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Abstract. Within recent years, secure comparison protocols have been
proposed using binary decomposition and properties of algebraic fields.
These have been repeatedly optimized and increased in efficiency, but
have seemingly reached a plateau. We propose a new approach to this
problem that takes advantage of dynamic group sizes for intermediate
calculations and asymmetric computations among participating parties.
As a consequence, according to our analysis, communication and compu-
tation costs have been brought to a very low and efficient level. Partic-
ularly, the communication costs have been considerably reduced both in
order as well as the dominating term’s order of magnitude. In addition,
our proposed protocol requires no secure multi-party multiplication in-
vocations in contrast to those required by the existing protocols, leading
to inefficient constructions of secure comparisons.

1 Introduction

A need for the ability to perform secure computation in a practical manner is
increasing proportionally to the need of our society to securely analyze the data
we are amassing, and that at increasingly fantastic rates.

At the heart of many analysis problems is the simple comparison operator
which has been identified, repeatedly, as a computational bottleneck for further
performance improvements [1]. Considering a variety of problems, the compar-
ison operator will be heavily used in many cases. These problems range from
the traditional problem of the Millionaires presented by Yao is considered [2],
secure auctioning [3], as well as queries on a secure database [4]. Thus, finding
an efficient approach solving this problem - in any given situation - will have a
positive performance effect on the rest of the overall system’s performance. The
boost in performance from improving comparisons will naturally be proportional
to the use of this operation in the overall system. This result is well known from
the work of Amdahl and his eponymous Law [5].

In the last few decades, several strategies have been proposed to allow for
secure computations which would mitigate or eliminate the concerns and threats
to data confidentiality. They represent multiple general approaches to solving the
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problem with various benefits and costs. Within the realm of secret sharing, two
main classes of these approaches to providing a secure comparison exist. First,
there are approaches based on binary decomposition. Another class of proto-
cols exploits properties of finite field arithmetic. This is done through indirect
comparisons with transformed values, which are logically combined to form the
results of the desired comparison.

In general, the approaches currently known have been steadily improving.
However, it seems that a plateau has been reached. These approaches represent
constant rounds solutions, but the costs of their communications are still high
with respect to the values on which they operate. This is at least partially due to
the trade-off made in each of their work to achieve constant rounds. In order to
achieve constant rounds, greater local computations and communications costs
were sacrificed. This is related to the results for unbounded fan-in multiplication
given in the work of Bar-Ilan and Beaver [6]. Given that these approaches require
this result to be able to reduce their round complexity to a constant, and by self-
admission [7], it seems unlikely to drop considerably further within the currently
explored veins of inquiry. It is our desire to present a different approach.

1.1 Our Contributions

An important link in the extant work in the field is that all the current secret
sharing based protocols are symmetric; that is, all parties perform identical com-
putations on their locally held shares of the data. We propose an asymmetric
secure comparison protocol, based on secret sharing, that allows for greater effi-
ciency than previous protocols with respect to required execution rounds, local
computational requirements and communications. In our proposed protocol, the
following features lead to the efficiency gain:

– Without using Shamir’s secret sharing scheme, no two parties need to execute
the exact same instructions.

– This asymmetry allows for the control of individual pieces of knowledge to
further minimize computation and communication complexities.

– It is important to note, however, that this introduction of asymmetry makes
the resulting protocol more difficult to prove secure in general, as well as
more difficult to secure against malicious adversaries specifically.

– Additionally, where possible, we take advantage of differing representations
of values and field magnitudes for randomization and intermediate secure
computations. This further reduces computation and communication costs.

– Most notably, by making use of the group Z2, we are able to compute xor

locally, without secure multiplications.

We base our protocol on an additive secret sharing scheme and adopt the
semi-honest or honest-but-curious adversary model. Our protocol is very efficient
with respect to other contributions in the field, as can be seen by consulting
Tables 1 and 2, representing online and total complexities respectively (where
all the compared protocols are secure under the semi-honest model). Overall,
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our proposed protocol requires 5 rounds, and the communication costs are on
the order of 7` log2 ` + 26` + 11 log2 ` + 32 bits for private inputs consisting of
at most ` bits such that ` = log2N for some N defining the group used for the
underlying secret sharing scheme and sufficiently large to represent the values
being compared. No secure multi-party multiplication invocations are required.
Furthermore, our local computations are guaranteed to be less than those of
the other protocols currently extant in the literature. This is due to our local
operations being almost exclusively shifts, additions and multiplications, in a
simple sense. We do not rely heavily on a large number of group elements being
multiplicatively inverted, nor do we require solutions to a large set of systems of
equations to be solved. Many of these operations are required by other works.

