
RKHD ElGamal signing and 1-way sums

Daniel R. L. Brown∗

October 16, 2017

Abstract
An ECDSA modification with signing equation s = rk+hd has the

properties that the signer avoids modular inversion and that passive
universal forgery is equivalent to inverting a sum of two functions with
freely independent inputs.

Let σ : s 7→ sG and ρ : R 7→ −rR where r is an integer representa-
tion of the point R. The free sum of ρ and σ is ν : (R, s) 7→ ρ(R)+σ(s).
A RKHD signature (R, s) verifies if and only if ν(R, s) = hQ, where h
is the hash of the message and Q is the public key. So RKHD security
relies upon, among other things, the assumption that free sum ν is
1-way (or unforgoable, to be precise).

Other free sums are 1-way under plausible assumptions: elliptic
curve discrete logs, integer factoring, and secure small-key Wegman–
Carter–Shoup authentication. Yet other free sums of 1-way functions
(integer-factoring based) fail to be 1-way. The ease with which these
free sums arise hints at the ease determining RKHD security.

RKHD signatures are very similar to ECGDSA (an elliptic curve
version Agnew–Mullin–Vanstone signatures): variable-G forgers of the
two schemes are algorithmically equivalent. But ECGDSA requires
the signer to do one modular inversion, a small implementation secu-
rity risk.

1 RKHD signing and verifying
A RKHD signature (R, s) is valid if

sG = rR + hQ, (1)
∗danibrown@blackberry.com

1

under the notation:

E finite cyclic subgroup of elliptic curve (with additive notation),
G fixed generator point in E,
n order of G (a prime integer with nG = 0 and |E| = n),
d secret signing key (an integer),
Q public verifying key (a point Q = dG),
h hash value of the message to be signed (an integer),
k message-unique secret (an integer),
R first signature component (a point R = kG),
r integer representative of R (obtained from conversion), and
s second signature component,

where the signer can compute s using the equation:

s = rk + hd mod n. (2)

All integer arithmetic will be done modulo n, unless otherwise noted. In
particular, Z is used denote Z/nZ with representatives {0, . . . , n−1}. Hence
Z becomes a field, and division is generally defined.

1.1 Implementation issues
Security warnings1:

• The signer must reduce rk+hdmodulo n. If not, then the secret signing
key d will leak after one signature is generated. Indeed, suppose that
u = rk + hd as an unreduced integer (without reduction modulo n):
then

d = u/h mod r. (3)

• The values k should be indistinguishable from independent and uni-
formly random integer in the interval [0, n−1]. Leaked (or biased) bits
of k will leak bits of d, under known lattice attacks.

• The values k should appear to be independent (although repeating k
for a common h is okay).

1The usual warnings, which apply to ECDSA and many similar variants.

2

• The values ki generated in multiple signatures (Ri, si) should have no
adversarially determinable linear relationship, ∑

i ciki = 0, because, if
so, the signer’s secret key can almost always be computed as:

d =
∑

i cisi/ri∑
i cihi/ri

mod n. (4)

• An especially important case of the restriction above, the same value
k must be never be used with two different values of h. Indeed, if
s = rk + hd and s′ = rk + h′d, then d = (s− s′)/(h− h′) mod n.

Minor efficiencies:

• Inversion mod n can be avoided by both signer2 and verifier.

• Reduction mod n can be avoided by verifier (if desired).

• The verifier can, as an optional optimization method, use an alternative
verification equation: vsG = vrR+vhQ, choosing v such that vr mod n
and vh mod n are not too far above

√
n. (Finding v has cost similar

to the Euclidean algorithm, using an algorithm dating back to Gauss.)
The modified equation speeds up multiplying R and Q. The verifier
can use also pre-computations for G.

• The signer can pre-compute kG shortly in advance of receiving h. The
pair (k, kG) is then known as a coupon. Pre-computing the coupon
reduce the latency between receiving a message to sign and generating
its signature. A risk of coupons is that k might exposed in the interim
rest period between message input and signature generation.

