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Abstract. Masking is one of the predominantly deployed countermea-
sures in order to prevent side-channel analysis (SCA) attacks. Over the
years, various masking schemes have been proposed. However, the im-
plementation of Boolean masking schemes has proven to be difficult in
particular for embedded devices due to undisclosed architecture details
and device internals. In this article, we investigate the application of
Threshold Implementation (TI) in terms of Boolean masking in software
using the PRESENT cipher as a case study. Since TI has proven to be
a proper solution in order to implement Boolean masking for hardware
circuits, we apply the same concept for software implementations and
compare it to classical first- and second-order Boolean masking schemes.
Eventually, our practical security evaluations reveal that amongst all our
considered implementation variants only the TI can provide first-order
security while all others still exhibit detectable first-order leakage.
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1 Introduction

Among the protection schemes against side-channel analysis (SCA) attacks, it
can be dared to say that masking is the best studied countermeasure. Many
different kinds of masking schemes for both software and hardware platforms
have been introduced [1, 5, 10,13,15,20,25,29,36,38]. Each of them comes with
its own advantages (e.g., simplicity and scalability to high protection orders) and
disadvantages (e.g., high area and time overheads) and some with shortcomings
(see for example [19, 27]). Our focus in this work is the realization of Boolean
masking scheme in software implementations.

It is already known that – due to the internal architecture of micro-processors –
masked implementations may still exhibit undesired exploitable leakage (see [3]
as an example). It indeed becomes more problematic when details of the internal
architecture of the underlying commercial micro-processor are kept secret. For
instance, the way the pipeline is built, the shared bus between ALU and memory
together with the fashion in that the masked program code is written, can impact
the leakage of the resulting implementation. As a simple example, suppose that
two Boolean shares (x1,x2) of a secret value x are consecutively transferred
through a bus, that leads to leakage depending on distance between the shares,



i.e., x1 ⊕ x2 = x. The attack reported in [27] follows the same principle. In this
case, the implementation would exhibit first-order leakage while it is not possible
to detect such a flaw by analyzing the program code without considering the
details of the internal architecture.

On the other hand, Threshold Implementation has been introduced as a
proper way to realize Boolean masking in hardware platforms [30]. It provides
a suitable guideline on how to avoid heuristics in masked hardware (see [8, 31])
that can provide provable first-order security. In short, in this paper we examine
the efficiency of applying such a scheme on a software implementation. As the
case study, we focus on the PRESENT cipher [7] and an Atmel AVR micro-
controller. We give details of different ways to realize a masked implementation
including first- and second-order classical Boolean masking and the Threshold
Implementation variant. Our investigations are based on the performance figures
(code size and latency) as well as security analysis. More precisely, we present
the result of leakage detection over practical SCA measurements.

Outline. In Section 2 we deal with the essential concepts to follow the rest of
the paper including Boolean masking, Threshold Implementation, and possible
ways to apply Threshold Implementation on PRESENT S-box. Section 3 gives
the details of different variants of the masked PRESENT implementations, and
in Section 4 the corresponding practical SCA analyses are presented. Finally, we
conclude our research in Section 5.

2 Concept

2.1 Notation

We denote single-bit random variables using lower-case characters while we indi-
cate multi-bit vectors by bold ones. Further, we use subscripts for elements within
a vector, bars for shared representations of random variables and superscripts
for elements of a shared representation. Functions are indicated using sans serif
fonts and sets are denoted by calligraphic ones.

Moreover, let us denote any vector x ∈ GF(2m) of m single-bit elements by
〈x1, . . . , xm〉. Then, the shared representation x̄ of a vector x under Boolean
masking with s shares is given as x̄ = (x1, . . . ,xs), where:

x =

s⊕
i=1

x̄ =

s⊕
i=1

xi =

s⊕
i=1

〈xi
1, . . . , x

i
m〉.

