
Signatures with Flexible Public Key:
Introducing Equivalence Classes for Public Keys

Michael Backes1,3, Lucjan Hanzlik2,3, Kamil Kluczniak1,3,4, and Jonas
Schneider2,3

1 CISPA Helmholtz Center (i.G.) GmbH,
backes@cispa.saarland

2 CISPA, Saarland University,
{hanzlik, jonas.schneider, kamil.kluczniak}@cispa.saarland

3 Saarland Informatics Campus
4 Department of Computing, The Hong Kong Polytechnic University

Abstract. We introduce a new cryptographic primitive called signa-
tures with flexible public key (SFPK). We divide the key space into equiv-
alence classes induced by a relation R. A signer can efficiently change his
or her key pair to a different representatives of the same class, but with-
out a trapdoor it is hard to distinguish if two public keys are related. Our
primitive is motivated by structure-preserving signatures on equivalence
classes (SPS-EQ), where the partitioning is done on the message space.
Therefore, both definitions are complementary and their combination
has various applications.

We first show how to efficiently construct static group signatures and self-
blindable certificates by combining the two primitives. When properly
instantiated, the result is a group signature scheme that has a shorter
signature size than the current state-of-the-art scheme by Libert, Peters,
and Yung from Crypto’15, but is secure in the same setting.

In its own right, our primitive has stand-alone applications in the cryp-
tocurrency domain, where it can be seen as a straightforward formaliza-
tion of so-called stealth addresses. Finally, it can be used to build the
first efficient ring signature scheme in the plain model without trusted
setup, where signature size depends only sub-linearly on the number of
ring members. Thus, we solve an open problem stated by Malavolta and
Schröder at ASIACRYPT’2017.

Keywords: flexible public key, equivalence classes, stealth addresses,
ring signatures, group signatures

1 Introduction

Digital signatures aim to achieve two security goals: integrity of the signed mes-
sage and authenticity of the signature. A great number of proposals relax these
goals or introduce new ones to accommodate the requirements of specific ap-
plications. As one example, consider sanitizable signatures [1] where the goal of

preserving the integrity of the message is relaxed to allow for authorized modi-
fication and redactions of the signed message.

The primitive we introduce in this work allows for a relaxed characteriza-
tion of authenticity instead. The goal is not complete relaxation, such that an
impostor could sign messages on behalf of a legitimate signer, but rather that
authenticity holds with respect to some established legitimate signer, but who it
is exactly remains hidden.

The new primitive, called signatures with flexible public key (SFPK) formal-
izes a signature scheme, where verification and signing keys live in a system of
equivalence classes induced by a relation R. Given a signing or verification key it
is possible to transform the key into a different representative of the same equiv-
alence class, i.e., the pair of old key and new key are related via R. Thus, we
extend the requirement of unforgeability of signatures to the whole equivalence
class of the given key under attack.

Additionally, it should be infeasible, without a trapdoor, to check whether
two keys are in the same class. This property, which we call computational class-
hiding, ensures that given an old verification key, a signature under a fresh repre-
sentative is indistinguishable from a signature under a different newly generated
key, which lives in a different class altogether with overwhelming probability.
Intuitively this means that signers can produce signatures for their whole class
of keys, but they cannot sign for a different class (because of unforgeability) and
they are able to hide class to which the signature belongs to, i.e., to hide their
own identity in the signature (because of class-hiding). This primitive is moti-
vated by (structure-preserving) signatures on equivalence classes [28] (SPS-EQ),
where relations are defined for the message space, instead of the key space.
Both notions are complementary, in the sense that we can use SPS-EQ to cer-
tify the public key of an SFPK scheme if the respective equivalence relations
are compatible, which immediately gives so called signatures with self-blindable
certificates [40].

Signatures with flexible public key are especially useful in applications where
there is a (possibly pre-defined) set of known verification keys and a verifier
only needs to know that the originator of a given signature was part of that
set. Indeed, upon reading the first description of the scheme’s properties, what
should come to mind immediately is the setting of group signatures [17] and to
some extent ring signatures [36] where the group is chosen at signing time and
considered a part of the signature. Our primitive yields highly efficient, cleanly
constructed group and ring signature schemes, but it should be noted, that SFPK
on its own is neither of the two.

The basic idea to build a group signature scheme from signatures with flexi-
ble public key is to combine them with an equally re-randomizable certificate on
the signing key. Such a certificate is easily created through structure-preserving
signatures on equivalence classes by the group manager on the members’ veri-
fication key. A group signature is then produced by signing the message under
a fresh representative of the flexible public key and tying that signature to the
group by also providing a blinded certificate corresponding to the fresh flexi-

2

ble key. This fresh certificate can be generated from the one provided by the
group manager. Opening of group signatures is done using the trapdoor that
can be used to distinguish if public keys belong to the same equivalence class.
In the case of ring signatures with n signers, the certification of keys becomes
slightly more complex, since we cannot make any assumption on the presence
of a trusted group manager. Therefore, the membership certificate is realized
through a perfectly sound proof of membership, which has a size of O(

√
n) if

we use general proofs and the square matrix idea for membership proofs due to
Chandran, Groth and Sahai [14].

Our contributions. This paper develops a new cryptographic building block from
the ground up, presenting security definitions, concrete instantiations and appli-
cations. The main contributions are as follows:

Signatures with flexible public key and their applications. Our new pri-
mitive is a natural counterpart of structure-preserving signatures on equiv-
alence classes, but for the public key space. We demonstrate how SFPK can
be used to build group and ring signatures in a modularized fashion. For
each construction, we give an efficient standard model SFPK instantiation
which takes into account the differences in setting between group and ring
signatures. The resulting group and ring signature schemes have smaller
(asymptotic and concrete) signature sizes than the previous state of the art
schemes also secure in the strongest attacker model, including schemes with
non-standard assumptions.
For instance, the static group signature scheme due to Libert, Peters, and
Yung achieves fully anonymous signatures secure under standard non-interac-
tive assumptions at a size of 8448 bits per signature. Our scheme, based
on comparable assumptions, achieves the same security using 7680 bits per
signature. Another variant of our scheme under an interactive assumption
achieves signature sizes of only 3072 bits per signature, thus more than halv-
ing the size achieved in [31] and not exceeding by more than factor 3 the
size of signatures in the scheme due to Bichsel et al. [6] which produces
signatures of size 1280 bits but only offers a weaker form of anonymity un-
der an interactive assumption in the random oracle model. A comprehensive
comparison between our scheme and known group signature constructions
can be found in Section 5.3. Our ring signature construction is the first to
achieve signature sizes in O(

√
N) without trusted setup and with security

under standard assumptions in the strongest security model by Bender, Katz
and Morselli [5]. We also show how to efficiently instantiate the scheme using
Groth-Sahai proofs and thereby we solve an open problem stated in the ASI-
ACRYPT’2017 presentation of [33], namely: Are there efficient ring signature
schemes without trusted setup provably secure under falsifiable assumptions?

Applications of independent interest. We also show that signatures with
flexible public key which also implement a key recovery property contribute
to the field of cryptocurrencies. In particular, our definitions can be seen as
a formalization of the informal requirements for a technique called stealth

3

addresses [39, 34, 37], which allows a party to transfer currency to an anony-
mous address that the sender has generated from the receivers long-term
public key. No interaction with the receiver is necessary for this transaction
and the receiver can recover and subsequently spend the funds without link-
ing them to their long-term identity. Moreover, existing schemes implement-
ing stealth addresses are based on a variant of the Diffie-Hellman protocol
and inherently bound to cryptography based on the discrete logarithm prob-
lem. On the other hand, our definition is generic and SFPK can potentially
be instantiated from e.g. lattice assumptions.

1.1 Related Work

At first glance, signatures with flexible public keys are syntactically reminiscent
of structure-preserving signatures on equivalence classes [28]. While both prim-
itives are similar in spirit, the former considers equivalence classes of key pairs
while the latter only considers equivalence classes on messages.

There exist many primitives that allow for a limited malleability of the signed
message. Homomorphic signatures [9] allow to sign any subspace of a vector
space. In particular, given a number of signatures σi for vectors vi, everyone can
compute a signature of

∑
i βi · vi for scalars βi.

Chase et al. [15] discussed malleable signatures, which allow any party know-
ing a signature of message m to construct a signature of message m′ = T (m)
for some defined transformation T . One can consider malleable signatures as a
generalization of quotable [2] and redactable signatures [30].

Signatures on randomized ciphertexts by Blazy et al. [7] allow any party that
is given a signature on a ciphertext to randomize the ciphertext and adapt the
signature to maintain public verifiability.

Verheul [40] introduces so-called self-blindable certificates. The idea is to use
the same scalar to randomize the signature and corresponding message. Verheul
proposed that one can view the message as a public key, which allows to pre-
serve the validity of this “certificate” under randomization/blinding. However,
the construction does not yield a secure signature scheme. We will show that
combining our primitive with signatures on equivalence classes [28] can be used
to instantiate self-blindable certificates.

As noted above, all the mentioned works consider malleability of the mes-
sage space. In our case we consider malleability of the key space. A related
primitive are signatures with re-randomizable keys introduced by Fleischhacker
et al. [21]. It allows a re-randomization of signing and verification keys such that
re-randomized keys share the same distribution as freshly generated keys and a
signature created under a randomized key can be verified using an analogously
randomized verification key.

They also define a notion of unforgeability under re-randomized keys, which
allows an adversary to learn signatures under the adversaries’ choice of random-
ization of the signing key under attack. The goal of the adversary is to output
a forgery under the original key or under one of its randomizations. Regular

4

existential unforgeability for signature schemes is a special case of this notion,
where the attacker does not make use of the re-randomization oracle.

The difference to signatures with flexible public keys is that re-randomization
in [21] is akin to sampling a fresh key from the space of all public keys, while
changing the representative in our case is restricted to the particular key’s equiv-
alence class. Note that one might intuitively think that signatures under re-
randomizable keys are just signatures with flexible keys where there is only one
class of keys since re-randomizing is indistinguishable from fresh sampling. In
this case class-hiding would be perfect. However, such a scheme cannot achieve
unforgeability under flexible keys, since it would be enough for an attacker to
sample a fresh key pair and use a signature under that key as the forgery.

2 Preliminaries

We denote by y ← A(x, ω) the execution of algorithm A outputting y, on input x
with randomness ω, writing just y ←$ A(x) if the specific randomness used is not
important. We will sometimes omit the use of random coins in the description of
algorithms if it is obvious from the context (e.g. sampling group elements). The
superscript O in AO means that algorithm A has access to oracle O. Moreover,
we say that A is probabilistic polynomial-time (PPT) if A uses internal random
coins and the computation for any input x ∈ {0, 1}∗ terminates in polynomial
time. By r ←$ S we mean that r is chosen uniformly at random from the set
S. We will use 1G to denote the identity element in group G, [n] to denote the
set {1, . . . , n}, u to denote a vector and

(
x0 . . . x|x|

)
bin

to denote the binary
representation of x.

Definition 1 (Bilinear map). Let us consider cyclic groups G1, G2, GT of
prime order p. Let g1, g2 be generators of respectively G1 and G2. We call e :
G1 × G2 → GT a bilinear map (pairing) if it is efficiently computable and the
following conditions hold:

Bilinearity: ∀(S, T) ∈ G1 ×G2, ∀a, b ∈ Zp, we have e(Sa, T b) = e(S, T)
a·b

,
Non-degeneracy: e(g1, g2) 6= 1 is a generator of group GT ,

Definition 2 (Bilinear-group generator). A bilinear-group generator is a
deterministic polynomial-time algorithm BGGen that on input a security parame-
ter λ returns a bilinear group BG = (p,G1,G2,GT , e, g1, g2) such that G1 = 〈g1〉,
G2 = 〈g2〉 and GT are groups of order p and e : G1 × G2 → GT is a bilinear
map.

Bilinear map groups with an efficient bilinear-group generator are known to
be instantiable with ordinary elliptic curves introduced by Barreto and Naehrig [3]
(in short BN-curves).

Invertible Sampling. We use a technique due to Damg̊ard and Nielsen [20]:

– A standard sampler returns a group element X on input coins ω.

5

– A “trapdoor” sampler returns coins ω′ on input a group element X.

Invertible sampling requires that (X,ω) and (X,ω′) are indistinguishably dis-
tributed.

This technique was also used by Bender, Katz and Morselli [5] to prove full
anonymity (where the adversary receives the random coins used by honest users
to generate their keys) of their ring signature scheme.

2.1 Number Theoretical Assumptions

In this section we recall assumptions relevant to our schemes. They are stated rel-
ative to bilinear group parameters BG := (p,G1,G2,GT , e, g1, g2)←$BGGen(λ).

Definition 3 (Decisional Diffie-Hellman Assumption in Gi). Given BG
and elements gai , g

b
i , g

z
i ∈ Gi it is hard for all PPT adversaries A to decide

whether z = a · b mod p or z←$Z∗p. We will use Advddh
A (λ) to denote the ad-

vantage of the adversary in solving this problem.

We now state the bilateral variant of the well known decisional linear assump-
tion, where the problem instance is given in both G1 and G2. This definition was
also used by Ghadafi, Smart and Warinschi [25].

Definition 4 (Symmetric Decisional Linear Assumption). Given BG, el-

ements f1 = gf1 , h1 = gh1 , f
a
1 , h

b
1, g

z
1 ∈ G1 and elements f2 = gf2 , h2 = gh2 , f

a
2 , h

b
2,

gz2 ∈ G2 for uniformly random f, h, a, b ∈ Z∗p it is hard for all PPT adversaries

A to decide whether z = a + b mod p or z←$Z∗p. We will use Advlinear
A (λ) to

denote the advantage of the adversary in solving this problem.

In this paper we use a variant of the 1-Flexible Diffie-Hellman assump-
tion [32]. We show that this new assumption, which we call the co-Flexible
Diffie-Hellman (co-Flex) assumption, holds if the decisional linear assumption
holds.

Definition 5 (co-Flexible Diffie-Hellman Assumption). Given BG, ele-
ments ga1 , g

b
1, g

c
1, g

d
1 ∈ G1 and ga2 , g

b
2, g

c
2, g

d
2 ∈ G2 for uniformly random a, b, c, d ∈

Z∗p, it is hard for all PPT adversaries A to output (gc1)
r
, (gd1)

r
, gr·a·b1 . We will use

Advco-flexdh
A (λ) to denote the advantage of the adversary in solving this problem.

Lemma 1. The co-Flexible Diffie-Hellman assumption holds for BG if the de-
cisional linear assumption holds for BG.

Proof. Suppose we have an efficient algorithm A that solves the co-Flexible
Diffie-Hellman problem with non-negligible probability. We will show how to
build algorithm R that solves the decision linear problem. Let (BG, f1, f2, h1, h2,
fa1 , f

a
2 , h

b
1, h

b
2, g

z
1 , g

z
2) be an instance of the decision linear problem. The algorithm

6

R first runs algorithm A on input (BG, f1, f2, g
z
1 , g

z
2 , f

a
1 , f

a
2 , h

b
1, h

b
2). With non-

negligible probability A outputs a solution to the co-Flexible Diffie-Hellman
problem, i.e. it outputs the tuple ((fa1)

r
, (hb1)

r
, (fz1)

r
). Then R computes

T1 =e((fz1)
r
, h2) = e(f1, h

r
2)
z
,

T2 =e((fa1)
r
, h2) = e(f1, h

r
2)
a
,

T3 =e((hb1)
r
, f2) = e(h1, f

r
2)
b

= e(fr1 , h2)
b
,

and outputs 1 if T1 = T2 · T3 and 0 otherwise.

