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Abstract

We show new constructions of semi-honest and malicious two-round multiparty secure com-
putation protocols using only (a fixed) poly(n, λ) invocations of a two-round oblivious transfer
protocol (which use expensive public-key operations) and poly(λ, |C|) cheaper one-way function
calls, where λ is the security parameter, n is the number of parties, and C is the circuit being
computed. All previously known two-round multiparty secure computation protocols required
poly(λ, |C|) expensive public-key operations.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrusting parties to compute a
joint function on their private inputs with the guarantee that only the output of the function is
revealed and everything else about the private inputs of the parties is hidden. This is a classic prob-
lem in cryptography and was originally studied by Yao [Yao82] for the case of two parties. Later,
Goldreich, Micali and Wigderson [GMW87] considered the multiparty case and gave protocols for
securely computing any multiparty functionality.

A key metric in determining the efficiency of a secure computation protocol is its round complex-
ity or in other words, the number of sequential messages exchanged between the parties. Starting
with the first constant round protocol by Beaver, Micali and Rogaway [BMR90], there has been a
tremendous amount of research to reduce the round complexity to its absolute minimum. It was
shown in [HLP11] that two rounds are necessary to securely compute certain functionalities and a
sequence of works have tried to realize this goal. The first two-round construction was obtained by
Garg, Gentry, Halevi and Raykova based on indistinguishability obfuscation [GGHR14, GGH+13].
Subsequently, a sequence of works improved the needed assumptions, first to witness encryption
[GLS15, GGSW13], and then to learning with errors assumption [MW16, BP16, PS16]. Improv-
ing these results, recent works obtained two-round constructions based on the DDH assumption
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[BGI16, BGI17b] (for the case of constant number of parties) or on bilinear maps [GS17] (in the
general case). Finally, very recent results have also yielded constructions based on the minimal
assumption of two-round oblivious transfer [BL18, GS18].

Apart from round complexity, another metric that is crucial for computational efficiency in MPC
protocols is the number of public-key operations performed by each party. Typically, public key
operations are orders of magnitude more expensive than symmetric key operations and minimizing
them typically leads to more efficient protocols. The question of minimizing public key operations
in secure computation was first considered by Beaver [Bea96] for the case of oblivious transfer. In
particular, Beaver gave a construction for obtaining a large number L � λ of oblivious transfers
(OTs) using only a fixed number λ public key operations along with the use of poly(L) cheaper
one-way function calls. This task of extending λ OTs to a larger L OTs using only one-way
functions is referred to as oblivious transfer extension. Following Beaver’s result, a rich line of
work [IKNP03, Nie07, HIKN08, KK13] gave concretely efficient protocols for OT extension which
have served as a crucial ingredient in the design of several concretely efficient secure computation
protocols [HIK07, NNOB12, ALSZ17, KRS16].

In this work, we are interested in getting the best of both worlds, namely, constructing two-
round MPC protocols while minimizing the number of public-key operations performed. Indeed,
the number of public-key operations in the prior two-round MPC protocols grows with the size of
the circuit computed. Given this state of affairs, we would like to address the following question.

Can we construct two-round, secure multiparty computation protocols where the number of public
key operations performed by each party is independent of the size of the circuit being computed?

1.1 Our Results

We give a positive answer to the above question. We show new constructions of semi-honest and
malicious two-round, multiparty computation protocols where the number of public key operations
performed by each party is a fixed polynomial (in the security parameter and the number of partici-
pants) and is independent of the circuit size of the function being computed. Further, we prove the
security of these protocols under the minimal assumption that two-round semi-honest/malicious
oblivious transfer (OT) exists. More formally, our main theorem is:

Theorem 1.1 Let X ∈ {semi-honest in plain model, malicious in common random/reference sting
model}. Assuming the existence of a two-round X secure OT protocol, there exists a two-round,
X secure, n-party protocol computing a function f (represented as a circuit Cf ) where the number
of public key operations performed by each party is poly(n, λ). Here, poly(·) is a fixed polynomial
independent of |Cf | and λ is the security parameter.

The focus of this work is theoretical feasibility rather than concrete optimization of the poly-
nomial. We leave the goal of obtaining concretely efficient protocols for future work. Additionally,
in the malicious case, this work focuses on obtaining protocols in the common random/reference
string model. Obtaining round optimal MPC protocols in the plain model [GMPP16, ACJ17,
BHP17, COSV17, HHPV17, BGJ+17, BL18] has been a problem of significant interest and we
expect that our techniques will be useful in reducing the number of public-key operations needed
in these protocols. We leave this as an open problem.
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2 Technical Overview

In this section, we give a high-level overview of the main challenges and the techniques used to
overcome them in our construction of two-round MPC protocols minimizing the number of public
key operations.

Starting Point. The starting point of our work is the recent results of Benhamouda and Lin
[BL18] and Garg and Srinivasan [GS18] that provide constructions of two-round, secure multiparty
computation (MPC) protocol based on two-round oblivious transfer. These works provide a method
of squishing the round complexity of an arbitrary round secure computation protocol to just two
rounds. The key idea behind this method is the concept of “talking garbled circuits,” i.e., garbled
circuits that can interact with each other by sending and receiving messages. Let us briefly explain
how this primitive helps in squishing the round complexity of a multi-round MPC protocol.

To squish the round complexity, each party generates “talking garbled circuits” that emulates its
actions as per the specification of the multi-round MPC protocol. The parties then broadcast these
“talking garbled circuits” so that every party has access to the “talking garbled circuits” of every
other party. Finally, all parties evaluate these “talking garbled circuits” that internally executes
the multi-round MPC protocol. This step does not involve any further interactions between the
parties. Thus, the only overhead in the round complexity of this approach is the number of rounds
needed for generating the “talking garbled circuits.”

Let us give a very high level overview of how the “talking garbled circuits” are generated.
In these two works, the “talking garbled circuits” are generated via a two-round protocol that
makes use of (plain) garbled circuits and two-round oblivious transfer (OT).1 At the end of the two
rounds, every party has access to every other party’s “talking garbled circuits” and can evaluate
them without any further interaction. The first round of this two-round protocol can be visualized
as setting up a channel for the garbled circuits to communicate. Without going into the actual
details on how this is achieved, we note that this step involves generating several first round OT
messages. Next, in the second round, the actual garbled circuits are sent which interact with each
other via the channel set up in the first round. Again, without going into the details, a message sent
from one party (the sender) to another party (the receiver) is communicated via the sender’s garbled
circuit outputting the randomness used in generating a subset of the first round OT messages and
the receiver’s garbled circuit outputting some second round OT messages.

Computational Overhead. One major source of inefficiency in the approaches of [BL18, GS18]
is the number of expensive OT instances needed. In particular, these protocols use Ω(1) OTs in
enabling the garbled circuits to communicate a single bit. Hence, the number of OTs needed for
compiling an arbitrary secure computation protocol grows with the circuit size of the function being
computed.2 Our goal is to remove this dependency between the number of OTs needed and the
circuit size of the function being computed.

Can we use OT extension? A natural first attempt to minimize the number of instances of
oblivious transfer would to be use an OT extension protocol [Bea96, IKNP03]. We need this OT

1Recall that in a two-round oblivious transfer, the first message is generated by the receiver and it encodes the
receiver’s choice bit and the second message is generated by the sender and it encodes its two messages.

2In fact, the number of OTs grows with the computational complexity of the underlying multiparty protocol.
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extension protocol to run in two-rounds, as otherwise the protocol for computing “talking garbled
circuits” will run in more rounds. Further, we need the OT extension protocol to satisfy the
following three properties for it to be useful in constructing “talking garbled circuits.” We also
explain why a general two-round OT satisfies each of these properties.

1. Delegatability. For every OT computed between a sender and a receiver, the receiver
should be able to delegate its decryption capabilities for that OT to any party by revealing
a decryption key. This key and the transcript could then be used to compute the message
that the receiver would have obtained in the OT execution. A general two-round OT satisfies
delegatability as revealing the receiver’s random coins allows any party to obtain the receiver’s
message.

2. Independence. We require independence between multiple parallel invocations of the un-
derlying OT protocol. More specifically, revealing the receiver’s delegation key for one of the
instances of an OT execution does not affect the receiver security for the other OTs. Again,
a general two-round OT satisfies independence as each OT instance is generated using an
independent random tape.

3. Availability of Delegation Keys. The keys for delegating the decryption must be available
at the end of the first round i.e., after the receiver sends its message. This property is trivially
satisfied by a two-round OT as the delegation key is in fact the receiver’s random tape.

Let us first explain the intuition on why these three properties are required for the construction
of “talking garbled circuits.” The delegatability property is required since the garbled circuits sent
in the second round reveal the delegation keys for a subset of the OT messages generated in the first
round. Recall that this is required for one garbled circuit to send a message to another. The key
availability property is needed since the delegation keys are to be hardwired in the second round
garbled circuits so that the appropriate delegation keys can be output by these circuits during
evaluation. The independence property is needed since the second round garbled circuits reveal the
delegation keys for only a subset of the first round OT messages. We need the other OT messages
to still be secure.

We stress that even though the above three properties are trivially satisfied by every two-round
OT, a two-round OT extension protocol need not satisfy all of them. To demonstrate this, let us
first see why does the two-round version of Beaver’s OT extension protocol [Bea96, GMMM17] not
satisfy all the properties.

Why doesn’t Beaver’s OT extension work? In order to understand why this does not work,
we first recall a two-round version [GMMM17] of the OT extension protocol of Beaver that expands
λ two-round, base OTs to L = poly(λ) OTs. In the first round of the OT extension protocol, the
receiver (having input c ∈ {0, 1}L) samples a “short” seed s of a PRG : {0, 1}λ → {0, 1}L and
computes e = c ⊕ PRG(s). Additionally, it computes λ first round OT messages using s as its
choice bits. It sends these OT messages along with e to the sender. The sender garbles a circuit
C that has its messages {msgi,0,msgi,1}i∈[L] hardwired along with the string e received in the first
round. The circuit C takes as input the λ-bit string s, expands it to L bits using the PRG and uses
it to unmask e to obtain c. Specifically, it computes c := e ⊕ PRG(s), and outputs {msgi,c[i]}i∈[L].
The sender sends this garbled circuit and uses the λ second round OT messages to communicate
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the labels of the garbled circuit to the receiver. The receiver decrypts the labels corresponding to
the bits of its seed s and uses it to evaluate the garbled circuit to obtain {msgi,c[i]}i∈[L].

The above OT extension protocol of Beaver is delegatable as revealing all the randomness used
by the receiver allows any party to decrypt all the messages. However, the protocol does not satisfy
the independence requirement as the randomness used for generating L different OTs is highly
correlated. In fact, revealing all the random coins for generating the first round OT messages
compromises the security of all the L OTs.

Delegatable and Independent Two-Round OT Extension. Towards constructing an OT
extension that satisfies all the properties, we first construct a protocol that is both delegatable
and independent. In the new protocol, the receiver’s first round message is the same as before.
However, the sender’s message is generated differently. In particular, the sender samples a set of
masks M = {mi,0,mi,1}i∈[L] where each mask mi,b is a random string with the same length as
msgi,b. It constructs the circuit C (described above) with the set of masks hardwired in place of the
messages. It garbles this circuit. It additionally computes cti,b = msgi,b ⊕mi,b for each i ∈ [L] and
b ∈ {0, 1} and sends the garbled circuit, the set {cti,b}i∈[L],b∈{0,1} and λ second round OT messages
to communicate the labels of the garbled circuit to the receiver. The receiver then recovers the
labels corresponding to its seed s, evaluates the garbled circuit to obtain {mi,c[i]}i∈[L], and computes
msgi,c[i] = cti,c[i] ⊕mi,c[i] for every i ∈ [L].

This scheme is delegatable as the receiver can use mi,c[i] as the delegation key. It is also
independent, as revealing mi,c[i] does not leak any information of c[k] for k 6= i. However, this
construction does not satisfy the third property, namely key availability. This is because mi,c[i] can
be computed by the receiver only at the end of the second round and is not available at the end of
the first round.

Weakening the Key Availability Property. We first observe that we can in fact, weaken
the key availability property. Recall that the key availability property requires the delegation keys
to be available at the end of the first round so that they can be hardwired inside the garbled
circuits that performs the communication. However, for the construction to work, we just need
the delegation keys to be given as inputs to these garbled circuits and need not be hardwired. We
will now construct a two-round, OT extension that satisfies the weakened key availability property.
For the ease of exposition, let us overload the notation and call the these communicating garbled
circuits (sent in the second round) as “talking garbled circuits.”

Satisfying All Properties. Recall that the problem with the previous approach was because
the receiver could evaluate the sender’s garbled circuit only at the end of the second round. Our
solution to the key availability problem is in having the receiver “offload” its evaluation of this
garbled circuit. This solution makes use of the fact that in the MPC setting the sender and the
receiver are connected via a simultaneous message exchange model. At a high level, we require the
sender to send its garbled circuit in the first round. The receiver now garbles a wrap-circuit, which
has the sender’s garbled circuit hardwired in it. This wrap-circuit evaluates the sender’s circuit
inside and translates its output to the labels of the “talking garbled circuits.” In particular, the
receiver “offloads” the evaluation of the sender’s garbled circuit via the wrap-circuit which helps in
achieving the weakened key availability property. Let us explain our idea in more detail.
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Sender Receiver

Round-1: C̃B

Round-1: e

Round-2: {cti,0, cti,1}i∈[L]

2-Step Translation
C̃B labels s, C̃wrap labels

Round-2: C̃wrap[C̃B]

Input labels

Talking GC

Input labels

Figure 1: Semi-honest OT extension satisfying delegatability, independence and weakened key
availability

Key Idea: “Offloading” Garbled Circuit Evaluation. We first give the description of the
protocol and then explain why it satisfies all the three properties. The key steps in the protocol
are depicted in Figure 1.

In the new protocol, the receiver’s first round message is unchanged. Additionally, in the first
round, the sender samples the random set M as before and constructs a circuit CB that has the
set M hardwired in it. This circuit takes as input a seed s, expands it using the PRG and outputs
{mi,PRG(s)[i]}i∈[L]. The sender garbles CB to obtain a garbled circuit C̃B and sends this to the
receiver.

In the second round, the sender computes cti,0 = msgi,0 ⊕ mi,e[i] and cti,1 = msgi,1 ⊕ mi,1−e[i]
(where e is obtained from the receiver’s first round message) and sends {cti,b}i∈[L],b∈{0,1} to the

receiver. The receiver constructs a wrap-circuit Cwrap that has C̃B and the input labels for the

“talking garbled circuits” hardwired in it. Cwrap takes as input the labels for evaluating C̃B,
evaluates it using these labels to obtain {mi,PRG(s)[i]}i∈[L], and outputs a set of labels corresponding
to {mi,PRG(s)[i]}i∈[L]. The output will later be treated as the input labels for evaluating the “talking

garbled circuits.” The receiver garbles Cwrap and sends the garbled circuit C̃wrap to the sender.
Notice that mi,PRG(s)[i] can serve as the delegation keys as it can be used to unmask cti,c[i] to

obtain msgi,c[i], and the other message msgi,1−c[i] is hidden. This approach inherits the delegatability
and independence from the previous approach. Now, this scheme also satisfies the weakened key
availability property! In particular, the delegation keys are passed to the “talking garbled circuits”
via the wrap circuit.

How to obtain labels for evaluating C̃wrap? However, there is one question that we have not

answered yet. In particular, how to obtain the labels for evaluating the garbled wrap-circuit C̃wrap?
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Recall that the warp-circuit Cwrap takes as input the labels for evaluating C̃B. Hence, to evaluate

C̃wrap we need its input labels that correspond to the labels for evaluating C̃B. We therefore need

a two-step translation mechanism: one from the seed s to the labels for evaluating C̃B and then
from these labels to the labels for evaluating C̃wrap.

For this purpose, we use the two-round MPC protocol from [BL18, GS18] to securely compute
the two-step translation functionality. This functionality takes as input the seed s and the set of
labels for C̃wrap from the receiver and the set of labels for C̃B from the sender. It first chooses the

labels of C̃B that correspond to the string s. It then outputs the labels of C̃wrap that correspond

to those chosen labels of C̃B. Given such a two-round MPC protocol, we can run this protocol
in parallel of the aforementioned protocol to obtain the labels for evaluating C̃wrap. We then

evaluate C̃wrap to obtain the labels for evaluating the “talking garbled circuits.” Note that the
circuit size computing this two-step translation functionality is polynomially dependent on λ and
is independent of L and hence we can use these two-round MPC results to securely compute this
functionality. This helps in minimizing the number of public key operations.