2.2 Boolean Masking

During the last two decades, Boolean masking has become the common approach
to prevent information leakage of digital devices through physical side channels
such as the instantaneous power consumption or electromagnetic radiations. Since
sensitive information can be extracted from those physical observations by means
of statistical analysis based on statistical moments of different orders, Boolean
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masking uses the concept of secret sharing to split a sensitive variable x into s
shares x1, . . . ,xs such that x = x1 ⊕ . . .⊕ xs.

In general, Boolean masking can provide protection up to the d-th order
using s = d + 1 shares that have to be processed independently. We should
note that several physical effects, such as glitches or parasitic capacitances, can
affect the security and lever the protection mechanism. Nevertheless, while linear
operations can be applied independently to each share (due to the transparency
of XOR over Boolean masking), all challenges of realizing a Boolean masked
implementation are due to the non-linear functions (S-boxes) involved in any
cryptographic primitive. To this end, masking in software is realized following
two different approaches:

• The S-box is represented by a sequence of operations including a unique (or a
limited number of) non-linear function, e.g., a 2-bit AND gate. Then, based
on the underlying protection order d, the masked (secure) version of such a
unique non-linear function is developed as a gadget. As the final step, the
operations of the S-box are replaced by their secure version. This needs fresh
randomness every time the secure non-linear function (the gadget) is called,
and due to the sequential nature of the algorithm its timing overhead is not
negligible compared to a naive unprotected implementation. The interested
reader is referred to [17,18,38] for a couple of examples.

• Alternatively, the S-box is realized using a randomized look-up table S′ in
terms of

S′(x⊕m1 ⊕ . . .⊕ms−1) = S(x)⊕ n1 ⊕ . . .⊕ ns−1, (1)

with m1, . . . ,ms−1 considered as input masks and n1, . . . ,ns−1 as output
masks. Depending on the S-box size and the number of shares s, it is usually
impossible to precompute and store the masked S-box S′ for all possible
masks (known as Global Look-Up-Table [35]). Therefore, S′ is frequently
recomputed to avoid large memory requirements. Examples include but are
not restricted to [37, 39], and [42], where such a construction for AES at
arbitrary order is presented while its flaw has been reported in [11].1

In this work, our focus is on the second approach, i.e., the pre-computed and
randomized look-up table S′, to which we refer as classical Boolean masking.
In case Equation (1) is implemented as single look-up table, the input and output
masks have to fulfill certain criteria in order to realize a secure Boolean masking
scheme. In particular, input and output masks cannot be the same. Otherwise,
if the masked S-box input x⊕m1 ⊕ . . .⊕ms−1 is overwritten by the masked
S-box output S(x)⊕m1 ⊕ . . .⊕ms−1, the leakage depends on unmasked value
x ⊕ S(x) [27] (see [4] and [26, chap. 9] as examples where such a flaw exists).
Hence, in a conservative manner the output masks have to be independent
of the input masks. However, since this might be impracticable particularly

1Alternatively, there exist other solutions [9, 14, 15] which make use of the S-box
construction, e.g., GF(28) inversion of AES S-box.
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for higher orders, more practical approaches may use a function to derive the
output masks from the input masks but have to ensure the uniformity. More
precisely, if ni∈{1,...,s−1} = f(mi), it must be ensured that ni ⊕mi is uniform
over GF(2m). Otherwise, the above expressed distance (between the S-box input
and output) would not be uniformly masked. We should also refer to low-entropy
masking schemes [5,29] which are designed to enable keeping all masked tables in
memory, i.e., no recomputation and mask update is required, but at the cost of
limited protection [19,24,43]. For example, the Rotating S-box Masking (RSM)
construction introduced in [29] (and used in DPA contest V4.1) makes use of a
reduced 8-bit mask space of 24 elements {m0, . . . ,m15}. This allowed the authors
to precompute all masked S-boxes as S′i(x⊕mi) = S(x)⊕mi+1. In means that
the output mask is derived from the input mask as f(mi) = mi+1. As shown
in [27], the distance between the input mask and the output mask mi ⊕mi+1

is not uniform, hence first-order leakage considering the distance between the
S-box input and output x⊕ S(x) is detectable.