2.2 Programmable Hash Functions

Programmable hash functions presented at Crypto’08 by Hofheinz and Kiltz [29]
introduce a way to create hash functions with limited programmability. In par-
ticular, they show that the function introduced by Waters [41] is a programmable
hash function. To formally define such function we first define so called group
hash functions for a group G, which consists of two polynomial time algorithms
PHF.Gen, PHF.Eval and has an output length of ` = `(λ). For a security param-
eter λ the generation algorithm PHF.Gen(λ) outputs a key KPHF, which can be
used in the deterministic algorithm PHF.Eval to evaluate the hash function via
y ←$ PHF.Eval(KPHF, X) ∈ G. We will use HKPHF

(X) to denote the evaluation of

the function PHF.Eval(KPHF, X) on X ∈ {0, 1}`. We can now recall the definition
of programmable has functions.

Definition 6. A group hash function is an (m,n, γ, δ)-programmable hash func-
tion if there are polynomial time algorithms PHF.TrapGen and PHF.TrapEval such
that:

– For any g, h ∈ G the trapdoor algorithm (K ′PHF, t) ←$ PHF.TrapGen(λ, g, h)

outputs a key K ′ and trapdoor t. Moreover, for every X ∈ {0, 1}` we have
(aX , bX)←$ PHF.TrapEval(t,X), where PHF.Eval(K ′PHF, X) = gaXhbX .

– For all g, h ∈ G and for (K ′PHF, t) ←$ PHF.TrapGen(λ, g, h) and KPHF ←$
PHF.Gen(λ), the keys KPHF and K ′PHF are statistically γ-close.

– For all g, h ∈ G and all possible keys K ′PHF from the range of PHF.TrapGen(λ, g,

h), for all X1, . . . , Xm, Z1, . . . , Zn ∈ {0, 1}` such that Xi 6= Zj for any i, j
and for the corresponding (aXi , bXi)←$ PHF.TrapEval(t,Xi) and (aZi , bZi)←$
PHF.TrapEval(t, Zi) we have

Pr[aX1
= · · · = aXm = 0 ∧ aZ1

= · · · = aZn 6= 0] ≥ δ,

where the probability is over trapdoor t that was generated with key K ′PHF.

Note that using this definition we can define the Waters hash function, with
key KPHF = (h0, . . . , h`) ∈ G`+1 and message X = (x1, . . . , x`) ∈ {0, 1}` as

h0 ·
∏`
i=1 h

xi
i . Hofheinz and Kiltz prove that for any fixed q = q(λ) this is a

(1, q, 0, 1/8 ·(`+1) ·q)-programmable hash function. Unless mentioned otherwise,
we will always instantiate the programmable hash function using the Waters
function and use ` = λ.

7

2.3 Non-Interactive Proof Systems

In this paper we make use of non-interactive proof systems. Although we define
the proof system for arbitrarily languages, in our schemes we use the efficient
Groth-Sahai (GS) proof system for pairing product equations [27]. Let R be
an efficiently computable binary relation, where for (x,w) ∈ R we call x a
statement and w a witness. Moreover, we denote by LR the language consisting
of statements in R, i.e. LR = {x|∃w : (x,w) ∈ R}.

Definition 7 (Non-Interactive Proof System). A non-interactive proof sys-
tem Π consists of the following three algorithms (Setup,Prove,Verify):

Setup(λ): on input security parameter λ, this algorithm outputs a common ref-
erence string ρ.

Prove(ρ, x, w): on input common reference string ρ, statement x and witness w,
this algorithm outputs a proof π.

Verify(ρ, x, π): on input common reference string ρ, statement x and proof π,
this algorithm outputs either accept(1) or reject(0).

Some proof systems do not need a common reference string. In such case, we
omit the first argument to Prove and Verify.

Definition 8 (Soundness). A proof system Π is called sound, if for all PPT
algorithms A the following probability, denoted by AdvsoundΠ,A (λ), is negligible in
the security parameter λ:

Pr[ρ← Setup(λ); (x, π)← A(ρ) : Verify(ρ, x, π) = accept ∧ x 6∈ LR].

We say that the proof system is perfectly sound if AdvsoundΠ,A (λ) = 0.

Definition 9 (Witness Indistinguishability (WI)). A proof system Π is
witness indistinguishable, if for all PPT algorithms A we have that the advantage
AdvwiΠ,A(λ) computed as:

|Pr[ρ← Setup(λ); (x,w0, w1)← A(λ, ρ);π ← Prove(ρ, x, w0) : A(π) = 1]−
Pr[ρ← Setup(λ); (x,w0, w1)← A(λ, ρ);π ← Prove(ρ, x, w1) : A(π) = 1]|,

where (x,w0), (x,w1) ∈ R, is at most negligible in λ. We say that the proof
system if perfectly witness indistinguishable if AdvwiΠ,A(λ) = 0.

Perfectly Sound Proof System for Pairing Product Equations. We
briefly recall the framework of pairing product equations that is used for the
languages of the Groth-Sahai proof system [27]. For constants Ai ∈ G1, Bi ∈ G2,
tT ∈ GT , γij ∈ Zp which are either publicly known or part of the statement, and
witnesses Xi ∈ G1, Yi ∈ G2 given as commitments, we can prove that:

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
j=1

n∏
i=1

e(Xi, Yi)
γij = tT .

8

Prove(x,w)

1 : ρ1 := (f1, f2, h1, h2, . . .)←$ SetupPPE(λ); r, s←$ Z∗p
2 : ρ2 := (f1, f2, h1, h2, f

r
1 , f

r
2 , h

s
1, h

s
2, g

r+s
1 , g

r+s
2)

3 : πLinear ←$ ProveLinear((ρ1, ρ2), (r, s))

4 : π1 ←$ ProvePPE(ρ1, x, w); π2 ←$ ProvePPE(ρ2, x, w)

5 : return π := (ρ1, ρ2, πLinear, π1, π2)

Verify(x, π)

1 : parse π = (ρ1, ρ2, πLinear, π1, π2)

2 : return VerifyPPE(ρ1, x, π1) = 1 ∧
3 : VerifyPPE(ρ2, x, π2) = 1 ∧
4 : VerifyLinear((ρ1, ρ2), πLinear) = 1

Scheme 1: Perfectly Sound Proof System for Pairing Product Equations

The system (SetupPPE,ProvePPE,VerifyPPE) has several instantiations based on
different assumptions. In this paper we only consider the instantiation based on
the symmetric linear assumption given by Ghadafi, Smart and Warinschi [25].

For soundness it must be ensured, that SetupPPE outputs a valid DLIN tuple.
This can be enforced by requiring a trusted party perform the setup. However,
our schemes require a proof system which is perfectly sound, even if a malicious
prover executes the SetupPPE algorithm.

To achieve this we use the ideas by Groth, Ostrovsky and Sahai [26]. They
propose a perfectly sound and perfectly witness indistinguishable proof system
(ProveLinear,VerifyLinear) which does not require a trusted setup. Using it one
can show that given tuples T1, T2 as a statement, at least one of T1 and T2 is
a DLIN tuple. The results were shown for type 1 pairing but the proof itself is
only given as elements in G2. Moreover, our variant of the DLIN assumption
gives the elements in both groups. Thus, we can apply the same steps as in [26].
The size of such a proof is 6 elements in G2.

Next is the observation that the tuples T1 and T2 can each be used as common
reference strings for the pairing product equation proof system. Since at least
one of the tuples is a valid DLIN tuple, at least one of the resulting proofs will be
perfectly sound. Witness-indistinguishability will be only computational, since
we have to provide T1 and T2 to the verifier but that is sufficient in our case.
The full scheme is presented in Scheme 1.

Theorem 1. Scheme 1 is a perfectly sound proof system for pairing product
equations if the system (SetupPPE,ProvePPE,VerifyPPE) is perfectly sound in the
common reference string model.

Proof (Sketch). BecauseΠLinear is perfectly sound VerifyLinear((ρ1, ρ2), πLinear) =
1 means that at least one of ρ1 and ρ2 is a DLIN tuple. It follows that at least
one of π1 and π2 is a perfectly sound proof for the statement x. Thus, statement
x must be true.

Theorem 2. Scheme 1 is a computational witness-indistinguishable proof sys-
tem if the system (SetupPPE,ProvePPE,VerifyPPE) is perfectly witness-indistinguish-
able in the common reference string model.

Proof (Sketch). Because the proof system for the pairing product equations is
witness-indistinguishable, we change the witness we use in proof π1. Note that

9

this change may include the change of ρ1 to a non-DLIN tuple but the proof
πLinear is still valid because ρ2 is a DLIN tuple. Next we replace ρ1 with ρ2 and
use SetupPPE to compute ρ2. Finally, we change the witness used to compute π2.

2.4 Structure-Preserving Signatures on Equivalence Classes

Hanser and Slamanig introduced a cryptographic primitive called
structure-preserving signatures on equivalence classes [28]. Their work was fur-
ther extended by Fuchsbauer, Hanser and Slamanig in [23] and [24]. The idea
is simple but provides a powerful functionality. The signing SignSPS(M, skSPS)
algorithm defines an equivalence relation R that induces a partition on the
message space. By signing one representative of a partition, the signer in fact
provides a signature for all elements in it. Moreover, there exists a procedure
ChgRepSPS(M,σSPS, r, pkSPS) that can be used to change the signature to a dif-
ferent representative without knowledge of the secret key. Existing instantiations
allow to sign messages from the space (G∗i)

`
, for ` > 1, and for the following

relation Rexp: given two messages M = (M1, . . . ,M`) and M ′ = (M ′1, . . . ,M
′
`),

we say that M and M ′ are from the same equivalence class (denoted by [M]R)
if there exists a scalar r ∈ Z∗p, such that ∀i∈[`](Mi)

r
= M ′i .

The original paper defines two properties of SPS-EQ namely unforgeability
under chosen-message attacks and class-hiding. Fuchsbauer and Gay [22] recently
introduced a weaker version of unforgeability called unforgeability under chosen-
open-message attacks, which restricts the adversary’s signing queries to messages
where it knows all exponents.

Definition 10 (Signing Oracles). A signing oracle is an oracle OSPS(skSPS, ·)
(resp. Oop(skSPS, ·)), which accepts messages (M1, . . . ,M`) ∈ (G∗i)

`
(resp. vectors

(e1, . . . , e`) ∈ (Z∗p)
`
) and returns a signature under skSPS on those messages

(resp. on messages (ge11 , . . . , g
e`
1) ∈ (G∗i)

`
).

Definition 11 (EUF-CMA (resp. EUF-CoMA)). A SPS-EQ scheme

(BGGenSPS,KGenSPS,SignSPS,ChgRepSPS,VerifySPS,VKeySPS) on (G∗i)
`

is called
existentially unforgeable under chosen message attacks (resp. adaptive chosen-
open-message attacks), if for all PPT algorithms A with access to an open signing
oracle OSPS(skSPS, ·) (resp. Oop(skSPS, ·)) the following advantage (with templates
T1, T2 defined below) is negligible in the security parameter λ:

Adv`,T1

SPS-EQ,A(λ) = Pr

[
BG←BGGenSPS(λ);

(skSPS,pkSPS)←
$ KGenSPS(BG,`);

(M∗,σ∗SPS)←
$ AOT2 (skSPS,·)(pkSPS)

:
∀M∈Q. [M∗]R 6=[M]R ∧
VerifySPS(M

∗,σ∗SPS,pkSPS)=1

]
,

where Q is the set of messages signed by the signing oracle OT2
and for T1 =

euf-cma we have T2 = SPS, and for T1 = euf-coma we have T2 = op.

A stronger notion of class hiding, called perfect adaptation of signatures,
was proposed by Fuchsbauer et al. in [24]. Informally, this definition states that
signatures received by changing the representative of the class and new signatures

10

for the representative are identically distributed. In our schemes we will only use
this stronger notion.

Definition 12 (Perfect Adaptation of Signatures). A SPS-EQ scheme on

(G∗i)
`

perfectly adapts signatures if for all (skSPS, pkSPS,M, σ, r), where

VKeySPS(skSPS, pkSPS) = 1, M ∈ (G∗1)
`
, r ∈ Z∗p and VerifySPS(M,σ, pkSPS) = 1,

the distribution of

((M)
r
,SignSPS(Mr, skSPS)) and ChgRepSPS(M,σ, r, pkSPS)

are identical.

3 Signatures with Flexible Public Key

We begin by motivating the idea behind our primitive. In the notion of existen-
tial unforgeability of digital signatures, the adversary must return a signature
valid under the public key given to him by the challenger. Imagine now that
we allow a more flexible forgery. The adversary can return a signature that is
valid under a public key that is in some relation R to the public key chosen by
the challenger. Similar to the message space of SPS-EQ signatures, this relation
induces a system of equivalence classes on the set of possible public keys. A given
public key, along with the corresponding secret key can be transformed to a dif-
ferent representative in the same class using an efficient, randomized algorithm.
Since there may be other ways of obtaining a new representative, the forgery on
the challenge equivalence class is valid as long as the relation holds, even without
knowledge of the explicit randomness that leads to the given transformation.

Note, that because of this the challenger needs a way to efficiently ascertain
whether the forgery is valid, even if no transformation randomness is given.
Indeed, for the full definition of our schemes’ security we will require that it
should not be feasible, in absence of the concrete transformation randomness,
to determine whether a given public key belongs to one class or another. This
property —called class-hiding in the style of a similar property for SPS-EQ
signatures— should hold even for an adversary who has access to the randomness
used to create the key pairs in question.

The apparent conflict is resolved by introducing a trapdoor key generation
algorithm TKeyGen which outputs a key pair (sk, pk) and a class trapdoor τ
for the class the key pair is in. The trapdoor allows the challenger to reveal
whether a given key is in the same class as pk, even if doing so efficiently is
otherwise assumed difficult. Since we require that the keys generated using the
trapdoor key generation and the regular key generation are distributed identi-
cally, unforgeability results with respect to the former also hold with respect to
the latter.

Definition 13 (Signature with Flexible Public Key). A signature scheme
with flexible public key (SFPK) is a tuple of PPT algorithms (KeyGen,TKeyGen,
Sign,ChkRep,ChgPK,ChgSK,Verify) such that:

11

KeyGen(λ, ω): takes as input a security parameter λ, random coins ω ∈ coin and
outputs a pair (sk, pk) of secret and public keys,

TKeyGen(λ, ω): a trapdoor key generation that takes as input a security parame-
ter λ, random coins ω ∈ coin and outputs a pair (sk, pk) of secret and public
keys, and a trapdoor τ .