Tackling Malicious Adversaries. Plugging the above OT extension protocol into the compilers
of [BL18, GS18] gives us the desired result in the semi-honest setting. However, a couple of major
challenges arise in the malicious setting.

1. Adaptive Security. The first issue arises because a malicious receiver might wait until it
receives the garbled circuit C̃B before choosing its seed s. This leads to adaptive security
issues [BHR12] in garbling CB.

2. Input Dependent Abort. The second issue arises because a malicious sender might gen-
erate an ill-formed C̃B that may lead to an honest receiver to abort on specific choices of the
receiver’s input. This leaks information about the receiver’s input to the sender. To give a
concrete example, a corrupted sender might generate C̃B such that it outputs ⊥ if the first
bit of PRG(s) is 1 instead of outputting the valid mask. Thus, if the honest receiver aborts
then the sender can recover c[1] from e[1].

Solving these two issues requires development of new tools and techniques which we now elaborate.

Solving Adaptive Security Issue. A tempting approach to solving this issue is use the recent
constructions of adaptively secure garbling [HJO+16, JW16, JKK+17] to generate C̃B. However,
this does not work! Recall that the length of the garbled input of an adaptively secure garbling
scheme must at least grow with the output length of the circuit [AIKW13]. In our case, the output
length of CB is L, hence the garbled input of C̃B grows with L. Therefore, the circuit size of the
two-step translation functionality that first translates the seed s to the garbled input of C̃B must
grow with L. This implies that the number of public key operations in the two-round protocol that
securely computes this functionality grows with L. This kills the efficiency of the overall protocol.

On the one hand, we need our garbling scheme to satisfy the stronger notion of adaptive security
and on the other hand, we need to minimize the number of public key operations. These two
requirements seem contradictory to each other and it seems that we need to trade one requirement
in order to achieve the other. We resolve this deadlock by observing that full blown adaptive
security is not needed in garbling CB. We note that it is sufficient for this garbling scheme to be
somewhere adaptive. Let us explain this in more detail.

7



To understand our approach, the first step is to break the circuit CB down to L individual
circuits C1, . . . , CL where Ci has {mi,0,mi,1} hardwired and outputs mi,PRG(s)[i] on input s. The

garbled circuit C̃B comprises of garbled versions of each Ci, i.e., C̃1, . . . , C̃L. The key trick we
employ in garbling C1, . . . , CL is that we use the same set of input labels in generating each C̃i.
Notice that even though we break CB down to L circuits, the garbled input for C̃B only grows
with the input length of CB and is independent of L. To simulate C̃B, we design a sequence of
carefully chosen hybrids where in each hybrid, it is sufficient to simulate a single C̃i. But things get
complicated as the simulation of this C̃i requires knowledge of the adaptively chosen s. It seems
that we again run into the adaptive security issue. However, notice that the output length of the
circuit Ci is independent of L and thus the length of the garbled input for C̃i (and hence all other
C̃j , j 6= i) need not grow with L! Thus, we can now use the standard tricks in the adaptive garbling
circuits literature to “adaptively garble” Ci. We now explain how this is done.

Instead of sending the garbled circuits {C̃i}i∈[L] in the clear, we encrypt them using a somewhere

equivocal encryption scheme [HJO+16] and send the ciphertext as the garbled circuit C̃B. The key
for decrypting this ciphertext is revealed in the garbled input along with the labels for evaluating
each C̃i. Recall that we use the same set of labels for evaluating each C̃i. Intuitively, a somewhere
equivocal encryption allows to equivocate a bunch of positions of a ciphertext with arbitrary message
values. What makes a somewhere equivocal encryption different from a fully equivocal encryption
is that the size of the key only grows with the number of positions that are to be equivocated and is
otherwise independent of the message size. Somewhere equivocal encryption allows us to solve the
above adaptivity issue as we can equivocate the positions that correspond to C̃i in the ciphertext
to a simulated circuit (that can depend on the adaptively chosen s) by deriving a suitable key.
Further, the size of the garbled input (that also includes the key) only grows with the size of C̃i
and is independent of L. This helps us in ensuring that the circuit size of the two-step translation
functionality is independent of L.

Solving Input Dependent Aborts. Suppose the sender sends a proof that C̃B is correctly
generated, then the problem of input dependent aborts does not arise. We additionally require this
proof to be zero-knowledge so that it does not leak any information about the sender’s secrets to
the receiver. A natural approach would be to give a Non-Interactive Zero-Knowledge proof (NIZK).
However, we only know constructions of NIZK based on public key assumptions such as trapdoor
permutations or factoring. Furthermore, the number of public key operations in computing a NIZK
proof grows with the instance size. Here, the instance size grows with the size of CB which is at
least L. This again kills the efficiency.

Our approach to solving this issue is to design a two-round, special purpose zero-knowledge
proof (in the CRS model) where the number of public key operations is independent of the instance
size. Indeed, given such a zero-knowledge proof, we can solve the problem of input dependent
aborts and also ensure that the number of public key operations is independent of L. We now
explain the main ideas behind this construction.

Let us first consider the simpler task of constructing a two-round, zero-knowledge proof with
constant soundness error where the number of public key operations is independent of the instance
size. We first observe that if we allow one more round of interaction then we know constructions
(e.g., Blum’s Hamiltonicity protocol) that completely avoid any public key operations. The main
idea behind our construction is a method of compressing the round complexity of these protocols
(in the simultaneous message exchange model) using a small number of public key operations (that
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is independent of the instance size). To explain the idea, let us take the example of compressing
the Blum’s Hamiltonicity protocol to two rounds using a two-round oblivious transfer (used in the
recent works of [JKKR17, BGI+17a]). The Blum’s protocol can be abstractly described using three
messages: zk1 sent by the prover in the first round, a random bit b sent by the verifier in the second
round and zk3,b sent by the prover in the third round.

To compress the protocol to two rounds, we require the verifier to send a receiver OT message
with b as its choice bit in the first round. In addition to sending zk1 in the first round, the prover
also sends commitment (c0, c1) to zk3,0 and zk3,1 respectively. In the second round, the sender
sends a sender OT message with the randomness used to compute c0 and c1 as its messages.3 The
receiver obtains the randomness used in generating cb and then uses it to check if (zk1, b, zk3,b) is a
valid proof. Note that to minimize the number of public key operations, the length of the random
string used to generate the commitment should be independent of the size of the message. This
is indeed true when we use a pseudorandom generator to expand the length of the randomness to
any desired length.

The above idea helps us in achieving constant soundness error but to be useful in solving the
problem of input dependent aborts, we need the protocol to have negligible soundness error. One
approach to achieve negligible soundness is to do a parallel repetition of the constant soundness pro-
tocol but it is well-known that parallel repetition is not guaranteed to preserve the zero-knowledge
property. Fiege and Shamir [FS90] showed that parallel repetition preserves the weaker property
of witness indistinguishability and we make use of this fact to to achieve the stronger property of
zero-knowledge. In our actual construction, we incorporate a trapdoor (such as pre-image of a one-
way function) in the CRS and the simulator uses this trapdoor while generating the zero-knowledge
proof. Witness indistinguishability guarantees that no verifier can distinguish between the prover’s
messages that uses the real witness and the simulator’s messages that uses the trapdoor witness.
This helps us achieve zero-knowledge against malicious verifiers and parallel repetition helps us
achieve negligible soundness error against cheating provers. Additionally, the number of public key
operations is a fixed polynomial in the security parameter and is independent of the instance size.
We believe that this primitive may be of independent interest.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote the security pa-
rameter. A function µ(·) : N→ R+ is said to be negligible if for any polynomial poly(·) there exists
λ0 such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified

negligible function and poly(·) to denote an unspecified polynomial function.
For a probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the

content of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite
set S, we denote x ← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time algorithm.

For a binary string x ∈ {0, 1}n, we denote the ith bit of x by x[i]. Similarly, we denote the
substring of x from the ith to jth position for any i ≤ j by x[i, j]. For any lab := {labi,0, labi,1}i∈[L]

where labi,b ∈ {0, 1}∗ and a string c ∈ {0, 1}L, we define Projection(c, lab) = {labi,c[i]}i∈[L]. We treat
the output of Projection as a string. That is, we treat the output as ‖i∈[L](labi,c[i]).

3We assume that given the randomness, we can obtain the message that is committed.
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3.1 Selective Garbled Circuits

We recall the definition of selectively secure garbled circuits [Yao82] (see Lindell and Pinkas [LP09]
and Bellare et al. [BHR12] for a detailed proof and further discussion). A garbling scheme for circuits
is a tuple of PPT algorithms (Garble,Eval). Very roughly, Garble is the circuit garbling procedure
and Eval the corresponding evaluation procedure. We use a formulation where input labels for a
garbled circuit are provided as input to the garbling procedure rather than generated as output.
This simplifies the presentation of our construction. We additionally model security wherein the
simulator is provided with a set of labels corresponding to the input. This helps in simplifying the
security proofs. More formally:

• C̃ ← Garble
(
1λ,C, {labw,b}w∈inp(C),b∈{0,1}

)
: Garble takes as input a security parameter λ, a

circuit C, and input labels labw,b where w ∈ inp(C) (inp(C) is the set of input wires to the

circuit C) and b ∈ {0, 1}. This procedure outputs a garbled circuit C̃. We assume that for
each w, b, labw,b is chosen uniformly from {0, 1}λ.

• y ← Eval
(

C̃, {labw,xw}w∈inp(C)

)
: Given a garbled circuit C̃ and a sequence of input labels

{labw,xw}w∈inp(C) (referred to as the garbled input), Eval outputs a string y.

Correctness. For correctness, we require that for any circuit C, input x ∈ {0, 1}|inp(C)| and input
labels {labw,b}w∈inp(C),b∈{0,1} we have that:

Pr
[
C(x) = Eval

(
C̃, {labw,xw}w∈inp(C)

)]
= 1

where C̃← Garble
(
1λ,C, {labw,b}w∈inp(C),b∈{0,1}

)
.

Selective Security. For security, we require that there exists a PPT simulator Simckt such that
for any circuit C, an input x ∈ {0, 1}|inp(C)| and {labw,xw}w∈inp(C), we have that{

C̃, {labw,xw}w∈inp(C)

}
c
≈
{

Simckt

(
1λ, 1|C|,C(x), {labw,xw}w∈inp(C)

)
, {labw,xw}w∈inp(C)

}
where C̃ ← Garble

(
1λ,C, {labw,b}w∈inp(C),b∈{0,1}

)
and for each w ∈ inp(C) we have labw,1−xw ←

{0, 1}λ. Here
c
≈ denotes that the two distributions are computationally indistinguishable.

3.2 Somewhere Adaptive Garbled Circuits

In this section, we define and construct somewhere adaptive garbled circuits. Intuitively, somewhere
adaptive garbled circuits satisfy the stronger notion of adaptive security in the computation of a
particular block of the output. Before we define this primitive, we give a notation to denote circuits.

Circuit Notation. We model a circuit C : {0, 1}n → {0, 1}mλ as a sequence of m circuits
C1, C2, . . . , Cm where Ci(x) = C(x)[(i− 1)λ+ 1, iλ] for every x ∈ {0, 1}n and i ∈ [m].

We now give the definition of somewhere adaptive garbled circuits.
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Definition 3.1 A somewhere adaptive garbling scheme for circuits is a tuple of PPT algorithms
(SAdpGarbleCkt, SAdpGarbleInp, SAdpEvalCkt) such that:

• (C̃, state) ← SAdpGarbleCkt(1λ, C) : It is a PPT algorithm that takes as input the security
parameter 1λ (encoded in unary) and a circuit C : {0, 1}n → {0, 1}mλ as input and outputs a
garbled circuit C̃ and state information state.

• x̃← SAdpGarbleInp(state, x) : It is a PPT algorithm that takes as input the state information
state and an input x ∈ {0, 1}n and outputs the garbled input x̃.

• y = SAdpEvalCkt(C̃, x̃) : Given a garbled circuit C̃ and a garbled input x̃, it outputs a value
y ∈ {0, 1}mλ.

Correctness. For every λ ∈ N, C : {0, 1}n → {0, 1}m and x ∈ {0, 1}n it holds that:

Pr
[
(C̃, state)← SAdpGarbleCkt(1λ, C); x̃← SAdpGarbleInp(state, x) : C(x) = SAdpEvalCkt(C̃, x̃)

]
= 1.

Security. There exists a PPT simulator Sim such that for all non-uniform PPT adversary A:∣∣Pr[ExpAdp
A (1λ, 0) = 1]− Pr[ExpAdp

A (1λ, 1) = 1]
∣∣ ≤ negl(λ)

where the experiment ExpAdp
A (1λ, b) is defined as follows:

1. (C, j) ← A(1λ) where C : {0, 1}n → {0, 1}mλ and j ∈ [m]. We assume that C is given as a
sequence of m circuits C1, C2, . . . , Cm.

2. The adversary obtains C̃ where C̃ is created as follows:

• If b = 0: (C̃, state)← SAdpGarbleCkt(1λ, C).

• If b = 1: (C̃, state)← Sim(1λ, C1, . . . , Cj−1, 1
|Cj |, Cj+1, . . . , Cm).

3. The adversary A specifies the input x and gets x̃ created as follows:

• If b = 0 : x̃← SAdpGarbleInp(state, x).

• If b = 1 : x̃← Sim(state, x, Cj(x)).

4. Finally, the adversary outputs a bit b′, which is the output of the experiment.

Efficiency. We require that the running time of SAdpGarbleInp to be maxi |Ci| · poly(|x|, λ).

We give a construction of somewhere adaptive garbled circuits assuming the existence of one-way
functions.

Lemma 3.2 Assuming the existence of one-way functions, there exists a construction of somewhere
adaptive garbled circuits.

We give the proof of Lemma 3.2 in Appendix B.
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3.3 Universal Composability Framework

We work in the the Universal Composition (UC) framework [Can01] to formalize and analyze the
security of our protocols. (Our protocols can also be analyzed in the stand-alone setting, using the
composability framework of [Can00a]). We provide a brief overview of the framework in Appendix A
and refer the reader to [Can00b] for details.

3.4 Prior MPC Results

We will use the two-round secure multiparty computation protocol from the work of [GS18] com-
puting special functionalities that have small circuit size in our constructions. We could also use
the protocol from [BL18] but their protocol against malicious adversaries additionally relies on non-
interactive zero-knowledge proofs. Below we restate the result from [GS18]. The ideal functionality
Ff for the MPC is defined in Figure 2.

Theorem 3.3 ([GS18]) For any polynomial-time function f computed by n parties, there exists
a two-round UC-secure semi-honest/malicious multiparty computation protocol Πf that realizes
the ideal functionality Ff , assuming the existence of semi-honest/malicious, two-round oblivious
transfer. The number of total public key operations is bounded by poly(λ, |f |), where |f | is the size
of the Boolean circuit that computes f .

Ff parameterized by a function f , running with n parties P1, P2, . . . , Pn (of which some may
be corrupted) and an adversary S, proceeds as follows:

• Every party Pi sends (sid, i, xi) to the functionality.

• Upon receiving the inputs from all the parties, compute y := f(x1, . . . , xn), and output
(sid, y) to every party and S.

Figure 2: Ideal Functionality Ff

4 Semi-Honest Protocol

In this section, we give a construction of two-round multiparty computation protocol with security
against semi-honest adversaries that performs poly(n, λ) public key operations which is independent
of the circuit size being computed. We start with the definition of conforming protocols which was
a notion introduced in [GS18] in subsection 4.1 and then give our construction in subsection 4.2.

4.1 Conforming Protocols

This subsection is taken verbatim from [GS18]. Consider an n party deterministic4 MPC protocol Φ
between parties P1, . . . , Pn with inputs x1, . . . , xn, respectively. For each i ∈ [n], we let xi ∈ {0, 1}m
denote the input of party Pi. A conforming protocol Φ is defined by functions pre, post, and

4Randomized protocols can be handled by including the randomness used by a party as part of its input.
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computation steps or what we call actions φ1, · · ·φT . The protocol Φ proceeds in three stages: the
pre-processing stage, the computation stage and the output stage.

• Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi)← pre(1λ, i, xi)

where pre is a randomized algorithm. The algorithm pre takes as input the index i of the
party, its input xi and outputs zi ∈ {0, 1}`/n and vi ∈ {0, 1}` (where ` is a parameter of the
protocol). Finally, Pi retains vi as the secret information and broadcasts zi to every other
party. We require that vi[k] = 0 for all k ∈ [`]\ {(i− 1)`/n+ 1, . . . , i`/n}.

• Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn)⊕ vi.

Next, for each t ∈ {1 · · ·T} parties proceed as follows:

1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [`].

2. Party Pi computes one NAND gate as

sti[h] = NAND(sti[f ], sti[g])

and broadcasts sti[h]⊕ vi[h] to every other party.

3. Every party Pj for j 6= i updates stj [h] to the bit value received from Pi.

We require that for all t, t′ ∈ [T ] such that t 6= t′, we have that if φt = (·, ·, ·, h) and
φt′ = (·, ·, ·, h′) then h 6= h′. Also, we denote Ai ⊂ [T ] to be the set of rounds in which party
Pi sends a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

• Output phase: For each i ∈ [n], party Pi outputs post(i, sti).

The following lemma was shown in [GS18]

Lemma 4.1 ([GS18]) Any MPC protocol Π can be written as a conforming protocol Φ while
inheriting the correctness and the security of the original protocol.

4.2 Construction

In this subsection, we describe our construction of two-round, n-party computation protocol com-
puting a function f . Our construction uses the following primitives.

1. An n-party semi-honest secure conforming protocol Φ computing the function f .

2. (Garble,Eval) be a garbling scheme for circuits.

3. A pseudorandom generator PRG : {0, 1}λ → {0, 1}4T .

4. A UC-secure two-round MPC protocol computing the function g described in Figure 3.
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Parties: P1, P2, . . . , Pn.
Inputs:

• P1 (also called as the receiver) inputs s ∈ {0, 1}λ and rlab2, . . . , rlabn where each rlabi is
a collection of labels {rlabi→1

j,0 , rlabi→1
j,1 }j∈[λ2] with each label of length λ.

• For each i ∈ [2, n], Pi (also called as the sender) inputs slabi, where slabi is a collection
of labels {slabi→1

j,0 , slabi→1
j,1 }j∈[λ] with each label having length λ.

Output: {Projection(Projection(s, slabi), rlabi)}i∈[2,n].

Figure 3: The function g computed by the internal MPC where P1 acts as the receiver

Notations. For a bit string c, we use c[i] to denote the i-th bit of it. For each t ∈ [T ] and
α, β ∈ {0, 1}, we use (t, α, β) to succinctly denote the integer 4t + 2α + β − 3. In particular, we
use c[(t, α, β)] to denote c[4t + 2α + β − 3] for any c ∈ {0, 1}4T . We use lab to denote the set of

both labels per input wire of a garbled circuit, and l̃ab denotes the set of one label per input wire.
Recall the definition of Projection from Section 3.

We give an overview of the construction below and describe the formal construction later.

Overview. As explained in Section 2, our construction combines a special purpose OT extension
protocol (which is delegatable, fine-grained secure and satisfies key availability) along with the two-
round MPC protocols of [BL18, GS18] to obtain a protocol that minimizes the number of public key
operations. Recall that the protocols of [BL18, GS18] used the concept of “talking garbled circuits”
to squish the round complexity of a conforming protocol to two rounds. At a high level, in the
first round, every pair of parties sets up a channel to enable their garbled circuits to interact, and
then in the second round, they send “talking garbled circuits” that emulate the interactions in the
conforming protocol. The interaction between the “talking garbled circuits” is done via oblivious
transfer. In our new construction, we use a special purpose OT extension protocol that allows the
parties to set-up the channel for interaction while minimizing the number of public key operations.

A major modification from the description given in Section 2 is in modeling the special oblivious
transfer as a protocol between a single receiver and n − 1 senders. We do this to ensure that the
receiver uses the same choice bits in interactions with every sender. Even though this is not an
issue in the semi-honest case, it causes issues in the malicious setting if the corrupted receiver
uses different choice bits in two different interactions. For uniformity of treatment, we adopt an
approach where the special oblivious transfer is a protocol between a single receiver and n − 1
senders.

Description of the Protocol. We give a formal description of our protocol below in the Fg-
hybrid model.

Round-1: Each party Pi does the following:

1. Compute (zi, vi)← pre(1λ, i, xi).

2. For each t ∈ [T ] and for each α, β ∈ {0, 1}

ci[(t, α, β)] := vi[h]⊕ NAND(vi[f ]⊕ α, vi[g]⊕ β)
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where φt = (?, f, g, h).

3. Sample si ← {0, 1}λ and compute ei := PRG(si)⊕ ci.
4. For each j ∈ [n] \ {i}, sample

rlabj→ik,b ← {0, 1}λ for all k ∈ [λ2], b ∈ {0, 1}

slabi→jk,b ← {0, 1}λ for all k ∈ [λ], b ∈ {0, 1}

mi→j
k,b ← {0, 1}λ for all k ∈ [4T ], b ∈ {0, 1}

5. For each j ∈ [n] \ {i}, compute

C̃i→jB ← Garble

(
CB

[{
mi→j
k,0 ,m

i→j
k,1

}
k∈[4T ],b∈{0,1}

]
,
{

slabi→jk,b

}
k∈[λ],b∈{0,1}

)
where CB is described in Figure 4.

6. Send (ssid = i, si, {rlabj→ik,b }j∈[n]\{i}) to Fg acting as the receiver.

7. For each j ∈ [n] \ {i}, send (ssid = j, {slabi→jk,b }) to Fg acting as the sender.

8. Send
(
zi, {C̃i→jB }j∈[n]\{i}, ei

)
to every other party.

CB

[
{mk,0,mk,1}k∈[4T ]

]
Input: s ∈ {0, 1}λ.

1. d := PRG(s) where d ∈ {0, 1}4T .

2. Output
{

mk,d[k]

}
k∈[4T ]

.

Figure 4: Circuit CB

Round-2: Each party Pi does the following:

1. Set sti := (z1‖ . . . ‖zn)⊕ vi.
2. Set N = `+ 4Tλ(n− 1).

3. Set lab
i,T+1

:= {labi,T+1
k,0 , labi,T+1

k,1 }k∈[N ] where labi,T+1
k,b := 0λ for each k ∈ [N ], b ∈ {0, 1}.

4. for each t from T down to 1 do:

(a) Parse φt as (i∗, f, g, h).

(b) If i = i∗ then compute (where P is described in Figure 6)(
P̃i,t, lab

i,t)← Garble(1λ,P[i, φt, vi,⊥, lab
i,t+1

]).

(c) If i 6= i∗ then for every α, β ∈ {0, 1}, set m′α,β,0 = mi→i∗
(t,α,β),ei∗ [(t,α,β)] and m′α,β,1 =

mi→i∗
(t,α,β),1⊕ei∗ [(t,α,β)].

Compute ctiα,β := (m′α,β,0 ⊕ labi,t+1
h,0 ,m′α,β,1 ⊕ labi,t+1

h,1 ) and compute(
P̃i,t, lab

i,t)← Garble(1λ,P[i, φt, vi, {ctiα,β}, lab
i,t+1

]).
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5. Compute

C̃iwrap ← Garble
(

Cwrap

[
{C̃j→iB }j∈[n]\{i}, sti, lab

i,1
]
, {rlabj→ik,b }j∈[n]\{i},k∈[λ2],b∈{0,1}

)
where Cwrap is described in Figure 5.

6. Send
(
{P̃i,t}t∈[T ], C̃

i
wrap

)
to every other party.

Cwrap

[
{C̃j→iB }j∈[n]\{i}, sti, lab

i,1
]

Input: {s̃lab
j→i
}j∈[n]\{i}

1. For each j ∈ [n] \ {i}, compute
{

mj→i
k

}
k∈[4T ]

← Eval
(

C̃j→iB , s̃lab
j→i)

.

2. Let m := ‖
j∈[n]\{i},k∈[4T ]

(mj→i
k ).

3. Output Projection(sti‖m, lab
i,1

).

Figure 5: Circuit Cwrap

Evaluation: Every party Pi does the following:

1. For each j ∈ [n],

(a) Obtain (ssid = j, r̃lab
j
) from Fg where party Pj acts as the receiver.

(b) l̃ab
j,1
← Eval(C̃jwrap, r̃lab

j
)

2. for each t from 1 to T do:

(a) Parse φt as (i∗, f, g, h).

(b) Compute ((α, β, γ), {ωj}j∈[n]\{i∗}, l̃ab
i∗,t+1

) := Eval(P̃i
∗,t, l̃ab

i∗,t
).

(c) Set sti[h] := γ ⊕ vi[h].

(d) for each j 6= i∗ do:

i. Compute (ct = (δ0, δ1), {labj,t+1
k }k∈[N ]\{h}) := Eval(P̃j,t, l̃ab

j,t
).

ii. Recover labj,t+1
h := δγ ⊕ ωj .

iii. Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[N ].

3. Compute the output as post(i, sti).

Correctness. In order to prove correctness, it is sufficient to show that the label labj,t+1
h computed

in Step 2(d)ii of the evaluation procedure corresponds to the bit NAND(sti∗ [f ], sti∗ [g]) ⊕ vi∗ [h].
Notice that by the structure of vi∗ we have for every j 6= i∗, stj [f ] = sti∗ [f ]⊕ vi∗ [f ].

First, ωj is computed in Step 2b. Let k := (t, α, β), and we have ωj = mj→i∗
k = mj→i∗

k,PRG(si∗ )[k].
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P
[
i, φt, vi, {ctα,β}α,β∈{0,1}, lab

]
Input. Z =

(
sti, {mj→i

k }j∈[n]\{i},k∈[4T ]

)
.

Hardcoded. The index i of the party, the action φt = (i∗, f, g, h), the secret value vi, the
strings {ctα,β}α,β∈{0,1}, and a set of labels lab = {labk,0, labk,1}k∈[N ].

1. if i = i∗ then:

(a) Compute sti[h] := NAND(sti[f ], sti[g]), and update Z[h] accordingly.

(b) α := sti[f ]⊕ vi[f ], β := sti[g]⊕ vi[g] and γ := sti[h]⊕ vi[h].

(c) Output
(

(α, β, γ), {mj→i
(t,α,β)}j∈[n]\{i},Projection(Z, lab)

)
.

2. else:

(a) Output (ctsti[f ],sti[g], {labk,Z[k]}k∈[N ]\{h}).

Figure 6: The program P

Second, ct = (δ0, δ1) is computed in Step 2(d)i. Note that α = sti∗ [f ] ⊕ vi∗ [f ] = stj [f ],

β = sti∗ [g]⊕ vi∗ [g] = stj [g]. From the functionality of Pj,t we know that ct = ctstj [f ],stj [g] = ctjα,β =

(m′α,β,0 ⊕ labj,t+1
h,0 ,m′α,β,1 ⊕ labj,t+1

h,1 ) = (mj→i∗
k,ei∗ [k] ⊕ labj,t+1

h,0 ,mj→i∗
k,ei∗ [k]⊕1 ⊕ labj,t+1

h,1 ).

Therefore, δγ⊕ωj = mj→i∗
k,ei∗ [k]⊕γ⊕labj,t+1

h,γ ⊕mj→i∗
k,PRG(si∗ )[k]. Recall that ci∗ [k] = NAND(sti∗ [f ], sti∗ [g])⊕

vi∗ [h] = γ, thus ei∗ [k]⊕ γ = ei∗ [k]⊕ ci∗ [k] = PRG(si∗)[k]. Hence δγ ⊕ ωj = labj,t+1
h,γ . This concludes

the proof.
It is useful to keep in mind that for every i, j ∈ [n] and k ∈ [`], we have that sti[k] ⊕ vi[k] =

stj [k]⊕vj [k]. Let us denote this shared value by st∗. Also, we denote the transcript of the interaction
in the computation phase by Z.

Efficiency. Let the number of public key operations in Φ be npkΦ and in one execution of Fg be
npkg. We choose the conforming protocol that performs OT extension between every pair of parties
so that npkΦ is bounded by O(n2λ). The total number of public key operations in our two-round
construction is O(npkΦ + n · npkg). It follows from Theorems 3.3 that this number is bounded by
poly(n, λ).

4.3 Simulator

Let A be a semi-honest adversary corrupting a subset of parties and let H ⊆ [n] be the set of
honest/uncorrupted parties. Since we assume that the adversary is static, this set is fixed before
the execution of the protocol. Below we provide the simulator.

Description of the Simulator. We give the description of the ideal world adversary S that
simulates the view of the real world adversary A. S will internally use the semi-honest simulator
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SimΦ for Φ and the simulator Simckt for garbling scheme for circuits. Recall that A is static and
hence the set of honest parties H is known before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• Initialization: S uses the inputs of the corrupted parties {xi}i 6∈H and output y of the
functionality f to generate a simulated view of the adversary.5 More formally, for each
i ∈ [n] \ H, S sends (input, sid, {P1 · · ·Pn}, Pi, xi) to the ideal functionality implementing f
and obtains the output y. Next, it executes SimΦ(1λ, {xi}i 6∈H , y) to obtain {zi}i∈H (which is
the output of the pre-computation phase), the random tapes for the corrupted parties, the
transcript of the computation phase denoted by Z ∈ {0, 1}t where Z[t] is the bit sent in the
t-th round of the computation phase of Φ, and the value st∗ (where st∗[k] = sti[k] ⊕ vi[k] at
the end of the t-th round for each i ∈ [n] and k ∈ [`]). S starts the real-world adversary A
with the random tape generated by SimΦ along with additional randomness used in execution
of the two-round protocol.

• Round-1 messages from S to A: Next S generates C̃B and e on behalf of honest parties
as follows. For each i ∈ H:

1. Sample ei ← {0, 1}4T .

2. For each j ∈ [n] \ {i}, sample mi→j
k ← {0, 1}λ for all k ∈ [4T ]. Sample the slabi→jk ←

{0, 1}λ for each k ∈ [λ] and compute

C̃i→jB ← Simckt

(
1λ,
{

mi→j
k

}
k∈[4T ]

, {slabi→jk }k∈[λ]

)
.

3. Send
(
zi, {C̃i→jB }j∈[n]\{i}, ei

)
to the adversary A on behalf of the honest party Pi.

• Round-1 messages from A to S: Corresponding to every i ∈ [n] \H, S receives from the

adversary A the values
(
zi, {C̃i→jB }j∈[n]\{i}, ei

)
on behalf of the corrupted party Pi. S recovers

the value mi→j
k,b for all j ∈ [n] \ {i}, k ∈ [4T ], b ∈ {0, 1} from random tape of party Pi.

• Messages from A to Fg: For every i ∈ [n] \ H, S receives (ssid = i, si, {rlab
j→i}j∈[n]\{i})

and
{

(ssid = j, slab
i→j

)
}
j∈[n]\{i}

that sends to Fg.

• Round-2 messages from S to A: For each i ∈ H, the simulator S generates the second
round message on behalf of party Pi as follows:

1. Set l̃ab
i,T+1

:= {labi,T+1
k }k∈[N ] where labi,T+1

k := 0λ for each k ∈ [N ].

5For simplicity of exposition, we only consider the case where every party gets the same output. The proof in the
more general case where parties get different outputs follows analogously.
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2. for each t from T down to 1 do:

(a) Parse φt as (i∗, f, g, h).

(b) Set α∗ := st∗[f ], β∗ := st∗[g], and γ∗ := st∗[h].

(c) If i = i∗, then set mj→i
(t,α∗,β∗) := mj→i

(t,α∗,β∗),γ∗⊕ei[(t,α∗,β∗)] for each j ∈ [n] \H, sample

labi,tk ← {0, 1}
λ for each k ∈ [N ] and compute

P̃i,t ← Simckt

(
1λ,
(

(α∗, β∗, γ∗), {mj→i
(t,α∗,β∗)}j∈[n]\{i}, {labi,t+1

k }k∈[N ]

)
, {labi,tk }k∈[N ]

)
.

(d) If i 6= i∗, then set δγ∗ := labi,t+1
h ⊕ mi→i∗

(t,α∗,β∗), sample δ1−γ∗ ← {0, 1}λ, set ct :=

(δ0, δ1), sample labi,tk ← {0, 1}
λ for each k ∈ [N ] and compute

P̃i,t ← Simckt

(
1λ,
(
ct, {labi,t+1

k }k∈[N ]\{h}

)
, {labi,tk }k∈[N ]

)
.