2.3 Threshold Implementation

As a special case of Boolean masking using multi-party computation, Threshold
Implementation (TI) has been proposed by Nikova et al. [30] as a provable secure
first-order masking scheme for digital circuits even in the presence of glitches. In
this work, we make use of its basic concept in software, which is defined by the
following properties.

Correctness. In order to evaluate any function F(x) = y on the shared repre-
sentation x̄ = (x1, . . . ,xs) with s shares, we can use corresponding component
functions fi∈{1,...,n}(x̄) = yi in order to evaluate F for each output share individ-
ually but have to ensure correctness, i.e., the result ȳ = (y1, . . . ,yn) has to be
the shared representation of y with n ≥ s.

Non-Completeness. Security in the sense of the first-order statistical moment
is achieved using non-complete component functions fi∈{1,...,n}, i.e., each resulting
share (y1, . . . ,yn) should be independent of at least one input share.

Uniformity. The security of Boolean masking schemes is based on the uniform
distribution of the masks. Supposing that the input of a TI function is uniformly
shared, its output should also be a uniform sharing since it will be used as an
input to another shared function (e.g., next cipher rounds). This means, given
all possible input sharings X = {x̄|

⊕s
i=1 x̄ = x}, the set of all possible output

sharings {f1, . . . , fn|x̄ = X} should be uniformly drawn from Y = {ȳ|
⊕n

i=1 ȳ =
y} as all possible sharings of y = F(x). Otherwise, the output would be shared
with masks drawn from a biased source, and the first-order security cannot be
guaranteed.

2.4 Application to PRESENT Cipher

PRESENT has been designed as Substitution-Permutation Network (SPN) with 31
rounds, a 64-bit block size and either an 80-bit or 128-bit key size. Each round
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Table 1: Non-linear function N(m) = n.

m 0 1 2 3 4 5 6 7 8 9 A B C D E F

n E 4 F 9 0 3 D 5 7 8 A 2 B 1 6 C

m⊕ n E 5 D A 4 6 B 2 F 1 0 9 7 C 8 3

consists of a key addition, succeeded by a confusion phase which consists of the
same 4-bit S-box that is applied to all 4-bit words of the state in parallel before
the bit permutation layer2 provides diffusion. In particular, the S-box is a non-
linear, cubic, 4-bit function with truth table S : C56B90AD3EF84712. All round
keys are derived from the initial key using bit-wise rotations, addition of round
constants and the application of the S-box. Eventually, a final post-whitening
key addition is performed after the last round.

Boolean Masking. Classical first-order Boolean masking uses 2 shares x1,x2

with x1 = x⊕m and x2 = m. Due to its small size (4-bit to 4-bit), the entire
masked S-box as an 8-bit to 4-bit look-up table S′(x⊕m,m) = S(x)⊕n can fit
into even a restricted memory. Hence, the recomputation of the masked S-box
when m changes is not required. In this case we need to derive the output mask
n from the input mask m in such a way that the uniformity of m⊕ n always
holds. An example of such a function, so-called n = N(m) is given in Table 1.
Note that we have derived this table by a search through random bijections
m→ N(m).

Threshold Implementation. In several articles, the TI concept has been
applied on the PRESENT S-box leading to first- and second-order uniform TI
constructions. Under the TI definitions, the minimum number of required shares
s depends not only on the desired level of security (order d) but also on the
algebraic degree t of the underlying S-box, i.e., s > t d. Since the PRESENT S-box
is a cubic bijection (t = 3), for first-order security (d = 1) at least s > 3 shares
are required. Therefore, all the reported TI PRESENT designs have followed a
decomposition fashion by representing the S-box by two quadratic bijections as
S = F◦G. This allows to reduce the number of shares to 3 with the cost of adding
a register between the shared functions F and G for hardware implementations.

In the first relevant article [33], the authors have followed a non-systematic way
and provided F and G whose direct sharing3 automatically satisfy the uniformity,
i.e., a first-order secure PRESENT S-box. In other works [28, 40], the authors
followed the principle explained in [6] and decomposed the S-box into forms like

S = A′′ ◦ Q2 ◦ A′ ◦ Q1 ◦ A, (2)

2A detailed description and discussion of the permutation layer can be found in the
original article [7].