Sign(sk,m): takes as input a message m ∈ {0, 1}λ and a signing key sk, and
outputs a signature σ,

ChkRep(τ, pk): takes as input a trapdoor τ for some equivalence class [pk′]R and
public key pk, the algorithm outputs 1 if pk ∈ [pk′]R and 0 otherwise,

ChgPK(pk, r): on input a representative public key pk of an equivalence class
[pk]R and random coins r, this algorithm returns a different representative
pk′, where pk′ ∈ [pk]R.

ChgSK(sk, r): on input a secret key sk and random coins r, this algorithm returns
an updated secret key sk′.

Verify(pk,m, σ): takes as input a message m, signature σ, public verification key
pk and outputs 1 if the signature is valid and 0 otherwise.

A signature scheme with flexible public key is correct if for all λ ∈ N, all
random coins ω, r ∈ coin the following conditions hold:

1. The distribution of key pairs produced by KeyGen and TKeyGen is identical.
2. For all key pairs (sk, pk) ←$ KeyGen(λ, ω) and all messages m we have

Verify(pk,m,Sign(sk,m)) = 1 and Verify(pk′,m,Sign(sk′,m)) = 1, where
ChgPK(pk, r) = pk′ and ChgSK(sk, r) = sk′.

3. For all (sk, pk, τ) ←$ TKeyGen(λ, ω) and all pk′ we have ChkRep(τ, pk′) = 1
if and only if pk′ ∈ [pk]R.

Definition 14 (Class-hiding). For scheme SFPK with relation R and adver-
sary A we define the following experiment:

C-HASFPK,R(λ)

ω0, ω1 ←$ coin

(ski, pki)←
$ KeyGen(λ, ωi) for i ∈ {0, 1}

b←$ {0, 1}; r ←$ coin

sk′ ←$ ChgSK(skb, r); pk
′ ←$ ChgPK(pkb, r)

b̂←$ ASign(sk′,·)(ω0, ω1, pk
′)

return b = b̂

A SFPK is class-hiding if for all PPT adversaries A, its advantage in the
above experiment is negligible:

Advc-hA,SFPK(λ) =

∣∣∣∣Pr
[
C-HASFPK,R(λ) = 1

]
− 1

2

∣∣∣∣ = negl(λ) .

Definition 15 (Existential Unforgeability under Flexible Public Key).
For scheme SFPK with relation R and adversary A we define the following ex-
periment:

12

EUF-CMAASFPK,R(λ)

ω ←$ coin

(sk, pk, τ)←$ TKeyGen(λ, ω);Q := ∅

(pk′,m∗, σ∗)←$ AO
1(sk,·),O2(sk,·,·)(pk, τ)

return (m∗, ·) 6∈ Q ∧
ChkRep(τ, pk′) = 1 ∧
Verify(pk′,m∗, σ∗) = 1

O1(sk,m)

σ ←$ Sign(sk,m)

Q := Q ∪{(m,σ)}
return σ

O2(sk,m, r)

sk′ ←$ ChgSK(sk, r)

σ ←$ Sign(sk′,m)

Q := Q ∪{(m,σ)}
return σ

A SFPK is existentially unforgeable with flexible public key under chosen mes-
sage attack if for all PPT adversaries A the advantage in the above experiment
is negligible:

Adveuf−cma
A,SFPK (λ) = Pr

[
EUF− CMAASFPK(λ) = 1

]
= negl(λ) .

Definition 16 (Strong Existential Unforgeability under Flexible Pub-
lic Key). A SFPK is strongly existentially unforgeable with flexible public
key under chosen message attack if for all PPT adversaries A the advantage
Advseuf−cma

A,SFPK (λ) in the above experiment, where we replace the line (m∗, ·) 6∈ Q
with (m∗, σ∗) 6∈ Q, is negligible.

In a standard application, the public key and secret key are jointly random-
ized by the signer using the same randomness in ChgPK and ChgSK. However,
the ChgPK algorithm alone can be executed by a third party given only the pub-
lic key and random coins r. Revealing r to the signer allows them to compute
the corresponding secret key. For some applications we want to avoid interaction
during this recovery of the secret key. Allowing the user to extract the new secret
key only using their old secret key would break class-hiding, since the attacker
in this case has access to the pre-transformed secret keys. Fortunately, we can
instead use the additional trapdoor returned by the TKeyGen algorithm. More
formally, we define this optional property as follows.

Definition 17 (Key Recovery). A SFPK has recoverable signing keys if there
exists an efficient algorithm Recover such that for all security parameters λ ∈ N,
random coins ω, r and all (sk, pk, τ) ←$ TKeyGen(λ, ω) and pk′ ←$ ChgPK(pk, r)
we have ChgSK(sk, r) = Recover(sk, τ, pk′).

3.1 Flexible Public Key in the Multi-user Setting

In this subsection, we address applications where part of each user’s public key is
shared with all the other public keys and is precomputed by a trusted third party
in a setup phase, e.g. the key used in a programmable hash function. We therefore
define an additional algorithm CRSGen that, given a security parameter, outputs

13

a common reference string ρ. We assume that this string is an implicit input to
all algorithms. If the KeyGen is independent from ρ, we say that such a scheme
supports key generation without setup.

We will now discuss the implication of this new algorithm on the security
definitions. Usually, we require that the common reference string is generated
by an honest and trusted party (i.e. by the challenger in definitions 14 and 15).
We additionally define those notions under maliciously generated ρ. We call a
scheme class-hiding under malicious reference string if the class-hiding definition
holds even if in definition 14 the adversary is allowed to generate the string ρ.
Similarly, we call a SFPK scheme unforgeable under malicious reference string if
the unforgeability definition 15 holds if ρ is generated by the adversary.

4 Applications

In this section we present natural applications of signatures with flexible public
key. First we show how to implement cryptocurrency stealth addresses from
schemes which have the additional key recovery property.

Then follow generic constructions of group and ring signature schemes. As
we will see in Section 5, each of the schemes presented in this section can be
instantiated with an SFPK scheme such that it improves on the respective state-
of-the-art in terms of concrete efficiency, necessary assumptions or both.

4.1 Cryptocurrency Stealth Addresses

In cryptocurrency systems transactions are confirmed through digital signatures
from the spending party on, among other things, the public key of the receiving
party. Using a technique called stealth addresses [39, 37], it is possible for the
sender to create a fresh public key (address) for the receiving party from their
known public key such that these two keys cannot be linked. The receiving party
can recognize the fresh key as its own and generate a corresponding private
key, subsequently enabling it to spend any funds send to the fresh unlinkable
key. Crucially, there is no interaction necessary between sender and receiver to
establish the fresh key and only the receiver can recover the right secret key.

Informally, a sender can take a recipient’s public address and transform it to
a one-time address such that:

– The new one is unlinkable to the original one and other one-time addresses,
– only the recipient (or a party given the view key) can link all payments,
– only the recipient can derive the spending key for the one-time address.

In existing schemes, stealth addresses are implemented using a variant of
the Diffie-Hellman protocol [37, 19]. Let ga be the public key of the sender and
gb the recipient’s public address. The sender computes the secret s = H(ga·b)
and to finish the transaction sends the funds to the address gs. Note that this
requires the recipient to immediately spend the coins, because the sender also
knows s. To protect against this type of misuse, an asymmetric Diffie-Hellman

14

was introduced, i.e. the funds are sent to the address gs+b = (g)
s · gb. Note that

since only the recipient knows both s and b, only he can spend the money.

In practice, the sender’s public key ga is ephemeral and unique for each
transaction. Moreover, to increase efficiency a 2-key stealth address scheme was
introduced. The recipient still holds the key for spending the coin, but gives
a view key gv to a third party for checking incoming transactions. Therefore,
the recipient is not required to download all transactions and check if they cor-
respond to their identity. However, the party holding the view key can break
the anonymity of the recipient. To enable this feature, the sender also publishes
(gv)

a
, as part of this transaction.

It is worth noting that the technique was introduced without a formal model
and as an add-on for existing cryptocurrencies. In particular, as shown in [19]
there exist many security pitfalls, which are exhibited by some of the schemes.
Moreover, all existing schemes inherently rely on the Diffie-Hellman protocol,
which is defined for groups in which the discrete logarithm is hard.

We will now show that signatures with flexible public keys that additionally
implement the Recover algorithm can be seen as a formalization of 2-key stealth
addresses. Let us consider the following scenario. A sender wants to send funds
to a recipient identified by an address pk, where (sk, pk, τ) ←$ TKeyGen(λ, ω).
In order to send the coins, the sender first chooses randomness r and computes
the one-time address pk′ ←$ ChgPK(pk, r). The trapdoor τ can be used as the
view key to identify an incoming transaction using ChkRep(τ, pk′). Finally, the
recipient can use Recover(sk, τ, pk′) to compute the secret key sk′ that can be
used to spend funds sent to address pk′.

The main advantage of instantiating 2-key stealth addresses using SFPK is
that we can use the security arguments of the latter. In particular, unforgeability
of SFPK means that there cannot exist an efficient adversary that can spend the
recipient’s coins. Note that this holds even if the adversary knows the view key
τ . Privacy of the recipient is protected by class-hiding. Since the distributions of
TKeyGen and KeyGen are identical, it follows that any adversary breaking privacy
would break class-hiding. The party holding the view key τ can distinguish
transactions by definition, hence class-hiding does not hold for this party.

It is worth noting, that all previous descriptions of stealth addresses did not
consider any formal model and rigorous proofs. As we have argued above, our
definition of SFPK with key recovery seems to directly address the requirements
set before stealth addresses. Thus, our schemes are provable secure realizations
of a stealth address scheme. Moreover, since we do not use a particular group
structure, our construction could be instantiated using e.g. lattice-based cryp-
tography. We leave an instantiation of SFPK from lattices as an open problem.

Finally, note that Scheme 4 is an instance of signatures with flexible public
key which has the required recovery algorithm. We also show how to extend
Schemes 5 and 6 to support it.

15

KeyGenGS(1λ, n)

1 : BG←$ BGGenSPS(1
λ

); (pkSPS, skSPS)←
$ KGenSPS(BG, `)

2 : ρ←$ CRSGen(1
λ

)// optional

3 : foreach user i ∈ [n] :

4 : (pki, ski, τ i)←$ TKeyGen(1
λ
, ωi)

5 : σ
i
SPS ←

$ SignSPS(pk
i
, skSPS)

6 : return (gpk := (BG, pkSPS, ρ), gmsk := ([(τ
i
, pki)]ni=1),

7 : gski := (pki, ski, σiSPS))

SignGS(gski,m)

1 : parse gski = (pk, sk, σSPS)

2 : r ←$ Z∗p; pk′ ← ChgPK(pk, r); sk′ ← ChgSK(sk, r)

3 : (pk′, σ′SPS)← ChgRepSPS(pk, σSPS, r, pkSPS)

4 : M := m||σ′SPS||pk
′

5 : σ ←$ Sign(sk′,M)

6 : return σGS := (pk′, σ, σ′SPS)

VerifyGS(gpk,m, σGS)

1 : parse σGS = (pk′, σ, σ′SPS)

2 : gpk = (BG, pkSPS, ρ)

3 : if VerifySPS(pk
′
, σ
′
SPS, pkSPS) = 0 then return 0

4 : M := m||σ′SPS||pk
′

5 : return Verify(pk′,M, σ)

OpenGS(gmsk,m, σGS)

1 : parse σGS = (pk′, σ, σ′SPS)

2 : gmsk = ([(τ
i
, pki)]ni=1)

3 : if VerifyGS(gpk,m, σGS) = 0 then return ⊥

4 : if 6 ∃i ∈ [n] such that ChkRep(τ
i
, pki, pk′) = 1

5 : then return ⊥ else return i

Scheme 2: Generic Group Signature Scheme

4.2 Group Signatures/Self-blindable Certificates

We now present an efficient generic construction of static group signatures that
uses SFPK as a building block and which is secure in the model by Bellare, Mic-
ciancio and Warinschi [4]. The idea is to generate a SFPK secret/public key pair
and “certify” the public part with a SPS-EQ signature. To sign a message, the
signer changes the representation of their SFPK key, and changes the represen-
tation of the SPS-EQ certificate. The resulting signature is the SFPK signature,
the randomized public key and the SPS-EQ certificate.

To enable subsequent opening, the group manager generates the SFPK keys
using TKeyGen and stores their trapdoors. Opening is then performed using
the stored trapdoors with the ChkRep algorithm.The group manager can also
generate ρ ←$ CRSGen for the SFPK signatures and use it as part of the group
public key. This allows us to use schemes which are secure in the multi-user
setting, e.g. Scheme 5. If the KeyGen algorithm is used instead of TKeyGen
to compute the SFPK key pairs, there is no efficient opening procedure and
the combination of SFPK and SPS-EQ signature scheme yields a self-blindable
certificate scheme [40].

Theorem 3. Scheme 2 is fully traceable if the SPS-EQ and the SFPK signature
schemes are existentially unforgeable under chosen-message attack.

Proof (Sketch). The proof relies on the fact that the only way for an adversary
to win the full traceability game is by either creating a new group member (thus
directly breaking the unforgeability of the SPS-EQ scheme) or by creating a
forged signature for an existing group member (thus breaking the unforgeability
of the SFPK scheme).

16

Theorem 4. Scheme 2 is fully anonymous if the SPS-EQ signature scheme per-
fectly adapts signatures and is existentially unforgeable under chosen-message
attacks, the SFPK scheme is class-hiding and strongly existentially unforgeable.

Proof (Sketch). We first use the perfect adaptation of SPS-EQ signatures to
re-sign the public key pk′ used in the challenge signature. Then we exclude
the case that the adversary issues an open query that cannot be opened. This
means that the adversary created a new group member and can be used to
break the unforgeability of the SPS-EQ scheme. In the next step we choose one
of the users (and abort if he is not part of the query issued by the adversary
to the challenge oracle) for which we change the way we generate the secret
key. Instead of using TKeyGen, we use the standard key generation algorithm
KeyGen. Note that in such a case, the open oracle cannot identify signatures
created by this user. However, since signatures cannot be opened by the oracle
for this user we can identify such a case and return his identifier. Finally, we
replace the SFPK public key and signature in the challenged group signature
by a random one (which is indistinguishable by class-hiding). In the end the

challenged signature is independent from the bit b̂. However, the adversary still
has non-zero advantage. This follows from the fact that it can randomize the
challenged signature and our oracle will output ib̂ (because the SFPK public
key is random in the signature, the oracle will fail to open and return the user’s
identifier). However, if the adversary is able to submit such a query we can break
the strong existential unforgeability of the SFPK scheme.