3. Sample rlabik ← {0, 1}λ for each k ∈ [(n− 1)λ2] (note that (n− 1)λ2 is the length of the
input to Cwrap) and compute

C̃iwrap ← Simckt

(
1λ, {labi,1k }k∈[N ], {rlabik}k∈[(n−1)λ2]

)
.

4. Send
(
{P̃i,t}t∈[T ], C̃

i
wrap

)
to every other party.

• Messages from Fg to A: For every i ∈ H, S sends (ssid = i, {rlabik}k∈[(n−1)λ2]) toA on behalf

of Fg. For every i ∈ [n] \H, let s̃lab
j→i

:= Projection(si, slab
j→i

) for each j ∈ [n] \H; for each

j ∈ H, define s̃lab
j→i

:= {slabj→ik }k∈[λ]; S sends (ssid = i, {Projection(s̃lab
j→i

, rlab
j→i

)}j∈[n]\{i})
to A on behalf of Fg.

• Round-2 messages from A to S: For every i ∈ [n]\H, S obtains the second round message
from A on behalf of the corrupted parties. Subsequent to obtaining these messages, for each
i ∈ H, S sends (generateOutput, sid, {P1 · · ·Pn}, Pi) to the ideal functionality.

4.4 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting with a real world
adversary A or an ideal world adversary S. We prove this via an hybrid argument.

• H0: This hybrid is the same as the real world execution.

• H1 : In this hybrid, the functionality Fg is emulated by the simulator S faithfully. This hybrid
is identical to H0.

• H2 : In this hybrid, we change how the Fg functionality is emulated by the simulator in every
call where i ∈ H is acting as the receiver. In particular, for any ssid = i ∈ H, party Pi

does not send
(
si, {rlabj→ik,b }j∈[n]\{i}

)
to the ideal functionality. Instead, the simulator uses(

si, {rlabj→ik,b }j∈[n]\{i}

)
to directly compute the output. This hybrid is distributed identically

to H1.
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• H3: In this hybrid, we change how the Fg functionality is emulated by the simulator in
every call where i ∈ H is acting as the sender. In particular, for any ssid = j ∈ [n], when
i ∈ H is acting as the sender in this execution, party Pi does not send {slabi→jk,b } to the ideal

functionality. Instead, the simulator uses {slabi→jk,b } to directly compute the output. This
hybrid is distributed identically to H2.

• H4: In this hybrid we change C̃i→jB sent from S to A on behalf of the honest parties i ∈ H
and the messages from Fg to A as follows.

We start by executing the protocol Φ on the inputs and the random coins of the honest and
the corrupted parties. This yields a transcript Z ∈ {0, 1}T of the computation phase. Since
the adversary is assumed to be semi-honest the execution of the protocol Φ with A will be
consistent with Z. In hybrid H4 we make the following changes with respect to hybrid H3:

– In Round 1, for each i ∈ H, S generates {C̃i→jB } on behalf of party Pi as follows: For

each j ∈ [n] \ {i}, t ∈ [T ], α, β ∈ {0, 1}, let k = (t, α, β), set mi→j
k := mi→j

k,PRG(sj)[k] where

{mi→j
k,0 ,m

i→j
k,1 } are the honestly generated masking strings. Sample the garbled circuit

labels s̃lab
i→j

randomly and compute

C̃i→jB ← Simckt

(
1λ,
{

mi→j
k

}
k∈[4T ]

, s̃lab
i→j
)
.

– Messages from Fg to A: For each i ∈ [n], j ∈ [n]\H: let s̃lab
j→i

:= Projection(si, slab
j→i

).

For each i ∈ [n], S sends (ssid = i, {Projection(s̃lab
j→i

, rlab
j→i

)}j∈[n]\{i}) to A on behalf
of Fg.

The indistinguishability between H3 and H4 follows from |H| invocations of the security of
garbled circuits. In particular, for any s,mk,0,mk,1 ∈ {0, 1}λ for k ∈ [4T ], the following
distributions are computationally indistinguishable:{

Garble
(

1λ,CB

[
{mk,0,mk,1}k∈[4T ] , slab

])
,Projection(s, slab)

}
c
≈
{

Simckt

(
1λ,CB(s), s̃lab

)
, s̃lab

}
=
{

Simckt

(
1λ, {mk}k∈[4T ] , s̃lab

)
, s̃lab

}
where slab are randomly generated input keys for the garbled circuit (including both labels

per input wire), and s̃lab are randomly generated labels for the garbled circuit (consisting of
one label per input wire).

• H5: In this hybrid we change C̃iwrap sent from S to A on behalf of the honest parties i ∈ H
and the messages from Fg to A as follows.

– In Round 2, for each i ∈ H, S generates C̃iwrap on behalf of party Pi as follows:

1. For each i ∈ [n] \H, j ∈ [n] \ {i}, compute mj→i
k := Cj→iB (si).

2. Set m := ‖
j∈[n]\{i},k∈[4T ]

(mj→i
k ).
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3. Sample the garbled circuit labels r̃lab
i

randomly and compute

C̃iwrap ← Simckt

(
1λ,Projection(sti‖m, lab

i,1
), r̃lab

i
)

where lab
i,1

are the honestly generated input labels of P̃i,1.

– Messages from Fg to A: For every i ∈ H, S sends (ssid = i, r̃lab
i
) to A on behalf of

Fg. For every i ∈ [n] \ H, let s̃lab
j→i

:= Projection(si, slab
j→i

) for each j ∈ [n] \ H; S

sends (ssid = i, {Projection(s̃lab
j→i

, rlab
j→i

)}j∈[n]\{i}) to A on behalf of Fg.

The indistinguishability between H4 and H5 follows from |H| invocations of the security of

garbled circuits. In particular, for any {C̃j→iB }j∈[n]\{i}, sti, lab
i,1
, {s̃lab

j→i
}j∈[n]\{i}, we have

{
Garble

(
1λ,Cwrap

[
{C̃j→iB }j∈[n]\{i}, sti, lab

i,1
]
, {rlab

j→i}j∈[n]\{i}

)
,

{Projection(s̃lab
j→i

, rlab
j→i

)}j∈[n]\{i}

}
c
≈
{

Simckt

(
1λ,Cwrap({s̃lab

j→i
}j∈[n]\{i}), r̃lab

i
)
, r̃lab

i
}

=
{

Simckt

(
1λ,Projection(sti‖m, lab

i,1
), r̃lab

i
)
, r̃lab

i
}

where {rlab
j→i}j∈[n]\{i} are randomly generated input keys for the garbled circuit (including

both labels per input wire), and r̃lab
i

are randomly generated labels for the garbled circuit
(consisting of one label per input wire).

• H′5+t (where t ∈ {1, . . . T}): The hybrids H′5+t and H5+t (which we will describe later) are the
same as H4+t except that we change the garbled circuits (from the second round) that play a
role in the execution of the t-th round of the protocol Φ; namely, the action φt = (i∗, f, g, h).
Let st∗ be the local state at the end of the t-th round of execution, and set α∗ := st∗[f ],
β∗ := st∗[g], and γ∗ := st∗[h]. Hybrid H′5+t is the same as hybrid H4+t except the changes
below.

– If i∗ /∈ H then skip the changes. In the second round, S generates P̃i
∗,t on behalf of

Pi∗ : Set mj→i∗
(t,α∗,β∗) := mj→i∗

(t,α∗,β∗),γ∗⊕ei∗ [(t,α∗,β∗)] for each j ∈ [n] \H. Compute m as in H4,

sample the garbled circuit input labels l̃ab
i∗,t

randomly, and compute

P̃i
∗,t ← Simckt

(
1λ,
(

(α∗, β∗, γ∗), {mj→i∗
(t,α∗,β∗)}j∈[n]\{i∗},Projection(sti∗‖m, lab

i∗,t+1
)
)
, l̃ab

i∗,t
)

where lab
i∗,t+1

are the honestly generated input labels of P̃i
∗,t+1.

The indistinguishability between H′5+t and H4+t follows directly from the security of garbled
circuits.

• H5+t (where t ∈ {1, . . . T}): Hybrid H5+t is the same as H′5+t except the changes below.
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– For each i ∈ H and i 6= i∗, S generates P̃i,t on behalf of Pi: Set δγ∗ := labi,t+1
h ⊕

mi→i∗
(t,α∗,β∗),γ∗⊕ei∗ [(t,α∗,β∗)], sample δ1−γ∗ ← {0, 1}λ, set ct := (δ0, δ1). Compute m as in H4

and l̃ab
i,t+1

:= Projection(sti‖m, lab
i,t+1

) where lab
i,t+1

are the honestly generated input

labels of P̃i,t+1. Sample the garbled circuit input labels l̃ab
i,t

randomly and compute

P̃i,t ← Simckt

(
1λ,
(
ct, {labi,t+1

k }k∈[N ]\{h}

)
, l̃ab

i,t
)
.

Notice that here we sample δ1−γ∗ ← {0, 1}λ instead of labi,t+1
h ⊕ mi→i∗

(t,α∗,β∗),1⊕γ∗⊕ei∗ [(t,α∗,β∗)].

Since mi→i∗
(t,α∗,β∗),1⊕γ∗⊕ei∗ [(t,α∗,β∗)] never appears anywhere else, labi,t+1

h is information theoreti-
cally hidden, hence changing δ1−γ∗ to be randomly sampled does not change the distribution.
The rest of the indistinguishability proof between H5+t and H′5+t follows from the security of
garbled circuits.

• H6+T : Hybrid H6+T is the same as H5+T except that in the first round, S samples ei ←
{0, 1}4T for each i ∈ H instead of PRG(si)⊕ ci.
Notice that in hybrid H5+T , for each i ∈ H, si and ci is only used to generate ei. Hence the
indistinguishability between H6+T and H5+T follows from |H| invocations of the security of
the pseudorandom generator PRG.

• H7+T : In this hybrid we just change how the transcript Z, {zi}i∈H , random coins of corrupted
parties and value st∗ are generated. Instead of generating these using honest party inputs we
generate these values by executing the simulator SimΦ on input {xi}i∈[n]\H and the output y
obtained from the ideal functionality.

The indistinguishability between hybrids H7+T and H6+T follows directly from the semi-
honest security of the protocol Φ. Finally note that H6+T is same as the ideal execution (i.e.,
the simulator described in the previous subsection).

5 Special Zero-Knowledge Protocol

In this section, we define and construct a special zero-knowledge protocol which will later be used
in our construction against malicious adversaries. We give the formal definition below.

Definition 5.1 A special zero-knowledge protocol is a two-round protocol that securely realizes
the FZK functionality given in Figure 7. Further, we require the number of pubic key operations
performed in the protocol to be bounded by poly(n, λ) independent of the size of x and w.

We give a proof of the following theorem.

Theorem 5.2 Assuming the existence of two-round UC secure oblivious transfer, there exists a
construction of special zero-knowledge protocol.

5.1 Construction

We first describe the tools used in the construction.
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FZK parameterized by an NP relation R, running with n parties P1, P2, . . . , Pn (of which some
may be corrupted) and an adversary S, proceeds as follows:

• P1 sends (prover, sid, x, w) to the functionality. The functionality sends
(request, x,R(x,w)) to S. If S has corrupted P2, then S sends (response, µ) to the
ideal functionality, and the ideal functionality broadcasts (R(x,w), x, µ) to every other
party and goes offline. Else, P2 sends (verifier, sid, µ0, µ1) to the functionality, where
µb ∈ {0, 1}λ.

• Upon receiving the inputs from both P1 and P2, functionality checks if R(x,w) = 1. If
yes, it sends (1, x, µ1) to every party. Otherwise, it sends (0, x, µ0) to all parties.

Figure 7: Special Zero-Knowledge Functionality FZK

1. Special Non-interactive Statistically Binding Commitment. We use a special non-
interactive, statistically binding commitment scheme (com, decom) where the length of the
randomness used to commit to arbitrary length messages is λ. We note that any standard
commitment can be made to satisfy this property by using a pseudorandom generator to
expand the random string to required length.

2. Blum’s Hamiltonicity Protocol. We use the three-round, constant soundness zero-knowledge
(zk1, zk2, zk3) protocol of Blum. We note that in Blum’s protocol zk2 ∈ {0, 1} and we let zk3,b

be the response when zk2 = b. We also assume without loss of generality that zk1 includes
the instance.

3. Two-Round Secure Computation Protocol. We make use of the two-round secure
computation protocol of [GS18] (that can be based on any two-round UC secure oblivious
transfer) computing the ideal functionality Ff described in Figure 10.

4. Length Doubling Pseudorandom Generator: We use a pseudorandom generator PRG :
{0, 1}λ → {0, 1}2λ.

Overview. We give an overview of our construction of the two-round special zero-knowledge
protocol below, and present the formal construction in the Ff hybrid model in Figure 8.

In the first round, the prover computes Blum’s proof zk1, zk3,0, zk3,1 for the proof w, and com-
putes the commitment (c0, c1) of (zk3,0, zk3,1) using randomness (r0, r1) respectively. It then sends
(zk1, c0, c1) to the verifier. In the second round, the verifier samples a random bit b← {0, 1}, and
constructs a circuit C that has (b, zk1, c0, c1, µ0, µ1) hardwired in it. The circuit C takes r as input,
checks if r decommits cb and if (zk1, b, zkb) is a valid proof. If both checks pass, then it outputs µ1;
otherwise it outputs µ0. The verifier garbles the circuit C and sends C̃ to the prover.

Additionally, the prover and verifier in parallel run a two-round MPC protocol to compute the
labels for evaluating the garbled circuit C̃. Specifically, they jointly compute a function f which
takes as input (r0, r1) from the prover and b along with the input labels for C̃ from the verifier, and
outputs the labels that correspond to rb. Thus, at the end of the protocol, all parties can obtain
the labels for evaluating C̃ and compute the output of C.
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Common Random String: Sample σ ← {0, 1}2λ and set σ as the CRS.

Message from P1: On input an instance x and a witness w, P1 does the following:

1. If R(x,w) = 0, broadcast (NotInL, x,R(x,w)) to every other party.

2. Else, for each i ∈ [λ] do:

(a) Prepare zki1 for the language L using the witness w where L is defined below.

L := {(x, σ) : ∃ (w, s) s.t. R(x,w) = 1 ∨ PRG(s) = σ}

(b) Let zki3,b be the third round message when zki2 = b. Sample rib ← {0, 1}λ for

each b ∈ {0, 1} and compute cib := com(zki3,b; r
i
b).

(c) Broadcast zki1, c
i
0, c

i
1 to every other party.

Message from P2: On input the message from P1 :

1. If P1 has sent (NotInL, x, 0), broadcast µ0 to every other party and every party
outputs (0, x, µ0). Else, do:

(a) Sample ch← {0, 1}λ.

(b) Sample labiw,b ← {0, 1}λ for each i, w ∈ [λ] and b ∈ {0, 1}.
(c) Compute C̃ ← Garble(C[ch, {zki1, c

i
0, c

i
1}i∈[λ], {µb}b∈{0,1}], {labiw,b}) where the C

is described in Figure 9.

(d) Broadcast C̃ to every party.

Internal MPC: The parties in parallel call Ff to jointly compute the function f shown in
Figure 10. More specifically, P1 sends {ri0, ri1}i∈[λ] to Ff ; P2 sends ch, {labiw,b}i,w∈[λ],b∈{0,1}
to Ff ; and P3, P4, . . . , Pn send nothing. Every party then gets {labiw}i,w∈[λ] back from
Ff .

Evaluation: Every party does the following:

1. Compute (b, x, µ)← Eval
(
C̃, {labiw}i,w∈[λ]

)
2. Output (b, x, µ).