• The signer can generate k as a deterministic but pseudorandom func-
tion of (d, h). This is not vulnerable to (4) because the repeated in-
stances k for h correspond to repeated equations and variables and
have no net effect on the linear system for determining d. This method
precludes the use of a coupon.

2The signer’s avoiding of modular inversion is also a security advantage, because it is
reduces the amount of side-channels.

3

2 Forgery by inverting a sum of functions
Define functions:

ρ : R 7→ −rR, (5)
σ : s 7→ sG, (6)

ν : (R, s) 7→ ρ(R) + σ(s). (7)

If ν(R, s) = hQ, then (R, s) will pass the verifying equation for public key Q
and message hash value h.

Inverting ν at hQ is therefore equivalent to a passive universal forger of
RKHD signatures.3

3 Free sums
Let f : X → Z and g : Y → Z be functions with a common codomain Z.
Furthermore, suppose that Z is equipped with a binary operation written +.
Usually, we suppose that + makes Z into an abelian group. The free sum4

of f and g is the function

f + g : X × Y → Z : (x, y) 7→ f(x) + g(y). (8)

In particular, the function ν : E×Z→ E is the free sum of the functions
ρ : E→ E and σ : Z→ E.

Given some function f : X → Z, a forgoer or inverter5 of f is any
function i : Z → X such that f(i(z)) = z with high probability given
uniformly random z ∈ Z.

We could also call i a probable pre-inverse, or a preimage-finder, of f .
For brevity, f−1, in this report, indicates6 a potential inverter.

3By standard Pointcheval–Stern signer-simulating arguments, active (chosen-message)
universal forgery of random-oracle-hash RKHD is equivalent to inverting ν too.

4Please excuse the neologism.
5Inverter is not an ideal name, due to its ambiguity.
6Standard math notation writes f−1 for the unique inverse, if it exists, and otherwise

f−1(z) is a set of all i with f(i) = z. The notation f−1 in this report is to suggest an
approximation to first meaning, a true inverse, rather than the second meaning. See §A
for more discussion.

4

If no efficient7 inverter for f exists, then f is said to be unforgoable, or
a bit more concisely, but less precisely8, 1-way.

Because RKHD signatures rely on a 1-way free sum to avoid severe
forgery, this report studies the issue 1-way free sums in greater generality
(beyond RKHD).

3.1 Some free sums
A brief survey of some 1-way (and one non-1-way) free sums follows.

3.1.1 A 1-way free-sum of 1-way functions

Lemma 1. Let f = g = σ, where σ : s 7→ sG as before. Assume that
σ is unforgoable (the standard hard ECDLP assumption). Then f + g is
unforgoable. In particular, an f + g inverter i is equivalent to a discrete log
solver l (an inverter of σ).

Proof. Essentially, the equivalence is due to the linearity of σ.
Suppose i : E→ Z×Z is an f + g inverter. Let p : Z×Z→ Z : (x, y) 7→

x+y. Then l = p◦i is an σ inverter, and thus discrete log solver. Conversely,
suppose that l : E→ Z is a discrete log solver, and r : E→ Z is any function.
Then i : P 7→ (l(P)− r(P), r(P)) is an f + g inverter.

More generally, consider the following.

Lemma 2. Let η : s→ sH. Free sum σ + η is also 1-way (if σ is).

Proof. Take uniformly random Z ∈ E and compute σ−1(Z) as follows. Choose
random integers r1, r2 and compute Ri = riZ. Compute (σ + η)−1(Ri) =
(xi, yi). Then σ−1(Z) = (x1y2 − x2y1)/(r1y2 − r2y1) mod n.

3.1.2 A non-1-way free sum of 1-way functions

Begin with the famous result:
7A function is efficient if it has an efficient evaluation algorithm.
8Note: for example, constant functions are 1-way. The Handbook of Applied Cryp-

tography recommends against the phrase “1-way” for just such reasons, but I will use it
anyway.

5

Lemma 3 (Rabin). Let n be the product of two large primes, an RSA modu-
lus. Let f : x 7→ x2 mod n. Inverting f is finding square roots mod n, which
is equivalent to factoring n.