4.3 Ring Signatures

In ring signatures there is no trusted entity such as a group manager and groups
are chosen ad hoc by the signers themselves. Thus, to certify ring members we
use a membership proof instead of a SPS-EQ signature. This proof is perfectly
sound even if the common reference string is generated by the signer. In other
words, the actual ring signature is a SFPK signature (pk′, σ) and a proof Π that
there exists a public key pk ∈ Ring that is in relation to the public key pk′, i.e.
the signer proves knowledge of the random coins used to get pk′. The signature’s
anonymity relies on the class-hiding property of SFPK. Unfortunately, in the
proof, the reduction does not know a valid witness for proof Π, since it does
not choose the random coins for the challenged signature. Thus, we extend the
signer’s public keys by a tuple of three group elements (A,B,C) and prove
an OR statement which allows the reduction to compute a valid proof Π if
(A,B,C) is a non-DDH tuple (cf. Scheme 3). We can instantiate this scheme
with a membership proof based on the O(

√
n) size ring signatures by Chandran,

Groth, Sahai [14] and the perfectly sound proof system for NP languages by
Groth, Ostrovsky, Sahai [26]. The resulting membership proof is perfectly sound
and of sub-linear size in the size of the set. It follows, that our ring signature
construction yields the first sub-linear ring signature from standard assumptions
without a trusted setup.

17

RKeyGen(1λ)

1 : (sk, pk)←$ KeyGen(λ, ω)

2 : I := (A,B,C)←$ G3
1

3 : return (pkRS := (pk, I), skRS := sk)

RVerify(m,Σ, Ring)

1 : parse Σ = (pk′, σ,Π, ρΠ)

2 : return Verify(x,Π) ∧

3 : Verify(pk′,m, σ)

RSign(m, skRS, Ring)

1 : r ←$ Z∗p; sk′ ←$ ChgSK(sk, r); pk′ ←$ ChgPK(pk, r)

2 : σ ←$ Sign(sk′,m||Ring)

3 : Π ←$ Prove(x, (pk, r)) where x is statement

∃i,pk,r
(
(i, pk, ·) ∈ Ring ∧ ChgPK(pk, r) = pk′

)
∨

∃i,I ((i, ·, I) ∈ Ring ∧ I is not a DDH tuple)

4 : return Σ := (pk′, σ,Π)

Scheme 3: Generic Ring Signature Scheme

Theorem 5. The generic construction of ring signatures presented in Scheme 3
is unforgeable w.r.t. insider corruption assuming the SFPK scheme is existen-
tially unforgeable, the proof system used is perfectly sound and the decisional
Diffie-Hellman assumption holds.

Proof (Sketch). We first fix all public keys of honest users to contain only DDH
tuples. This ensures that the forgery Σ∗ = (pk∗, σ∗, Π∗, ρ∗Π) includes a perfectly
sound proof for the first clause of the statement, i.e. there exists a public key
pk ∈ Ring, which is in relation to pk∗ (all users in Ring must be honest). This
enables us to break existential unforgeability of the SFPK scheme. Note that we
have to guess the correct user to execute a successful reduction.

Theorem 6. The generic construction of ring signatures presented in Scheme 3
is anonymous against full key exposure assuming the SFPK scheme is class-hiding
and the used proof system is computationally witness-indistinguishable.

Proof (Sketch). We first fix all public keys of honest users to contain only non-

DDH tuples I. In the next step we randomly choose a fresh bit b̂ ←$ {0, 1} and
use the witness for the tuple Iib̂ in the challenged signature. Note that the proof

is valid for both values of b̂ but now the proof part is independent from the bit
b. Next we change the SFPK scheme public key pk′ and signature σ returned as
part of the challenged signature Σ = (pk′, σ′, Π). Again we choose a fresh bit

b̂←$ {0, 1} and compute them using pk′ ←$ ChgPK(pkib̂ , r), sk
′ ←$ ChgSK(skib̂ , r)

and σ ←$ Sign(sk′,m||Ring). Any adversary distinguishing this change can be
used to break the class-hiding property of the SFPK scheme. Finally, all elements
of Σ are independent from b and the adversary’s advantage is zero.

18

5 Efficient Instantiation from Standard Assumptions

In this section we present two efficient instantiations of signatures with flexible
public key. All schemes support the same exponentiation relation Rexp. We say
that public keys pk1 = (pk1,1, . . . , pk1,k) and pk2 = (pk2,1, . . . , pk2,k) are in this
relation, denoted (pk1, pk2) ∈ Rexp, if and only if there exists a value r ∈ Z∗p
such that ∀i∈[k](pk1,i)

r = pk2,i. We assume that in the plain model scheme (i.e.
without a common reference string) the public key contains the implicit security
parameter λ and parameters BG. Since the bilinear-group generation algorithm
BGGen(λ) is deterministic, it follows that this does not influence the class-hiding
property or the unforgeability property. Therefore, for readability we omit those
parameters.

The first instantiation is based on a modified version of Waters signatures [41]
for type-2 and type-3 pairings due to Chatterjee and Menezes [16]. The scheme
has the key recovery property and can hence be used to implement stealth ad-
dresses and instantiate our ring signature construction.

The second scheme works in the multi-user setting and features small public
key size, independent of the security parameter λ. It is also based on the modified
version of Waters signatures. A strongly unforgeable variant of this scheme is
ideal for instantiating the group signature scheme presented in Section 4. In
combination with the SPS-EQ from [22] it results in the shortest static group
signature scheme under standard assumptions. Further, using type-2 pairing and
the random oracle model allows to use this scheme without a trusted party.

5.1 Warm-up Scheme

Theorem 7. Scheme 4 is existentially unforgeable under flexible public key, as-
suming the decisional linear assumption holds and that PHF is (1, poly(λ))

Proof. In this particular proof we assume that we can re-run PHF.TrapGen using
the same random coins on a different group, i.e. that we can generate key KPHF =
(gµ0

1 , . . . , gµλ1) ∈ Gλ+1
1 and a corresponding key K ′PHF = (gµ0

2 , . . . , gµλ2) ∈ Gλ+1
2 .

Note that this means that we make non-blackbox use of the underlying pro-
grammable hash function, but this re-running is possible for the hash function
we use, i.e. the Waters hash function.

Let (f1, f2, h1, h2, f
α
1 , f

α
2 , h

β
1 , h

β
2 , g

γ
1 , g

γ
2) be an instance of the decisional lin-

ear problem and let A be an PPT adversary that has non-negligible advantage
Adveuf−cma

A,SFPK (λ). We will show an algorithm R that uses A to break the above
problem instance.

In the first step, the reductionR prepares the public key pkFW = (A,B,C,D, t,
KPHF) as follows. It sets:

X = gγ1 A = fα1 B = hβ1

C = h1 t = e(X, f2) = e(Xφ, g2) D = Xd

19

KeyGenFW(λ, ω)

1 : KPHF ←$ PHF.Gen(λ) ∈ Gλ+1
1

2 : A,B,C,D,X ←$ G1 y ←$ Z∗p
3 : t← e(X

y
, g2)

4 : return (pkFW := (A,B,C,D, t,KPHF),

5 : skFW := (y,X, pkFW))

TKeyGenFW(λ, ω)

1 : KPHF ←$
(
g
µi
1 | i ∈ {0, . . . , λ}, µi ←$ Zp

)
2 : a, b, c, d, x←$ Z∗p y ←

$ Z∗p
3 : t← e(g

x·y
1 , g2)

4 : return (pkFW := (g
a
1 , g

b
1, g

c
1, g

x·d
1 , t,KPHF)

5 : skFW := (y, g
x
1 , pkFW),

6 : τ := (d, g
y
2 , g

a
2 , g

b
2, g

c
2, g

µ0
2 , g

µ1
2 , . . . , g

µλ
2))

SignFW(skFW,m)

1 : parse skFW = (y,X, pkFW)

2 : r ←$ Z∗p
3 : return

4 : σFW :=
(
X
y ·
(
HKPHF

(m)
)r
, g
r
1 , g

r
2

)

VerifyFW(pkFW,m, σFW)

1 : parse σFW = (σ
1
FW, σ

2
FW, σ

3
FW)

2 : pkFW = (A,B,C,D, t,KPHF)

3 : return e(σ
2
W, g2) = e(g1, σ

3
W) ∧

4 : e(σ
1
FW, g2) = t · e

(
HKPHF

(m), σ
3
FW

)

ChgSKFW(skFW, r)

1 : parse skFW = (y,X, pkFW)

2 : pkFW
′ ← ChgPKFW(pkFW, r)

3 : return skFW
′

:= (y, (X
r
), pkFW

′
)

ChgPKFW(pkFW, r)

1 : parse pkFW = (A,B,C,D, t,KPHF)

2 : return pkFW
′

:= (A
r
, B

r
, C

r
, D

r
, t
r
, (KPHF)

r
)

ChkRepFW(τ, pkFW, pkFW
′)

1 : parse pkFW
′

= (pk1, pk2, pk3, X, t, pk4, . . . , pkλ+4)

2 : τ = (d, Y2, τ1, . . . , τλ+4)

3 : return e(X
d−1

, Y2) = t ∧

4 :

λ+4∧
i=1

λ+4∧
j=1

e(pki, τj) = e(pkj , τi)

Recover(sk, τ, pk′)

1 : parse sk = (y, g
x
1 , pk)

2 : τ = (d, g
y
2 , g

a
2 , g

b
2, g

c
2, g

µ0
2 , . . . g

µλ
2)

3 : pk′ = (A
r
, B

r
, C

r
, D

r
, t
r
, (KPHF)

r
)

4 : X
′ ← (D

r
)
1/d

5 : return sk′ := (y,X
′
, pk′)

Scheme 4: Warm-up Scheme for Waters Signatures

and (KPHF, τPHF) ←$ PHF.TrapGen(λ, gγ1 , g1). The reduction also prepares the

trapdoor τ = (d, f2, f
α
2 , h

β
2 , h2,K

′
PHF), where to generate K ′PHF we re-run the

algorithm PHF.TrapGen(λ, gγ2 , g2).
Let (m, l) be one of A′s signing queries. To answer it, R

– chooses random values t←$ Z∗p,
– it computes (am, bm)←$ PHF.TrapEval(τPHF,m) and aborts if am = 0,
– it computes pkFW

′ ←$ ChgPKSFPK(pkSFPK, l),
– it computes:

σ1
FW = (gγ1)t·l·am · ((f1)(−a−1

m) · gt1))l·bm ,

σ2
FW = (f1)−a

−1
m · gt1, σ3

FW = (f1)−a
−1
m · gt2,

– it returns the signature σFW = (σ1
FW, σ

2
FW, σ

3
FW).

Let f1 = gφ1 . We will now show that this is a valid signature. Note that the

a valid signature is of the form (fγ·l1 · ((gγ1)am · gbm1)l·r, gr1, g
r
2). In this case, the

reduction has set r = −a−1
m · φ+ t and this means that the fγ·l1 cancels out and

the reduction does not need to compute fγ1 .

20

Finally,A will output a valid signature under messagem∗: ˆσFW = (ˆσFW
1, ˆσFW

2,

ˆσFW
3) = ((gγ·φ1 HKPHF

(m∗)r
∗
)l
∗
, gr
∗

1 , gr
∗

2), for which we hope that am∗ = 0, where
(am∗ , bm∗) ←$ PHF.TrapEval(τPHF,m

∗). Moreover, since this should be a valid

forgery then we have that this signature is under a public key ˆpkFW for which
(pkFW, ˆpkFW) ∈ R. Thus, we have ˆσFW = ((fγ1 (gr

∗

1)bm∗)l
∗
, gr
∗

1 , gr
∗

2), for some

unknown r∗ but known bm∗ . Since (pkFW, ˆpkFW) ∈ R. This means that ˆpkFW =

(Al
∗
, Bl

∗
, Cl

∗
, Dl∗ , tl

∗
,Kl∗

PHF) = ((fα1)l
∗
, (hβ1)l

∗
, (h1)l

∗
, (gγ·d1)l

∗
, tl
∗
,Kl∗

PHF). We now
compute

T1 = e(ˆσFW
1, h2) = e(fγ1 (gr

∗

1)bm∗ , hl
∗

2) T2 = e(hl
∗

1 , g
r∗

2)bm∗ = e(gr
∗·bm∗

1 , hl
∗

2)

T3 = e((fα1)l
∗
, h2) = e(fα1 , h

l∗

2) T4 = e((hβ1)l
∗
, f2) = e(fβ1 , h

l∗

2)

Finally, the reduction R returns 1 if T1 ·T−1
2 = T3 ·T4 and 0, otherwise. Note

that T1 · T−1
2 = e(fγ1 , h

l∗

2) and the above equation is correct only if γ = α+ β.
The success probability of the reduction R depends on whether it can answer

all signing queries of A and on the returned forgery (i.e. for which we must have
am∗ = 0). However, since we assume that the used hash function is a (1, poly(λ))-
programmable hash function, it follows that R has a non-negligible advantage
in solving the decisional linear problem.

Theorem 8. Scheme 4 is class-hiding, assuming the decisional Diffie-Hellman
assumption in G1 holds.

Proof. In this proof we will use the game based approach. We start with GAME0

which is the original class-hiding experiment and let S0 be an event that the ex-
periment evaluates to 1, i.e. the adversary wins. We then make small changes
and show in the end that the adversary’s advantage is zero. We will use Si to de-
note the event that the adversary wins the class-hiding experiment in GAMEi.
We will also use the vector u to denote the key for the programmable hash
function KPHF. Let pkFW

′ = (A′, B′, C ′, D′, t′,u′) be the public key given to the
adversary as part of the challenge. Moreover, let pkFW0 = (A0, B0, C0, D0, t0,u0)
and pkFW1 = (A1, B1, C1, D1, t1,u1) be the public keys that are returned by the
KeyGen algorithm on input of random coins ω0 and ω1 given to the adversary
and b̂ be the bit chosen by the challenger.

GAME1: In this game we change the way we sample pkFW0 and pkFW1. Instead
of sampling directly from G1, we sample a, b, c, d, x, ν1, . . . , νλ ←$ Z∗p and set

A = ga1 , B = gb1, C = gc1, D = gd1 , X = gx1 and u = (gν01 , . . . , gνλ1). More-
over, we change the way skFW

′ and pkFW
′ are computed from skFW b̂ pkFW b̂, i.e.

pkFW
′ = (Qa, Qb, Qc, Qd, e(Qx, gy2), (Qν0 , . . . , Qνλ)), and skFW

′ = (y,Qx, pkFW
′).

In other words, instead of using the value r to randomize the public key and
secret key, we use a group element Q to do it.

Because we can use the invertible sampling algorithm to retrieve the random
coins ω0 and ω1 and since the distribution of the keys does not change, it follows
that Pr[S1] = Pr[S0]. Note that since the secret key skFW

′ is known, the signing

21

oracle Sign(skFW
′, ·) can be properly simulated for any adversary.

GAME2: In this game instead of computing pkFW
′ = (Qa, Qb, Qc, Qd, e(Qxb̂ , g

yb̂
2),

(Qν0 , . . . , Qνλ)) as in GAME1, we sample A′ ←$ G1 set pkFW
′ = (A′, Qb, Qc,

Qd, e(Qxb̂ , g
yb̂
2), (Qν0 , . . . , Qνλ)).

We will show that this transition only lowers the adversary’s advantage by
a negligible fraction. In particular, we will show a reduction R that uses an
adversaryA that can distinguish between those two games to break the decisional
Diffie-Hellman assumption in G1. Let (gα1 , g

β
1 , g

γ
1) be a instance of this problem

in G1. R samples r0,A, r1,A ←$ Z∗p and sets A0 = (gα1)r0,A , A1 = (gα1)r1,A .