Figure 8: Special Zero-Knowledge Protocol ΠZK

In order to achieve negligible soundness, the above protocol is repeated λ times in parallel,
and C has all the λ sets of messages hardwired in it. However, it is well-known that parallel
repetition does not preserve zero-knowledge but preserves witness indistinguishability [FS90]. To
achieve zero-knowledge, we change the language L to include an additional “trapdoor” condition
that PRG(s) = σ, where σ is a part of the common reference string. In the proof of zero-knowledge,
we will use the trapdoor witness s.
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C
[
ch, {zki1, c

i
0, c

i
1}i∈[λ], {µb}b∈{0,1}

]
Input: r1, r2, . . . , rλ.
Hardcoded parameters: ch, {zki1, c

i
0, c

i
1}i∈[λ], {µb}b∈{0,1}

1. Use the randomness ri to obtain the message zki3 committed in cich[i] for each i ∈ [λ].

2. For each i ∈ [λ], check if (zki1, ch[i], zki3) is a valid proof for the membership in language
L.

3. If any of the checks fails, output (0, x, µ0). Else, output (1, x, µ1).

Figure 9: Circuit C

Parties: P1, P2, . . . , Pn.
Inputs:

• P1 inputs {ri0, ri1}i∈[λ], where rbi ∈ {0, 1}λ.

• P2 inputs ch, {labiw,b}i,w∈[λ],b∈{0,1}, where labiw,b ∈ {0, 1}λ.

• P3, P4, . . . , Pn input nothing.

Output: {labi
w,ri

ch[i]
[w]
}i,w∈[λ] (same for every party).

Figure 10: The Function f Computed by the Internal MPC

Correctness. To argue the correctness of the protocol, we only need to prove that in the eval-
uation step, µ is either µ0 or µ1 based on whether R(x,w) = 0 or R(x,w) = 1. We know that
the output of Ff is

{
labiw

}
i,w∈[λ]

, where labiw = labi
w,ri

ch[i]
[w]

. Notice that labiw,b’s are the input keys

of C̃, hence labiw is the label corresponding to the w-th bit of rich[i]. Using these input labels to

evaluate C̃ gives us Eval
(
C̃,
{

labiw
}
i,w∈[λ]

)
= C

({
rich[i]

}
i∈[λ]

)
.

In the circuit evaluation of C, rich[i] is used to obtain zki3,ch[i] from cich[i]. It now follows from the

completeness of (zki1, ch[i], zki3,ch[i]) that µ is either µ0 or µ1 based on R(x,w) = 0 or R(x,w) = 1.

Efficiency. The number of public key operations performed in the protocol is poly(n, λ) which
follows from Theorem 3.3 when applied to function f .

5.2 Security

We consider three cases: either P2 is corrupted, or P1 is corrupted, or both P1 and P2 are not
corrupted. In each of these cases, we describe ideal world simulators and show that no environment
can distinguish between the real world and the ideal world in each of these cases.

25



5.2.1 Case-1: P2 is corrupted

We first show the construction of an ideal world simulator in Figure 11 and then show that the real
world distribution is computationally indistinguishable to the ideal world.

Common Random String: Sample s← {0, 1}λ and set σ := PRG(s) as the CRS.

Simulating the interaction with Z: For every input value for the set of corrupted parties
that Sim receives from Z, Sim writes that value to A’s input tape. Similarly, the output
of A is written as the output on Sim’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session iden-
tifier sid that A may start, the simulator does the following:

• Message from Sim: Sim does the following:

1. Sim obtains (request, x,R(x,w)) from FZK. If R(x,w) = 0 send (NotInL, x, 0)
to every party and obtain µ from P2. Send (response, µ) to FZK. Else, do the
following.

2. for each i ∈ [λ] do:
(a) Prepare zki1 for the language L using the witness s.
(b) Let zki3,b be the third round message when zk2 = b. Sample rib ← {0, 1}λ for

each b ∈ {0, 1} and compute cib := com(zki3,b; r
i
b).

(c) Broadcast zki1, c
i
0, c

i
1 to every other party.

• Internal MPC: The parties in parallel call Ff to jointly compute the function
f shown in Figure 10. More specifically, Sim sends {ri0, ri1}i∈[λ] to Ff ; A sends

ch, {labiw,b}i,w∈[λ],b∈{0,1} to Ff ; and P3, P4, . . . , Pn send nothing. Every party then

gets {labiw}i,w∈[λ] back from Ff .

• Message from A: Receive the message C̃ from A. Compute (b, x, µ) ←
Eval

(
C̃, {labiw}i,w∈[λ]

)
. Send (response, µ) to FZK.

Figure 11: Simulator Sim when P2 is corrupted

We now show that the simulated distribution is computationally indistinguishable to the honest
prover’s distribution. We show this through a sequence of hybrids.

H1 : This hybrid is same as the honest prover distribution except that we generate the com-
mon random string σ as PRG(s) where s is chosen uniformly from {0, 1}λ. H1 is computationally
indistinguishable from the honest prover’s execution from the security of PRG.

If R(x,w) = 0, then H1 is identical to the ideal world distribution generated by Sim. In the
rest of the proof, we consider the case where R(x,w) = 1.

We now define a sequence of hybrids, specifically, one hybrid for each i ∈ [λ+ 1].

H2,i : In this hybrid, for each j ∈ [i − 1], we use the witness s to generate zkj1, zkj3,0, zkj3,1 and
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for j ∈ [i, λ], we use the witness w. Note that H2,1 is distributed identically to H1 and H2,λ+1 is
distributed identically to the simulated execution given in Figure 11. We now argue that H2,i−1 is
indistinguishable to H2,i for every i ∈ [λ+ 1].

Lemma 5.3 Assuming the hiding property of the commitment scheme and witness indistinguisha-

bility property of Blum’s protocol, H2,i−1
c
≈ H2,i for every i ∈ [λ+ 1].

Proof We first define an intermediate hybrid H2,i−1,1.

H2,i−1,1 : In this hybrid, we generate the first round message from P1 and the messages to Ff
as follows:

1. Set counter = 0.

2. while(counter ≤ λ) :

Message from P1: On input the instance x and witness w:

(a) for each j ∈ [λ] \ {i− 1} do:

i. Prepare zkj1, c
j
0, c

j
1 as in H2,i−1 and broadcast it to every party.

(b) for j = i− 1 do :

i. Prepare zkj1, zkj3,0, zkj3,1 as in H2,i−1.

ii. Choose a random bit b[j]. Generate cjb[j] as com(zkj3,b[j]; r
j
b[j]) and cj1−b[j] as

com(0
|zkj

3,1−b[j]
|
; rj1−b[j]).

iii. Broadcast zkj1, c
j
0, c

j
1 to every other party.

Internal MPC: (a) Sim resets ri−1
1−b[i−1] := 0λ.

(b) The parties in parallel call Ff to jointly compute the function f shown in Figure 10.

More specifically, Sim sends {rj0, r
j
1}j∈[λ] to Ff ; P2 sends ch, {labiw,b}i,w∈[λ],b∈{0,1}

to Ff ; and P3, P4, . . . , Pn send nothing. If ch[i − 1] 6= b[i − 1], send abort to Ff ,
increment counter by 1 and go to the beginning of the while loop. Else exit the
while loop.

3. if(counter > λ), output special− abort.

We now argue that H2,i−1 is indistinguishable to H2,i−1,1 assuming the hiding property of the
commitment scheme.

Claim 5.4 Assuming the hiding property of the commitment scheme, H2,i−1
c
≈ H2,i−1,1.

Proof We show this via an intermediate hybrid H1.

H1 : In this hybrid, we generate the first round message from P1 and the messages to Ff as
follows:

1. Set counter = 0.

2. while(counter ≤ λ) :

Message from P1: On input the instance x and witness w:
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(a) Choose a random bit b[i− 1].

(b) for each j ∈ [λ] do:

i. Prepare zkj1, c
j
0, c

j
1 as in H2,i−1 and broadcast it to every party.

Internal MPC: (a) Sim resets ri−1
1−b[i−1] := 0λ.

(b) The parties in parallel call Ff to jointly compute the function f shown in Figure 10.

More specifically, Sim sends {rj0, r
j
1}j∈[λ] to Ff ; P2 sends ch, {labiw,b}i,w∈[λ],b∈{0,1}

to Ff ; and P3, P4, . . . , Pn send nothing. If ch[i − 1] 6= b[i − 1], send abort to Ff ,
increment counter by 1 and go to the beginning of the while loop. Else exit the
while loop.

3. if(counter > λ), output special− abort.

The only difference between H1 and H2,i−1 is that H1 may output special−abort. We show that
the probability that H1 outputs special − abort is negligible. Notice that in any execution of the
while loop, the probability (over the choice of b[i − 1]) that abort is sent to Ff is 1/2. Thus, the
probability that special− abort is output by H1 is 2−λ.

The only difference between H1 and H2,i−1,1 is that in H2,i−1,1, ci−1
1−b[i−1] is generated by

com(0
|zki−1

3,1−b[i−1]
|
; ri−1

1−b[i−1]). It follows from the hiding property of com that H1 is computation-
ally indistinguishable to H2,i−1,1.

Thus, H2,i−1
s
≈ H1

c
≈ H2,i−1,1. This completes the proof of the claim.

We now define another hybrid H2,i−1,2.

H2,i−1,2 :We generate the first round message from P1 and the messages to Ff as follows.

1. Set counter = 0.

2. while(counter ≤ λ) :

Message from P1: On input the instance x and witness w:

(a) for each j ∈ [λ] \ {i− 1} do:

i. Prepare zkj1, c
j
0, c

j
1 as in H2,i−1 and broadcast it to every party.

(b) for j = i− 1 do :

i. Prepare zkj1, zkj3,0, zkj3,1 using the witness s (instead of w).

ii. Choose a random bit b[j]. Generate cjb[j] as com(zkj3,b[j]; r
j
b[j]) and cj1−b[j] as

com(0
|zkj

3,1−b[j]
|
; rj1−b[j]).

iii. Broadcast zkj1, c
j
0, c

j
1 to every other party.

Internal MPC: (a) Sim resets ri−1
1−b[i−1] := 0λ.

(b) The parties in parallel call Ff to jointly compute the function f shown in Figure 10.

More specifically, Sim sends {rj0, r
j
1}j∈[λ] to Ff ; P2 sends ch, {labiw,b}i,w∈[λ],b∈{0,1}

to Ff ; and P3, P4, . . . , Pn send nothing. If ch[i − 1] 6= b[i − 1], send abort to Ff ,
increment counter by 1 and go to the beginning of the while loop. Else exit the
while loop.

3. if(counter > λ), output special− abort.
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It follows from the witness indistinguishability property of Blum’s protocol that H2,i−1,2 is
computationally indistinguishable to H2,i−1,1.

We can show via an identical argument to Claim 5.4 that H2,i−1,2 is computationally indistin-
guishable to H2,i. This completes the proof of the lemma.

5.2.2 Case-2: P1 is corrupted

We first describe the ideal world simulator in Figure 12.

Common Random String: Sample σ ← {0, 1}2λ and set σ as the CRS.

Simulating the interaction with Z: For every input value for the set of corrupted parties
that Sim receives from Z, Sim writes that value to A’s input tape. Similarly, the output
of A is written as the output on Sim’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session iden-
tifier sid that A may start, the simulator does the following:

• Message from A: If A sends (NotInL, x, 0) then sample a random w and send
(prover, sid, x, w) to FZK. Else, receive the first round message {zki1, c

i
0, c

i
1}i∈[λ] from

A.

• Internal MPC: Recover the message {ri0, ri1}i∈[λ] that A sends to Ff . For every

i ∈ [λ], use ri0, r
i
1 to recover zki3,0, zki3,1 from ci0, c

i
1. Choose a random ch ← {0, 1}λ

and check if (zki1, ch[i], zki3,ch[i]) is a valid proof. If any of the checks fail, sample
a random w and send (prover, sid, x, w) to FZK. Else, check if for any i ∈ [λ] both
(zki1, 0, zki3,0) and (zki1, 1, zki3,1) are valid proofs. If yes, recover w from these two
transcripts and send (prover, sid, x, w) to FZK. Else, output special− abort.

• Message from Sim: Sim does the following:

1. Receive µ from FZK and send µ to every party if A sends (NotInL, x, 0).
2. Sample labiw ← {0, 1}λ for each i, w ∈ [λ].
3. Compute C̃ ← Simckt

(
1λ, 1|C|, µ, {labiw}i,w∈inp(C)

)
4. Broadcast C̃ and send {labiw}i,w∈[λ] as the output from Ff to every party.

Figure 12: Simulator Sim when P1 is corrupted

We now argue that the distribution generated by Sim is computationally indistinguishable to
the honest P2’s distribution. We first note that since σ is chosen randomly from {0, 1}2λ, with
overwhelming probability there exists no s ∈ {0, 1}λ such that PRG(s) = σ. In the rest of the
proof, we condition on this event happening.

Claim 5.5 Assuming the security of garbled circuits, we have that the real world distribution is
computationally indistinguishable to the ideal world.
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Proof We first argue that the probability that the ideal simulator Sim outputs special − abort
is negligible. Note that Sim outputs special − abort when for a random ch, (zki1, ch[i], zki3,ch[i]) is

a valid proof but for every i ∈ [λ], (zki1, 1 − ch[i], zki3,1−ch[i]) is invalid. The probability (over the

choice of ch) of such an event happening is 2−λ.
Notice that the only difference between the real world and the ideal world distribution is in

generating the garbled circuit C̃. In the real world, it is generated honestly whereas in the ideal
simulation the garbled circuit is simulated. We note that the output µ used in the generation of C̃
is same as the real world output. It now follows from the security of the garbled circuits that the
real world and ideal world distributions are computationally indistinguishable.

5.2.3 Case-3: Neither P1 nor P2 is corrupted

We describe the ideal world simulator in Figure 13.

Common Random String: Sample s← {0, 1}λ and set σ := PRG(s) as the CRS.

Simulating the interaction with Z: For every input value for the set of corrupted parties
that Sim receives from Z, Sim writes that value to A’s input tape. Similarly, the output
of A is written as the output on Sim’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session iden-
tifier sid that A may start, the simulator does the following:

• Receive (R(x,w), x, µ) from the ideal functionality FZK.

• Message from Sim on behalf of P1: Sim does the following:

1. if(R(x,w) = 0), send (NotInL, x, 0) to every party. Else, do the following.
2. for each i ∈ [λ] do:

(a) Prepare zki1 for the language L using the witness s.
(b) Let zki3,b be the third round message when zk2 = b. Sample rib ← {0, 1}λ for

each b ∈ {0, 1} and compute cib := com(zki3,b; r
i
b).

(c) Broadcast zki1, c
i
0, c

i
1 to every other party.

• Message from Sim on behalf of P2: Sim does the following:

1. if(R(x,w) = 0), send µ to every party. Else, do the following.

2. Sample labiw ← {0, 1}λ for each i, w ∈ [λ].

3. Compute C̃ ← Simckt

(
1λ, 1|C|, µ, {labiw}i,w∈inp(C)

)
4. Broadcast C̃ and send {labiw}i,w∈[λ] as the output from Ff to every party.

Figure 13: Simulator Sim when neither P1 nor P2 is corrupted

It follows directly from cases-1 and 2 that the real world distribution is computationally indis-
tinguishable from ideal world distribution.
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6 Malicious Secure Protocol

In this section, we give a construction of two-round, multiparty computation that is secure against
malicious adversaries and minimizes the number of public key operations.

6.1 Construction

Our two-round protocol computing a function f uses the following primitives.

1. An n-party malicious secure conforming protocol Φ computing the function f .

2. A selective garbling scheme for circuits (Garble,Eval).

3. A pseudorandom generator PRGmal : {0, 1}λ → {0, 1}4T where each output bit can be com-
puted by a circuit of size poly(λ, log T ).6

4. A somewhere adaptive garbling scheme for circuits (SAdpGarbleCkt, SAdpGarbleInp, SAdpEvalCkt)
(defined in Section 3.2). We assume that the length of the garbled input when SAdpGarbleCkt
is used to garbled CB (described in Figure 14) is M .

5. A maliciously secure two-round MPC protocol computing the function g described in Fig-
ure 15.

6. A non-interactive statistically binding commitment scheme (Com,Decom).

7. The special ZK protocol parameterized by an NP relation R described below.

R :=

{(
x =

(
C̃B, cm

)
, w = (Ω,CB, state, ω)

)
:

(Decom(cm, state, ω) = 1) ∧
(

(C̃B, state) = SAdpGarbleCkt (CB; Ω)
)}

.

We give an overview of the construction below and describe the formal construction later.

Overview. In order to make our protocol maliciously secure, we need to make the special purpose
OT extension protocol maliciously secure. Below, we will first describe the changes between a single
pair of sender and receiver, and then extending it to n− 1 senders with a single receiver is similar
to the semi-honest setting.