So, f is 1-way. The free sum of f with a copy of itself is not 1-way:

Lemma 4. Let g = f . The free sum f + g is not 1-way.

Proof. Free sum f + g has the following inverter i. Given input z to i, first
find the smallest prime p with p = z mod n and p = 1 mod 4.

Next, apply Cornacchia’s algorithm to p, which gives (x, y) such that
x2 + y2 = p. (Recall that Cornacchia’s algorithm is efficient.)

The inversion is verified as follows:

(f + g)(i(z)) = (f + g)(x, y) = x2 + y2 = p = z mod n, (9)

so i has found a pre-image of f .

3.1.3 A 1-way free sum of non-1-way functions

Let L be the set of logarithms9 of a large set of large primes. Let L+L be set
of sums of two elements in L, (so the L+L is the set of logarithms of a set of
RSA public keys). Let L+ be a version of L in which each logarithm appears
very many times (far more than |L| times). (In order to be set, instead of a
multi-set, allow each copy of a logarithm to vary by a negligible amount.)

Let Z = L ∪ (L + L), and let X = L+ ∪ (L + L). Let f : X → Z be
the function maps each copy in L+ to its original value in L, and maps each
element in L+ L to itself.

Lemma 5. Then f is not 1-way.

Proof. Compute i(z) as follows. If ez is not prime, then z ∈ L + L, and let
i(z) = z. If ez is prime, then z ∈ L. Choose one of the copies z+ of z and let
i(z) = z+.

Define a binary operator + on Z to be the usual real number addition
if both arguments are in the subset L of Z. Otherwise, just set a + b to be
some arbitrary element of L, such as the smallest element.

Lemma 6. If g = f and integer factorization is difficult, then f+g is 1-way.
9Store logarithms of integers with sufficient precision to recover the original integer

6

Proof. Consider z ∈ Z = L ∪ (L + L) chosen uniformly at random. With
overwhelming probability, z ∈ L + L, because L + L has nearly |L| times
as many elements as L. In this case, integer ez is a product of two random
primes from a large set of large primes. Finding the factors of ez should be
difficult.

But if i is an efficient pre-inverse of f + g, then this means that for
i(z) = (x, y), we expect that (f+g)(x, y) = z. But (f+g)(x, y) = f(x)+g(y).
But this means ef(x) and eg(y) is the prime factorization of ez, which should
be difficult to find.

3.1.4 Small-key Wegman–Carter–Shoup: a 1-way free sum

Work-in-progress.
Small-key Wegman–Carter–Shoup symmetric authentication can be de-

scribed as a 1-way free sum using a little notation-reversal trick.
The secret key in WCS is a pair a functions (x : M → Z, y : N → Z),

where M is a message space, N a finite nonce space, and Z a group. Then
WCS authentication with secret key (x, y) is a function (m,n) 7→ x(m)+y(n).
An attacker gets to see (m,n, z) = (m,n, x(m) + y(n)) but should not be
able to determine10 (x, y).

The notation reversal trick is to write x(m) + y(n) = m(x) + n(y) =
(m+ n)(x, y). Under this new notation, m and n are now functions. So, we
have fixed m and n. This situation is realistic in the sense an WCS attacker
gets to see m and n and z. The attacker seeing the message m and nonce n,
is perfectly able to take our reversed-notation view and evaluate m and n as
functions of the secrets x and y.

So, let X is the set of all functions x : M → Z, and, similarly, Y = {y :
N → Z}.

By small-key WCS, we assume that the size of X × Y is smaller than Z.
For a concrete example, suppose that both (x, y) are derived from the same
128-bit key, and Z is the space of 256-bit strings. The small-key is prob-
ably not realistic for most WCS implementations. Nonetheless, it remains
plausible (to me) that WCS is secure with such small keys.11

Suppose that i is an inverter of the free sum m+n. Upon seeing (m,n, z)
where z = (m + n)(x, y) is generated by a WCS authenticator with secret

10among many other things that should be hard for a WCS adversary...
11My rationale: instead of calling this small-key WCS, I could have called it big-tag

WCS, which sounds quite secure, doesn’t it? Actually, well, no.