Additionally, the reduction uses Q = gβ1 and the public key

pkFW
′ = ((gγ1)rb̂,A , Qb, Qc, Qd, e(Qxb̂ , g

yb̂
2), (Qν0 , . . . , Qνλ)).

Note that since R knows the secret key skFW
′ it can answer signing queries.

Finally notice, that if γ = α · β then (pkFW
′, σFW) have the same distribution as

in GAME1 and otherwise as in GAME2. Thus, we have |Pr[S2] − Pr[S1]| ≤
AdvddhA (λ).

GAME3 (series of sub-games): In this game instead of computing
pkFW

′ = (A′, Qb, Qc, Qd, e(Qxb̂ , g
yb̂
2), (Qν1 , . . . , Qνλ)) as in GAME2, we sample

B′, C ′, D′, u′0, . . . , u
′
λ ←$ G1 and set pkFW

′ = (A′, B′, C ′, D′, e(Qxb̂ , g
yb̂
2), (u′0, . . . , u

′
λ)).

This transition is composed of a number of sub-games, in which we change
each element of the public key pkFW

′ separately. Obviously, we can use the same
reduction as above and show that each change lowers the adversary’s advantage
by at most AdvddhA (λ). It is worth noting, that the reduction can always create
a valid signature, since the secret key skFW

′ = (yb̂, Q
xb̂ , pkFW

′) can be computed

by R. Thus, we have |Pr[S3]− Pr[S2]| ≤ (4 + λ) · AdvddhA (λ).

Let us now take a look at the randomized public key and signature given to
the adversary. Because of all the changes, we have: pkFW

′ = (A′, B′, C ′e(Qxb̂·yb̂ , g2),
u′) and signatures from the oracle are of the form (Qxb̂·yb̂(HKPHF

(m))r, gr1, g
r
2)

for some r ∈ Z∗p and A′, B′, C ′,u′(= KPHF), Q, which are independent from the

bit b̂ and the original public keys. Since the value Q is random and only appears
as part of the term Qxb̂·yb̂ , we can always restate this term to Q′x1−b̂·y1−b̂ where

Q′ = Q(x1−b̂·y1−b̂)·(xb̂·yb̂)
−1

and Q′ is a random value. It follows that the adver-
saries advantage is zero, i.e. Pr[S3] = 0.
Finally, we have Advc-hA,SFPK(λ) = Pr[S0] ≤ (5 + λ) · AdvddhA (λ).

5.2 Flexible Public Key Scheme in the Multi-user Setting

Theorem 9. Scheme 5 is existentially unforgeable under flexible public key in
the common reference string model, assuming the co-Flexible Diffie-Hellman as-
sumption holds and that PHF is a (1, poly(λ))-programmable hash function.

22

CRSGen(λ, ω)

1 : BG←$ BGGen(λ)

2 : KPHF ←$ PHF.Gen(λ) ∈ Gλ+1
1

3 : y ←$ Z∗p;Y1 ← g
y
1 ;Y2 ← g

y
2

4 : return ρ := (BG, Y1, Y2, KPHF)

KeyGenFW(λ, ω)

1 : A,B ←$ G1; x←$ Z∗p
2 : return (pkFW := (A,B, g

x
1)

3 : skFW := (Y
x
1 , pkFW))

TKeyGenFW(λ, ω)

1 : a, b, x←$ Z∗p
2 : return (pkFW := (g

a
1 , g

b
1, g

x
1),

3 : skFW := (Y
x
1 , pkFW),

4 : τ := (g
a
2 , g

b
2, g

x
2))

SignFW(skFW,m)

1 : parse skFW = (Z, pkFW)

2 : r ←$ Z∗p
3 : return

4 : σFW := (Z · (HKPHF
(m))

r
, g
r
1 , g

r
2)

VerifyFW(pkFW,m, σFW)

1 : parse pkFW = (A,B,X)

2 : σFW = (σ
1
FW, σ

2
FW, σ

3
FW)

3 : return e(σ
2
W, ĝ2) = e(ĝ1, σ

3
W) ∧

4 : e(σ
1
FW, ĝ2) = e(X,Y2) · e(HKPHF

(m), σ
3
FW)

ChgSKFW(skFW, r)

1 : parse skFW = (Z, pkFW)

2 : pkFW
′ ← ChgPKFW(pkFW, r)

3 : return

4 : skFW
′

:= ((Z)
r
, pkFW

′
)

ChgPKFW(pkFW, r)

1 : parse pkFW = (A,B,X)

2 : return pkFW
′

:= (A
r
, B

r
, X

r
)

ChkRepFW(τ, pkFW
′)

1 : parse τ = (τ1, τ2, τ3)

2 : pkFW
′

= (pk1, pk2, pk3)

3 : return

4 :
∧
i∈[3]

∧
j∈[3]

e(pki, τj) = e(pkj , τi)

Scheme 5: Multi-user Flexible Public Key

Proof (Sketch). The proof follows the same idea as the proof of Theorem 7.
The only difference is that in this case we will use a reduction directly to the
co-Flexible Diffie-Hellman assumption. Let (gα1 , g

α
2 , g

β
1 , g

β
2 , g

γ
1 , g

γ
2 , g

θ
1 , g

θ
2) be an

instance of this problem. The reduction R prepares the common reference string
ρ = (BG, Y1, Y2,KPHF) and the public key pkFW = (A,B,X) as follows. It sets

X = gβ1 , Y1 = gα1 , Y2 = gα2 , A = gγ1 , B = gθ1 and (KPHF, τPHF)←$ PHF.TrapGen(λ,

gβ1 , g1). Moreover, R sets τ = (gγ2 , g
θ
2 , g

β
2). Finally, the adversary A will output

a public key ˆpkFW = (Al
∗
, Bl

∗
, X l∗) and a valid signature under message m∗:

ˆσFW = ((gα·β1)l
∗
(gr
∗

1)bm∗ , gr
∗

1 , gr
∗

2), for some unknown r∗ but known bm∗ . The

reduction can compute S = (gα·β1)l
∗

and return (Al
∗
, Bl

∗
, S) as a solution to the

co-Flexible Diffie-Hellman problem.

Theorem 10. Scheme 5 is class-hiding under the DDH assumption in G1.

Proof (Sketch). The proof is analogous to the proof of Theorem 8.

Remark 1 (Key Recovery). To support key recovery, the public key must be
extended to the form (A,B,C,X) for C = Y c1 . The value c is then part of τ and
can be used to restore the value Y r1 , where r is the randomness used to change
the public key. Given Y r1 we need to compute Zr = Y xr1 , therefore we also have
to include x as part of the original secret key skFW = (x, Y x1) = (x, Z).

23

SignFW(skFW,m)

1 : parse skFW = (Z, pkFW)

2 : r ←$ Z∗p; s←$ Z∗p
3 : v ← H(m, g

r
1 , g

r
2 , pkFW) ∈ Z∗p

4 : M ← g
v
1h
s

5 : return σFW := (Z · (HKPHF
(M))

r
, g
r
1 , g

r
2 , s)

VerifyFW(pkFW,m, σFW)

1 : parse pkFW = (A,B,X)

2 : σFW = (σ
1
FW, σ

2
FW, σ

3
FW, s)

3 : v ← H(m, g
r
1 , g

r
2 , pkFW)

4 : M ← g
v
1h
s

5 : return e(σ
2
W, ĝ2) = e(ĝ1, σ

3
W) ∧

6 : e(σ
1
FW, ĝ2) = e(X,Y2) · e(HKPHF

(M), σ
3
FW)

Scheme 6: Strong Existential Unforgeable Variant of Scheme 5

Transformation to Strong Existential Unforgeability. Scheme 5 is only
existentially unforgeable under flexible public key and this directly follows from
the fact that given a signature (gx·y·l1 HKPHF

(m)r, gr1, g
r
2) on message m, we can

compute a randomized signature (σ1
FW, σ

2
FW, σ

3
FW) = (gx·y·l1 HKPHF

(m)r·HKPHF
(m)r

′
,

gr1g
r′

1 , g
r
2g
r′

2) for a fresh value r′ ←$ Z∗p.
A generic transformation from existentially unforgeable to strongly unforge-

able signatures was proposed by Boneh, Shen and Waters [10]. In particular,
they use Waters signatures as a case study. It works for all schemes for which
there exist two algorithms F1 and F2 with the following properties: 1) the output
signature is (σ1, σ2), where σ1 ←$ F1(m, r, sk) and σ2 ←$ F2(r, sk), 2) given m and
σ2 there exists at most one σ1 so that (σ1, σ2) is a valid signature under pk. It
is easy to see that these properties hold for standard Waters signatures and for
Scheme 5, since we can compute σ2

FW, σ
3
FW in algorithm F2 and σ1

FW in F1. What
is more, once the random value r is set, there exists exactly one value σ1

FW, for
which (σ1

FW, σ
2
FW, σ

3
FW) is valid under a given public key.

The high level idea of the solution is to bind the part computed by F2 using
a hash function, i.e. the output of F2 is hashed together with the actual message
m and the output is signed. In a scenario where we consider a given public key,
this means that the signature cannot be randomized. Any manipulation of the
values (σ2

FW, σ
3
FW) would result in a different signed message, which would lead

to an attack against existential unforgeability of the underlying scheme. Fixing
(σ2

FW, σ
3
FW) fixes σ1

FW, as required by the properties above. Unfortunately, the
second argument does not hold for strong unforgeability under flexible public key.
Note that the adversary can still change σ1

FW by randomizing the public key. We
can overcome this by simply including the public key in the hash computation.

This idea prevents the randomization of the signature but breaks the security
proof of the underlying scheme. To allow the security reduction to bypass this
protection Boneh, Shen and Waters propose to sign a Pedersen commitment to
this hash value, instead of the value itself. The reduction can use a trapdoor to
bypass this protection using equivocation of the commitment. At the same time
the binding property still makes it impossible for the adversary to randomize the
signature. To apply this idea in our case, we first extend the common reference
string ρ by an element h←$ G1. This element is part of the commitment key for
the Pedersen scheme. More details are given in Scheme 6.

24

Scheme
Public Key

Size
Signature

Size
CRS Assumption

Key
Recovery

[G1] [GT] [G1] [G2] [GT] [Z∗p] [G1] [G2]

4 (λ+ 5) 1 2 1 - - - - DLIN + DDH 3

5 3 - 2 1 - - (λ+ 2) 1 co-Flex (or DLIN) + DDH 7/3†

6 3 - 2 1 - 1 (λ+ 3) 1 co-Flex + DDH + CRHF 7/3†

† Can support key recovery at an expense of a larger public key (one element in G1).

Fig. 1. Comparison of Presented Instantiations

Theorem 11. Scheme 6 is strongly existentially unforgeable under flexible pub-
lic key in the CRS model, assuming the co-Flexible Diffie-Hellman assumption
holds and the hash function H is collision-resistant.

Proof (Sketch). The proof follows directly from the proof given in [10].

Theorem 12. Scheme 6 is class-hiding under the DDH assumption in G1.

Proof (Sketch). We can apply the same reasoning as in the proof of Theorem 10.

5.3 Discussion

In this we instantiate the generic group signature Scheme 2 and the generic ring
signature Scheme 3 with our SFPK instantiations.

Note that in the case of group signatures we can use a SFPK scheme that
is strongly existentially unforgeable in the multi-user setting, since the group
manager can be trusted to perform a proper setup of public parameters. Thus, a
natural candidate is Scheme 6. We also require a SPS-EQ signature scheme, which
we instantiate using the scheme presented in [22]. A caveat to this scheme is that
it only supports a one-time adaptation of signatures to a different representative.
This does not impact our use of the scheme since in our application the group
member performs the adaptation only once per signing. Further, the scheme is
only unforgeable under adaptive chosen-open-message attacks, hence we require
the following lemma.

Lemma 2. Let the public key of the SFPK scheme consist only of elements
sampled directly from G1 or computed as gx1 , where x ←$ Z∗p. Theorems 3 and 4
still hold if the SPS-EQ scheme is only existential unforgeable under adaptive
chosen-open-message attacks.

Proof (Sketch). In the proof of Theorem 3, instead of excluding the case where
the adversary creates a new user, we can toss a coin and chose the adversary’s

25

Scheme
Signature size∗

[bits]
Key size∗

[bits gpk + bits gmsk]
Anonymity Assumptions

Random
Oracle


Camenisch-Groth [13] 13 568 26 112 + O(λ) full standard

Boneh-Boyen-Shacham [8] 2 304 2 048 + 512 CPA-full q-type

Bichsel et al. [6]† 1 280 1 024 + 512 no key exposure interactive

No
Random
Oracle



Boyen-Waters [12] 18 432 O(λ) + 6144 CPA-full q-type

Boyen-Waters [12]‡ 6 656 O(λ) + 512 CPA-full q-type

Libert-Peters-Yung [31] 8 448 18 688¶ + 256 full standard

Ours with [23] 3 072 O(λ) +O(n) full interactive

Ours with [22] 7 680 O(λ) +O(n) full standard
? At a 256-bit (resp. 512-bit) representation of Zq,G1 (resp. G2) for Type 3 pairings and at a 3072-bit

factoring and DL modulus with 256-bit key
† The scheme defines additionally a join↔issue procedure
‡ Adapted from type 1 to type 3 pairings as in [31]; ¶ A chameleon hash key excluded.

Fig. 2. Comparison of Static Group Signature Schemes

strategy (forging the SPS-EQ or SFPK signature). In case we end up choosing
the SPS-EQ, we can freely choose the SFPK public keys and issue signing oracles
to get all σiSPS. In the proof of Theorem 4 we use the unforgeability of SPS-EQ
to exclude the case that the adversary issues an open query for a new user.
Because this is the first change, we can again freely choose the SFPK public keys
and issue signing oracles to get all σiSPS. Finally, we note that in such proofs we
make a non-blackbox use of the SFPK scheme.

For message space (G∗1)` the size of the SPS-EQ signature is (4 · ` + 2) ele-
ments in G1 and 4 elements in G2. The security of the SPS-EQ scheme relies on
the decisional linear assumption and the decisional Diffie-Hellman assumption
in G2, while the security of our SFPK relies on the co-Flexible Diffie-Hellman
assumption. All in all, the proposed instantiation yields a static group signature
scheme that is secure under standard assumptions and has a signature size of
20 elements in G1 (counting elements in Z∗q as G1) and 5 elements in G2. It
therefore has shorter signatures than the current state-of-the-art scheme in [31].

Even shorter signatures can be achieved at the expense of introducing stronger
assumptions without relying on Lemma 2, by using the scheme found in [23],
which is unforgeable in the generic group model and has signatures of size 2
elements in G1 and 1 element in G2. More details are given in Figure 2.