3See [30] for the definition and examples for direct sharing.
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with A, A′, and A′′ being affine transformations, and Q1 and Q2 the identifiers of
quadratic classes whose uniform sharing can be easily achieved by direct sharing.
Since application of affine transformations does not change the uniformity, such
a construction inherently fulfills the uniformity property.

However, since not all 4-bit S-boxes can be decomposed following the concept
of Equation (2), Kutzner et al. proposed the notion of factorization in order
to enable 3-share decomposition for all possible 4-bit permutations [21, 22, 23].
Fortunately, the PRESENT S-box belongs to those permutations that natively allow
a decomposition into quadratic terms which enables more efficient designs.

According to [6] the PRESENT S-box belongs to the class C266 which can
be decomposed by quadratic classes4 (Q12,Q12), (Q294,Q299), (Q299,Q294),
and (Q299,Q299) as identifier for (Q1, Q2) in Equation (2). As an example,
the (Q299,Q294) case has been used in [28] and (Q12,Q12) in [40].

We selected (Q12,Q12) withQ12 : 0123456789CDEFAB, A : 01AB892345EFCD67,
A′ : 0B835ED61A924FC7, and A′′ : C98D6327AFEB0541. However, since our goal is
to realize such functions (including the component functions of the shared Q12)
by means of look-up tables on software, we represent the S-box as

S = A′′ ◦ Q12 ◦ A︸ ︷︷ ︸
F

◦A−1 ◦ A′ ◦ A′′−1︸ ︷︷ ︸
A′′′

◦A′′ ◦ Q12 ◦ A︸ ︷︷ ︸
F

. (3)

Hence, it lets us reduce the required look-up tables to F : C905AF8D63EB4127
and A′′′ : 8FDACB9E43160752.

Applying direct sharing on Q12 would lead to a unique component function
fQ12

(〈a1, b1, c1, d1〉, 〈a2, b2, c2, d2〉) = 〈e, f, g, h〉 as

e =a1, f = b1 + b2d2 + c2d2 + d2b1 + d2c1 + b2d1 + c2d1,

g =c1 + b2d2 + d2b1 + b2d1, h = d1, (4)

with 〈a1, b1, c1, d1〉 the 4-bit input share x1 (respectively for input share x2),
〈e, f, g, h〉 the 4-bit output share, and a and e the least significant bits. Hence,
the three 4-bit output shares ȳ = (y1,y2,y3) provided by y1 = fQ12

(x2,x3),
y2 = fQ12

(x3,x1) and y3 = fQ12
(x1,x2) make a uniform first-order TI of Q12.

In a software implementation, we can make a look-up table

T(xi,xj) = A′′
(
fQ12

(
A
(
xi
)
,A
(
xj
)))

, (5)

which is a component function of the shared function F in Equation (3). Therefore,
in addition to a 4-bit to 4-bit look-up table A′′′(.) it is sufficient to implement T(., .)
as an 8-bit to 4-bit look-up table to fully realize the TI S-box by 6 times look-ups
through T(., .) and 3 times look-ups through A′′′(.) (see Equation (3)). As a
reference to our construction, we below list the truth table of T(a, b). Interestingly,
the result is independent of the LSB of input b (see also Equation (4) which is
independent of a2), hence we only have to store half of the table and can reduce
memory requirements.

4Excluding the quadratic class Q300 whose uniform sharing needs two stages.
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b
0 1 2 3 4 5 6 7 8 9 a b c d e f