7

key (x, y), then i can be applied to z. The result is some (x′, y′) with (m +
n)(x′, y′) = z.

In small-key WCS, there cannot be so many (x, y) mapping to z under
(m + n), so we expect that (x′, y′) = (x, y). In this even, we have recovered
the actual WCS secret key, which is essentially a total break: future messages
can be forged.

In sum, small-key WCS also seems to rely on a 1-way free sum.

3.1.5 A 1-way free sum: constant plus 1-way

Lemma 7. If f is constant and g is 1-way, then the free sum f +g is 1-way.

Proof. Suppose otherwise: that f + g is not 1-way for the given f and g.
Then g−1(z) = ((f + g)−1(z − f(x)))2, a contradiction.

Similar results may hold if f is sufficiently compressive.
Note: the function ρ in RKHD cannot be replaced by a constant.

3.2 Requirements for 1-way free sums
This section lists some requirements for free sum f + g to be 1-way.

3.2.1 In a group, the summands must be 1-way

Lemma 8. If Z is a group and f + g is 1-way, then, both f and g must be
1-way.

Proof. Suppose that one of functions, say f , is easy-to-invert, with inverter
f−1. Then the function defined by (f + g)−1(z) = (f−1(z − g(y)), y) has
the same success rate at inverting f + g as the function f−1 has at inverting
f .

Note: the example in §3.1.3 does not contradict this statement, because
Z in that example is not a group: subtraction in Z is not available.

3.3 The colliding free-sum inverter
Assume Z is a group and let N = |Z|. Select

√
N random values xi and

√
N

random values yj. Compute and store all f(xi). Sort the resulting list.

8

Compute each z−g(yj), and do a binary search to find if it is in the sorted
list of f(xi). If z − g(yj) = f(xi) for some i, j, then output (x, y) = (xi, yj).

The total number of steps is this algorithm at most 2
√
N log(N), although

it can stop earlier.
This algorithm succeeds as an f+g inverter if the probability p that some

uniformly random xi and yj will have (f + g)(xi, yj) = z for a uniformly
random z. Let us call p the colliding probability of f and g.

By linearity of expectation, the expected number of hits in the algorithm
above is at least Np. So, as long as p ≥ 1/N , then we can reasonably expect
this algorithm to work.

So, we say that f and g collide if the colliding probability is at least 1/N
(approximately).

Colliding between f and g can easily fail in some cases (for example, if
f(X) and g(Y) are disjoint). In other cases, colliding between f and g can
be easily verified (for example, if f and g are both bijections).

Note: Shanks’ baby-step-giant-step algorithm for inverting σ is actually
a special case of this colliding algorithm.

4 Recommendation
As far as I know, RKHD signatures have not been standardized or deployed.
But the very similar ECGDSA signatures have been.

Somewhat surprisingly to me, as far as I know, 1-way free sums have
not been studied nor has the reliance of ECGDSA on 1-way free sums been
noted.

I recommend further study of 1-way free sums, specifically those involved
in RKHD. The small security advantage12 of RKHD over ECGDSA is not
enough to abandon ECGDSA implementations13. This minor advantage may
be enough to justify preferring RKHD over ECGDSA in new deployments
(unless they need backwards interoperability).

It seems imprudent to use RKHD signatures as a replacement for similar
signatures schemes, like ECDSA, EdDSA, ECKDSA or ECGOST, at least
not without a more thorough study of 1-way free sums.

Using RKHD in conjunction with other signature schemes seems fairly
harmless, except for the extra cost to the signer and verifier, provided the

12Avoiding a signer modular inversion.
13If already used, then they have already done the modular inversion.

9

keys are fully separated and so on.

A 1-way formalisms and jargon
Let f : A → B be a function which is potentially “1-way” in a sense to be
formally defined below.

The intuitive idea behind “1-way function” concerns the existence of a
function i : B → A that has some of the properties expected of a true inverse
f−1 of a bijective function f . We will list some properties soon, but first we
discuss more general issues of efficiency and probability.