The communication complexities are described in terms of the required num-
ber of bits to be transmitted. This is a sharp contrast to the common convention
of the currently optimized works in the area requiring a communication com-
plexity represented by a count of secure multiplication invocations. The compar-
isons that follow are all calculated under the assumption that all the schemes
are employing the secret sharing scheme chosen by their designers. A single
secure multiplication under the Shamir secret sharing scheme requires, for m
parties, assuming appropriate choices for the degree and threshold, m(m − 1)`
bits to be communicated between the parties. For 3 parties and a protocol re-
quiring 24` + 26 log2 ` + 4 multiplication invocations, this results in more than
144`2 + 156` log2 `+ 24` bits to be transmitted, a distinctly larger quantity than
our proposed protocol. This is calculated directly from analyzing the number of
bits required for a secure multiplication according to the method common for
Shamir’s secret sharing scheme [8]. The communication requirements and the
number of required rounds would both grow even more, if these protocols were
implemented under additive secret sharing because secure multiplication under
additive secret sharing is more expensive (in rounds and bits transmitted) than
that under Shamir’s secret sharing. For all the following analysis, we assume 3
parties, the same as we propose for our own protocol. We then simply multiply
the number of bits required for a single Shamir secure multiplication by the
number of expected multiplication invocations to yield the figures we present.
For our protocol consisting of an arbitrary number of parties, the complexity
is dependent on both ` and m. We also generalize the analysis of the existing
protocols when we discuss this extension separately in Section 5.2.

It is important to note, however, that the figures given for required com-
munications according to the requirements for secure multiplication invocations
are, by definition, not a tight bound. Other operations, most frequently invoked,
the reveal operation, also require communication. The extant work neglects this
operation by explaining that its cost is insignificant in the larger scheme of the
protocols, and the resulting increase would grow only the coefficients but not the
order of the communication complexity, which is negligible from an asymptotic
point of view. Many reveal operations to rebuild shared values will be required
with many of the intermediate steps of other protocols, particularly with prefix
products due to the use of the procedure given by Bar Ilan and Beaver [6]. In



4

reality, the communication complexity of a reveal is the same as that of a se-
cure multiplication under Shamir secret sharing. Due to these reasons, it is not
considered negligible from our perspective, and this is why we draw the readers
attention to this looseness in the cited analysis. In the analysis of our protocol,
we make no use of such simplifications or insignificance assumptions. In contrast,
the included complexity analysis for our protocol is exact.

Additionally we differ with respect to the round complexity analysis given
by [9], in that we have a more strict definition of of a computational round,
as discussed in Section 4.3. This stricter definition leads to a somewhat higher
count of rounds than that given in the analysis published by the authors. To
summarize the extant work in the field with respect to round and communication
complexities, we offer Tables 1 and 2 based on the summary present in [7]. The
following complexities for our table have been obtained directly from the table in
the referenced work by the method mentioned previously. Similar to the work of
Reistad and Toft [7], the “A” denotes arbitrary input in the group used for the
secret sharing scheme, while “R” denotes a domain of input which is restricted
to a proper subset of the group. Here, it is very clear that the communication
costs of our protocol are significantly less than any other of which we are aware,
by a considerable factor on the dominating term and a reduction of order overall.

Non-constant round secret sharing based secure comparison has not gained
much attention from the research community since it can be straightforwardly
implemented. As the domain of the values being compared increases, commu-
nication cost generally dominates local computation cost. Thus, recent research
has been primarily focused on reducing the communication complexity. Homo-
morphic encryption based secure comparison protocols do exist [10, 11]. Their
main advantage is that, at minimum, only two parties are needed to perform
the necessary computations. However, they are computationally more expen-
sive than secret sharing based approaches. In this paper, we limit our scope to
constant-round secret sharing based secure comparison protocols.

Table 1. Online round and communication complexity for secure comparison protocols

Presented in Type Online Rounds Bits transmitted online

[12] A 37 126`2 log2 `+ 336`2

[13] A 8 90`2 + 30`

[7] A 4 108`2 + 48`

[7] R 2 24`2 + 6`

[9] R 7 42`2 + 42`κ+ 18`

This Paper Section 4.1 A 5 6` log2 `+ 22`+ 9 log2 `+ 28

This Paper Section 5.1 A 4 2`2 + 4` log2 `+ 19`+ 4 log2 `+ 16

The overall progression of our proposed protocol on a high level is somewhat
similar to that of Damg̊ard et al [12] from Section 2.1. The parties share their
private values in a bit decomposed manner. They cooperate in the construction
of a mask related to the differing bit of greatest significance. Finally, the mask
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Table 2. Overall round and communication complexity for secure comparison protocols

Presented in Type Overall Rounds Bits transmitted overall

[12] A 44 1104`2 log2 `+ 1254`2

[13] A 15 1674`2 + 30`

[7] A 10 918`2 + 2592` log2 `+ 144`

[7] R 8 162`2 + 216` log2 `+ 30`

[9] R 9 60`2 + 60`κ+ 18`

This paper Section 4.1 A 5 7` log2 `+ 26`+ 11 log2 `+ 32

This paper Section 5.1 A 4 2`2 + 5` log2 `+ 23`+ 6 log2 `+ 22

is used to identify which of the values is greater through differences found with
respect to earlier calculated intermediate values. These differences are used to
build shares of the final result.