a

0 c c 2 2 c c c c c c 6 6 8 8 c c
1 9 9 7 7 9 9 9 9 9 9 3 3 d d 9 9
2 e e 0 0 0 0 0 0 a a 0 0 0 0 4 4
3 b b 5 5 5 5 5 5 f f 5 5 5 5 1 1
4 a a a a a a 4 4 e e a a a a 0 0
5 f f f f f f 1 1 b b f f f f 5 5
6 8 8 8 8 6 6 8 8 8 8 c c 2 2 8 8
7 d d d d 3 3 d d d d 9 9 7 7 d d
8 6 6 c c 2 2 6 6 6 6 8 8 6 6 6 6
9 3 3 9 9 7 7 3 3 3 3 d d 3 3 3 3
a 4 4 e e e e a a 0 0 e e e e e e
b 1 1 b b b b f f 5 5 b b b b b b
c 0 0 4 4 4 4 e e 4 4 4 4 4 4 a a
d 5 5 1 1 1 1 b b 1 1 1 1 1 1 f f
e 2 2 6 6 8 8 2 2 2 2 2 2 c c 2 2
f 7 7 3 3 d d 7 7 7 7 7 7 9 9 7 7

Table 2: Truth Table for T(a, b)

Higher-Order Boolean Masking. The above explained TI construction is a
2nd-order Boolean masking. Therefore, ignoring the non-completeness property
of TI (which indeed has been defined considering hardware platforms), we can
realize larger look-up tables hence reducing the latency. To this end we follow
two procedures:

• As a classical 2nd-order Boolean masking we can implement a 12-bit to 12-bit
look-up table which realizes the entire masked S-box. More precisely, we
can build a look-up table T(x1,x2,x3) = (y1,y2,y3) with y1 ⊕ y2 ⊕ y3 =
S(x1 ⊕ x2 ⊕ x3). In order to ensure the uniformity, we can build such a
look-up table in such a way that it realizes the above-explained TI S-box.
In the following sections, this approach is referred to as “classical 2nd-order
Boolean masking”.

• As an alternative, we can build a 12-bit to 12-bit look-up table T(., ., .) that
implements the shared function F (see Equation (3)). Hence, by looking-up
through such a table T(., ., .) twice and thrice through the 4-bit to 4-bit
look-up table A′′′, the output of the masked S-box can be computed which
also guarantees the uniformity. We refer to this scheme as “classical 2nd-order
Boolean masking with affine transformation”.

In addition to the two above-expressed approaches, we consider two other
implementation variants including i) classical 1st-order Boolean masking and ii)
Threshold Implementation in our practical experiments presented in the next
sections.
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3 Implementation

In this section we introduce the target platform and describe and compare the
performance figures of our implementations.

3.1 Target Platform

As the target platform, we have chosen an Atmel ATmega163 which is an 8-bit
micro-controller with 16 KB programmable flash memory and 1024 B internal
SRAM. It is constructed of two internal pipeline stages, provides 32 general
purpose 8-bit registers, and uses an 8-bit RISC instruction set that can be
programmed either using C compiler or AVR Assembler. In our experiments, we
opted the micro-controller to operate at a frequency of 4 MHz. This choice has
been made to obtain accurate side-channel measurements.

3.2 Pseudo-Code

Below we provide further implementation details on the realization of our con-
sidered implementation variants of Section 2. In particular, we want to stress
that all implementations have been realized using AVR Assembler in order to
maintain maximum control over the executed code and to prevent problems due
to adverse compiler optimizations [3].

In general, all implementations consist of a key schedule routine and a round
function that is sub-divided into key addition, substitution, and permutation
layer. Since we opted to implement a key schedule without shared keys, this
routine is the same for all implementation variants. Moreover, the AddRoundKey

and pLayer are shared among the different variants as well and only the sLayer

routine differs depending on the underlying masking scheme.

In the following, we provide pseudo-codes for all of our implementations and
highlight important aspects and optimizations that have been applied.

Classical 1st-Order Boolean Masking. Algorithm 3.1 outlines our implementation
of the classical Boolean masking scheme presented in Section 2.4 using a masked
S-box look-up table S′ and a non-linear mask update function N chosen in
accordance with our presented concept. During the design and implementation
process, we particularly took care of the processing of intermediate values in
order to avoid side-channel leakage due to the distance between two successively
processed values.

