τ.A ?x. put T′B{wit 7→ x sigaakB (T′B)} + τ.A ! sigaakB (T′A)

)
5 To keep our presentation simple, we have not included time-constraining operators

in endpoint protocols. In case one needs a finer-grained control of time, well-known
techniques [39] exist to extend a process algebra like ours with these operators.

First, A adds her signature to T, and puts it on the blockchain. Then, she in-
ternally chooses whether to unblock the deposit for B or to request a refund.
In the first case, A sends sigaakA (T′B) to B. In the second case, she waits to re-

ceive the signature sigaakB (T′A) from B (saving it in the variable x); afterwards,

she puts T′A on the blockchain (after setting wit) to redeem the deposit. The
seller B waits to see T on the blockchain. Then, he chooses either to receive the
signature sigaakA (T′B) from A (and then redeem the payment by putting T′B on the

blockchain), or to refund A, by sending his signature sigaakB (T′A).

This contract is not secure if either A or B are dishonest. On the one hand, a
dishonest A can prevent B from redeeming the deposit, even if she had already
received the item (to do that, it suffices not to send her signature, taking the
rightmost branch in P ′). On the other hand, a dishonest B can just avoid to
send the item and the signature (taking the leftmost branch in QB): in this way,
the deposit gets frozen. For instance, let S = A[PA] | B[QB] | (B, t), where B
contains TA unredeemed. The scenario where A has never received the item,
while B dishonestly attempts to receive the payment, is modelled as follows:

S −→ A[P ′] | B[QB] | (B(T, t), t)

−→ A[P ′] | B[τ.A ?x. put T′B{wit 7→ x sigaakB (T′B)} + τ.A ! sigaakB (T′A)] | · · ·

−→ A[B ?x. put T′A{wit 7→ sigaakA (T′A)x}] | B[A ?x. put T′B{wit 7→ x sigaakB (T′B)}] | · · ·

At this point the computation is stuck, because both A and B are waiting a
message from the other participant. We will show in Section 4.3 how to design
a secure escrow contract, with the intermediation of a trusted arbiter.

4 A survey of smart contracts on Bitcoin

We now present a comprehensive survey of smart contracts on Bitcoin, compris-
ing those published in the academic literature, and those found online. To this
aim we exploit the model of computation introduced in Section 3. Remarkably,
all the following contracts can be implemented by only using so-called standard
transactions6, e.g. via the compilation technique in [11]. This is crucial, because
non-standard transactions are currently discarded by the Bitcoin network.

4.1 Oracle

In many concrete scenarios one would like to make the execution of a contract
depend on some real-world events, e.g. results of football matches for a betting
contract, or feeds of flight delays for an insurance contract. However, the evalua-
tion of Bitcoin scripts can not depend on the environment, so in these scenarios
one has to resort to a trusted third-party, or oracle [2,19], who notifies real-world
events by providing signatures on certain transactions.

For example, assume that A wants to transfer vB to B only if a certain
event, notified by an oracle O, happens. To do that, A puts on the blockchain

6 https://bitcoin.org/en/developer-guide#standard-transactions

https://bitcoin.org/en/developer-guide#standard-transactions

T

in: (TA , 1)
wit: sigaakA (T)

out: (λςς ′.versigkBkO (ςς ′), vB)

T′B
in: (T, 1)
wit: ⊥
out: (λς.versigkB (ς), vB)

Fig. 6: Transactions of a contract relying on an oracle.

the transaction T in Figure 6, which can be redeemed by a transactions carrying
the signatures of both B and O. Further, A instructs the oracle to provide his
signature to B upon the occurrence of the expected event.

We model the behaviour of B as the following protocol:

PB = O ?x. put T′B{wit 7→ sigaakB (T′B)x}

Here, B waits to receive the signature sigaakO (T′B) from O, then he puts T′B on the

blockchain (after setting its wit) to redeem T. In practice, oracles like the one
needed in this contract are available as services in the Bitcoin ecosystem7.

Notice that, in case the event certified by the oracle never happens, the vB
within T are frozen forever. To avoid this situation, one can add a time constraint
to the output script of T, e.g. as in the transaction Tbond in Figure 10.

4.2 Crowdfunding

Assume that the curator C of a crowdfunding campaign wants to fund a venture
V by collecting vB from a set {Ai}i∈I of investors. The investors want to be
guaranteed that either the required amount vB is reached, or they will be able
to redeem their funds. To this purpose, C can employ the following contract. She
starts with a canonical transaction T̃v

V (with empty in field) which has a single

output of vB to be redeemed by V. Intuitively, each Ai can invest money in the
campaign by “filling in” the in field of the T̃v

V with a transaction output under
their control. To do this, Ai sends to C a transaction output (Ti, ji), together
with the signature σi required to redeem it. We denote with val(Ti, ji) the value

of such output. Notice that, since the signature σi has been made on T̃v
V , the

only valid output is the one of vB to be redeemed by V. Upon the reception
of the message from Ai, C updates T̃v

V : the provided output is appended to
the in field, and the signature is added to the corresponding wit field. If all the
outputs (Ti, ji) are distinct (and not redeemed) and the signatures are valid,

when
∑
i val(Ti, ji) ≥ v the filled transaction T̃v

V can be put on the blockchain.