1.2 Organization

The rest of the paper is organized as follows: In Section 2, we present and dis-
cuss a closely related secure comparison protocol that is fundamental to several
protocols analyzed in this paper. Next, in Section 3, we enumerate and describe
the necessary properties of a secret sharing scheme adopted in our protocol, and
provide discussion related to their complexity and composition in our work. We
also introduce the adversary models and the security settings for our protocol.
Then, we present our protocol in detail in Section 4, describing its functional-
ity and procedure along with analysis concerning its complexity, security, and
correctness. Our proposed protocols to follow are intended for various scenarios,
and complexity preferences. Our first proposed protocol, discussed in section 4.1,
deals with values that are privately held by two of the parties. Our second pro-
posed protocol represents a potentially desirable trade-off in complexity and is
discussed in Section 5.1. Finally, we discuss how our protocol can be generalized
to larger groups of parties than merely three, and suggest an approach in which
our protocol can be transformed to handle values which already exist in a bitwise
shared format. We conclude by summarizing our contribution in Section 6, and
indicate areas for future research directions.

2 Related Work

Yao’s well known construction, garbled circuits and his associated motivator,
the Millionaire’s Problem, is an early approach to the possibility of a secure
multiparty protocol to affect the comparison of two private values [2,14]. There
have been a number of concerns regarding the efficiency of this scheme, and
there are many dramatically optimized solutions [15–18]. Yet, for large private
data sets, they are still not feasible for a practical situation dealing heavily with
arithmetic operations. Secret sharing approaches are generally preferable in this
setting as noted in [19] and there are desires for stronger security guarantees.
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Methods also exist for the implementation of this functionality based on
homomorphic encryption [11, 20–22]. These operate on a very different set of
principles and security guarantees than our present work, and in general, are
prone to be less efficient than methods based on secret sharing schemes [23].
This is due primarily to the comparatively large keys required to assure secu-
rity [24]. Without some fundamental change regarding this requirement and the
assumptions of public key cryptography, is unlikely to be significantly reduced.
While homomorphic encryption based secure comparison protocols are neces-
sary in the two-party setting, in this paper, we focus on secret sharing based
approaches which requires at least three parties.

The two main approaches based on secret sharing, as introduced earlier, are
methods based on changing the representation of the shared values via bit de-
composition [12], and those employing a series of tests related to the properties
of finite field arithmetic [13]. Later improvements and optimizations to each of
these methods have been published subsequent to the original proposition of
the first of each approach. We have chosen to present and discuss the work of
Damg̊ard et al [12] due to the foundational place in the literature, clear repre-
sentation of the underlying principles it represents, and relation to our general
approach. Some of the optimizations on this method were proposed in [7, 9, 13].

The latter strategy, that of exploiting properties of finite field arithmetic
seeks to affect a comparison through intermediate comparisons and some logic
to bring the meaning of these intermediate comparisons together to form the
desired solution. This method was introduced in the work of Nishide and Ohta
[13]. Other optimizations have since come which cut back on the complexity
and number of intermediate calculations necessary based on some restrictions
to the domain of values which are shared and compared [7, 25]. We do not
give these results as thorough a treatment due to the drastic difference in the
approach, unrelated to our methods, though their complexities are important
for consideration relative to the results of others as well as comparison with the
complexity of our proposed solution which are all reported in Tables 1 and 2.

2.1 Damg̊ard et al

The first known constant rounds result in this area is due to the work of Damg̊ard
et al [12]. In this setting, secretly shared values must first be bit decomposed
among the parties involved in the computation. Alternatively, the values may
exist as bitwise shares initially. This means the protocol takes as input bit decom-
posed shares of the private values to be compared. If this procedure is necessary,
though expensive, it is potentially beneficial when other bit-wise operations may
be seen as advantageous. If other bit-wise operations are desirable, the cost in-
curred in this scheme for bit decomposition may be amortized somewhat across
all those sub-protocols which require it.

Addressing the comparison directly, it begins with a bitwise xor between the
two values is computed. The result from the xor is used as the input to a prefix
or. This results in a series of shared bits such that all the most significant bits are
zero until the first difference in the original values was encountered. Following
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that bit location down to the least significant bit, all bits are set. Next, from
least to most significant bits, a pairwise subtraction is computed finding the
difference between each bit and the next most significant bit in the series. The
result from this step is a series of bitwise shares such that all shared bits are
shares of zero with at most one exception: the location of the most significant
difference between the two original inputs. The last several steps perform secure
bitwise multiplications to extract the value of the original input at the location
of the most significant difference. The key steps are given in Algorithm 1.