In general, if a masked value x1 = x⊕m and its mask x2 = m are processed
consecutively, internal registers may be overwritten and leak through the distance
of these values, i. e., x1 ⊕ x2 = x. In particular for load and store instructions
of the ATmega163 an internal shadow register is involved in order to buffer the
processed data which then creates a remnant of previous memory accesses [32].
Since this shadow register is not directly accessible, it can only be cleared by
reading or writing a dummy value (e.g., 0). More precisely, every read and write
operation has to be preceded by such a clear instruction to prevent leakage due
to the distance between the consecutively accessed data. However, this holds not
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Algorithm 3.1: Classical 1st-Order Boolean Masking

Input : x̄ = (x⊕m,m) : shared plaintext
k : cipher key

Output : ȳ = (y1,y2) : shared ciphertext

begin
rk← KeySchedule(k)

for i← 1 to 31 do
x1 ← x1 ⊕ rk[i]

x̄← (S′(x1,x2),N(x2))

x1 ← P(x1)
x2 ← P(x2)

end

y1 ← x1 ⊕ rk[32]
y2 ← x2

end

only for the shadow register but also for every internal register that is used for
holding sensitive data.

Moreover, since the micro-controller has two internal pipeline stages [2],
we have to ensure that a masked value and its corresponding mask are never
processed consecutively, i.e., they never appear in the same pipeline. In particular
for the substitution layer, this may occur if the two shares are loaded to perform
the table look-up. In order to avoid insertion of unnecessary NOP operations, we
start with loading the entire 64 bits of the first share into eight registers before
we load the next 64 bits of the second share into another eight registers. Still,
we process the last 8-bit chunk of the first share and the first 8-bit chunk of the
second share in the same pipeline. However, since the mask is drawn uniformly
from a random source, it is unrelated to the first share which is masked by
another random value.

Threshold Implementation. Algorithm 3.2 presents the pseudo-code for our TI
design according to Section 2.4, using the decomposition based on Q12 and an
affine transformation A′′′ as described in Equation (3). As mentioned before, this
decomposition improves the efficiency by limiting the number of look-up tables
that have to be stored (one 8-bit to 4-bit and one 4-bit to 4-bit).

Again, processing the shared values has to be done carefully in order to avoid
side-channel leakage due to internal (shadow) registers and the pipeline of the
micro-controller. Fortunately, compared to the classical Boolean masking – due
to its non-completeness property – our TI design always processes only two
shares at once. However, special care has to be taken for the order of processing
the individual shares (for all implementation variants). For instance, starting
with the addition of the round key to the first share x1 and updating this share
using the look-up table T would result in unintentional leakage since both shares
x2 and x3 have to be loaded after x1 has been processed. Due to this, our
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Algorithm 3.2: Threshold Implementation

Input : x̄ = (x1,x2,x3) : shared plaintext
k : cipher key

Output : ȳ = (y1,y2,y3) : shared ciphertext

begin
rk← KeySchedule(k)

for i← 1 to 31 do
x1 ← x1 ⊕ rk[i]

t3 ← T(x1,x2)
t2 ← T(x3,x1)
t1 ← T(x2,x3)

t3 ← A′′′(t3)
t2 ← A′′′(t2)
t1 ← A′′′(t1)

x3 ← T(t1, t2)
x2 ← T(t3, t1)
x1 ← T(t2, t3)

x1 ← P(x1)
x2 ← P(x2)
x3 ← P(x3)

end

y1 ← x1 ⊕ rk[32]
y2 ← x2

y3 ← x3

end

implementation starts with updating the third share first before the remaining
shares are processed (see Algorithm 3.2).

Classical 2nd-Order Boolean Masking. This implementation, as presented in
Algorithm 3.3, uses three shares (similar to the TI), but the masked S-box
instead is realized by a single look-up table T(., ., .) as described in Section 2.4.

In particular the realization of a 12-bit to 12-bit look-up table on an 8-bit
micro-controller is challenging. On one hand, the 12-bit look-up table will increase
the memory requirements significantly. On the other hand, 12-bit addresses can
be realized easily by combining two 8-bit registers but at the cost of wasting the
four most significant bits. Still, we opted for this approach in order to reduce the
overhead due to additional and more complex control logic as well as to guarantee
a constant-time implementation (i.e., to prevent data-dependent timings).