If C collects v′ > vB, the difference v′ − v goes to the miners as transaction fee.

The endpoint protocol of the curator is defined as X(T̃v
V , 1, 0), where:

X(x, n, d) = if d < v then P else put x

P =
∑
i Ai ? (y, j, σ).X(x{in(n) 7→ (y, j)}{wit(n) 7→ σ}, n+ 1, d+ val(y, j))

7 For instance, https://www.oraclize.it and https://www.smartcontract.com/

https://www.oraclize.it
https://www.smartcontract.com/

T

in: (TA , 1)
wit: ⊥
out: (λςς ′.versigkAkBkC (ςς ′), 1B)

T′AB(z)

in: (T, 1)
wit: ⊥
out: 1 7→ (λς.versigkA (ς), zB), 2 7→ (λς.versigkB (ς), (1− z)B)

Fig. 7: Transactions of the escrow contract.

while the protocol of each investor Ai is the following:

PAi
= C ! (Ti, ji, sig

sa,1
kAi

(T̃v
V{in(1) 7→ (Ti, ji)}))

Note that the transactions sent by investors are not known a priori, so they
cannot just create the final transaction and sign it. Instead, to allow C to com-
plete the transaction T̃v

V without invalidating the signatures, they compute them
using the modifier sa1. In this way, only a single input is signed, and when veri-
fying the corresponding signature, the others are neglected.

4.3 Escrow

In Example 4 we have discussed a näıve escrow contract, which is secure only if
both the buyer A and the seller B are honest (so making the contract pointless).
Rather, one would like to guarantee that, even if either A or B (or both) are
dishonest, exactly one them will be able to redeem the money: in case they
disagree, a trusted participant C, who plays the role of arbiter, will decide who
gets the money (possibly splitting the initial deposit in two parts) [1, 19].

The output script of the transaction T in Figure 7 is a 2-of-3 multi-signature
schema. This means that T can be redeemed either with the signatures A and B
(in case they agree), or with the signature of C (with key kC) and the signature
of A or that of B (in case they disagree). The transaction T′AB(z) in Figure 7
allows the arbiter to issue a partial refund of zB to A, and of (1 − z)B to B.
Instead, to issue a full refund to either A or B, the arbiter signs, respectively,
the transactions T′A = T̃1B

A {in(1) 7→ (T, 1)} or T′B = T̃1B
B {in(1) 7→ (T, 1)} (not

shown in the figure). The protocols of A and B are similar to those in Example 4,
except for the part where they ask C for an arbitration:

PA = put T{wit 7→ sigaakA (T)}. (τ.B ! sigaakA (T′B) + τ.P ′)

P ′ =
(
B ?x. (put T′A{wit 7→ sigaakA (T′A)x}+ P ′′)

)
+ P ′′

P ′′ = C ? (z, x).
(
check z = 1 . put T′A{wit 7→ sigaakA (T′A)x}

+ check 0 < z < 1 .
(
put T′AB(z){wit 7→ sigaakA (T′AB(z))x}+ τ.0

)
+ check z = 0 .0

)
In the summation within PA , participant A internally chooses whether to

send her signature to B (so allowing B to redeem 1B via T′B), or to proceed with
P ′. There, A waits to receive either B’s signature (which allows A to redeem 1B

TAB

in: (TA , vC)
wit: ⊥
out: (λςς ′.versigkAkB (ςς ′), (vB + vC)B)

TBC

in: (TAB , 1)
wit: ⊥
out: 1 7→ (λς.versigkB (ς), vBB), 2 7→ (λς.versigkC (ς), vCB)

Fig. 8: Transactions of the intermediated payment contract.

by putting T′A on the blockchain), or a response from the arbiter, in the process
P ′′. The three cases in the summation of check in P ′′ correspond, respectively,
to the case where A gets a full refund (z = 1), a partial refund (0 < z < 1), or
no refund at all (z = 0).

The protocol for B is dual to that of A:

QB = ask T. (τ.A ! sigaakB (T′A) + τ.Q′)

Q′ =
(
A ?x. (put T′B{wit 7→ x sigaakB (T′B)}+Q′′)

)
+ Q′′

Q′′ = C ? (z, x).
(
check z = 0 . put T′B{wit 7→ sigaakB (T′B)x}

+ check 0 < z < 1 .
(
put T′AB(z){wit 7→ sigaakB (T′AB(z))x}+ τ.0

)
+ check z = 1 .0

)
If an arbitration is requested, C internally decides (through the τ actions)

who between A and B can redeem the deposit in T, by sending its signature to
one of the two participants, or decide for a partial refund of z and 1−z bitcoins,
respectively, to A and B, by sending its signature on T′AB to both participants:

RC = ask T.
(
τ.A ! (1, sigaakC (T′A)) + τ.B ! (1, sigaakC (T′B)) + τ.RAB

)
RAB =

∑
0<z<1 τ.