In the first round, the message sent from the receiver is the same as the semi-honest setting.
The sender samples a set of masks M = {mi,0,mi,1}i∈[L] and constructs CB same as before. It then

uses the somewhere adaptive garbling scheme to garble CB using randomness Ω and obtains C̃B and
a secret state state. The sender sends C̃B to the receiver. Additionally, it computes a commitment
cm of state using randomness ω.

In the second round, the sender computes and hardwires {cti,b}i∈[L],b∈{0,1} in its “talking garbled
circuits” same as before. The receiver constructs a wrap-circuit Cwrap that is the same as before

6The GGM PRF [GGM86] can be easily modified to give such a PRG based on one-way functions.
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except that it takes an additional bit b as input indicating whether C̃B is constructed correctly by
the sender. The receiver then garbles Cwrap and sends the garbled circuit C̃wrap to the sender.

In order to obtain the label for the additional input bit b of C̃B, the sender and receiver in parallel
run the two-round special zero-knowledge protocol for the language R defined above. Specially,

Fzk takes as input
(
x =

(
C̃B, cm

)
, w = (Ω,CB, state, ω)

)
from the sender and (lab0, lab1) from the

receiver, where (lab0, lab1) are the labels for the input bit b. If C̃B is generated correctly and ω is
the randomness used to generate cm, then Fzk will output lab1 for evaluating C̃wrap.

In order to obtain the remaining labels for evaluating C̃wrap, the sender and receiver in parallel
run a two-round maliciously secure MPC protocol from [GS18] to compute a function g. The
function g is different from before in that it takes state as input to compute the garbled input of
C̃B. In addition, it first checks if the sender has the randomness used to generate cm. If so, then it
computes the two-step translation functionality and outputs the labels for evaluating C̃wrap. Notice
that the statistically binding commitment scheme ensures that state fed into Fzk is consistent with
that fed into Fg with overwhelming probability.

At the end of the second round, the two parties will obtain lab1 along with all the remaining
labels for evaluating C̃wrap only if the sender has generated C̃B correctly. Hence they are able to

evaluate C̃wrap at the end of the second round.
The remaining steps in constructing our protocol are (a) extending the maliciously secure special

purpose OT extension protocol between a single pair of sender and receiver to a protocol with n−1
senders and a single receiver, and (b) combine the maliciously secure special purpose OT extension
with the maliciously secure MPC protocol of [GS18]. These steps are similar to the semi-honest
setting.

Description of the Protocol. We now give a formal description of our construction in below
in the Fg and Fzk hybrid model.

Round-1: Each party Pi does the following:

1. Compute (zi, vi)← pre(1λ, i, xi).

2. For each t ∈ [T ] and for each α, β ∈ {0, 1}

ci[(t, α, β)] := vi[h]⊕ NAND(vi[f ]⊕ α, vi[g]⊕ β)

where φt = (?, f, g, h).

3. Sample si ← {0, 1}λ and compute ei := PRGmal(si)⊕ ci.
4. For each j ∈ [n] \ {i}, sample

µj→i0 , µj→i1 ← {0, 1}λ

rlabj→ik,b ← {0, 1}λ for all k ∈ [M ], b ∈ {0, 1}

mi→j
k,b ← {0, 1}λ for all k ∈ [4T ], b ∈ {0, 1}

5. Garbling CB: For each j ∈ [n] \ {i}, compute

(C̃i→jB , statei→j) := SAdpGarbleCkt

(
CB

[{
mi→j
k,0 ,m

i→j
k,1

}
k∈[4T ],b∈{0,1}

]
; Ω

)
cmi→j := Com(statei→j ;ωi→j)

32



where CB is described in Figure 14 and Ω, ωi→j are sampled randomly.

6. Messages to Fg: Send (ssid = i, si, {rlabj→ik,b }j∈[n]\{i},k∈[M ],b∈{0,1}) to Fg acting as the

receiver and for each j ∈ [n] \ {i}, send (ssid = j, {cmi→j , statei→j , ωi→j}) to Fg acting
as the sender.

7. Messages to Fzk: For each j ∈ [n] \ {i}, send (ssid = (j → i), µj→i0 , µj→i1 ) to Fzk acting
as the verifier, and send (ssid = (i→ j), Xi→j ,W i→j) to Fzk acting as the prover where

Xi→j =
(

C̃i→jB , cmi→j
)

andW i→j =
(

Ω,CB

[{
mi→j
k,0 ,m

i→j
k,1

}
k∈[4T ],b∈{0,1}

]
, statei→j , ωi→j

)
.

8. Send
(
zi, {C̃i→jB }j∈[n]\{i}, ei, {cmi→j}j∈[n]\{i}

)
to every other party.

CB

[
{mk,0,mk,1}k∈[4T ]

]
Input: s ∈ {0, 1}λ.

1. d := PRGmal(s) where d ∈ {0, 1}4T .

2. Output
{

mk,d[k]

}
k∈[4T ]

.

Figure 14: Circuit CB

Parties: P1, P2, . . . , Pn.
Inputs:

• P1 (also called as the receiver) inputs s ∈ {0, 1}λ and rlab2, . . . , rlabn where each rlabi is a
collection of labels {rlabi→1

j,0 , rlabi→1
j,1 }j∈[M ] with each label of length λ.

• For each i ∈ [2, n], Pi (also called as the sender) inputs (cmi→1, statei→1, ωi→1), where
cmi→1 is a commitment and is a public input, statei→1 is the secret state of the somewhere
adaptive garbling scheme, and ωi→1 is a string.

Output: Check if for each i ∈ [2, n], Decom(cmi→1, statei→1, ωi→1) = 1. If all the checks pass,
output {Projection(SAdpGarbleInp(statei→1, s), rlabi)}i∈[2,n] to every party.

Figure 15: The function g computed by the internal MPC where P1 acts as the receiver

Round-2: Each party Pi does the following:

1. Set sti := (z1‖ . . . ‖zn)⊕ vi.
2. Set N = `+ 4Tλ(n− 1).

3. Set lab
i,T+1

:= {labi,T+1
k,0 , labi,T+1

k,1 }k∈[N ] where labi,T+1
k,b := 0λ for each k ∈ [N ], b ∈ {0, 1}.

4. for each t from T down to 1 do:

(a) Parse φt as (i∗, f, g, h).
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(b) If i = i∗ then compute (where P is described in Figure 6)(
P̃i,t, lab

i,t)← Garble(1λ,P[i, φt, vi,⊥, lab
i,t+1

]).

(c) If i 6= i∗ then for every α, β ∈ {0, 1}, set m′α,β,0 = mi→i∗
(t,α,β),ei∗ [(t,α,β)] and m′α,β,1 =

mi→i∗
(t,α,β),1⊕ei∗ [(t,α,β)].

Compute ctit,α,β := (m′α,β,0 ⊕ labi,t+1
h,0 ,m′α,β,1 ⊕ labi,t+1

h,1 ) and compute(
P̃i,t, lab

i,t)← Garble(1λ,P[i, φt, vi, {ctit,α,β}, lab
i,t+1

]).

5. Garbling Cwrap: Compute

C̃iwrap ← Garble
(

Cwrap

[
{C̃j→iB }j∈[n]\{i}, sti, lab

i,1
]
,{

{µj→ib }j∈[n]\{i}, {rlabj→ik,b }j∈[n]\{i},k∈[M ],b∈{0,1}

})
where Cwrap is described in Figure 16.

6. Send
(
{P̃i,t}t∈[T ], C̃

i
wrap

)
to every other party.

Cwrap

[
{C̃j→iB }j∈[n]\{i}, sti, lab

i,1
]

Input: {bj→i}j∈[n]\{i}, {s̃j→i}j∈[n]\{i}

1. If bj→i = 1 for all j ∈ [n] \ {i} do:

(a) For each j ∈ [n] \ {i}, compute
{

mj→i
k

}
k∈[4T ]

← SAdpEvalCkt
(

C̃j→iB , s̃j→i
)
.

(b) Let m := ‖
j∈[n]\{i},k∈[4T ]

(mj→i
k )

(c) Output Projection(sti‖m, lab
i,1

).

2. Else, output ⊥.

Figure 16: Circuit Cwrap

Evaluation: Every party Pi does the following:

1. For each j ∈ [n],

(a) Obtain (ssid = j, {r̃lab
j
}) from Fg where party Pj acts as the receiver.

(b) For each k ∈ [n] \ {j}, obtain (ssid = (k → j), bk→j , Xk→j , µk→j) from Fzk. Set
µ̃j = {µk→j}k∈[n]\{j}.

(c) l̃ab
j,1
← Eval(C̃jwrap, µ̃j‖r̃lab

j
).

2. for each t from 1 to T do:

(a) Parse φt as (i∗, f, g, h).
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(b) Compute ((α, β, γ), {ωj}j∈[n]\{i}, l̃ab
i∗,t+1

) := Eval(P̃i
∗,t, l̃ab

i∗,t
).

(c) Set sti[h] := γ ⊕ vi[h].

(d) for each j 6= i∗ do:

i. Compute (ct = (δ0, δ1), {labj,t+1
k }k∈[N ]\{h}) := Eval(P̃j,t, l̃ab

j,t
).

ii. Recover labj,t+1
h := δγ ⊕ ωj .

iii. Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[N ].

3. Compute the output as post(i, sti).

Correctness. The correctness follows via a similar argument to the semi-honest case.

Efficiency. Let the number of public key operations in Φ be npkΦ, in one execution of Fzk be
npkzk, and in one execution of Fg be npkg. We choose the conforming protocol that performs OT
extension between every pair of parties so that npkΦ is bounded by O(n2λ). The total number of
public key operations in our two-round construction is O(npkΦ + n2 · npkzk + n · npkg). It follows
from Theorems 5.2, 3.3 that this number is bounded by poly(n, λ).

6.2 Simulator

Let A be a malicious adversary corrupting a subset of parties and let H ⊆ [n] be the set of
honest/uncorrupted parties. Since we assume that the adversary is static, this set is fixed before
the execution of the protocol. Below we provide the notion of faithful execution from [GS18] and
then describe our simulator.

Faithful Execution [GS18]. In the first round of our compiled protocol, A provides zi for every
i ∈ [n] \H and ci ⊕ PRGmal(si) and sends (si, {rlabj→ik,b }) to the Fg functionality. These messages
act as “binding” commitments to the value ci which in turn determines all of the adversary’s future
choices. A simulator can extract the value ci by observing these messages. Intuitively speaking, a
faithful execution is an execution that is consistent with these extracted values.

More formally, we define an interactive procedure Faithful(i, {zj}j∈[n], ci) that on input i ∈ [n],
{zj}j∈[n], ci, produces protocol Φ messages on behalf of party Pi (acting consistently/faithfully with
the extracted values) as follows:

1. Set st∗ := z1‖ . . . ‖zn.

2. For t ∈ {1 · · ·T}

(a) Parse φt = (i∗, f, g, h).

(b) If i 6= i∗ then it waits for a bit from Pi∗ and sets st∗[h] to be the received bit once it is
received.

(c) Set st∗[h] := ci[(t, st∗[f ], st∗[g])] and output it to all the other parties.

We will later argue that any deviation from the faithful execution by the adversary A on behalf
of the corrupted parties (during the second round of our compiled protocol) will be be detected.
Additionally, we prove that such deviations do not hurt the security of the honest parties.
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Description of the Simulator. We give the description of the ideal world adversary S that
simulates the view of the real world adversary A. S will internally use the malicious simulator
SimΦ for Φ and the simulator Simckt for selective garbling of circuits.

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• Initialization: S executes the simulator SimΦ(1λ) to obtain {zi}i∈H . Moreover, S starts the
real-world adversary A.

• Round-1 messages from S to A: For each i ∈ H, S generates the first round message on
behalf of Pi as follows:

– Sample ei ← {0, 1}4T .

– For each j ∈ [n] \ {i}, sample

mi→j
k ← {0, 1}λ for all k ∈ [4T ].

– For each j ∈ [n] \ {i}, compute

(C̃i→jB , statei→j) ← SAdpGarbleCkt

(
CD

[{
mi→j
k

}
k∈[4T ]

])
cmi→j ← Com(~0)

where CD

[{
mi→j
k

}
k∈[4T ]

]
is a dummy circuit that outputs {mi→j

k }k∈[4T ] as output on

every input.

– Send
(
zi, {C̃i→jB }j∈[n]\{i}, ei, {cmi→j}j∈[n]\{i}

)
to every other party.

• Round-1 messages from A to S: Corresponding to every i ∈ [n] \ H, S receives from
the adversary A the value (zi, {C̃i→jB }j∈[n]\{i}, ei, {cmi→j}j∈[n]\{i}) on behalf of the corrupted
party Pi. In addition to these,

– S receives the values (ssid = i, si, {rlabj→ik,b }) thatA sends to the Fg functionality. Using si

and ei, S computes ci = PRGmal(si)⊕ei. It also receives (ssid = j, {cmi→j , statei→j , ωi→j})
sent to Fg for every j ∈ [n] \ {i}. It stores all these values.

– For each j ∈ [n] \ {i}, S receives (ssid = (j → i), µj→i0 , µj→i1 ) that A sends to the Fzk

acting as the verifier. It also receives (ssid = (i→ j), Xi→j ,W i→j) that A sends to Fzk

acting as the prover. It again stores all the values.

• Completing the execution with the SimΦ: For each i ∈ [n] \H, S sends zi to SimΦ on
behalf of the corrupted party Pi. This starts the computation phase of Φ with the simulator
SimΦ. S provides computation phase messages to SimΦ by following a faithful execution.
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More formally, for every corrupted party Pi where i ∈ [n] \ H, S generates messages on
behalf of Pi for SimΦ using the procedure Faithful(i, {zj}j∈[n], ci). At some point during the
execution, SimΦ will return the extracted inputs {xi}i∈[n]\H of the corrupted parties. For
each i ∈ [n]\H, S sends (input, sid, {P1 · · ·Pn}, Pi, xi) to the ideal functionality implementing
f and obtains the output y which is provided to SimΦ. Finally, at some point the faithful
execution completes.

Let Z ∈ {0, 1}T be output of this execution where Z[t] is the bit sent in the t-th round of the
computation phase of Φ. And let st∗ be the state value at the end of execution of one of the
corrupted parties (this value is the same for all the corrupted parties).

• Round-2 messages from S to A: For each i ∈ H, the simulator S generates the second
round message on behalf of party Pi as follows:

1. For each j ∈ [n] \H, S recovers (ssid = (j → i), Xj→i,W j→i) from its storage. It sets
bj→i := R(Xj→i,W j→i). For all j ∈ H \ {i}, it sets bj→i := 1.

2. For each j ∈ [n] \ {i}, sample

µj→i ← {0, 1}λ

rlabj→ik ← {0, 1}λ for all k ∈ [M ]

3. If for any j ∈ [n] \H, bj→i = 0, then:

(a) for each t from T down to 1,

i. For each k ∈ [N ], sample labi,tk ← {0, 1}
λ.

ii. Compute

P̃i,t ← Simckt

(
1λ, (⊥) , {labi,tk }k∈[N ]

)
.

(b) Compute

C̃iwrap ← Simckt

(
1λ, (⊥),

{
{µj→i}j∈[n]\{i}, {rlabj→ik }j∈[n]\{i},k∈[M ]

})
.

(c) Send
(
{P̃i,t}t∈[T ], C̃

i
wrap

)
to every other party.

4. Otherwise:

(a) For each j ∈ [n] \ {H ∪ {i}}, recover CB

[{
mj→i
k,0 ,m

j→i
k,1

}
k∈[4T ]

]
from W j→i. S stores{

mj→i
k,0 ,m

j→i
k,1

}
k∈[4T ]

.

(b) For each k ∈ [N ], set labi,T+1
k := 0λ.

(c) for each t from T down to 1,

i. Parse φt as (i∗, f, g, h).

ii. Set α∗ := st∗[f ], β∗ := st∗[g], and γ∗ := st∗[h].

iii. For each k ∈ [N ], sample labi,tk ← {0, 1}
λ.

iv. If i = i∗ then compute(
P̃i,t
)
← Simckt

(
1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k }k∈[N ]

)
, {labi,tk }k∈[N ]

)
.

where ωt,α∗,β∗ = {mj→i
(t,α∗,β∗),Z[t]⊕ei[(t,α∗,β∗)]}j∈[n]\{i}.
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v. If i 6= i∗ then set δZ[t] := mi→i∗
(t,α∗,β∗) ⊕ labi,t+1

h and δ1−Z[t] ← {0, 1}λ. Set ct :=

(δ0, δ1) and compute

P̃i,t ← Simckt

(
1λ,
(
ct, {labi,t+1

k }k∈[N ]\{h}

)
, {labi,tk }k∈[N ]

)
.