We now focus on instantiating our ring signatures construction. Combining
any scheme from Section 5 with a generic perfectly sound proof system would
result in a ring signature scheme that is unlikely to be of interest, as there are
already more efficient schemes with/without a trusted setup (see Figure 3 for a
comprehensive comparison). However, using the results presented by Chandran,
Groth and Sahai [14] we can make the membership proof efficient. They propose

26

a perfectly sound proof of size O(
√
n) that a public key pk ∈ G1 (or pk ∈ G2),

is in a Ring of size n. This idea can be applied to arbitrary public keys (i.e.
consisting of group elements in different groups) in combination with a perfectly
sound proof system for NP languages. Thus, we must use a compatible SFPK
instantiation, leaving as the only scheme without a trusted party assumption
Scheme 4. A public key of Scheme 4 contains an element in GT and therefore
cannot be used with the proof system from Subsection 2.3, which is based on the
efficient Groth-Sahai proofs for pairing product equations. We solve this problem
in the following way:

Lemma 3. Scheme 4 is unforgeable and class-hiding even if X = gx1 , Y = gy2
are publicly known, where t = e(Xy, g2) = e(X,Y) is part of the signer’s public
key. Moreover, knowing the secret key one can compute such values.

Proof. Class-hiding still holds, because the adversary is given the secret keys ski
for i ∈ {0, 1}, which contain Xi and yi so it can compute Xi and Yi by itself
already. To show that unforgeability still holds, we first have to note that Y is
part of the trapdoor τ and does not provide new information for the adversary.
Finally, in the proof of unforgeability of Scheme 4 X is set to be gγ1 , where gγ1 is
part of the decisional linear problem instance. This element is not given to the
adversary directly but the same proof works if this value would be given to the
adversary.

The idea is that instead of putting the public key pkFW = (A,B,C,D, t,
KPHF) into the ring, we put (A,B,C,D,X, Y,KPHF). Finally, we modify the
first part of the statement proven during signing, i.e. we use

∃A,B,C,D,X,X′,Y,KPHF,r (i, (A,B,C,D,X, Y,KPHF), ·) ∈ Ring ∧ e(X, gr2) = e(X ′, g2) ∧
e(X ′, Y) = t′ ∧ e(A, gr2) = e(A′, g2) ∧
e(B, gr2) = e(B′, g2) ∧ e(C, gr2) = e(C ′, g2) ∧
e(D, gr2) = e(D′, g2) ∧ e(KPHF, g

r
2) = e(K ′PHF, g2),

instead of ∃pk,r
(
(i, pk, ·) ∈ Ring ∧ ChgPK(pk, r) = pk′

)
, where pkFW

′ = (A′, B′,
C ′, D′, t′,K ′PHF) is the randomized SFPK public key used as part of the ring
signature. Since all elements in the ring are now elements in G1 or G2, we can
use the proof system from Subsection 2.3 to efficiently instantiate the proof used
in our ring signature construction. What is more, we can also apply the trick
from [14] and create a membership proof of length only O(

√
n). The resulting

ring signature scheme is the first efficient scheme that is secure under falsifiable
assumptions, without a trusted party and with signature size that does not
depend linearly on the number of ring members. This solves the open problem
stated by Malavolta and Schröder [33].

Acknowledgments. This work was supported by the German Federal Ministry of
Education and Research (BMBF) through funding for CISPA and the CISPA-
Stanford Center for Cybersecurity (FKZ: 16KIS0762).

27

Scheme Signature size Assumptions

Trusted
Setup


Shacham-Waters [38] O(n) standard

Boyen [11] O(n) q-type

Chandran-Groth-Sahai [14] O(
√
n) q-type

Malavolta-Schröder [33] O(1) q-type + GGM

No
Trusted
Setup



Chow et al. [18] O(n) q-type

Bender-Katz-Morselli [5] O(n) ENC + ZAP

Malavolta-Schröder [33] O(n) q-type + knowledge

Our scheme O(n) standard

Our scheme with [14] O(
√
n) standard

Fig. 3. Comparison of Ring Signature Schemes without Random Oracles and Secure
in the Strongest Model from [5]

References

[1] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik.
“Sanitizable Signatures”. In: ESORICS 2005. Ed. by Sabrina De Capitani
di Vimercati, Paul F. Syverson, and Dieter Gollmann. Springer, 2005.

[2] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. “Efficient
Completely Context-Hiding Quotable and Linearly Homomorphic Signa-
tures”. In: PKC 2013. Ed. by Kaoru Kurosawa and Goichiro Hanaoka.
Springer, 2013.

[3] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic
Curves of Prime Order”. In: SAC 2005. Ed. by Bart Preneel and Stafford
Tavares. Springer, 2006.

[4] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. “Foundations
of Group Signatures: Formal Definitions, Simplified Requirements, and a
Construction Based on General Assumptions”. In: EUROCRYPT 2003.
Ed. by Eli Biham. Springer, 2003.

[5] Adam Bender, Jonathan Katz, and Ruggero Morselli. “Ring Signatures:
Stronger Definitions, and Constructions Without Random Oracles”. In:
TCC 2006. Ed. by Shai Halevi and Tal Rabin. Springer, 2006.

[6] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bog-
dan Warinschi. “Get Shorty via Group Signatures without Encryption”.
In: SCN 2010. Ed. by Juan A. Garay and Roberto De Prisco. Springer,
2010.

[7] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud.
“Signatures on Randomizable Ciphertexts”. In: PKC 2011. Ed. by Dario
Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi. Springer,
2011.

28

[8] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signa-
tures”. In: CRYPTO 2004. Ed. by Matthew K. Franklin. Springer, 2004.

[9] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters.
“Signing a Linear Subspace: Signature Schemes for Network Coding”. In:
PKC 2009. Ed. by Stanislaw Jarecki and Gene Tsudik. Springer, 2009.

[10] Dan Boneh, Emily Shen, and Brent Waters. “Strongly Unforgeable Sig-
natures Based on Computational Diffie-Hellman”. In: PKC 2006. Ed. by
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Springer,
2006.

[11] Xavier Boyen. “Mesh Signatures”. In: EUROCRYPT 2007. Ed. by Moni
Naor. Springer, 2007.

[12] Xavier Boyen and Brent Waters. “Full-Domain Subgroup Hiding and Constant-
Size Group Signatures”. In: PKC 2007. Ed. by Tatsuaki Okamoto and
Xiaoyun Wang. Springer, 2007.

[13] Jan Camenisch and Jens Groth. “Group Signatures: Better Efficiency and
New Theoretical Aspects”. In: SCN 2004. Ed. by Carlo Blundo and Stelvio
Cimato. Springer, 2004.

[14] Nishanth Chandran, Jens Groth, and Amit Sahai. “Ring Signatures of Sub-
linear Size Without Random Oracles”. In: ICALP 2007. Ed. by Lars Arge,
Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki. Springer, 2007.

[15] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-
john. “Malleable Signatures: New Definitions and Delegatable Anonymous
Credentials”. In: CSF 2014. IEEE Computer Society, 2014.

[16] Sanjit Chatterjee and Alfred Menezes. “On cryptographic protocols em-
ploying asymmetric pairings - The role of Ψ revisited”. In: Discrete Applied
Mathematics 13 (2011).

[17] David Chaum and Eugène van Heyst. “Group Signatures”. In: EURO-
CRYPT ’91. Ed. by Donald W. Davies. Springer, 1991.

[18] Sherman S. M. Chow, Victor K.-W. Wei, Joseph K. Liu, and Tsz Hon
Yuen. “Ring signatures without random oracles”. In: ASIACCS 2006. Ed.
by Ferng-Ching Lin, Der-Tsai Lee, Bao-Shuh Paul Lin, Shiuhpyng Shieh,
and Sushil Jajodia. ACM, 2006.

[19] Nicolas T. Courtois and Rebekah Mercer. “Stealth Address and Key Man-
agement Techniques in Blockchain Systems”. In: ICISSP 2017. Ed. by
Paolo Mori, Steven Furnell, and Olivier Camp. SciTePress, 2017.

[20] Ivan Damg̊ard and Jesper Buus Nielsen. “Improved Non-committing En-
cryption Schemes Based on a General Complexity Assumption”. In: CRYPTO
2000. Ed. by Mihir Bellare. Springer, 2000.

[21] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schröder, and Mark Simkin. “Efficient Unlinkable Sanitizable
Signatures from Signatures with Re-randomizable Keys.” In: PKC 2016.
Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang. Springer, 2016.

29

[22] Georg Fuchsbauer and Romain Gay. Weakly Secure Equivalence-Class Sig-
natures from Standard Assumptions. Cryptology ePrint Archive, Report
2018/037. 2018.

[23] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. EUF-CMA-
Secure Structure-Preserving Signatures on Equivalence Classes. Cryptol-
ogy ePrint Archive, Report 2014/944. 2014.

[24] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. “Practical Round-
Optimal Blind Signatures in the Standard Model”. In: CRYPTO 2015. Ed.
by Rosario Gennaro and Matthew Robshaw. Springer, 2015.

[25] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. “Groth-Sahai
Proofs Revisited”. In: PKC 2010. Ed. by Phong Q. Nguyen and David
Pointcheval. Springer, 2010.

[26] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Non-interactive Zaps and
New Techniques for NIZK”. In: CRYPTO 2006. Ed. by Cynthia Dwork.
Springer, 2006.

[27] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems
for Bilinear Groups”. In: EUROCRYPT 2008. Ed. by Nigel P. Smart.
Springer, 2008.

[28] Christian Hanser and Daniel Slamanig. “Structure-Preserving Signatures
on Equivalence Classes and Their Application to Anonymous Credentials”.
In: ASIACRYPT 2014. Ed. by Palash Sarkar and Tetsu Iwata. Springer,
2014.

[29] Dennis Hofheinz and Eike Kiltz. “Programmable Hash Functions and Their
Applications”. In: CRYPTO 2008. Ed. by David A. Wagner. Springer,
2008.

[30] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David A. Wag-
ner. “Homomorphic Signature Schemes”. In: CT-RSA 2002. Ed. by Bart
Preneel. Springer, 2002.

[31] Benôıt Libert, Thomas Peters, and Moti Yung. “Short Group Signatures
via Structure-Preserving Signatures: Standard Model Security from Simple
Assumptions”. In: CRYPTO 2015. Ed. by Rosario Gennaro and Matthew
Robshaw. Springer, 2015.

[32] Benôıt Libert and Damien Vergnaud. “Multi-use unidirectional proxy re-
signatures”. In: CCS 2008. Ed. by Peng Ning, Paul F. Syverson, and
Somesh Jha. ACM, 2008.

[33] Giulio Malavolta and Dominique Schröder. “Efficient Ring Signatures in
the Standard Model”. In: ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and
Thomas Peyrin. Springer, 2017.

[34] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:
//bitcoin.org/bitcoin.pdf.

[35] Tatsuaki Okamoto and Xiaoyun Wang, eds. Public Key Cryptography -
PKC 2007. Springer, 2007.

[36] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret”.
In: ASIACRYPT 2001. Ed. by Colin Boyd. Springer, 2001.

30

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

[37] Nicolas van Saberhagen. CryptoNote v 2.0. https://cryptonote.org/
whitepaper.pdf. Oct. 2013.

[38] Hovav Shacham and Brent Waters. “Efficient Ring Signatures Without
Random Oracles”. In: PKC 2007. Ed. by Tatsuaki Okamoto and Xiaoyun
Wang. Springer, 2007.

[39] Peter Todd. Stealth Addresses. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2014-January/004020.html.

[40] Eric R. Verheul. “Self-Blindable Credential Certificates from the Weil Pair-
ing”. In: ASIACRYPT 2001. Ed. by Colin Boyd. Springer, 2001.

[41] Brent Waters. “Efficient Identity-Based Encryption Without Random Or-
acles”. In: EUROCRYPT 2005. Ed. by Ronald Cramer. Springer, 2005.

31

https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html

Appendix

Full Security Proofs - Group and Ring Signature Constructions

Proof of Theorem 3

Proof (Theorem 3). We will use the game base approach. Let us denote by Si
the event that the adversary wins the full traceability experiment in GAMEi.
Let (m∗, σ∗GS = (pk∗, σ∗, σ∗SPS)) be the forgery outputted by the adversary.

GAME0: The original experiment.

GAME1: We abort in case OpenGS(gmsk,m∗, σ∗GS) = ⊥ but VerifyGS(gpk,m∗,
σ∗GS) = 1. Informally, we exclude the case that the adversary creates a new user
from outside the group, i.e. a new SPS-EQ signature.

We will show that this only decreases the adversary’s advantage by a negligi-
ble fraction. In particular, we will show that any adversary A returns a forgery
for which we abort, can be used to break the existential unforgeability of the
SPS-EQ signature scheme. The reduction algorithm uses the signing oracle to
compute all signature σiSPS of honest users. Finally, if the adversary returns
(m∗, σ∗GS = (pk∗, σ∗, σ∗SPS)), the reduction algorithm returns (pk∗, σ∗SPS) as a valid
forgery. We note that by correctness of the SFPK scheme, if pk∗ is in a relation
to a public key of an honest user, then we can always open this signature. It
follows that pk∗ is from a different equivalence class and the values returned by
the reduction algorithm are a valid forgery against the SPS-EQ signature scheme.

It follows that |Pr[S1]− Pr[S0]| ≤ Adv`,euf-cma
SPS-EQ,A(λ).

GAME2: We choose a random user identifier j ←$ [n] and abort in case
OpenGS(gmsk,m∗, σ∗GS) 6= j

It is easy to see that Pr[S1] = n · Pr[S2].

We now show that any adversary A that has non-negligible advantage in
winning full-traceability experiment in GAME2 can be used by a reduction
algorithm R to break the existential unforgeability of the SFPK scheme.
R computes all the public keys of group members according to protocol,

except for user j. For this user, the algorithm sets pkj to the public key given
to R by the challenger in the unforgeability experiment of the SFPK scheme.
It is worth noting, that the adversary A is given the group manager’s secret
key gmsk = ([(τ i, pki)]ni=1). Fortunately, the reduction R is also given τ j by the
challenger and can compute a valid secret key gmsk that it gives as input to A.
To simulate signing queries for the j-th user, R uses its own signing oracle. By
the change made in GAME2, A will never ask for the secret key of the j-th
user, for which R is unable to answer (unlike for the other users).

32

Finally, A outputs a valid group signature (m∗, σ∗GS = (pk∗, σ∗, σ∗SPS)) and
the reduction algorithm outputs (m∗||σ∗SPS||pk

∗, σ∗) as a valid SFPK forgery. By
the changes made in the previous games we know that pk∗ and pkj must be in a
relation. Moreover, the message m∗ could not be used by A in any signing query
made to R. Thus we know that (m∗||σ∗SPS||pk

∗) was never queried by R to its
signing oracle, which show that R returns a valid forgery against the unforge-
ability of the SFPK scheme.

Finally, we have

Pr[S0] ≤ n · Adveuf−cma
A,SFPK (λ) + Adv`,euf-cma

SPS-EQ,A(λ).

Proof of Theorem 4

Proof (Theorem 4). We will use the game-based approach. Let us denote by Si
the event that the adversary wins the full anonymity experiment in GAMEi.

GAME0: The original experiment.