(
A ! (z, sigaakC (T′AB(z))) | B ! (z, sigaakC (T′AB(z)))

)
Note that, in the unlikely case where both A and B choose to send their

signature to the other participant, the 1B deposit becomes “frozen”. In a more
concrete version of this contract, a participant could keep listening for the sig-
nature, and attempt to redeem the deposit when (unexpectedly) receiving it.

4.4 Intermediated payment

Assume that A wants to send an indirect payment of vCB to C, routing it through
an intermediary B who retains a fee of vB < vC bitcoins. Since A does not trust
B, she wants to use a contract to guarantee that: (i) if B is honest, then vCB
are transferred to C; (ii) if B is not honest, then A does not lose money. The
contract uses the transactions in Figure 8: TAB transfers (vB +vC)B from A to B,
and TBC splits the amount to B (vBB) and to C (vCB). We assume that (TA , 1)
is a transaction output redeemable by A. The behaviour of A is as follows:

PA = (B ?x. if versigkB (x,TBC) then P ′ else 0) + τ

P ′ = put TAB{wit 7→ sigaakA (TAB)}. put TBC{wit 7→ sigaakA (TBC)x}

Tcom

in: (TA , 1)
wit: ⊥

out:
(λxςς ′.(versigkA (ς) and H(x) = h)

or versigkAkB (ςς ′), vB)

Topen

in: (Tcom , 1)
wit: ⊥
out: (λς.versigkA (ς), vB)

Tpay

in: (Tcom , 1)
wit: ⊥
out: (λς.versigkB (ς), vB)

relLock: t

Fig. 9: Transactions of the timed commitment.

Here, A receives from B his signature on TBC , which makes it possible to
pay C later on. The τ branch and the else branch ensure that A will correctly
terminate also if B is dishonest (i.e., B does not send anything, or he sends an
invalid signature). If A receives a valid signature, she puts TAB on the blockchain,
adding her signature to the wit field. Then, she also appends TBC , adding to
the wit field her signature and B’s one. Since A takes care of publishing both
transactions, the behaviour of B consists just in sending his signature on TBC .
Therefore, B’s protocol can just be modelled as QB = A ! sigaakB (TBC).

This contract relies on SegWit. In Bitcoin without SegWit, the identifier of
TAB is affected by the instantiation of the wit field. So, when TAB is put on the
blockchain, the input in TBC (which was computed before) does not point to it.

4.5 Timed commitment

Assume that A wants to choose a secret s, and reveal it after some time — while
guaranteeing that the revealed value corresponds to the chosen secret (or paying
a penalty otherwise). This can be obtained through a timed commitment [20], a
protocol with applications e.g. in gambling games [25, 28, 42], where the secret
contains the player move, and the delay in the revelation of the secret is intended
to prevent other players from altering the outcome of the game. Here we formalise
the version of the timed commitment protocol presented in [8].

Intuitively, A starts by exposing the hash of the secret, i.e. h = H(s), and at
the same time depositing some amount vB in a transaction. The participant B
has the guarantee that after t time units, he will either know the secret s, or he
will be able to redeem vB.

The transactions of the protocol are shown in Figure 9, where we assume
that (TA , 1) is a transaction output redeemable by A. The behaviour of A is
modelled as the following protocol:

PA = put Tcom{wit 7→ sigaakA (Tcom)}.B ! sigaakA (Tpay). P ′

P ′ = τ . put Topen{wit 7→ s sigaakA (Topen) ⊥} + τ

Participant A starts by putting the transaction Tcom on the blockchain. Note
that within this transaction A is committing the hash of the chosen secret:
indeed, h is encoded within the output script Tcom .out. Then, A sends to B her
signature on Tpay . Note that this transaction can be redeemed by B only when t
time units have passed since Tcom has been published on the blockchain, because

Tbond

in: (TA , 1)
wit: ⊥
out: (λςς ′.versigkAkB (ςς ′) or

relAfter t : versigkA (ς), kB)

Tpay(v)

in: (Tbond , 1)
wit: ⊥

out:
1 7→ (λς.versigkA (ς), (k − v)B)

2 7→ (λς.versigkC (ς), vB)

Tref

in: (Tbond , 1)
wit: ⊥
out: (λς.versigkA (ς), vB)

relLock: t

Fig. 10: Transactions of the micropayment channel contract.

of the relative timelock declared in Tpay .relLock. After sending her signature
on Tpay , A internally chooses whether to reveal the secret, or do nothing (via the
τ actions). In the first case, A must put the transaction Topen on the blockchain.
Since it redeems Tcom , she needs to write in Topen .wit both the secret s and her
signature, so making the former public.