(d) Compute

C̃iwrap ← Simckt

(
1λ, ({labi,1k }k∈[N ]),

{
{µj→i}j∈[n]\{i}, {rlabjk}j∈[n]\{i},k∈[M ]

})
.

(e) Send
(
{P̃i,t}t∈[T ], C̃

wrap
i

)
to every other party.

• Output from Fg functionality. For each i ∈ H, S sets the output from Fg where Pi
acts as the receiver to be {rlabj→ik }j∈[n]\{i},k∈[N ]. If i 6∈ H, it computes the output of the Fg
functionality using {statej→i}j∈[n]\{i}. That is, it uses the statej→i to compute s̃j→i and then
uses it to compute the output as Fg.

• Output from Fzk functionality. For each (i, j) ∈ [N ], if j ∈ H then S sets the output
from Fzk of ssid = (i→ j) as µi→j . If j 6∈ H and i ∈ H, it sets the output to be µi→j1 . Else,
if both i, j 6∈ H, it acts exactly as Fzk.

• Round-2 messages from A to S: For every i ∈ [n] \ H, S obtains the second round
message from A on behalf of the malicious parties. Subsequent to obtaining these messages,
S executes the garbled circuits provided by A on behalf of the corrupted parties to see the
execution of garbled circuits proceeds consistently with the expected faithful execution. If
the computation succeeds then for each i ∈ H, S sends (generateOutput, sid, {P1 · · ·Pn}, Pi)
to the ideal functionality.

6.3 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting with a real world
adversary A or an ideal world adversary S.

• H0: This hybrid is the same as the real world execution.

• H1 : In this hybrid, the functionalities Fg and Fzk are emulated by the simulator S faithfully.
This hybrid is identical to H0.

• H2 : In this hybrid, we change how the Fzk functionality is emulated by the simulator in every
call where i ∈ H is acting as the prover. In particular, for any ssid = (i → j) where i ∈ H,
the party Pi does not send (Xi→j ,W i→j) to the ideal functionality and the simulator always
sets the output to be (1, Xi→j , µi→j1 ). This hybrid is identically distributed to H1.

• H3 : In this hybrid, we change how the Fg functionality is emulated by the simulator in every
call where i ∈ H is acting as the sender. In particular, for any ssid = j ∈ [n], when i ∈ H is
acting as the sender in this execution, party Pi does not send (cmi→j , statei→j , ωi→j) to the
ideal functionality. Instead, the simulator uses statei→j to directly compute the output. This
hybrid is distributed identically to H2.
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• H4 : In this hybrid, we change cmi→j for every i ∈ H and j ∈ [n] \ {i} to be Com(~0) instead
of Com(statei→j). H4 is computationally indistinguishable from H3 from the computational
hiding property of the non-interactive commitment scheme.

• H5 : In this hybrid, we make two changes with respect to H4 which are explained below. For
every i ∈ H:

1. In round-1, for each j ∈ [n] \ {i}, we sample

mi→j
k ← {0, 1}λ for all k ∈ [4T ]

and compute

(C̃i→jB , statei→j)← SAdpGarbleCkt

(
CD

[{
mi→j
k

}
k∈[4T ]

])
.

2. At the end of round-1, we obtain sj for each j ∈ [n] \ {i}. For those j ∈ [n] \ {H} this
is obtained from the message that the adversary sends to Fg. For the rest, we obtain it
directly using the random coins of the honest parties. In round-2, for each j ∈ [n] \ {i}
and k ∈ [4T ], we set mi→j

k,PRGmal(sj)[k] = mi→j
k and mi→j

k,1−PRGmal(sj)[k] ← {0, 1}
λ. We use

these values to compute {ctit,α,β}.

We show that H4 is computationally indistinguishable to H5 using a sequence of sub-hybrids.
We show how to do this change for any i ∈ H and the change to every i ∈ H can be obtained
by repeating this hybrid sequence |H| times separately for each party in H.

Notation. We introduce a total ordering ≺ of the tuples (t, α, β) where t ∈ [T ], α, β ∈ {0, 1}.
We say that (t, α, β) ≺ (t′, α′, β′) if t < t′ or if t = t′ and α < α′ or if t = t′, α = α′ and
β < β′. For each t ∈ [0, T ], α, β ∈ {0, 1}, we define a hybrid,

– H4,(t,α,β) : Let K := {(t′, α′, β′) : (t′, α′, β′) � (t, α, β)}. We generate C̃i→jB as follows:

1. In round-1, for each j ∈ [n] \ {i}, sample

mi→j
k ← {0, 1}λ for all k ∈ K

mi→j
k,0 ,m

i→j
k,1 ← {0, 1}λ for all k ∈ [4T ] \K

and compute,

(C̃i→jB , statei→j)← SAdpGarbleCkt

(
Cinter

[{
mi→j
k

}
k∈K

,
{

mi→j
k,0 ,m

i→j
k,1

}
k∈[4T ]\K

])
where Cinter is described in Figure 17.

2. In round-2, for each k ∈ K and j ∈ [n] \ {i}, set mi→j
k,PRGmal(sj)[k] = mi→j

k and

mi→j
k,1−PRGmal(sj)[k] ← {0, 1}

λ.

Note that H4 is distributed identically to H4,(0,0,0) and H5 is distributed identically to
H4,(T,1,1). Thus, to prove indistinguishability between H4 and H5, it is sufficient to show
indistinguishability between H4,(t′,α′,β′) and H4,(t,α,β) for any two adjacent (induced by the
ordering ≺) (t′, α′, β′) and (t, α, β). We argue this indistinguishability using somewhere adap-
tive security of (SAdpGarbleCkt,SAdpGarbleInp).

39



Cinter

[{
mi→j
k

}
k∈K

,
{

mi→j
k,0 ,m

i→j
k,1

}
k∈[4T ]\K,b∈{0,1}

]
Input: s ∈ {0, 1}λ.

1. d := PRGmal(s) where d ∈ {0, 1}4T .

2. Output
{

mi→j
k

}
k∈K

,
{

mi→j
k,d[k]

}
k∈[4T ]\K

.

Figure 17: Circuit Cinter

Claim 6.1 Assuming the somewhere adaptive security of (SAdpGarbleCkt, SAdpGarbleInp),

we have H4,(t′,α′,β′)
c
≈ H4,(t,α,β) for any two adjacent (t′, α′, β′) and (t, α, β).

Proof Assume for the sake of contradiction thatH4,(t′,α′,β′) is distinguishable fromH4,(t,α,β)

with non-negligible probability. We use this to construct a reduction against the somewhere
adaptive security of (SAdpGarbleCkt,SAdpGarbleInp).

Let K ′ = {(t, α, β) : (t, α, β) � (t′, α′, β′)}. We define sub-hybrids and argue indistinguisha-
bility using the somewhere adaptive security.

– H′1 : It is same as H4,(t′,α′,β′) except for each j ∈ [n] \ {i}, the circuit computing

the (t, α, β)-th entry in Cinter

[{
mi→j
k

}
k∈K′

,
{

mi→j
k,0 ,m

i→j
k,1

}
k∈[4T ]\K′,b∈{0,1}

]
is simulated.

Later, when sj is obtained at the end of round-1, the output of the (t, α, β)-th circuit is
computed and is used in obtaining s̃i→j . H4,(t′,α′,β′) is computationally indistinguishable
to H′1 from the somewhere adaptive security.

– H′2 : It is same as H′2 except that for each j ∈ [n] \ {i}, a string {mi→j
(t,α,β)} is sam-

pled randomly from {0, 1}λ and is used as the output of (t, α, β)-th circuit instead of
computing the output from sj . In round-2, we set mi→j

(t,α,β),PRGmal(sj)[(t,α,β)] = mi→j
(t,α,β)

and mi→j
(t,α,β),1−PRGmal(sj)[k] ← {0, 1}

λ. This change is statistical and H′1 is distributed

identically to H′2.

– H′3 : This hybrid is same as H4,(t,α,β). H′2 is computationally indistinguishable to H′3
from the somewhere adaptive security of garbled circuits via a similar argument used to
prove indistinguishability of H′1 and H4,(t′,α′,β′).

This completes the proof of the claim.

• H6 : In this hybrid, we change how the Fzk functionality is emulated by the simulator in every
call where i ∈ H is acting as the verifier. In particular, for any ssid = (j → i) where i ∈ H,
the party Pi does not send (µj→i0 , µj→i1 ) to the ideal functionality and the simulator implicitly
uses these inputs to compute the output of Fzk. This hybrid is identically distributed to H5.

• H7 : In this hybrid, we change how the Fg functionality is emulated by the simulator in every
call where i ∈ H is acting as the receiver. In particular, for any ssid = i, when i ∈ H is
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acting as the receiver in this execution, party Pi does not send (si, {rlabj→ik,b }) to the ideal
functionality. Instead, the simulator implicitly uses these values in computing the output of
Fg. Again, this hybrid is identically distributed to H6.

• H8 : In this hybrid, we make the following changes with respect to H7. For each i ∈ H,

1. For each j ∈ [n] \ {{i} ∪H}, let (ssid = (j → i), Xj→i,W j→i) be the message sent by A
to Fzk functionality, and set bj→i := R(Xj→i,W j→i). For all j ∈ H \ {i}, set bj→i := 1.

2. For each j ∈ [n] \ {i}, sample

µj→i ← {0, 1}λ

rlabj→ik ← {0, 1}λ for all k ∈ [M ]

3. Use µj→i as the output of Fzk execution for ssid = (j → i) and {rlabj→ik } as the output
of the Fg execution for ssid = i.

4. Compute

C̃iwrap ← Simckt

(
1λ, (Ciwrap({bj→i}j∈[n]\{i}, {s̃j→i}j∈[n]\{i})),{
{µj→i}j∈[n]\{i}, {rlabjk}j∈[n]\{i},k∈[M ]

})
where {s̃j→i}j∈[n]\{i} is computed by the simulator in emulating the Fg functionality.

It follows directly from |H| invocations of selective security of garbled circuits that H7 is
computationally indistinguishable to H8.

• H9 : In this hybrid, we make the following changes with respect to H8.

For each i ∈ H, in this hybrid we complete an execution of Φ using honest parties’ inputs and
randomness. In this execution, the messages on behalf of the corrupted parties are generated
via faithful execution. Specifically, we send {zi}i∈H computed using honest parties’ inputs
and random coins, which starts the computation phase of Φ. In the computation phase, we
generate honest parties’ messages using the inputs and random coins of the honest parties and
generate the messages of the each malicious party Pi by executing Faithful

(
i, {zj}j∈[n], ci

)
. Let

st∗ be the local state of the end of execution of Faithful. Finally, let α∗ := st∗[f ], β∗ := st∗[g]
and γ∗ := st∗[h].

For each i ∈ H,

1. If for some i ∈ H and j ∈ [n] \ {i}, bi→j = 0 (i.e., the output of Ciwrap is ⊥), then:

(a) for each t from T down to 1,

i. For each k ∈ [N ], sample labi,tk ← {0, 1}
λ.

ii. Compute

P̃i,t ← Simckt

(
1λ, (⊥) , {labi,tk }k∈[N ]

)
.

(b) Compute

C̃iwrap ← Simckt

(
1λ, (⊥),

{
{µj→i}j∈[n]\{i}, {rlabj→ik }j∈[n]\{i},k∈[M ]

})
.
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(c) Send
(
{P̃i,t}t∈[T ], C̃

i
wrap

)
to every other party.

2. Otherwise:

(a) For each j ∈ [n] \ {H ∪ {i}}, recover CB

[{
mj→i
k,0 ,m

j→i
k,1

}
k∈[4T ]

]
from W j→i.

(b) For each k ∈ [N ], set labi,T+1
k := 0λ.

(c) For each t from T down to 1:

i. Parse φt as (i∗, f, g, h).

ii. Set α∗ := st∗[f ], β∗ := st∗[g], and γ∗ := st∗[h].

iii. For each k ∈ [N ], sample labi,tk ← {0, 1}
λ.

iv. If i = i∗ then compute(
P̃i,t
)
← Simckt

(
1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k }k∈[N ]

)
, {labi,tk }k∈[N ]

)
.

where ωt,α∗,β∗ = {mj→i
(t,α∗,β∗),Z[t]⊕ei[(t,α∗,β∗)]}j∈[n]\{i}.

v. If i 6= i∗ then set δZ[t] := mi→i∗
(t,α∗,β∗) ⊕ labi,t+1

h and δ1−Z[t] ← {0, 1}λ. Set ct :=

(δ0, δ1) and compute

P̃i,t ← Simckt(1
λ,
(
ct, {labi,t+1

k }k∈[N ]\{h}

)
, {labi,tk }k∈[N ]).

vi. Compute

C̃iwrap ← Simckt

(
1λ, ({labi,1k }k∈[N ]),

{
{µj→i}j∈[n]\{i}, {rlabjk}j∈[n]\{i},k∈[M ]

})
Claim 6.2 Assuming the selective security of garbling scheme for circuits, H8

c
≈ H9.

Proof We show indistinguishability of the messages in H8 from H9 using a sequence of T
sub-hybrids.

If for some i ∈ H and j ∈ [n] \ {i}, bi→j = 0 (i.e., the output of Ciwrap is ⊥), we can use a
straightforward reduction to T invocations of the selective garbling scheme to show that H8

is computationally indistinguishable to distribution of messages in H9 for party Pi. Thus, we
restrict our attention to those parties in H where this is not true.

We define for each t ∈ [T ] as hybrid H8,t as follows:

– H8,t : Let φt = (i∗, f, g, h).

∗ If i∗ 6∈ H then skip these changes. We make changes on how we generate the
messages on behalf of party Pi∗ . First, we sample for each k ∈ [N ], labi

∗,t
k ← {0, 1}λ.

Second, we compute(
P̃i
∗,t
)
← Simckt

(
1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi
∗,t+1
k,Zt

i∗ [k]
}k∈[N ]

)
, {labi

∗,t
k }k∈[N ]

)
.

where ωt,α∗,β∗ = {mj→i∗
(t,α∗,β∗),Z[t]⊕ei∗ [(t,α∗,β∗)]}j∈[n]\{i∗} where {labi

∗,t+1
k,b }k∈[N ],b∈{0,1} are

the honestly generates input labels for the garbled circuit P̃i
∗,t+1 and Zti∗ is updated

state concatenated with masks at the end of the t-th round.
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∗ We make the following changes in how we generate messages for other honest parties
Pi (i.e., i ∈ H \ {i∗}). First, for each k ∈ [N ], we sample labi,tk ← {0, 1}

λ. Second,

we set δZ[t] := mi→i∗
(t,α∗,β∗) ⊕ labi,t+1

h and δ1−Z[t] ← {0, 1}λ. Set ct = (δ0, δ1). Third, we
generate the garbled circuit

P̃i,t ← Simckt(1
λ,
(
ct, {labi,t+1

k,Zt
i [k]
}k∈[N ]\{h}

)
, {labi,tk }k∈[N ])

where {labi,t+1
k,b }k∈[N ] are the honestly generated input labels for the garbled circuit

P̃i,t+1, and Zti is updated state concatenated with masks at the end of the t-th round.

Note that the only difference between H8,t−1 and H8,t is that in H8,t, we simulate P̃ i,t for
every i ∈ H whereas for in H8,t−1 we generate it honestly. To prove indistinguishability

between H8,t−1 and H8,t it is sufficient to show that the output we use in simulating P̃ i,t is

same as the output of P̃ i,t in H8,t−1. We argue this separately for cases i∗ ∈ H and for all
i ∈ H \ {i∗}.

– Case-1: i∗ ∈ H : In this case, the only difference in the outputs are that, in H8,t,

we set ωt,α∗,β∗ = {mj→i∗
(t,α∗,β∗),Z[t]⊕ei∗ [(t,α∗,β∗)]}j∈[n]\{i∗} where mj→i∗

(t,α∗,β∗),Z[t]⊕ei∗ [(t,α∗,β∗)] is

extracted from W j→i∗ whereas in H8,t−1 this is obtained from the masks that are given

as input. Note that these two values are indeed the same since Fzk verifies that C̃j→iB is
computed correctly and Com is statistically binding commitment.