GAME1: In this game we change the way we compute the challenge signature
σ∗GS ←$ SignGS(gsk[ib],m

∗). Let σ∗GS = (pk′, σ, σ′SPS). We compute (pk′, σ) as in
the original experiment but instead of randomizing the SPS-EQ signature σSPS,
we compute σSPS ← SignSPS(pk′, skSPS).

Because the SPS-EQ signature scheme perfectly adapts signatures, we have
Pr[S1] = Pr[S0].

GAME2: We pick a random user identifier j ←$ [n] and abort in case j 6= ib.

It is easy to see that Pr[S1] = n · Pr[S2].

GAME3: We now abort in case the adversary queries a valid signature (m,σGS =
(pk′, σ, σ′SPS)) to the OpenGS oracle and it fails to open, i.e. the opening algorithm
returns ⊥.

By perfect correctness of the SFPK scheme, it follows that the only way an
adversary can make the experiment abort if he is able to create a new user, i.e.
create a valid SPS-EQ signature under a public key pk∗ that is not in relation
with any of the honest public keys. It follows that we can use such an adversary
to break the existential unforgeability of the SPS-EQ signature scheme, i.e. we
just use the signing oracle to generate all σiSPS and return (pk′, σ′SPS) as a valid
SPS-EQ forgery.

It follows that |Pr[S3]− Pr[S2]| ≤ Adv`,euf-cma
A,SPS-EQ(λ).

33

GAME4: We now change the way, we compute the secret key for user j. Instead
of using (pkj , skj , τ j)← TKeyGenFW(λ, ω), we use (pkj , skj)← KeyGen(λ, ω).

Obviously, in such a case we cannot answer the OpenGS queries for user j, as
the value τ j is unknown. However, we note that if the adversary’s query (m,σGS)
is a valid group signature, then the OpenGS must return a valid user identifier
(because of the change in GAME3, we do not return ⊥ in such a case). There-
fore, if there exists no identifier i ∈ [n]/{j} for which ChkRep(τ i, pki, pk′) = 1,
we return j.

It is easy to note that this is just a conceptual change (because of the change
in GAME3) and we have Pr[S4] = Pr[S3].

GAME5: We now compute a random SFPK key pair (pk, sk) ← KeyGen(λ, ω),
choose a random blinding factor r, compute public key pk′ ← ChgPK(pk, r),
secret key sk′ ← ChgSK(sk, r) and change the way we compute the challenged
signature σGS = (pk′, σ, σSPS) under message m. We set M = m||σSPS||pk′ and
run σ ← Sign(sk′,M). In other words, instead of using the secret of user ib to
generate the signature σ, we use a fresh key pair for this (i.e. a user from outside
the system).

We note that any adversary that is able to distinguish between GAME4 and
GAME5, can be used to break the class-hiding property of the SFPK signature
scheme. The reduction algorithm can just set one of the public keys from the
class-hiding challenge to be part of the public key of the j-th user. In case, the
signature given by the challenger in the class-hiding game was created by this
user, we are in GAME4. If it was created by the second user, then we are in
GAME5. Of course, it might happen that the one of the users in the other group
member (other than the j-th user) has a public key from the same relation as
the second user in the class-hiding experiment. However, this event occurs with
negligible probability and we omit it.

Lastly, we notice that the challenger in the class-hiding experiment is given
the random coins used to generate the secret key to the adversary. Thus, our
reduction can reuse those coins and compute the secret key, which he can give
to the distinguishing algorithm, as required to fully simulate the anonymity ex-
periment.

It follows that |Pr[S5]− Pr[S4]| ≤ Advc-hA,SFPK(λ).

The above changes ensure that the challenged signature is independent from
the user ib, i.e. we use a random SFPK public key and a freshly generated SPS-EQ
signature on it. However, an adversary A can still use the way we implemented
the OpenGS in GAME4. Note that in case, he is somehow able to randomize the
signature σGS = (pk, σ, σSPS) and ask the OpenGS oracle, then we will return ib
as the answer.

34

We will now show that the adversary cannot create a valid and distinct
signature from σGS = (pk, σ, σSPS). Let (m∗, σ∗GS = (pk∗, σ∗, σ∗SPS)) be the query
made by the adversary and σ∗GS is a randomized version of σGS.

The first observation is that by the change made in GAME5, we must have
that pk and pk∗ are in a relation, otherwise the above attack does not work.
Thus, we can use such an adversary to break the strong existential unforgeabil-
ity of the SFPK signature scheme. Note that by the change made in GAME5,
pk is a fresh public key and the reduction algorithm can use the one from the
strong existential uforgeability game. Moreover, in order to generate σ, the re-
duction algorithm uses its signing oracle. Finally, the reduction algorithm returns
((m∗||σ∗SPS||pk

∗), σ∗) as a valid forgery.
It is easy to see that in case pk 6= pk∗ or σSPS 6= σ∗SPS, the reduction algo-

rithm wins the strong existential unforgeability game. Thus, the only part of
the group signature that the adversary could potentially change is σ. This is the
SFPK signature and would mean that the adversary was able to create a new
signature under the message asked by the reduction algorithm to the signing al-
gorithm. However, the case that σ 6= σ∗ also means that the reduction algorithm
breaks the strong existential unforgeability of the SFPK scheme. We conclude,
Pr[S5] = Advseuf−cma

A,SFPK (λ).

Finally, we have

Pr[S0] ≤ n ·
(
Adv`,euf-cma

A,SPS-EQ(λ) + Advc-hA,SFPK(λ) + Advseuf−cma
A,SFPK (λ)

)
.

Proof of Theorem 5

Proof (Theorem 5). We will use the game based approach to prove this theorem.
The first change we do is to fix the instance I to be a DDH tuple. This way our
reduction algorithm (as well as the adversary) must use a witness that fulfils the
first part of the statement proven by Π. The next step is simple. The reduction
algorithm translates this game to the existential unforgeability experiment of the
SFPK scheme. Note that the reduction algorithm will choose one of the users at
random and use the challenged public key as the user’s public key. For the other
users, the reduction algorithm will use a randomly choose key pair. This allows
the reduction to answer all corruption queries. More formally. Let us denote by
Si the event that the adversary wins the unforgeability w.r.t insider corruption
experiment in GAMEi.

GAME0: The experiment.

GAME1: We make a small change in the way we generate the instance I for the
public keys of users. Instead of generating A,B,C as random elements of G1,
we first chose a, b←$Z∗p and then set A = ga1 , B = gb1 and C = ga·b.

It is obvious that this change only decreases the adversary’s advantage by
a negligible fraction. In particular any distinguishing adversary can be used to

35

break the decisional Diffie-Hellman assumption. Moreover, note that since any
DDH instance can be randomized (i.e. (Ar, Br, Cr) is a DDH tuple if and only if
(A,B,C) is a DDH tuple) we can apply this change to all honest users at once.
Thus, we get |Pr[S1]− Pr[S0]| ≤ AdvddhA (λ).

We now show how to use any adversary A that has non-negligible advantage
in winning the unforgeability w.r.t insider corruption experiment in GAME1 to
create a reduction algorithm R that has non-negligible advantage in winning the
existential unforgeability experiment of the SFPK scheme. Let us by l denote the
total number of users in the unforgeability w.r.t insider corruption experiment.
The reduction algorithm works as follows.

In the first step R chooses a random j ←$ [l] and generates (SKi,PKi) ←
RKeyGen(ρ, ωi) for all i ∈ [l]/{j}. For the j-th user it uses the public key
PKj = pkj given to him by the challenger in the existential unforgeability exper-
iment for the SFPK scheme for relation Rexp. R is able to answer all corruption
queries of A, beside for the j-th user. However, we hope that the adversary
chooses this user to be part of the ring Ring∗ for which he has to output a
forgery. In such a case the adversary cannot ask the corruption query for the
secret key of this user. We will later calculate the corresponding probability of
the adversary asking for the j-th user’s key but now we assume that in such a
case the reduction R aborts. The reduction algorithm is also able to answer all
signing queries. Note that for the j-th user instead of using the RSign algorithm,
we choose a random r ←$ Z∗p and query the signing oracle O2 with input (m, r).

Finally, the adversary A outputs a ring signature Σ∗ = (pk∗, σ∗, Π∗, ρ∗Π)
under message m∗ for ring Ring∗. The reduction returns (m∗, Σ∗) as its forgery
for the SFPK scheme. We will now calculate the success probability of R. We
first notice that by the change made in GAME1 and since the proof Π∗ is
perfectly sound, it follows that there exists a public key pk ∈ Ring∗ for which
(pk, pk∗) ∈ Rexp. Finally we have that the probability that pk = pkj is 1/l, i.e.
from the j-th user’s public key. Note that in such a case the adversary will not
ask for the j-th user public key.

It follows that

Pr[S1] ≤l · EUF-CMAASFPK,RFlex(λ), and

Pr[S0] ≤l · EUF-CMAASFPK,RFlex(λ) + AdvddhA (λ).

Proof of Theorem 6

Proof (Theorem 6). Let us denote by Si the event that the adversary wins the
anonymity experiment in GAMEi.

GAME0: The original experiment.

GAME1: We make a small change we compute the instance I = (A,B,C) in
all the public keys of users. Instead of choosing A,B,C at random from G1, we

36

first choose a, b ←$ Z∗p and then compute A = ga1 , B = gb1, C = ga·b−1
1 . In other

words, we make sure that I is not a DDH tuple.

Similar as in the proof for unforgeability, we have |Pr[S1]−Pr[S0]| ≤ AdvddhA (λ).

GAME2: We now change the witness that we use to compute the proof Π in the
challenged signature Σ. Instead of using the public key pkib , we will use a wit-
ness for the second part of the statement. Note that by the change made in the
previous game, all instances I in the public keys of honest users are non-DDH
tuples. Moreover, instead of using the witness for the instance Iib (where b is
the challenged bit b and ib is the identifier of the user for which the experiment
generates the signature), we will choose a random bit b̂ and use the witness for
instance Iib̂ . Note that the proof inside the signature Σ is now valid and inde-
pendent of the bit b.

Because the proof system is computational witness-indistinguishable, it fol-
lows that |Pr[S2]− Pr[S1]| ≤ AdvwiΠ,A(λ).

GAME3: We will now change the way we compute the signatureΣ = (pk′, σ′, Π, ρΠ).
In particular we will change the way we compute pk′ and σ′. Instead of comput-
ing it them using

pk′ ←$ ChgPK(pkib , r),

sk′ ←$ ChgSK(skib , r),

σ ←$ Sign(sk′,m||Ring),

we will choose a fresh random bit b̂ and compute it as

pk′ ←$ ChgPK(pkib̂ , r),

sk′ ←$ ChgSK(skib̂ , r),

σ ←$ Sign(sk′,m||Ring).

We now show that any adversary A that has non-negligible advantage in
distinguishing the difference between games 2 and 3, can be used as part of
a reduction algorithm R that breaks the class-hiding property of the SFPK
scheme. Let us by l denote the total number of users in the anonymity ex-
periment. The reduction first chooses j, k ←$ [l] and generates (SKi,PKi) ←
RKeyGen(ρ, ωi) for all i ∈ [l]/{j, k}. Let (ω∗0 , ω

∗
1) be the random coins given to A

by the class-hiding challenger. The reduction R runs (sk0, pk0)←$ KeyGen(λ, ω∗0)
and (sk1, pk1) ←$ KeyGen(λ, ω∗1). Then it computes random (A0, B0, C0) and
(A1, B1, C1) as in GAME1 and the corresponding random coins ωI0 and ωI1 . It

then sets ωi = (ω∗0 , ωI0), ωk = (ω∗1 , ωI1) and gives {ωi}li=1 to A. The adversary
now outputs (m, i0, i1, Ring). The reduction R aborts in case i0, i1 6∈ {j, k}. Note
that since, A advantage is non-negligible, we have that i0 6= i1, i0 ∈ Ring and
i1 ∈ Ring. R then forwards m||Ring to the class-hiding challenger and receives

37

a SFPK signature σ′ under the randomized public key pk′. The reduction com-
putes the ring signature as Σ = (pk′, σ′, Π, ρΠ), where Π is a proof computed as
in GAME2. Obviously, the success of R depends on the probability of guessing
the correct identifiers i0 and i1. The probability is greater than 2

l2 .

It follows that |Pr[S3]− Pr[S2]| ≤ l2

2 · Adv
c-h
A,SFPK(λ).

We now notice that the only value that depends on the challenged bit b in
the original game is the ring signature Σ = (pk′, σ′, Π, ρΠ). By the changes we
made in GAME2, the values (Π, ρΠ) are independent from b. What is more, by
the changes made in GAME3, the values (pk′, σ′) are also independent from b.
It follows that:

Pr[S3] = 0

Pr[S0] ≤ l2

2
· Advc-hA,SFPK(λ) + AdvwiΠ,A(λ).

38

Full Security Proofs - SFPK Scheme

Proof of Theorem 9

Proof (Theorem 9).

Let (gα1 , g
α
2 , g

β
1 , g

β
2 , g

γ
1 , g

γ
2 , g

θ
1 , g

θ
2) be an instance of the co-Flexible Diffie-Hellman

assumption problem and let A be an PPT adversary the has non-negligible ad-
vantage Adveuf−cma

A,SFPK (λ). We will show an algorithm R that uses A to break the
above problem instance.

In the first step, the reduction R prepares the common reference string ρ =
(BG, Y1, Y2,KPHF) and the public key pkFW = (A,B,X) as follows. It sets:

X = gβ1 Y1 = gα1 Y2 = gα2

A = gγ1 B = gθ1

and (KPHF, τPHF)←$ PHF.TrapGen(λ, gβ1 , g1). Moreover, R sets τ = (gγ2 , g
θ
2 , g

β
2).

To answer signing queries of A, algorithm R proceeds as follows. Let m be
the message and l the random coins queried by A. The reduction R follows the
following steps:

– it chooses random values t←$ Z∗p,
– it computes (am, bm)←$ PHF.TrapEval(τPHF,m) and aborts if am = 0,
– it computes pkFW

′ ←$ ChgPKSFPK(pkSFPK, l),
– it computes:

σ1
FW = (gβ1)t·am · ((gα1)−a

−1
m ·l · gt1)bm ,

σ2
FW = (gα1)−a

−1
m ·l · gt1,

σ3
FW = (gα1)−a

−1
m ·l · gt2,

– set the signature σFW = (σ1
FW, σ

2
FW, σ

3
FW).

We will now show that this is a valid signature. Note that the a valid signature
is of the form (gα·β·l1 · ((gβ1)am · gbm1)r, gr1, g

r
2). In this case, the reduction has set

r = −a−1
m · α · l+ t and this means that the gα·β·l1 cancels out and the reduction

does not need to compute gα·β1 .
Finally, A will output a valid signature under message m∗:

ˆσFW = (ˆσFW
1, ˆσFW

2, ˆσFW
3) = ((gα·β1)l

∗
HKPHF

(m∗)r
∗
, gr
∗

1 , gr
∗

2 ,)

for which we hope that am∗ = 0, where (am∗ , bm∗) ←$ PHF.TrapEval(τPHF,m
∗).