A possible behaviour of the receiver B is the following:

QB =
(
A ?x. if versigkA (x,Tpay) then Q else 0

)
+ τ

Q = put Tpay{wit 7→ ⊥ x sigaakB (Tpay)}+ ask Topen as o.Q′(getsecret(o))

In this protocol, B first receives from A (and saves in x) her signature on
the transaction Tpay . Then, B checks if the signature is valid: if not, he aborts
the protocol. Even if the signature is valid, B cannot put Tpay on the blockchain
and redeem the deposit immediately, since the transaction has a timelock t.
Note that B cannot change the timelock: indeed, doing so would invalidate A’s
signature on Tpay . If, after t time units, A has not published Topen yet, B can
proceed to put Tpay on the blockchain, writing A’s and his own signatures in the
witness. Otherwise, B retrieves Topen from the blockchain, from which he can
obtain the secret, and use it in Q′.

A variant of this contract, which implements the timeout in Tcom .out, and
does not require the signature exchange, is used in Section 4.7.

4.6 Micropayment channels

Assume that A wants to make a series of micropayments to B, e.g. a small fraction
of B every few minutes. Doing so with one transaction per payment would result
in conspicuous fees8, so A and B use a micropayment channel contract [29]. A
starts by depositing kB; then, she signs a transaction that pays vB to B and
(k − v)B back to herself, and she sends that transaction to B. Participant B
can choose to publish that transaction immediately and redeem its payment, or
to wait in case A sends another transaction with increased value. A can stop
sending signatures at any time. If B redeems, then A can get back the remaining
amount. If B does not cooperate, A can redeem all the amount after a timeout.

The protocol of A is the following (the transactions are in Figure 10). A pub-
lishes the transaction Tbond , depositing kB that can be spent with her signature

8 https://bitinfocharts.com/comparison/bitcoin-transactionfees.html

https://bitinfocharts.com/comparison/bitcoin-transactionfees.html

and that of B, or with her signature alone, after time t. A can redeem the de-
posit by publishing the transaction Tref . To pay for the service, A sends to B
the amount v she is paying, and her signature on Tpay(v). Then, she can decide
to increase v and recur, or to terminate.

PA = put Tbond{wit 7→ sigaakA (Tbond)}. (P (1) | put Tref {wit 7→ sigaakA (Tref)})

P (v) = B ! (v, sigaakA (Tpay(v))). (τ + τ.P (v + 1))

The participant B waits for Tbond to appear on the blockchain, then receives
the first value v and A’s signature σ. Then, B checks if σ is valid, otherwise he
aborts the protocol. At this point, B waits for another pair (v′, σ′), or, after a
timeout, he redeems vB using Tpay(v).

QB = ask Tbond .A ? (v, σ). if versigkA (σ,Tpay(v)) then P ′(v, σ) else τ

P ′(v, σ) = τ.P pay(v, σ) +

A ? (v′, σ′). if v′ > v and versigkA (σ′,Tpay(v′)) then P ′(v′, σ′) else P ′(v, σ)

P pay(v, σ) = put Tpay(v){wit 7→ σ sigaakB (Tpay(v))}

Note that QB should redeem Tpay before the timeout expires, which is not
modelled in QB . This could be obtained by enriching the calculus with time-
constraining operators (see Footnote 5).

4.7 Fair lotteries

A multiparty lottery is a protocol where N players put their bets in a pot,
and a winner — uniformly chosen among the players — redeems the whole
pot. Various contracts for multiparty lotteries on Bitcoin have been proposed
in [8, 9, 12, 14, 16, 36]. These contracts enjoy a fairness property, which roughly
guarantees that: (i) each honest player will have (on average) a non-negative
payoff, even in the presence of adversaries; (ii) when all the players are honest,
the protocol behaves as an ideal lottery: one player wins the whole pot (with
probability 1/N), while all the others lose their bets (with probability N−1/N).

Here we illustrate the lottery in [8], for N = 2. Consider two players A and
B who want to bet 1B each. Their protocol is composed of two phases. The first
phase is a timed commitment (as in Section 4.5): each player chooses a secret
(sA and sB) and commits its hash (hA = H(sA) and hB = H(sB)). In doing that,
both players put a deposit of 2B on the ledger, which is used to compensate the
other player in case one chooses not to reveal the secret later on. In the second
phase, the two bets are put on the ledger. After that, the players reveal their
secrets, and redeem their deposits. Then, the secrets are used to compute the
winner of the lottery in a fair manner. Finally, the winner redeems the bets.

The transactions needed for this lottery are displayed in Figure 11 (we only
show A’s transactions, as those of B are similar). The transactions for the com-
mitment phase (Tcom ,Topen ,Tpay) are similar to those in Section 4.5: they only
differ in the script of Tcom .out, which now also checks that the length of the

TAcom(hA)

in: (TAdep , 1)
wit: ⊥

out:

(λxς.(versigkA (ς) and H(x) = hA

and (|x| = 128 or |x| = 129))
or absAfter t : versigkB (ς), 2B)

Tlottery(hA , hB)

in: 1 7→ (TAbet , 1), 2 7→ (TBbet , 1)
wit: ⊥

out:

(λςxy.H(x) = hA and H(y) = hB and
(|x| = 128 or |x| = 129) and (|y| = 128 or |y| = 129)
and if |x| = |y| then versigkA (ς) else versigkB (ς), 2B)

TAopen(hA)

in: (TAcom(hA), 1)
wit: ⊥
out: (λς.versigkA (ς), 2B)

TApay(hA)

in: (TAcom(hA), 1)
wit: ⊥
out: (λς.versigkB (ς), 2B)

absLock: t

TAwin(hA , hB)

in: (Tlottery(hA , hB), 1)
wit: ⊥
out: (λς.versigkA (ς), 2B)

Fig. 11: Transactions of the fair lottery with deposit.

secret is either 128 or 129. This check forces the players to choose their secret so
that it has one of these lengths, and reveal it (using Topen) before the absLock
deadline, since otherwise they will lose their deposits (enabling Tpay).