– Case-2: i ∈ H \ {i∗}: The fact that both the outputs are the same follows from
inspection.

• H10 : In this hybrid, we change how ei is generated for every i ∈ H. Specifically, we sample
ei ← {0, 1}4T instead of generating it as ci⊕PRGmal(si). Indistinguishability between H9 and
H10 follows from |H| invocations of the security of pseudorandom generator.

• H11 : In this hybrid we just change how the transcript Z, {zi}i∈H , random coins of malicious
parties and value st∗ are generated. Instead of generating these using honest parties’ inputs
in execution with a faithful execution of Φ, we generate it via the simulator SimΦ (of the
maliciously secure protocol Φ). In other words, we execute the simulator SimΦ where messages
on behalf of each corrupted party Pi are generated using Faithful(i, {zj}j∈[n], ci). (Note that
SimΦ might rewind Faithful. This can be achieved since Faithful is just a polynomial time
interactive procedure that can also be rewound.)

The indistinguishability between hybrids H10 and H11 follows directly from the malicious
security of the protocol Φ.

Note that H11 is distributed identically to the description of the simulator. This completes
the proof of indistinguishability.

References

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In Jonathan Katz and Hovav Shacham,

43



editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 468–499. Springer,
Heidelberg, August 2017.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding func-
tions with constant online rate or how to compress garbled circuits keys. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 166–184. Springer, Heidelberg, August 2013.

[ALSZ17] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer extensions. Journal of Cryptology, 30(3):805–858, July 2017.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure compu-
tation without authentication. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 361–377. Springer, Heidelberg, August 2005.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computa-
tions. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 479–488, 1996.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for se-
cure computation under DDH. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–539. Springer, Heidelberg,
August 2016.

[BGI+17a] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wa-
dia. Two-message witness indistinguishability and secure computation in the plain
model from new assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part III, volume 10626 of LNCS, pages 275–303. Springer, Heidelberg,
December 2017.

[BGI17b] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Opti-
mizing rounds, communication, and computation. In Jean-Sébastien Coron and Jes-
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A Our Model

Below we briefly review UC security. For full details see [Can01]. A large part of this introduction
has been taken verbatim from [CLP10]. A reader familiar with the notion of UC security can safely
skip this section.

A.1 The basic model of execution

Following [GMR88], a protocol is represented as an interactive Turing machine (ITM), which rep-
resents the program to be run within each participant. Specifically, an ITM has three tapes that
can be written to by other ITMs: the input and subroutine output tapes model the inputs from and
the outputs to other programs running within the same “entity” (say, the same physical computer),
and the incoming communication tapes and outgoing communication tapes model messages received
from and to be sent to the network. It also has an identity tape that cannot be written to by the
ITM itself. The identity tape contains the program of the ITM (in some standard encoding) plus
additional identifying information specified below. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an
ITM along with an identifer that distinguishes it from other ITIs in the same system. The identifier
consists of two parts: A session-identifier (SID) which identifies which protocol instance the ITM
belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol instance.
Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent some
administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial
time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its
run, the overall number of steps taken by M is at most nc, where n is the overall number of bits
written on the input tape of M in this run. (In fact, in order to guarantee that the overall protocol
execution process is bounded by a polynomial, we define n as the total number of bits written to
the input tape of M , minus the overall number of bits written by M to input tapes of other ITMs.;
see [Can01].)

A.2 Security of protocols

Protocols that securely carry out a given task (or, protocol problem) are defined in three steps, as
follows. First, the process of executing a protocol in an adversarial environment is formalized. Next,
an “ideal process” for carrying out the task at hand is formalized. In the ideal process the parties
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do not communicate with each other. Instead they have access to an “ideal functionality,” which is
essentially an incorruptible “trusted party” that is programmed to capture the desired functionality
of the task at hand. A protocol is said to securely realize an ideal functionality if the process of
running the protocol amounts to “emulating” the ideal process for that ideal functionality. Below
we overview the model of protocol execution (called the real-life model), the ideal process, and the
notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an
instance of a protocol Π, an adversary A that controls the communication among the parties, and an
environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter n ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol Π. That is, all the ITMs invoked by the
environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information on
the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we assume
authenticated communication; that is, the adversary may deliver only messages that were actually
sent. (This is however not essential as shown in [Can04, BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

In this work, we consider the setting of static corruptions. In the static corruption setting, the
set of corrupted parties is determined at the start of the protocol execution and does not change
during the execution.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let EXECπ,A,Z(n, z, r) denote the output of the environment Z when interacting with parties
running protocol Π on security parameter n, input z and random input r = rZ , rA, r1, r2, . . . as
described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(n, z) random variable
describing EXECπ,A,Z(n, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
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of that task. The ideal functionality is modeled as another ITM (representing a “trusted party”)
that interacts with the parties and the adversary. More specifically, in the ideal protocol for
functionality F all parties simply hand their inputs to an ITI running F . (We will simply call this
ITI F . The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of F is
null.)) In addition, F can interact with the adversary according to its code. Whenever F outputs
a value to a party, the party immediately copies this value to its own output tape. We call the
parties in the ideal protocol dummy parties. Let Π(F) denote the ideal protocol for functionality
F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with A and parties running Π,
or it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition A.1 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction for
UC security we have EXECF ,S,Z ≈ EXECπ,A,Z .

Definition A.2 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes
F if Π UC-emulates the ideal process Π(F).

A.3 Hybrid protocols

Hybrid protocols are protocols where, in addition to communicating as usual as in the standard
model of execution, the parties also have access to (multiple copies of ) an ideal functionality. Hybrid
protocols represent protocols that use idealizations of underlying primitives, or alternatively make
trust assumptions on the underlying network. They are also instrumental in stating the universal
composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid protocol with access to
an ideal functionality F), the parties may give inputs to and receive outputs from an unbounded
number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the input tape
of that copy. Similarly, each copy of F writes the output values to the subroutine output tape of
the corresponding party. It is stressed that the adversary does not see the interaction between the
copies of F and the honest parties.

The copies of F are differentiated using their sub-session IDs (see UC with joint state [CR03]).
All inputs to each copy and all outputs from each copy carry the corresponding sub-session ID.
The model does not specify how the sub-session IDs are generated, nor does it specify how parties
“agree” on the sub-session ID of a certain protocol copy that is to be run by them. These tasks
are left to the protocol. This convention seems to simplify formulating ideal functionalities, and
designing protocols that securely realize them, by freeing the functionality from the need to choose
the sub-session IDs and guarantee their uniqueness. In addition, it seems to reflect common practice
of protocol design in existing networks.
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The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.

The universal composition operation. We define the universal composition operation and
state the universal composition theorem. Let ρ be an F-hybrid protocol, and let Π be a protocol
that securely realizes F . The composed protocol ρΠ is constructed by modifying the code of each
ITM in ρ so that the first message sent to each copy of F is replaced with an invocation of a new
copy of Π with fresh random input, with the same SID (different invocations of F are given different
sub-session IDs), and with the contents of that message as input. Each subsequent message to that
copy of F is replaced with an activation of the corresponding copy of Π, with the contents of that
message given to Π as new input. Each output value generated by a copy of Π is treated as a
message received from the corresponding copy of F . The copy of Π will start sending and receiving
messages as specified in its code. Notice that if Π is a G-hybrid protocol (i.e., ρ uses ideal evaluation
calls to some functionality G) then so is ρΠ.

The universal composition theorem. Let F be an ideal functionality. In its general form,
the composition theorem basically says that if Π is a protocol that UC-realizes F then, for any F-
hybrid protocol ρ, we have that an execution of the composed protocol ρΠ “emulates” an execution
of protocol ρ. That is, for any adversary A there exists a simulator S such that no environment
machine Z can tell with non-negligible probability whether it is interacting with A and protocol ρΠ

or with S and protocol ρ, in a UC interaction. As a corollary, we get that if protocol ρ UC-realizes
F , then so does protocol ρΠ. 7

Theorem A.3 (Universal Composition [Can01].) Let F be an ideal functionality. Let ρ be a
F-hybrid protocol, and let Π be a protocol that UC-realizes F . Then protocol ρΠ UC-emulates ρ.

An immediate corollary of this theorem is that if the protocol ρ UC-realizes some functionality
G, then so does ρΠ.

A.4 The Common Reference/Random String Functionality

In the common reference string (CRS) model [CF01], all parties in the system obtain from a trusted
party a reference string, which is sampled according to a pre-specified distribution D. The reference
string is referred to as the CRS. In the UC framework, this is modeled by an ideal functionality
FDCRS that samples a string ρ from a pre-specified distribution D and sets ρ as the CRS. FDCRS is
described in Figure 18.

When the distribution D in FDCRS is sent to be the uniform distribution (on a string of appro-
priate length) then we obtain the common random string functionality denoted as FCRS .

A.5 General Functionality

We consider the general-UC functionality F , which securely evaluates any polynomial-time (pos-
sibly randomize) function f : ({0, 1}`in)n → ({0, 1}`out)n. The functionality Ff is parameterized
with a function f and is described in Figure 19. In this paper we will only be concerned with the
static corruption model.

7The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely protocols
that do not share subroutines with any other protocol in the system.
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Functionality FD
CRS

FD
CRS runs with parties P1, . . . Pn and is parameterized by a sampling algorithm D.

1. Upon activation with session id sid proceed as follows. Sample ρ = D(r), where r denotes
uniform random coins, and send (crs, sid, ρ) to the adversary.

2. On receiving (crs, sid) from some party send (crs, sid, ρ) to that party.

Figure 18: The Common Reference String Functionality.

Functionality Ff

Ff parameterized by an (possibly randomized) n-ary function f , running with parties P =
{P1, . . . Pn} (of which some may be corrupted) and an adversary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends (input, sid,P, Pi, xi) to the
functionality.

2. Upon receiving the inputs from all parties, evaluate (y1, . . . yn)← f(x1, . . . , xn). For every Pi
that is corrupted send adversary S the message (output, sid,P, Pi, yi).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality outputs
(output, sid,P, Pi, yi) to Pi. (And ignores the message if inputs from all parties in P
have not been received.)

Figure 19: General Functionality.

B Construction of Somewhere Adaptive Garbling

We give the construction of somewhere adaptive garbled circuits in Figure 20. The construction
makes use of a selective garbled circuit and a somewhere equivocal encryption scheme with block
length set to maxi |C̃i|, message length set to m and the equivocation parameter set to 1. We recall
the definition of somewhere equivocal encryption from the work of [HJO+16] below.

Definition B.1 ([HJO+16]) A somewhere equivocal encryption scheme with block-length s, mes-
sage length n (in blocks) and equivocation parameter t (all polynomials in the security parameter)
is a tuple of probabilistic polynomial algorithms Π = (KeyGen,Enc,Dec,SimEnc,SimKey) such that:

• key← KeyGen(1λ) : It is a PPT algorithm that takes as input the security parameter (encoded
in unary) and outputs a key key.

• c← Enc(key,m1 . . .mn) : It is a PPT algorithm that takes as input a key key and a vector of
messages m = m1 . . .mn with each mi ∈ {0, 1}s and outputs a ciphertext c.

• m← Dec(key, c) : It is a deterministic algorithm that takes as input a key key and a ciphertext
c and outputs a vector of messages m = m1 . . .mn.
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• (state, c) ← SimEnc((mi)i/∈I , I) : It is a PPT algorithm that takes as input a set of indices
I ⊆ [n] and a vector of messages (mi)i/∈I and outputs a ciphertext c and a state state.

• key′ ← SimKey(state, (mi)i∈I) : It is a PPT algorithm that takes as input the state information
state and a vector of messages (mi)i∈I and outputs a key key′.

and satisfies the following properties:

Correctness. For every key← KeyGen(1λ), for every m ∈ {0, 1}s×n it holds that:

Dec(key,Enc(key,m)) = m.

Simulation with No Holes. We require that the distribution of (c, key) computed via (state, c)←
SimEnc(m, ∅) and key← SimKey(state, ∅) to be identical to key← KeyGen(1λ) and c← Enc(key,m1 . . .mn).
In other words, simulation when there are no holes (i.e., I = ∅) is identical to honest key generation
and encryption.

Security. For any PPT adversary A, there exists a negligible function ν = ν(λ) such that:∣∣Pr[Expsimenc
A,Π (1λ, 0) = 1]− Pr[Expsimenc

A,Π (1λ, 1) = 1]
∣∣ ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, a vector (mi)i 6∈I , and a
challenge j ∈ [n] \ I. Let I ′ = I ∪ {j}.

2. • If b = 0, compute c as follows: (state, c)← SimEnc((mi)i 6∈I , I).

• If b = 1, compute c as follows: (state, c)← SimEnc((mi)i 6∈I′ , I
′).

3. Send c to the adversary A.

4. The adversary A outputs the set of remaining messages (mi)i∈I .

• If b = 0, compute key as follows: key← SimKey(state, (mi)i∈I).

• If b = 1, compute key as follows: key← SimKey(state, (mi)i∈I′)

5. Send key to the adversary.

6. A outputs b′ which is the output of the experiment.
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SAdpGarbleCkt(1λ, C): On input a circuit C : {0, 1}n → {0, 1}m do:

1. Parse C as C1, C2, . . . , Cm.

2. Sample key← KeyGen(1λ).

3. For each w ∈ [n] and b ∈ {0, 1} sample labw,b ← {0, 1}λ. (We use lab to denote
{labw,b}w∈[n],b∈{0,1}.)

4. for each i ∈ [m] do:

(a) Compute C̃i ← Garble
(
1λ, Ci, lab

)
.

5. Compute c← Enc(key, {C̃i}i∈[m]).

6. Output C̃ := c and state := (key, lab).

SAdpGarbleInp(state, x) : On input the state state and a string x ∈ {0, 1}n do:

1. Parse state as (key, {labw,b}w∈[n],b∈{0,1})

2. Output x̃ :=
(
key, {labw,x[w]}w∈[n]

)
.

SAdpEvalCkt(C̃, x̃) : On input garbled circuit C̃, and garbled input x̃ do:

1. Parse C̃ as c and x̃ as
(
key, {labw}w∈[n]

)
.

2. Compute {C̃i}i∈[m] := Dec(key, c).

3. for each i ∈ [m] do:

(a) Compute yi := Eval(C̃i, {labw}w∈[n]).

4. Output y1 . . . ym.

Figure 20: Distribution-Indistinguishable Adaptive Garbled Circuits

B.1 Security

Correctness and efficiency follows in a straightforward manner and we now argue the security. The
simulated distribution is same as the distribution generated in H3 (defined later). We show that
the real distribution is indistinguishable to the simulated distribution. We show this via a sequence
of intermediate hybrids.

• H1 : This corresponds to the real world distribution of C̃ and x̃.

• H2 : In this hybrid, we generate the garbled circuit C̃ and the garbled input x̃ as follows.
Generating C̃:

1. Let C be C1, . . . , Cj , Cj+1, . . . , Cm.

2. For each w ∈ [n] and b ∈ {0, 1} sample labw,b ← {0, 1}λ. (We use lab to denote
{lab}w∈[n],b∈{0,1}.)

3. for each i ∈ [m] \ {j} do:

(a) Compute C̃i ← Garble
(
1λ, Ci, lab

)
.
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4. Compute (c, stateSim)← SimEnc({C̃i}i 6=[j], {j}).

5. Output C̃ := c and state := (stateSim, lab).

Generating x̃:

1. Parse state as (stateSim, {labw,b}w∈[n],b∈{0,1}).

2. Compute C̃j ← Garble
(
1λ, Cj , lab

)
.

3. Set key← SimKey(stateSim, C̃j).

4. Output key, {labw,x[w]}w∈[n].

It follows directly from the simulation with no holes and the security properties of somewhere
equivocal encryption that H1 is computationally indistinguishable to H2.

• H3 : In this hybrid, we generate the garbled circuit C̃ as in H2 but generate the garbled input
x̃ as follows.
Generating x̃:

1. Parse state as (stateSim, {labw,b}w∈[n],b∈{0,1}).

2. Compute C̃j ← Simckt

(
1λ, 1|Cj |, Cj(x), {labw,x[w]}w∈inp(C)

)
.

3. Set key← SimKey(stateSim, C̃j+1).

4. Output key, {labw,x[w]}w∈[n].

It follows from the selective security of garbled circuits that H2 is computationally indistin-
guishable to H3. H3 represents the simulated distribution.
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