Classical 2nd-Order Boolean Masking with Affine Transformation. Eventually,
Algorithm 3.4 extends the classical second-order Boolean masking using an affine
transformation in order to realize the masked S-box. In particular, the table
look-up is done twice and interleaved by applying the affine transformations
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Algorithm 3.3: Classical 2nd-Order Boolean Masking

Input : x̄ = (x1,x2,x3) : shared plaintext
k : cipher key

Output : ȳ = (y1,y2,y3) : shared ciphertext

begin
rk← KeySchedule(k)

for i← 1 to 31 do
x1 ← x1 ⊕ rk[i]

x̄← T(x1,x2,x3)

x1 ← P(x1)
x2 ← P(x2)
x3 ← P(x3)

end

y1 ← x1 ⊕ rk[32]
y2 ← x2

y3 ← x3

end

(see Equation (3)). However, this variant still has to face the same challenges
as the former approach. The motivation to include this variant in our analyses
is to examine whether the algebraic degree of the underlying function of the
masked look-up table has any effect on observable SCA leakage. The former
implementation variant is not formed following the TI principles; its look-up tables
have only been extracted from a TI construction hence fulfilling the uniformity.
However, this variant additionally stays with 3 shares per quadratic function.

3.3 Comparison

Table 3 provides a summary and comparison of our implementation variants
in terms of code size, memory usage (SRAM), and performance (clock cycles).
Since all implementations use the same key schedule routine, 256 B of the SRAM
usage of all variants are due to the 32 derived round keys and only the remaining
memory usage is implementation-specific.

The code size of each implementation comprises the key schedule and the
round function including all look-up tables which are stored in the flash memory.
Obviously, the classical 2nd-order Boolean masking schemes have the largest code
due to the 12-bit to 12-bit look-up tables that require complex handling on an
8-bit micro-controller. Similarly, the TI design has a slightly larger code size than
the classical 1st-order Boolean masking due to its more extensive substitution
layer that has to handle three shares.

Considering the performance, we measured the latency in terms of clock cycles
using the simulator of the Atmel Studio 6.2 environment. In order to prevent
any vulnerabilities against timing attacks, we ensured data-independent and
constant execution time for all of our implementations. Notably, the latency is
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Algorithm 3.4: Classical 2nd-Order Boolean Masking with
Affine Transformation
Input : x̄ = (x1,x2,x3) : shared plaintext

k : cipher key
Output : ȳ = (y,y,y) : shared ciphertext

begin
rk← KeySchedule(k)

for i← 1 to 31 do
x1 ← x1 ⊕ rk[i]

x̄← T(x1,x2,x3)

x1 ← A′′′(x1)
x2 ← A′′′(x2)
x3 ← A′′′(x3)

x̄← T(x1,x2,x3)

x1 ← P(x1)
x2 ← P(x2)
x3 ← P(x3)

end

y1 ← x1 ⊕ rk[32]
y2 ← x2

y3 ← x3

end

particularly dependent on the number of shares and decomposition of the S-box.
Hence, the classical 1st-order Boolean masking scheme has the smallest latency,
since it operates on only two shares and the substitution layer is realized as a
single table look-up. Consequently, the TI design has the highest number of clock
cycles, since it uses three shares and the S-box is realized by six table look-ups
interleaved with three affine transformations.

4 Evaluation

4.1 Measurement Setup

For the SCA evaluations, by means of a digital oscilloscope we measured the
voltage drop over an 1 Ω resistor placed at the GND path of the target micro-
controller. During the measurements, the micro-controller was operating at a
low clock frequency of 4 MHz (provided internally), and the traces have been
collected at a sampling rate of 125 MS/s. We have also made use of one of the I/O
pins of the micro-controller to provide a stable and jitter-free signal to trigger
the oscilloscope.
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Table 3: Comparison between Different Implementation Variants

Variant Code Memory Time

(Bytes) (Bytes) (Cycles)