The bets are put using Tlottery , whose output script computes the winner
using the secrets, which can then be revealed. For this, the secret lengths are
compared: if equal, A wins, otherwise B wins. In this way, the lottery is equiv-
alent to a coin toss. Note that, if a malicious player chooses a secret having
another length than 128 or 129, the Tlottery transaction will become stuck, but
its opponent will be compensated using the deposit.

The endpoint protocol PA of player A follows (the one for B is similar):

PA = put TAcom{wit 7→ sigaakA (TAcom)}.
(
ask TBcom as y. P ′ + τ.P open

)
P ′ = let hB = gethash(y) in if hB 6= hA then P pay | P ′′ else P pay | P open
P ′′ = B ?x. P ′′′ + τ.P open

P ′′′ = let σ = sigaa,1kA
(Tlottery(hA , hB)) in(

put Tlottery(hA , hB){wit(1) 7→ σ}{wit(2) 7→ x}. (P open | Pwin)
)

+ τ.P open

P pay = put TBpay{wit 7→ ⊥ sigaakA (TBpay)}

P open = put TAopen{wit 7→ sA sigaakA (TAopen)}

Pwin = ask TBopen as z. put TAwin(hA , hB){wit 7→ sigaakA (TAwin(hA , hB)) sA getsecret(z)}

Player A starts by putting TAcom on the blockchain, then she waits for B
doing the same. If B does not cooperate, A can safely abort the protocol taking
its τ.P open branch, so redeeming her deposit with TAopen (as usual, here with τ
we are modelling a timeout). If B commits his secret, A executes P ′, extracting
the hash hB of B’s secret, and checking whether it is distinct from hA . If the
hashes are found to be equal, A aborts the protocol using P open. Otherwise, A
runs P ′′ | P pay. The P pay component attempts to redeem B’s deposit, as soon
as the absLock deadline of TBpay expires, forcing B to timely reveal his secret.
Instead, P ′′ proceeds with the lottery, asking B for his signature of Tlottery . If B
does not sign, A aborts using P open. Then, A runs P ′′′, finally putting the bets

Tcp(h)

in: (TA , 1)
wit: ⊥

out:
(λxς.(versigkB (ς) and H(x) = h)

or relAfter t : versigkA (ς), vB)

Topen(h)

in: (Tcp(h), 1)
wit: ⊥
out: (λς.versigkB (ς), vB)

Trefund(h)

in: (Tcp(h), 1)
wit: ⊥
out: (λς.versigkA (ς), vB)

relLock: t

Fig. 12: Transactions of the contingent payment.

(Tlottery) on the ledger. If this is not possible (e.g., because one of the Tbet is
already spent), A aborts using P open. After Tlottery is on the ledger, A reveals
her secret and redeems her deposit with P open. In parallel, with Pwin she waits
for the secret of B to be revealed, and then attempts to redeem the pot (TAwin).

The fairness of this lottery has been established in [8]. This protocol can be
generalised to N > 2 players [8,9] but in this case the deposit grows quadratically
with N . The works [14, 36] have proposed fair multiparty lotteries that require,
respectively, zero and constant (≥ 0) deposit. More precisely, [36] devises two
variants of the protocol: the first one only relies on SegWit, but requires each
player to statically sign O(2N) transactions; the second variant reduces the num-
ber of signatures to O(N2), at the cost of introducing a custom opcode. Also the
protocol in [14] assumes an extension of Bitcoin, i.e. the malleability of in fields,
to obtain an ideal fair lottery with O(N) signatures per player (see Section 5).

4.8 Contingent payments

Assume a participant A who wants to pay vB to receive a value s which makes
a public predicate p true, where p(s) can be verified efficiently. A seller B who
knows such s is willing to reveal it to A, but only under the guarantee that he
will be paid vB. Similarly, the buyer wants to pay only if guaranteed to obtain s.

A näıve attempt to implement this contract in Bitcoin is the following: A
creates a transaction T such that T.out(ς, x) evaluates to true if and only if p(x)
holds and ς is a signature of B. Hence, B can redeem vB from T by revealing s.
In practice, though, this approach is arguably useful, since it requires coding p
in the Bitcoin scripting language, whose expressiveness is quite limited.