Efficiency, existence, and evidence-based assumptions Being 1-way
encompasses a notion about computational difficulty, so it may not be suf-
ficient to look only at the existence of inverse-like functions i. Indeed a a
perfect inverse i = f−1 of bijective function i exists by definition, and 1-way
bijections, such as that associated with discrete logs and block ciphers, are
important for cryptography. So, for f to 1-way, we require that there must
not exist inverse-like function i that can evaluated by an efficient algorithm.

In many cases of a specific function, the non-existence of suitable i cannot
be proved. Instead, the non-existence of suitable i is merely assumed, but
usally based on the ample evidence of non-discovery of suitable i despite
extensive effort.

Success rate We define a general relation between two functions f, g : A→
B (that share the same domain and codomain). We say f approximates g,
and write f ≈ g, with a success rate s if the probability that f(a) = g(a)
is at least s, where a is chosen uniformly at random from A.

Probabilistic to deterministic algorithms In this formalism (so far),
we will consider a single function i : B → A, which is deterministic. Usually
cryptography deals with probabilistic algorithms (especially as adversaries).
So suppose I : R × B → A is a deterministic function that models a prob-
abilistic algorithm by encoding the random choices of the algorithm into a
formalized finite set R, such that uniformly random r selected from R models
the random choices of the probabilitic algorithm. (If it is impossible to do
this with a finite set R – which seems unlikely to me – then we make R into
a probability space and adjust as needed.) Now let Ir : B → A : b 7→ I(r, b),

10

which is a deterministic function of the form i considere previously. We de-
fine the success rate of the I to be the success of Ir averaged over uniformly
random r. If I has success rate s, there exists r such that Ir, now a determin-
stic function, has success rate r. (Of course, it may perhaps be difficult to
find r, but since the definitions of 1-way concern non-existence of suitable i,
this may be adeqaute.) So, this approach, more or less reduces probabilistic
algorithm setting to deterministic function setting (up to finding r).

Inverse-like properties We will define several different flavors of 1-way
properties of f . To do this, we just need to fix a little more notation about
involving functions.

For any functions f : A → B and g : B → C, let gf be the composite
function gf : A → C : a 7→ g(f(a)). (Note many authors write as g ◦ f
instead.) Note that f ≈ g implies hf ≈ hg.

For any set A, where 1A : A → A : a 7→ a for the identity function on
the set A. If the domain and codomain are clear from context, then we can
omit the subscript A. For example, if f : A → A and we write f ≈ 1, then
by definition of the symbol ≈, it clear that 1 means 1A.

Recall that we seek a function i that acts like f−1 would. Now we have
all the tools to formally specify this.

The three main inverse-like properties of a function i : B → A are:

fi ≈ 1, (10)
if ≈ 1, (11)
fif ≈ f. (12)

If f is actually bijective and i = f−1, then each approximation above holds
with success rate 1 (so, as identical functions). So, each propertiy holds for
a true inverse. If they hold for another function i, then we say that i has an
inverse-like property.

In this report, we have used the first property, fi ≈ 1 in defining what
it means to be 1-way. In other words, we have said that f is 1-way if there
exists no efficient, high success rate function i such that fi ≈ 1. (Note 1 = 1B

in this context.)
Many other similar inverse-like properties can be specified, as follows.

Each property is an approximation between two compositions (like the three
properties above). Each has domain-codomain pair which is one of (A,A),
(A,B), (B,B) or (B,A). Each composite function is composite of some

11

non-negative integer number of functions (i or f , alternating in some order).
For example, this report’s main inverse-like property, fi ≈ 1, is given by
domain-codomain pair (B,B) and composite numbers {0, 2}.

Among such generalites, the three approximations given above are proba-
bly the most important, because of the fact that i appears only once (among
other reasons).

The reader might notice that some inverse-like properties of i can imply
others. Especially important implications include the following.

• If f is bijective (as is the function f = σ : s 7→ sG), then a true inverse
function f−1 exists. We may compose f−1 with some approximation
properites. Then the three main approximations for i above just reduce
to the simpler approximation approximation i ≈ f−1, showing that
they are all equivalent.