Algorithm 1: BIT-LT from Damg̊ard et al [12]

Input: bitwise shares of integers a, b denoted [a]B , [b]B with individual bits
denoted [a0]p . . . [a`−1]p where ` = dlog2 pe

Output: shares of the single bit result [c]p
1 begin
2 for i = 0, . . . , `− 1 do
3 [ei]p ← XOR([ai]p, [bi]p)
4 end
5 ([f`−1]p, . . . , [f0]p) = PRE∨([e`−1]p, . . . , [e0]p)
6 [g`−1]p = [f`−1]p
7 for i = 0, . . . , `− 2 do
8 [gi]p ← [fi]p − [fi+1]p
9 end

10 for i = 0, . . . , `− 1 do
11 [hi]p ← MULT([gi]p, [bi]p)
12 end

13 [h]p ←
∑`−1
i=0 [hi]p

14 Output [h]p
15 end

Though there is a fairly high computational complexity and communication
cost, this important result demonstrates constant rounds secure comparison is
indeed possible and well within feasibility.

3 Preliminaries

In our work, we make use of the additive secret sharing scheme. The approach
under additive secret sharing makes use of a different set of mathematical prin-
ciples to achieve secure multiparty computation than the more widely referenced
Shamir scheme, though modular arithmetic still lies at the core of its security.
The underlying security is dependent on the fact that adding any value to a uni-
formly and randomly selected value, modulus a value delimiting the group, N , is
still uniformly random. Therefore, it is impossible to say what the non-random
component of the sum was, when considering only the resulting sum. In this
context, the sum is unconditionally secure since any adversary, unbounded by
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limits on computational power, can do no better than a random guess on what
the original values may have been. This security is similar in principle to the
unconditional security guarantees of the one-time pad, which has the weakness
of inability to reuse the pad due to leaks in information. In the setting of secret
sharing, no such concerns exist. For each and every share, new uniform random
values are selected, used, and distributed, which removes the risk for information
leakage from padding value reuse. If a shared value is revealed, its former shares
may no longer be securely used without risk of information disclosure.

3.1 Operations and Notations in Linear Secret Sharing Schemes

We require that any secret sharing scheme to be used have the ability to perform
the following operations:

– Share: given a particular value x, generate shares of x, denoted by [x]
Pj

N , in
a group defined by a modulus N for each party Pj . This must be done in
a way that they can be uniquely recombined in a method applicable to the
scheme to reconstruct the original value.

– Reveal: a sufficient number of shares [x]
Pj

N can be recombined to reveal the
original value x.

– Add with a public constant: given shares [x]
Pj

N , and a public constant c,

execute the necessary operations to calculate c+[x]
Pj

N = [c+x]
Pj

N . In a linear
secret sharing scheme, this can be done locally.

– Add shares: given two shared values [x]
Pj

N and [y]
Pj

N , calculate the sum of
their values in a shared form. This can be executed without communications
by using the addition operation implemented in the secret sharing scheme,

i.e., [x]
Pj

N + [y]
Pj

N = [x+ y]
Pj

N .

– Multiplication by a public constant: given shares [x]
Pj

N , and a public con-

stant c, execute the necessary operations to calculate c[x]
Pj

N = [cx]
Pj

N . In a
linear secret sharing scheme, this can be done locally without communication
among the parties.

3.2 Random Shift

In our protocol, we will make use of a random permutation. This permutation π
is encoded as an integer in Z` requiring log2 ` bits. We use a specific kind of cyclic
permutation called a circular shift. It is important to note that this is not a fully
random permutation, in the sense that the placement of all values in the vector
after permutation are totally independent from their location previously. In our
permutation, we only are concerned about shifting one element in an array by
a uniformly random amount. In a circular shift, every element that was previ-
ously adjacent to another element will maintain that relation in the permuted
vector. Given a value encoding the permutation, the values are circularly shifted
right that number of index locations. We denote this as applied to a vector v
by shiftπ(v), and similarly for an inverse shift−1π (v). We only require that one



9

location, for our protocol, the location of the bit flagging the index of the most
significant bit difference, be able to be moved to any other array location with a
uniform probability. In our use, every other element in the array is meaningless
and uniformly random by design, and therefore does not leak any information,
whether it maintains some relative position with respect to the bit location of
interest or not. Our use is similar to this type of shift permutation in [7]. Con-
sider a trivial example for a vector v consisting of 4 entries v = 〈0, 1, 2, 3〉; thus,
π ∈ {0, 1, 2, 3} or equivalently in binary form π ∈ {00, 01, 10, 11}. If we are
interested in the ability to move the bit position 0 to any position within the
array, consider the uniform random choice between the options presented in the
application of the permutation for each the options demonstrated in Table 3.

Table 3. Small Cyclic Permutation Illustration

Initial Vector Permutation Permuted Vector

〈0, 1, 2, 3〉 00 〈0, 1, 2, 3〉
〈0, 1, 2, 3〉 01 〈3, 0, 1, 2〉
〈0, 1, 2, 3〉 10 〈2, 3, 0, 1〉
〈0, 1, 2, 3〉 11 〈1, 2, 3, 0〉

Clearly, 0 can be in any vector location with equal probability following the
application of the permutation. This amounts to a uniform random shift in the
elements which would effectively hide its previous location. Again, we do not
care at all about any of the values of other elements, or their locations - in
either an objective or relative sense. Thus, this permutation approach efficiently,
securely, and correctly achieves our desire to hide the sole piece of information
about which we have concern.