Classical 1st-Order Boolean Masking 1 542 272 53 861
Threshold Implementation 1 576 304 165 802
Classical 2nd-Order Boolean Masking 9 328 280 91 557
Classical 2nd-Order Boolean Masking with Affine 9 448 280 148 012

4.2 Non-Specific Statistical t-Test

During the entire measurements, we kept the key constant (allowing us to forgo
masking of the key schedule), and provided the input masks externally, i.e., the
random mt have been generated by a PC and in addition to the masked plaintexts
xt are sent to the micro-controller. This way we could easily examine and ensure
the uniform distribution of the masks. As a metric to evaluate the existence of
1st-order leakage in our implementations, we applied the fixed versus random t-
test [16,41]. In short, a fixed plaintext is selected, and prior to every measurement
a coin is flipped, based on that either the fixed plaintext or a random plaintext
is given to the micro-controller. Indeed, such a t-test can examine whether there
is a detectable leakage in the measurements without giving any impression about
its exploitability. However, the intuition is that if the leakage is exploitable, it is
also detectable. Therefore, as a conservative condition, if there is no detectable
leakage, no exploitable leakage exists.

4.3 Results

For each of our considered implementation variants we collected 100 000 power
traces following the procedure explained in [41]. In our analyses we focused on
the first cipher round as well as on a 1st-order t-test.

Figure 1 presents the corresponding evaluation results for all four imple-
mentations. Interestingly, it can be seen that the TI design is the only variant
which does not exhibit detectable leakage. In all other implementations, either
with 2 shares or 3 shares, 1st-order leakage is detectable. We have localized the
points in time where the t statistics exceeds the 4.5 threshold; they are exactly
corresponding to the timing of the performed table look-ups.

Notably, we observe the 1st-order leakage for both variants of the classical
2nd-order Boolean masking. We should highlight that the only difference between
these two implementations and the TI design is the way the look-up tables are
realized. In these two variants all three shares are present at the input of the
table look-ups while in the TI design at most two shares form the input of every
table look-up. Our intuition is that the observed leakage is due to the unknown
details of the internal architecture of the underlying micro-controller. Similar
to the shadow register which we could identify to buffer data for load and store
operations, further hidden architecture details of the memory bus and unit could
be responsible for the detected leakage. To this end, it seems that the memory

13
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Figure 1: SCA evaluation results based on 1st-order non-specific t-test using 100 000
power traces.

control unit exhibits non-linear leakage depending on the given address during
the table look-ups. Hence, following the non-completeness principle of TI seems
to be a suitable choice which avoids all three shares to appear as an address for
a look-up, since it is hardly possible to get the necessary but missing details
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of the architecture. We should emphasize that we have just shown that if all
shares appear at the address of a table look-up, there exists detectable first-order
leakage. On one hand, with the current experiments we cannot comment on the
exploitability of such observed leakages. On the other hand, the very high t-test
statistics for the classical 1st-order Boolean masking shown in Figure 1(a) induce
the exploitability of the leakage.
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5 Conclusion

In this paper, we have investigated the application of Threshold Implementations
for software implementations in order to provide first-order security against side-
channel analysis attacks. In this context, we have developed and implemented a
classical first-order Boolean masking scheme, two second-order Boolean masking
schemes and a first-order TI. In general, our findings show that the classical
Boolean masking schemes (through pre-computed look-up tables) could not be
implemented securely on the chosen AVR micro-controller. More precisely, only
the first-order TI variant does not exhibit detectable first-order leakage using up
to 100 000 power measurements.

In addition to our practical side-channel evaluation, we could efficiently realize
the Threshold Implementation in terms of code size and memory requirements,
eventually implementing the TI variant with 1 576 B of code and 304 B of memory
which is close to the classical Boolean masking with only two shares. However,
the code size and memory reduction comes at cost of increased latency results in
terms of clock cycles. In particular, the TI requires about 165 k cycles whereas
the first-order classical Boolean masking takes only 53 k clock cycles. All in all,
this work shows that although TI has been proposed for hardware platforms, the
concept can be transferred and applied for software as well in order to realize
first-order secure implementations.
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