• If if ≈ 1A, then fif ≈ f . (Just apply f .)

Jargon What to call the flavors? We cannot name them all, so only try to
name the most fundamental. Begin by naming the functions i that satisfy
the three main approximations above.

• If fi ≈ 1B, then i is a forgoer for f .

• If if ≈ 1A, then i is a reverser for f .

• If fif ≈ f , then i is a conjoiner for f .

Through most of this report a forgoer has been called an inverter. This is
because the other flavors were not needed, and inverter better conveys the
similarity to an inverse than forgoer. Anyway, 1-way functions, as defined in
main parts of this report, could be more precisely called unforgoable func-
tions.

Note that a success rate 1 reverser for f exists if and only if f is injective.
Similarly, a success rate 1 forgoer for f exists if and only if f is surjective.
More generally, a reverser has success rate at most |B|/|A|, and forgoer has
success rate at most |A|/|B|. By contrast, a success rate 1 conjoiner exists
for every f , although it not necessarily an efficient conjoiner. The existence
observations above ignore issues of efficiency: usually the terms reverser,
forgoer and conjoiner refer only to efficient functions.

12

Much literature in cryptology uses the term preimage finder, either for
our forgoer or our conjoiner.

Note that, in previous work on MQV, I called these three types of i by
different names: inverter, reverter, opener, respectively. As far as I know,
nobody picked up my past terminology, so I do not feel too obliged to stick
with it consistently. More technically, in the MQV work, I found bounds on
the various i types given the sizes of A and B, and reductions between the
notions relative to other types of f -attack tasks, such as distinguishers and
predicters.

For the sake of an example, consider the degenerate case of a constant
function f : A → B, where both A and B are large sets. On one hand,
f is 1-way in the sense of being unforgoable and irreversible (information-
theoretically!). On the other hand, a constant f is not 1-way in the sense
that it is easily conjoinable: every function i : B → A is a success rate 1
conjoiner!

In more generic cryptology, it is common to view constant functions as an
uninteresting case, and not worthy of the designation of 1-way. In order not to
water down the meaning of “1-way”, it seems reasonable to preclude constant
function from the special class of “1-way” functions. Defining “1-way” to
be our unconjoinable (plus perhaps with additional coniditions) precludes
constant functions.

Becuase of this ambiguity, this report re-defines 1-way, and this section
introduces an alternative term unforgoable with a more specifc meaning.

Why this reports forgoes unconjoinability In the specifics of this re-
port, the unconjoinability flavor of 1-way seems to complicate some issues.
For example, the summands in an unconjoinable free sum do not have to be
unconjoinable (consider a constant plus an unconjoinable function). It seems
too awkward to state some of results about free sums with special exemptions
tailored pre-existing notions of 1-way like unconjoinability.

A forgoer of the free sum ν = ρ + σ corresponds exactly to a passive
universal forger of RKHD as noted in the body of the report.

Note that the function f = ν : E×Z→ E has a uniformity property: given
uniformly input, the output is uniformly random. This uniformity property
is inherited from + defining a group and σ : Z → E being a bijection. Any
function with such a uniformity property has the property any conjoiner is
a forgoer, and vice versa. (Check this.)

13

So, actually, the unconjoinability definition of 1-way would have worked
just fine for defining RKDH security. Where unconjoinability was lacking in
this report was in generalization to other free sums, where the unforgoability
definition is more natural.

B Previous work and references
To be completed.

B.1 Agnew, Mullin and Vanstone
In 1990 (Electronic Letters), Agnew, Mullin and Vanstone (AMV) proposed
a variant of ElGamal signatures (in a non-ECC) setting. The AMV signing
equation could be written as h = rk+ds mod n, in the notation of this report.
Agnew, Mullin and Vanstone point out that the function x 7→ xx mod p seems
to be 1-way. This function corresonds to our function ρ.

By writing σ′(s) = sQ, we can also show that the EC version of the AMV
signature has a passive universal forgery equivalent to the inversion of a free
sum, with AMV signature (R, s) being valid if and only if ρ(R)+σ′(s) = hG.