3.3 Security Definitions and Adversary Model

Aside from the correctness and efficiency of any of the extant protocols, an
important consideration is the security guarantee that can be derived from their
execution. Toward the end of proving security, we have generally followed the
proof style and conventions, as well as the information theoretic expansions on
security proof developed by Crépeau et al [26] and Goldreich [27]. The goal in
this setting is to demonstrate for an arbitrary functionality f , there exists an
equivalence of information disclosure between the ideal execution of a protocol
and a real execution of a protocol implementing the same ultimate functionality.

The “ideal” model is defined as a protocol implementing the desired func-
tionality f corresponding to the desired function the parties wish to compute,
in a highly idealized setting. As an example, an ideal protocol trivially imple-
mented for two semi-honest parties by algorithm A = A1, A2 consists of each
party sending their private inputs x and y to a trusted third party implementing
functionality f . These private inputs x and y are associated with their respective
input domains X and Y . In this ideal model, the trusted third party executing
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f simply returns the output u ∈ U and v ∈ V to A1 and A2 respectively, where
U and V are the output domains. There is also an auxiliary input z ∈ {0, 1}∗
available to both parties. In the case that a component of A is compromised and
behaves maliciously, the only possible changes that can be done are alterations
in their input or output. The u and v are underscored in this presentation so
that they can be notationally distinguished from the real model outputs. This
model is denoted

(u, v) = IDEALf,A(z)(x, y)

The “real” world model is defined as a protocol implementing functionality
f corresponding to the desired result via the execution of a protocol p consisting
of admissible algorithms B = B1, B2. The private inputs, x ∈ X, and y ∈ Y , are
accepted as parameters. An auxiliary input z ∈ {0, 1}∗ is also available to both
parties. The return of this operation is the set of outputs from the execution of
the protocol which follows from the interaction of B1 and B2. The real model is
symbolically represented as

(u, v) = REALpf,B(z)(x, y)

What is required for perfect security in this case is the demonstration of the
equivalence of information disclosure via messages and outputs in interaction
which is denoted as

IDEALf,A(z)(x, y) ≡ REALpf,B(z)(x, y)

Here, the protocol implemented in the real model is perfectly secure if there
exists a pair of algorithms A = A1, A2 admissible in the ideal model for every
set of algorithms B = B1, B2 which are admissible in the real model (where the
same parties are honest), for all x ∈ X, y ∈ Y, z ∈ {0, 1}∗. For this definition,
“admissibility” or “equivalence” is related to information disclosed in the process
of protocol execution. An algorithm is admissible if no additional information
can be gleaned from the communications implementing its functionality than
would be the case in the ideal setting. This is to say that for all outputs in the
domains U and V , and all possible inputs from the domains X, and Y , as well
as the additional input Z:

P (u, v|x, y, z) = P (u, v|x, y, z)

which simply indicates that the joint probability distributions for the outputs are
indistinguishable, regardless of the computational power of the adversary. This
means there exists no method by which they can be distinguished or separated at
all. Thus, the real model is information theoretically secure. This is instrumental
as we make arguments for the uniformly random distributions from which our
messages, shares, randomizations, and outputs are constructed.

4 The Proposed Protocol

In this paper, we propose multiparty secure comparison protocols. Unlike the
existing secret sharing based secure comparison protocols, the inputs and inter-
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mediate computations are not symmetric among the three parties. Expansions
to larger numbers of parties are fairly trivial, and can be done based directly on
the three-party examples given in the following section. Each protocol considers
a different scenario.

– The first protocol allows for a group of three parties to securely compare
two private inputs held by two of the three parties. The purpose of the third
party is to facilitate secret sharing based secure computations.

– The second protocol presents an option concerning the protocol complexity,
with a lower number of rounds.

– For both of the preceding cases, we present an extension of our protocols,
and it assumes that the three parties do not know the values they compare,
and that they are already shared in a bit decomposed format. This is similar
to [12], listed in Tables 1 and 2.

Each proposed protocol targets a unique class of applications. However, they
together cover most scenarios related to secure comparison based applications.

4.1 Key Steps and Correctness Analysis for Protocol 1

The main steps of our first proposed protocol are presented in Algorithm 2.
Without loss of generality, P1 has a private input a and P2 has a private input
b. At the end, the protocol returns the secret shares of the comparison result
to only P1 and P2. The comparison result 1 indicates a ≥ b, and 0 otherwise.
At the beginning of the algorithm, an indexing variable i is defined for arrays
of shared values. Unless otherwise noted, i is used to span the entire array.
There are two instances in Step 5 when this is not the case. Overall, a few
key design principles are important to recall: 1) xor can be done locally in Z2,
without secure multiplication or communication, 2) we employ a summation of
bits to avoid other costly multiplications and required communication, and 3)
switching groups in which the shares are constructed allows us to further reduce
communication costs.