Moreover, since this should be a valid forgery then we have that this signature
is under a public key ˆpkFW for which (pkFW, ˆpkFW) ∈ R. Thus, we have

ˆσFW = (gα·β·l
∗

1 (gr
∗

1)bm∗ , gr
∗

1 , gr
∗

2),

39

for some unknown r∗ but known bm∗ . Thus the reduction R can compute

ˆσFW
1 · (ˆσFW

2)−bm∗ = gα·β·l
∗

1 . Moreover, since (pkFW, ˆpkFW) ∈ R. This means

that ˆpkFW = (Al
∗
, Bl

∗
, X l∗) = ((gγ1)l

∗
, (gθ1)l

∗
, gl
∗·β

1).
Finally, the reductionR returns (Al

∗
, Bl

∗
, ˆσFW

1·(ˆσFW
2)−bm∗), which as shown

above is ((gγ1)l
∗
, (gθ1)l

∗
, gα·β·l

∗

1). Again, the success probability of the reduction
R depends on whether it can answer all signing queries of A and on the returned
forgery (i.e. for which we must have am∗ = 0). However, since we assume that
the used hash function is a (1, poly(λ))-programmable hash function, it follows
that R has a non-negligible advantage in solving the co-Flexible Diffie-Hellman
assumption if A’s advantage is non-negligible.

Proof of Theorem 10

Proof (Theorem 10). In this proof we will use the game based approach. We
start with GAME0 which is the original class-hiding experiment and let S0 be
an event that the experiment evaluates to 1, i.e. the adversary wins. We then
make small changes and show in the end that the adversary is unable to create
a forged ring signature.We will use Si to denote the event that the adversary
wins the class-hiding experiment in GAMEi.

Let pkFW
′ = (A′, B′, X ′) be the public key given to the adversary. Moreover,

let pkFW0 = (A0, B0, X0) and pkFW1 = (A1, B1, X1) be the public keys that are
returned KeyGen on input of random coins ω0 and ω1 given to the adversary and
b̂ be the bit chosen by the challenger.

GAME0: The original class-hiding game.

GAME1: In this game we change the way the public keys pkFW0 and pkFW1 are
generated. Instead of sampling A,B,X from G1, we sample a, b, x←$Z∗p and set

A = ga1 , B = gb1, X = gx1 . Moreover, we do not use the ChgSK algorithm to
compute skFW

′ and pkFW
′ but compute them as pkFW

′ = (Qab̂ , Qbb̂ , Qxb̂), and
skFW

′ = (Qxb̂·y, pkFW
′), where Y1 = gy1 is part of the common reference string ρ

generated by the challenger. In other words, instead of using the exponent r to
randomize the public key and secret key, we use a group element Q to do it.

Observe that we can use the invertible sampling algorithm to retrieve the
random coins ω0 and ω1. Moreover, since the distribution of the keys does not
change, it follows that Pr[S1] = Pr[S0]. Note that we can still compute valid
signatures using skFW

′.

GAME2: In this game instead of computing

pkFW
′ = (Qab̂ , Qbb̂ , Qxb̂)

as in GAME1, we sample A′ ←$ G1 and set

pkFW
′ = (A′, Qbb̂ , Qxb̂).

40

We will show that this transition only lowers the adversary’s advantage by
a negligible fraction. In particular, we will show a reduction R that uses an
adversaryA that can distinguish between those two games to break the decisional
Diffie-Hellman assumption in G1. Let (gα1 , g

β
1 , g

γ
1) be an instance of this problem

in G1. R samples r0, r1 ←$ Z∗p and sets A0 = (gα1)r0 , A1 = (gα1)r1 .

Additionally, the reduction uses Q = gβ1 and the public key

pkFW
′ = ((gγ1)rb̂ , Qbb̂ , Qxb̂).

Note that since A′ is not used in the signing process, it follows that the reduction
knows the secret key skFW

′ and can answer signing queries.
Finally notice, that if γ = α ·β then (pkFW

′, σFW) have the same distribution
as in GAME1 and otherwise as in GAME2.

Thus, it follows that |Pr[S2]− Pr[S1]| ≤ AdvddhA (λ).

GAME3: In this game instead of computing

pkFW
′ = (A′, Qbb̂ , Qxb̂)

as in GAME2, we sample B′ ←$ G1 and set

pkFW
′ = (A′, B′, Qxb̂).

We can use the same argument as above. Thus, it follows that |Pr[S3] −
Pr[S2]| ≤ AdvddhA (λ).

Let us now take a look at the randomized public key and signature given
to the adversary. Because of all the changes, we have: pkFW

′ = (A′, B′, Qxb̂)
and valid signatures are of the form σFW = ((Qxb̂)y(HKPHF

(m))r, gr1, g
r
2) for some

r ∈ Z∗p and A′, B′, Q, which are independent from the bit b̂. Since the value Q
is random and only appears as part of the term Qxb̂ , we can always restate this

term to Q′x1−b̂ where Q′ = Qx1−b̂·(xb̂)
−1

and Q′ is also a random value.
It follows that the adversaries advantage is zero, i.e. Pr[S3] = 0. Thus, we

have Advc-hA,SFPK(λ) = Pr[S0] ≤ 2 · AdvddhA (λ).

41

Group Signature Definitions

Let us recall the popular BMW model for static group signatures [4].

Definition 18 (Group Signatures). A group signature scheme GS = (KeyGenGS,
SignGS,VerifyGS,OpenGS) consists of the following polynomial-time algorithms:

KeyGenGS(1λ, n): on input a security parameter 1λ and the group size n ∈ N
this randomized algorithm returns a tuple (gpk, gmsk, gsk), where gpk is the
group public key, gmsk is the group manager’s secret key and gsk is a vector
of size n (with gsk[i] being a secret key of the i-th group member).

SignGS(gski,m): on input the secret key of i-th group member gski and a message
m ∈ M this randomized algorithm returns a signature σGS on message m
under gski.

VerifyGS(gpk,m, σGS): on input the group public key gpk, a message m and a
signature σGS this algorithm returns either 1 or 0.

OpenGS(gmsk,m, σGS): on input the group manager’s secret key gmsk, message
m and a signature σGS on m this algorithm returns an identity i or the
symbol ⊥ in case of failure.

For simplicity group members are assigned consecutive integer identities from
the set [n].

We say that a group signature scheme is correct if: for all λ, n ∈ N, all
(gpk, gmsk, gsk) ∈ [KeyGenGS(1λ, n)], all i ∈ [n], all m ∈ M and all σGS ∈
[SignGS(gsk[i],m)]

VerifyGS(gpk,m, σGS) = 1 and OpenGS(gmsk,m, σGS) = i.

Compactness. We say that a group signature scheme is compact if there exist
polynomials p1(·, ·) and p2(·, ·, ·) such that

|gpk|, |gmsk|, |gski| ≤ p1(λ, log n) ∧ |σGS| ≤ p2(λ, log n, |m|)

for all λ, n ∈ N, all (gpk, gmsk, gsk) ∈ [KeyGenGS(λ, n)], all i ∈ [n], all m ∈ M
and all σGS ∈ [SignGS(gsk[i],m)].

Full-Anonymity. Informally, anonymity means that it should be hard for an
adversary to recover the identity of the signer from a signature without the
knowledge of the group manager’s secret key. To properly model collusion with
group members the adversary is given the secret keys of all group members.
Moreover, the adversary can use an opening oracle OpenGS(gmsk, ·, ·), which
models the possibility of the adversary seeing previous openings.

Definition 19. For group signature scheme GS and adversary A we define the
following experiment:

42

ExpanonGS,A−b(λ, n)

(gpk, gmsk, gsk)←$ KeyGenGS(1λ, n); Q := ∅

(st, i0, i1,m
∗)←$ AO(gmsk,·,·)(gpk, gsk)

σ∗GS ←$ SignGS(gsk[ib],m
∗)

b̂←$ AO(gmsk,·,·)(st, σGS)

if (m∗, σ∗GS) ∈ Q return 0

else return b̂ = b

O(gmsk,m, σGS)

Q := Q ∪ (m,σGS)

return OpenGS(gmsk,m, σGS)

We say that a group signature scheme GS = (KeyGenGS,SignGS,VerifyGS,OpenGS)
is fully-anonymous if for any efficient PPT algorithm A, the advantage of ad-
versary A in breaking the full-anonymity of GS, Advanon

GS,A(·, ·) is negligible

AdvanonGS,A(λ)(λ, n) = |Pr[ExpanonGS,A−1(λ, n) = 1]− Pr[ExpanonGS,A−0(λ, n) = 1]|

Full-Traceability. The next required property is called full-traceability. In case of
misuse, we would like the group manager to always be able to identity the signer.
In particular, this means that is should not be possible to create a signature that
cannot be opened. Moreover, a colluding set S of group members should not be
able to frame an honest member, i.e. create a signature that opens to a member
that is not in S.

Definition 20. For group signature scheme GS and adversary A we define the
following experiment:

ExptraceGS,A(λ, n)

(gpk, gmsk, gsk)←$ KeyGenGS(1λ, n)

st := (gmsk, gpk);Q = ∅
C = ∅;K = ε;Cont = true

while (Cont == true) do

(Cont, st, j)←$ AO(gsk[·],·)(st,K)

if Cont == true then C = C ∪ {j}
K = gsk[j]

(m∗, σ∗GS)←$ AO(gsk[·],·)(guess, st)

if VerifyGS(gpk,m∗, σ∗GS) = 0 then return 0

if OpenGS(gmsk,m∗, σ∗GS) = ⊥ then return 1

if ∃i ∈ [n]. OpenGS(gmsk,m∗, σ∗GS) = i ∧ i 6∈ C ∧ (i,m) 6∈ Q
then return 1 else return 0

O(gsk[i],m)

Q := Q ∪ (i,m)

return SignGS(gsk[i],m)

We say that a group signature scheme GS = (KeyGenGS,SignGS,VerifyGS,OpenGS)
is fully-traceable if for any PPT algorithm A, the advantage of A in breaking
the full-traceability of GS, Advtrace

GS,A(·, ·) is negligible:

AdvtraceGS,A(λ)(λ, n) = Pr[ExptraceGS,A(λ, n) = 1].

43

Ring Signature Definitions

In applications such as cryptocurrencies or electronic voting it is desirable for
privacy reasons, that the identity of the signer of a given message is hidden from
the party interested in a valid signature. In these cases it is often enough to
establish that the signer is part of a certain group of eligible signers. To this end,
a ring signature scheme allows a signer to specify a set of additional potential
signers and create signatures which do not reveal which signing key among this
group was used to create the signature. Note, that this does not allow a signer
to sign for another party, since the signature still has to be created using the
signers own signing key. The intriguing property of ring signature schemes is
merely that to a verifier, this information is obscured even though the signer
only has access to her own signing key and just the public verification keys of
the other parties in the chosen group.

Formally, we define the following scheme:

Definition 21 (Ring Signatures). A ring signature scheme is a tuple of PPT
algorithms (RCRSGen,RKeyGen,RSign,RVerify) such that:

RCRSGen(1λ): takes as input the security parameter λ and outputs a common
reference string ρ,

RKeyGen(ρ, 1λ): takes as input the common reference string ρ and outputs a pair
(SK,PK) of secret and public keys,

RSign(ρ,m, sk
(s)
RS , Ring): takes as input a message m ∈ {0, 1}∗, a signing key

sk
(s)
RS and an ordered set (a ring) of public keys Ring =

(
pk

(1)
RS , . . . , pk

(n)
RS

)
with pk

(s)
RS ∈ Ring, and outputs a signature Σ,

RVerify(ρ,m,Σ, Ring): takes as input a message m, signature Σ, and a ring of
public keys Ring and outputs either accept(1) or reject(0).

A ring signature scheme is correct if for all λ ∈ N, n = poly(λ), all com-

mon reference strings ρ ←$ RCRSGen(λ), any
{

(sk
(i)
RS, pk

(i)
RS)
}n
i=1

generated with

RKeyGen(ρ, 1λ), any s ∈ {1, . . . , n} and any message m, we have RVerify(ρ,m,

RSign(ρ,m, sk
(s)
RS , Ring), Ring) = accept, where Ring =

(
pk

(1)
RS , . . . , pk

(n)
RS

)
.

In case the scheme does not require a common reference string, we omit the
first argument ρ to RKeyGen,RSign and RVerify.

Ring signatures should be unforgeable with respect to the specific message that
was signed and the ring of public keys that it was signed to, i.e. besides being
unable to forge signatures on new messages, an adversary should also be unable
to create a new signature for a known message but with a modified ring.

Definition 22 (Unforgeability w.r.t. insider corruption). For ring signa-
ture scheme RS and adversary A we define the following experiment:

44

UnforgeabilityARS(λ)

ρ←$ RCRSGen(λ);Q := ∅, C := ∅
for i = 1 . . . l = poly(λ) do

(sk
(i)
RS , pk

(i)
RS)←$ RKeyGen(ρ, 1λ)

(m∗, Σ∗, Ring∗)←$ ASign,Corrupt

(
S :=

{
pk

(i)
RS

}l
i=1

)
return RVerify(ρ,m∗, Σ∗, Ring∗) = 1 ∧

(m∗, Ring∗) 6∈ Q ∧
Ring

∗ ⊆ S \ C

Sign(m, s, Ring)

Q := Q ∪{(m, Ring)}
if PKs ∈ Ring then

Σ ←$ RSign(ρ,m, sk
(s)
RS , Ring)

return Σ

else return ⊥

Corrupt(i)

C := C ∪
{
pk

(i)
RS

}
return sk

(i)
RS

A signature scheme RS is unforgeable with respect to insider corruption if
for all PPT adversaries A, their advantage in the above experiment is negligible:

AdvunforgeabilityA,RS (λ) = Pr
[
UnforgeabilityARS(λ) = 1

]
= negl(λ) .

A ring signature scheme should also be anonymous, i.e. it should be infeasi-
ble for an attacker, given a signature, to establish which ring member actually
created this signature. In its strongest form, this property should hold true, even
if the adversary has access to all key material (including the secret keys) of the
members of the ring.

Definition 23 (Anonymity against full key exposure). For ring signature
scheme RS and adversary A = (A0,A1) we define the following experiment:

AnonymityARS(λ)

ρ←$ RCRSGen(λ)

for i = 1 . . . l := poly(λ) do

(sk
(i)
RS , pk

(i)
RS)←$ RKeyGen(ρ, 1λ;ωi)

(st,m, i0, i1, Ring)←$ ASign
0

(
{ωi}li=1

)
if pk

(i0)
RS 6∈ Ring or pk

(i1)
RS 6∈ Ring then

Σ := ⊥
else b←$ {0, 1};

Σ ←$ RSign(ρ,m, sk
(ib)
RS , Ring)

b′ ←$ ASign
1 (st, Σ)

return b = b′

A signature scheme RS provides anonymity against full key exposure if for
all PPT adversaries A, their advantage in the above experiment is negligible:

Advanonymity
A,RS (λ) =

∣∣∣∣Pr
[
AnonymityARS(λ) = 1

]
− 1

2

∣∣∣∣ = negl(λ) .

45

	Signatures with Flexible Public Key: Introducing Equivalence Classes for Public Keys