Note that AMV signatures require a one-time modular inversion of the
secret signing key. This modular inversion is a small cost, but might also
represent a small security risk.

B.2 ECGDSA
An EC version of AMV signatures have been standardized in the form of
ECGDSA. All the comments above about AMV apply.

B.3 Nyberg and Rueppel
In Eurocrypt 1994, Nyberg–Rueppel proposed six variants of ElGamal with
message recovery. One of these six seems to correpsond the RKHD variant
(upon removal of message recovery), but they do not seem focus on the
RKHD variant, nor on the security of free sums.

14

B.4 Handbook of Applied Cryptography
Menezes, van Oorschot and Vanstone, in the Handbook of Applied Cryptog-
raphy adapt Nyberg and Rueppel’s six variants of ElGamal to the traditional
setting with appendix signatures (no message recovery).

B.5 Horster, Peterson and Michels
In 1994 (ACM), Horster, Petersen and Michels, survey 13,000 variants of El-
Gamal signatures. RKHD signatures, in their classification scheme, are type
EG I, and number 4, and so on. They do not emphasize anything like free
sums (or products). However, they claim an equivalence in security between
number 2 and number 4 signatures, which in our notation, corresponds to
swapping the roles of G and Q. They did not provide details of this equiva-
lence.

I speculate that “equivalence” Horster, Petersen and Michels were refer-
ring to is the following. Suppose that the forger’s input consists not only of
the public key Q, but also the generator G. This forger is a free-generator
forger. Then an free-generator RKDH forger is clearly equivalent to a free-
generator ECGDSA-forger, just by swapping the inputs G and Q.

In this report, I assume that G is fixed, and therefore not an input to
the forger. This formalism models the common practice that G is fixed, so
that the public key Q can be as small as possible. Formally, it also allows
for non-intuitive possibility that forger specific to G. I have so far failed14 to
find an equivalent between RKHD and ECGDSA in this fixed-G setting. As
noted earlier, the security is still quite similar without such a literal reductive
equivalence. In both cases, passive universal forgery is equivalent to inverting
a free sum.

B.6 Schnorr
Schnorr (1994?) signatures are similiar to RKHD signatures but with ρ′(R) =
R instead of ρ and h′ being the hash of R and m instead of h. The natural
combination15 of Schnorr with RKHD would use the 1-way ρ and h′, would

14For example, the naive approach of dividing the verifying equation by d partly does
the trick but it modifies the function ρ.

15The naive combination, taking ρ′ and h, is faster, but not secure, because, for example,
ρ′ is not 1-way.

15

probably have all the security properties of Schnorr signatures (proofs in
models), but I have so far failed to an equivalentce between passive universal
forgery and a 1-way free sum, so its security properties seem (to me) different
from RKHD.

Note also that Schnorr and RKHD share the feature of avoiding any
modular inversion.

B.7 EdDSA
The recent EdDSA signature scheme is an EC variant of the Schnorr sig-
natures, in which the ephemeral secret k is a deterministic function of the
message and hash. Most of the comments above about Schnorr signatures
should apply.

16

	1 RKHD signing and verifying
	1.1 Implementation issues

	2 Forgery by inverting a sum of functions
	3 Free sums
	3.1 Some free sums
	3.1.1 A 1-way free-sum of 1-way functions
	3.1.2 A non-1-way free sum of 1-way functions
	3.1.3 A 1-way free sum of non-1-way functions
	3.1.4 Small-key Wegman–Carter–Shoup: a 1-way free sum
	3.1.5 A 1-way free sum: constant plus 1-way

	3.2 Requirements for 1-way free sums
	3.2.1 In a group, the summands must be 1-way

	3.3 The colliding free-sum inverter

	4 Recommendation
	A 1-way formalisms and jargon
	B Previous work and references
	B.1 Agnew, Mullin and Vanstone
	B.2 ECGDSA
	B.3 Nyberg and Rueppel
	B.4 Handbook of Applied Cryptography
	B.5 Horster, Peterson and Michels
	B.6 Schnorr
	B.7 EdDSA