Aside from groups ZN and Z2, we also make use of a group ZN2
. We define

N2 to be a prime such that dlog2 `e + 1 < log2N2 < dlog2 `e + 2. This is due
to the use of the values which will be shared in this group. By inspection in the
protocols to follow, specifically Step 5, the maximum possible value which may
be shared in this group is 2(`+ 1)− 1 related to γ′0. Thus, the modulus should
have sufficient bitwidth to represent these values, and this gives us the bounds
we have defined for its modulus. It is known that a prime must exist in this
range from the proof of Bertrand’s Postulate which states that, for all n > 3
there exists at least one prime p such that n < p < 2n [28–30].

The protocol unfolds as follows along with correctness justifications. In the
following discussions, note that we refer to values without the level of specificity
that is given in the algorithm. For example, shares of a belonging to P1 and P2

in Z2 may simply be referred to as [a]. For full details please reference the given
step in the algorithm.
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Algorithm 2: SC(〈P1, a〉, 〈P2, b〉, 〈P3,⊥〉)→ (〈P1, [f ]P1

N 〉, 〈P2, [f ]P2

N 〉)
Input: Public info: N and N2, N > N2, N is an integer and the modulus of the

secret sharing scheme, ` is the required bitwidth for the domain of a
and b, N > 2`. N2 is a prime such that
dlog2 `e+ 1 < log2N2 < dlog2 `e+ 2, 0 ≤ i ≤ `, and j ∈ {1, 2}

Output: f is secretly shared between P1 and P2. f = 1 if a ≥ b; otherwise,
f = 0

1 P1

(a) a = 2a+ 1
(b) sa ←

∑
i ai

(c) Generate ri, r
′
i ∈R Z2, r′′ ∈R Z2, τi ∈R Z∗N2

, and random shift π

(d) Generate [ai]
Pj

2 , and [sa]
Pj

N2

(e) Send [ai]
P2
2 , [sa]P2

N2
, ri, r

′
i, r
′′, τi and π to P2

2 P2

(a) b = 2b

(b) Generate [bi]
Pj

2

(c) Send [bi]
P1
2 to P1

3 Pj

(a) [ei]
Pj

2 ← [ai]
Pj

2 + [bi]
Pj

2

(b) [ei]
P1
2 ← ri − [ei]

P1
2 , if ri = 1

(c) Send [ei]
Pj

2 to P3

4 P3

(a) ei ← [ei]
P1
2 + [ei]

P2
2

(b) Generate [ei]
Pj

N2

(c) Send [ei]
Pj

N2
to Pj

5 Pj

(a) [ei]
P1
N2
← ri − [ei]

P1
N2

, if ri = 1

(b) [ei]
P2
N2
← −[ei]

P2
N2

, if ri = 1

(c) [γ′`]
Pj

N2
← [e`]

Pj

N2

(d) [γ′i]
Pj

N2
← [γ′i+1]

Pj

N2
+ [ei]

Pj

N2
, for i = `− 1, . . . , 0

(e) [γ`]
Pj

N2
← [γ′`]

Pj

N2

(f) [γi]
Pj

N2
← [γ′i+1]

Pj

N2
+ [γ′i]

Pj

N2
, for i = `− 1, . . . , 0

(g) [γi]
P1
N2
← [γi]

P1
N2
− 1

(h) [ui]
Pj

N2
← τi[γi]

Pj

N2

(i) [vi]
Pj

N2
← Shiftπ

(
[ui]

Pj

N2

)
(j) Send [vi]

Pj

N2
to P3
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6 P3

(a) vi = [vi]
P1
N2

+ [vi]
P2
N2

mod N2

(b) Find the unique index k, where vk = 0

(c) Generate [hi]
Pj

2 , where hk = 1 and hi = 0 for i 6= k

(d) Send [hi]
Pj

2 to Pj

7 Pj

(a) [h]
Pj

2,B ← shift−1
π

(
[h]

Pj

2,B

)
(b) [h′i]

Pj

2 ← [hi]
Pj

2 − [ai]
Pj

2

(c) [h′i]
P1
2 ← r′i − [h′i]

P1
2 , if r′i = 1

(d) Send [h′i]
Pj

2 to P3

8 P3

(a) h′i ← [h′i]
P1
2 + [h′i]

P2
2

(b) Generate [h′i]
Pj

N2

(c) Send [h′i]
Pj

N2
to Pj

9 Pj

(a) [h′i]
P1
N2
← r′i − [h′i]

P1
N2

, if r′i = 1

(b) [h′i]
P2
N2
← −[h′i]

P2
N2

, if r′i = 1

(c) [s′a]
Pj

N2
←
∑
i[h
′
i]
Pj

N2

(d) [f ]
Pj

N2
← [sa]

Pj

N2
− [s′a]

Pj

N2

(e) [f ]P1
N2
← [f ]P1

N2
+ 1

(f) [f ]
Pj

N2
← 2−1[f ]

Pj

N2

(g) [f ]P1
N2
← r′′ − [f ]P1

N2
, if r′′ = 1

(h) [f ]P2
N2
← −[f ]P2

N2
, if r′′ = 1

(i) Send [f ]
Pj

N2
to P3

10 P3

(a) f ← [f ]P1
N2

+ [f ]P2
N2

(b) Generate [f ]
Pj

N

(c) Send [f ]
Pj

N to Pj

11 Pj

(a) [f ]P1
N ← r′′ − [f ]P1

N , if r′′ = 1
(b) [f ]P2

N ← −[f ]P2
N , if r′′ = 1
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– Step 1 : In the first step, P1 generates the necessary values for later per-
mutation and randomization. The private input of P1 is also doubled and
incremented before shares are generated. Finally, the shares for P2 along
with other values for later use are transmitted to P2.