More general contingent payment contracts can be obtained by exploiting
zero-knowledge proofs [13,24,35]. In this setting, the seller generates a fresh key
k, and sends to the buyer the encryption es = Ek(s), together with the hash
hk = H(k), and a zero-knowledge proof guaranteeing that such messages have
the intended form. After verifying this proof, A is sure that B knows a preimage
k′ of hk (by collision resistance, k′ = k) such that Dk′(es) satisfies the predicate
p, and so she can buy the preimage k of hk with the näıve protocol, so obtaining
the solution s by decrypting es with k.

The transactions implementing this contract are displayed in Figure 12. The
relAfter clause in Tcp allows A to redeem vB if no solution is provided by the

deadline t. The behaviour of the buyer A can be modelled as follows:

PA = B ? (es, hk, z). P + τ

P = if verify(es, hk, z) then put Tcp(hk){wit 7→ sigaakA (Tcp(hk))}. P ′ else 0

P ′ = ask Topen(hk) as x. P ′′(Dgetk(x)
(es)) +

put Trefund(hk){wit 7→ ⊥ sigaakA (Trefund(hk))})

Upon receiving es, hk and the proof z9 the buyer verifies z. If the verification
succeeds, A puts Tcp(hk) on the blockchain. Then, she waits for Topen , from
which she can retrieve the key k, and so use the solution Dgetk(x)

(es) in P ′′. In
this way, B can redeem vB. If B does not put Topen , after t time units A can get
her deposit back through Trefund . The protocol of B is simple, so it is omitted.

5 Research challenges and perspectives

Extensions to Bitcoin. The formal model of smart contracts we have pro-
posed is based on the current mechanisms of Bitcoin; indeed, this makes it possi-
ble to translate endpoint protocols into actual implementations interacting with
the Bitcoin blockchain. However, constraining smart contracts to perfectly ad-
here to Bitcoin greatly reduces their expressiveness. Indeed, the Bitcoin scripting
language features a very limited set of operations10, and over the years many
useful (and apparently harmless) opcodes have been disabled without a clear
understanding of their alleged insecurity11. This is the case e.g., of bitwise logic
operators, shift operators, integer multiplication, division and modulus.

For this reason some developers proposed to re-enable some disabled op-
codes12, and some works in the literature proposed extensions to the Bitcoin
scripting language so to enhance the expressiveness of smart contracts.

A possible extension is covenants [37], a mechanism that allows an output
script to constrain the structure of the redeeming transaction. This is obtained
through a new opcode, called CHECKOUTPUTVERIFY, which checks if a given out of
the redeeming transaction matches a specific pattern. Covenants are also studied
in [41], where they are implemented using the opcode CAT (currently disabled)
and a new opcode CHECKSIGFROMSTACK which verifies a signature against an
arbitrary bitstring on the stack. In both works, covenants can also be recursive,
e.g. a covenant can check if the redeeming transaction contains itself. Using
recursive covenants allows to implement a state machine through a sequence of
transactions that store its state.

9 For simplicity, here we model the zero-knowledge proof as a single message. More
concretely, it should be modelled as a sub-protocol.

10 https://en.bitcoin.it/wiki/Script
11 https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-

2010-5141
12 https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-May/

014356.html

https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2010-5141
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2010-5141
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-May/014356.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-May/014356.html

Secure cash distribution with penalties [8, 16, 32] is a cryptographic primi-
tive which allows a set of participants to make a deposit, and then provide in-
puts to a function whose evaluation determines how the deposits are distributed
among the participants. This primitive guarantees that dishonest participants
(who, e.g., abort the protocol after learning the value of the function) will pay a
penalty to the honest participants. This primitive does not seem to be directly
implementable in Bitcoin, but it becomes so by extending the scripting language
with the opcode CHECKSIGFROMSTACK discussed above. Secure cash distribution
with penalties can be instantiated to a variety of smart contracts, e.g. lotter-
ies [8] poker [32], and contingent payments. The latter smart contract can also
be obtained through the opcode CHECKKEYPAIRVERIFY in [24], which checks if
the two top elements of the stack are a valid key pair.

Another new opcode, called MULTIINPUT [36] consumes from the stack a
signature σ and a sequence of in values (T1, j1) · · · (Tn, jn), with the following
two effects: (i) it verifies the signature σ against the redeeming transaction T,
neglecting T.in; (ii) it requires T.in to be equal to some of the Ti. Exploiting this
opcode, [36] devise a fair N -party lottery which requires zero deposit, and O(N2)
off-chain signed transaction. The first one of these effects can be alternatively
obtained by extending, instead of the scripting language, the signature modifiers.
More specifically, [14] introduces a new signature modifier, which can set to ⊥
all the inputs of a transaction (i.e., no input is signed). In this way they obtain
a fair multi-party lottery with similar properties to the one in [36].

Another way improve the expressiveness of smart contracts is to replace the
Bitcoin scripting language, e.g. with the one in [40]. This would also allow to
establish bounds on the computational resources needed to run scripts.