– Step 2 : This step consists of P2 generating shares of twice the private input
it holds and sending one share to P1. The two private values are modified in
this manner (either doubled or doubled and incremented) in order to inject
one sure difference into the calculation in the values to be compared. This
is done specifically in the least significant bit position. In this way we avoid
what would have otherwise been a risk for protocol failure leading to an
information leak in the case of equality.

– Step 3 : In Step 3, all parties compute a bitwise xor, and P1 additionally
randomizes its shares by the uniform random bits which make up ri. Both
P1 and P2 send the resulting shares to P3.

– Step 4 : P3 uses the two shares received to rebuild the re-randomized secret
and generate new shares, now in a group defined by N2. This amounts to a
mapping of shares between groups Z2 → ZN2

. Note that, due to the addi-
tional randomization from Step 3, no information is leaked in this process.

– Step 5 : Recall that the shares from P1 were randomized, so when they are
rebuilt by P3, no information will be leaked. This randomization must be
reversed so that the original values, now secretly shared in a new group, can
be reclaimed. This is achieved through sharing the randomization vector r
between P1 and P2. When ri = 1, P1 computes ri − [ei] and P2 simply
computes the additive inverse of its share. This is accomplished in Steps
5(a) and 5(b) of Algorithm 2. These two parties now hold bitwise shares
of the xor of their private inputs, each as elements in ZN2

. In Step 5(d),
the protocol proceeds by computing the prefix sum of the bits from most
to least significant shares of bits. This results in a series of shares such that
the most significant bits are shares of zero until the first bit difference is
encountered, which is one. Following this position, all bits are non-zero and
non-decreasing in value with each successive bit. In Step 5(f), to ensure that
exactly one value in the array is equal to one, we iterate through the bit
positions again performing a prefix sum of the values from most to least
significant bit positions. This is the justification for the bounds which we
have given for N2. If a and b have no bits in common, the vector [ei] will
consist of shares of all ones. Thus, the prefix sum of the shares of these values
will yield, at most, `+1. Repeating this operation will yield a value of at most
2`+1; as a result, this serves as the defining factor for our bounds defined for
N2. Finally, P1 and P2 subtract one from every share of this vector, thereby
ensuring that every value in the vector is non-zero with one exception, the
location of the most significant bit difference. The values contained in the
vector are multiplied by the vector τ consisting of random values which are
known to P1 and P2. This is done to hide the intermediate calculated values
from P3. Since we require N2 to be prime, these values in τi will not yield a
product equal to 0 under modulus N2 when multiplied with any other group
element, except 0, which is the flag of the location we wish to uniquely
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preserve. Now, every array value related to every bit position is a non-zero
and uniformly random value with one exception, the position related to the
most significant bit difference. Finally, to hide this information from P3, the
vector of values [ui] is shifted according to the random value π agreed upon
between P1 and P2.

– Step 6 : Coming to Step 6, P3 rebuilds the vector of these values and finds
the unique index k containing the value zero. This player then constructs a
bitwise series of shares in Z2 such that all shares are shares of zero with the
exception of the shares indexed by k. These shares are sent to their parties.

– Step 7 : Upon receipt of these shares, the parties perform an inverse shift on
the received vector to place the sole location containing a share of one back
into the position related to the most significant bit difference. They then
compute, for each location, the difference between the newly received vector
of shares and the shares of P1’s original input. P1 additionally randomizes
this result with the vector r′, similar to what was done in Step 3(b). Similar
again to what has preceded, P3 reconstructs and performs another mapping
in the generation of new shares between groups Z2 → ZN2

. These have the
intermediate randomizations removed by the parties in Step 9(a) and 9(b)
as discussed with respect to Step 5(a) and 5(b).

– Step 8 : Here P3 once again serves as an oblivious mapper between sharing
groups and distributes the shares randomized results of the calculation of h′.

– Step 9 : All values in the vector h′ are summed by P1 and P2, and assigned
to shares of [s′a]. The difference [sa] − [s′a] is calculated. Because there is
exactly one bit difference between a and h′ in their binary representations,
the sums of the set bits within these two values will have a difference of
exactly magnitude 1. Calculating the difference [sa]−[s′a] results in either one
or its additive inverse in ZN2 being assigned to shares of f . Finally, since the
result of the computation so far is f ∈ {1,−1} shared in ZN2

, it is necessary
to map this set to f ∈ {0, 1}, and bring the shares into the domain for the
overall secret sharing scheme. The first part of these last steps is achieved
through P1 adding the value one to its share, thereby incrementing the set
of possible values to get shares of either zero or two, and then both parties
multiply their shares by the multiplicative inverse of two. In the case that
f is zero, it will remain unchanged, and in the case that f is two, it will be
reduced to one. Thus, the correct functionality has been achieved and f = 1
iff a ≥ b. All that remains is to map the shares into the appropriate group.
As we have done previously, this shared value f ∈ ZN2 is re-randomized with
another bit r′′. This value is sent to P3.