Unfortunately, none of the proposed extensions has been yet included in the
main branch of the Bitcoin Core client, and nothing suggests that they will be
considered in the near future. Indeed, the development of Bitcoin is extremely
conservative, as any change to its protocol requires an overwhelming consensus
of the miners. So far, new opcodes can only be empirically assessed through the
Elements alpha project13, a testnet for experimenting new Bitcoin features. A
significant research challenge would be that of formally proving that new opcodes
do not introduce vulnerabilities, exploitable e.g. by Denial-of-Service attacks. For
instance, unconstrained uses of the opcode CAT may cause an exponential space
blow-up in the verification of transactions.

Formal methods for Bitcoin smart contracts. As witnessed in Section 4,
designing secure smart contracts on Bitcoin is an error-prone task, similarly to
designing secure cryptographic protocols. The reason lies in the fact that, to de-
vise a secure contract, a designer has to anticipate any possible (mis-)behaviour
of the other participants. The side effect is that endpoint protocols may be quite
convoluted, as they must include compensations at all the points where some-
thing can go wrong. Therefore, tools to automate the analysis and verification
of smart contracts may be of great help.

13 https://elementsproject.org/elements/opcodes/

https://elementsproject.org/elements/opcodes/

Recent works [7] propose to verify Bitcoin smart contracts by modelling the
behaviour of participants as timed automata, and then using UPPAAL [15] to
check properties against an attacker. This approach correctly captures the time
constraints within the contracts. The downside is that encoding this UPPAAL
model into an actual implementation with Bitcoin transactions is a complex task.
Indeed, a designer without a deep knowledge of Bitcoin technicalities is likely
to produce an UPPAAL model that can not be encoded in Bitcoin. A relevant
research challenge is to study specification languages for Bitcoin contracts (like
e.g. the one in Section 3), and techniques to automatically encode them in a
model that can be verified by a model checker.

Remarkably, the verification of security properties of smart contracts requires
to deal with non-trivial aspects, like temporal constraints and probabilities. This
is the case, e.g., for the verification of fairness of lotteries (like e.g. the one
discussed in Section 4.7); a further problem is that fairness must hold against any
adversarial strategy. It is not clear whether in this case it is sufficient to consider
a “most powerful” adversary, like e.g. in the symbolic Dolev-Yao model. In case
a contract is not secure against arbitrary (PTIME) adversaries, one would like
to verify that, at least, it is secure against rational ones [27], which is a relevant
research issue. Additional issues arise when considering more concrete models
of the Bitcoin blockchain, respect to the one in Section 2. This would require
to model forks, i.e. the possibility that a recent transaction is removed from the
blockchain. This could happen with rational (but dishonest) miners [33].

DSLs for smart contracts. As witnessed in Section 4, modelling Bitcoin
smart contracts is complex and error-prone. A possible way to address this com-
plexity is to devise high-level domain-specific languages (DSLs) for contracts,
to be compiled in low-level protocols (e.g., the ones in Section 3). Indeed, the
recent proliferation of non-Turing complete DSLs for smart contracts [18,22,26]
suggests that this is an emerging research direction.

A first proposal of an high-level language implemented on top of Bitcoin is
Typecoin [23]. This language allows to model the updates of a state machine as
affine logic propositions. Users can “run” this machine by putting transactions
on the Bitcoin blockchain. The security of the blockchain guarantees that only
the legit updates of the machine can be triggered by users. A downside of this
approach is that liveness is guaranteed only by assuming cooperation among the
participants, i.e., a dishonest participant can make the others unable to complete
an execution. Note instead that the smart contracts in Section 4 allow honest
participants to terminate, regardless of the behaviours of the environment. In
some cases, e.g. in the lottery in Section 4.7, abandoning the contract may even
result in penalties (i.e., loss of the deposit paid upfront to stipulate the contract).

Acknowledgments. This work is partially supported by Aut. Reg. of Sardinia
project P.I.A. 2013 “NOMAD”. Stefano Lande gratefully acknowledges Sardinia
Regional Government for the financial support of his PhD scholarship (P.O.R.
Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia,
European Social Fund 2014-2020).

References

1. Bitcoin developer guide - escrow and arbitration. https://goo.gl/8XL5Fn
2. Bitcoin wiki - contracts - using external state. https://en.bitcoin.it/wiki/

Contract#Example_4:_Using_external_state
3. Understanding the DAO attack (June 2016), http://www.coindesk.com/

understanding-dao-hack-journalists/
4. Parity Wallet security alert (July 2017), https://paritytech.io/blog/security-

alert.html
5. A Postmortem on the Parity Multi-Sig library self-destruct (November 2017),

https://goo.gl/Kw3gXi
6. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party

computations via Bitcoin deposits. In: Financial Cryptography Workshops. LNCS,
vol. 8438, pp. 105–121. Springer (2014)

7. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Modeling bit-
coin contracts by timed automata. In: International Conference on Formal Model-
ing and Analysis of Timed Systems. pp. 7–22. Springer (2014)

8. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE Symposium on Security and Privacy. pp.
443–458 (2014)

9. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016)

10. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Principles of Security and Trust (POST). LNCS, vol. 10204, pp.
164–186. Springer (2017), http://dx.doi.org/10.1007/978-3-662-54455-6_8

11. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin trans-
actions. In: Financial Cryptography and Data Security. LNCS, Springer (2018)

12. Back, A., Bentov, I.: Note on fair coin toss via Bitcoin. http://www.cs.technion.
ac.il/˜idddo/cointossBitcoin.pdf (2013)

13. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: ESORICS. LNCS, vol. 9879, pp.
261–280. Springer (2016)

14. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin. In:
Financial Cryptography Workshops. LNCS, vol. 10323. Springer (2017)

15. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Formal methods
for the design of real-time systems, LNCS, vol. 3185, pp. 200–236. Springer (2004)

16. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In:
CRYPTO. LNCS, vol. 8617, pp. 421–439. Springer (2014)

17. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-Beguelin, S.: For-
mal verification of smart contracts. In: PLAS (2016)

18. Biryukov, A., Khovratovich, D., Tikhomirov, S.: Findel: Secure derivative contracts
for Ethereum. In: Financial Cryptography Workshops. LNCS, vol. 10323, pp. 453–
467. Springer (2017)

19. BitFury group: Smart contracts on Bitcoin blockchain (2015), http://bitfury.
com/content/5-white-papers-research/contracts-1.1.1.pdf

20. Boneh, D., Naor, M.: Timed commitments. In: CRYPTO. LNCS, vol. 1880, pp.
236–254. Springer (2000)

21. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
S & P. pp. 104–121 (2015)

https://goo.gl/8XL5Fn
https://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state
https://en.bitcoin.it/wiki/Contract#Example_4:_Using_external_state
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html
https://goo.gl/Kw3gXi
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
http://bitfury.com/content/5-white-papers-research/contracts-1.1.1.pdf
http://bitfury.com/content/5-white-papers-research/contracts-1.1.1.pdf

22. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda: An introduction. http:
//r3cev.com/s/corda-introductory-whitepaper-final.pdf (2016)

23. Crary, K., Sullivan, M.J.: Peer-to-peer affine commitment using Bitcoin. In: ACM
Conf. on Programming Language Design and Implementation. pp. 479–488 (2015)

24. Delgado-Segura, S., Pérez-Solà, C., Navarro-Arribas, G., Herrera-Joancomart́ı, J.:
A fair protocol for data trading based on Bitcoin transactions. Future Generation
Computer Systems (2017)

25. Delmolino, K., Arnett, M., Kosba, A.M.A., Shi, E.: Step by step towards creating
a safe smart contract: Lessons and insights from a cryptocurrency lab (2016)

26. Frantz, C.K., Nowostawski, M.: From institutions to code: towards automated
generation of smart contracts. In: eCAS Workshop (2016)

27. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol
design: Cryptography against incentive-driven adversaries. In: FOCS. pp. 648–657
(2013)

28. Goldschlag, D.M., Stubblebine, S.G., Syverson, P.F.: Temporarily hidden bit com-
mitment and lottery applications. Int. J. Inf. Sec. 9(1), 33–50 (2010)

29. Hearn, M.: Rapidly-adjusted (micro)payments to a pre-determined party (2013),
bitcointalk.org

30. Hirai, Y.: Defining the Ethereum Virtual Machine for interactive theorem provers.
In: Financial Cryptography Workshops. LNCS, vol. 10323, pp. 520–535. Springer
(2017)

31. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS. pp. 30–41 (2014)

32. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized
poker. In: ACM CCS. pp. 195–206 (2015)

33. Liao, K., Katz, J.: Incentivizing blockchain forks via whale transactions. In: Finan-
cial Cryptography Workshops. LNCS, vol. 10323, pp. 264–279. Springer (2017)

34. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS (2016), http://eprint.iacr.org/2016/633

35. Maxwell, G.: The first successful zero-knowledge contingent payment.
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-
payments-announcement/ (2016)

36. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum. In: Eu-
roS&P Workshops. pp. 4–13 (2017)

37. Möser, M., Eyal, I., Sirer, E.G.: Bitcoin covenants. In: Financial Cryptography
Workshops. pp. 126–141. Springer (2016)

38. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf (2008)

39. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In:
CAV. LNCS, vol. 575, pp. 376–398 (1991)

40. O’Connor, R.: Simplicity: A new language for blockchains. In: PLAS (2017), http:
//arxiv.org/abs/1711.03028

41. O’Connor, R., Piekarska, M.: Enhancing Bitcoin transactions with covenants. In:
Financial Cryptography Workshops (2017)

42. Syverson, P.F.: Weakly secret bit commitment: Applications to lotteries and fair
exchange. In: IEEE CSFW. pp. 2–13 (1998)

43. Szabo, N.: Formalizing and securing relationships on public networks. First Mon-
day 2(9) (1997), http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/
fm/article/view/548

http://r3cev.com/s/corda-introductory-whitepaper-final.pdf
http://r3cev.com/s/corda-introductory-whitepaper-final.pdf
bitcointalk.org
http://eprint.iacr.org/2016/633
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1711.03028
http://arxiv.org/abs/1711.03028
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548

	SoK: unraveling Bitcoin smart contracts