– Step 10: For the last time, P3 reveals the randomized f and builds shares of
that revealed quantity in ZN and returns these to the other parties.

– Step 11: As the last step of our proposed protocol, P1 and P2 remove the
temporary additional randomization from the shared result [f ]N and hold
their shares of the desired result.
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4.2 Security Analysis

For our security formulations and proofs to follow, we consider adversaries in
the semi-honest or honest but curious model. We consider each player’s role
independently, due to the asymmetry used in our protocol. For each case, we will
analyze the protocol focusing on communicated information and opportunities
for leaks, and we will conclude with a summary discussion of the equivalence
necessary as summarized in Section 3.3 required for proving perfect security.
Specifically, we discuss the steps toward a proof of the following equivalence
assuming semi-honest adversaries

IDEALf,A(z)(x, y) ≡ REALpf,B(z)(x, y)

for our set of three algorithms A = A1, A2, A3 admissible in the ideal model for
every set of algorithms B = B1, B2, B3 which are admissible in the real model.

Semi-honest P1 The view of P1 during the execution of the proposed protocol
includes public domain information for inputs and outputs, and the value a
which is the private input for P1. Additionally, P1 generates random bit vectors
r and r′, a random bit r′′, the vector of random values in ZN2

τ , and the random
shift π. In the course of execution, more values are exchanged; these consist of
shares of b, e, h, and h′.

– Step 1(c) and 1(d) are those which represent the generation of all the values
P1 will share with P2. Specifically, these are: ri, r

′
i, r
′′, τi, π, [ai]

P2
2 , and [sa]P2

N2
.

– In Step 2(c), [bi]
P1
2 , the P1’s share of P2’s bitwise shared input, is received.

– Step 4(c) consists of the receipt of the vector [ei]
P1

N2
.

– The vector [hi]
P1
2 is received in Step 6(d).

– In Step 8(c), the vector [h′i]
P1

N2
is received.

– Step 10(c) is the final communication in the scheme and consists of the
receipt of [f ]P1

N .

Since for each of the values listed above in the Steps 2-10, P1 only receives one
share, it is impossible for P1 to rebuild the actual values. This is immediate from
the security guarantees of the underlying secret sharing scheme. Thus, possession
of a single share cannot leak information, and P1 can do no better than random
guess on the underlying value.

The values generated in Step 1(c) and 1(d) are all uniformly random, and each
consists of use of the randomness source z provided in the real implementation
of the protocol, which is permissible under the scheme used in the proof system.
This use of the randomness source in no way violates the equivalence sought
with the ideal model. These values are either shared via the generation of shares
(e.g., only one of the two shares is sent to P2) or sent directly to P2 without
any kind of obfuscation (e.g., the vectors of random bits r and r′, the vector
of random values in ZN2

τ , and the random shift π). These values, since they
consist of uniform random values or the result of calculations which are also
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uniform random, do not pose any threat to the privacy of the protocol through
their use in the manner we have described in the context of the protocol.

The final value retained as the result of the protocol’s completion is uniformly
random and represents a share of the desired outcome from the evaluation of the
functionality we implement. f is an element in Z2, and its shares are in a larger
group. Again, it is impossible to rebuild the underlying secret, or learn anything
at all about it, from the possession of a single share. This is once more immediate
from the underlying secret sharing scheme. Therefore, P1 learns nothing beyond
what is known at the beginning of the execution of the protocol, namely, the
value of the private input already held a, the public domain information, and
anything which may be deduced from these data.

Semi-honest P2 The roles of P1 and P2 are fairly similar, though not identical.
P2’s view of the protocol differs from P1 in only two ways, receipt from P1 of some
of the random values to be used to hide information from P3, and the manner
in which some of these values are used. The total execution view consists of the
public domain information for inputs and outputs, and the value b which is the
private input for P2. P2 receives random bit vectors r and r′, a random bit r′′,
the vector of random values τi in ZN2 , and the random shift amount π. In the
course of execution, more values are exchanged. These consist of shares of a, sa,
e, h, and h′.

– Step 1(e), all values P1 shared with P2 are received. Specifically, these are:
ri, r

′
i, r
′′, τi, π, [ai]

P2
2 , and [sa]P2

N2
.

– Step 4(c) consists of the receipt of the vector [ei]
P2

N2
.

– The vector [hi]
P2
2 is received in Step 6(d).

– In Step 8(c), the vector [h′i]
P2

N2
is received.

– Step 10(c) is the final communication in the protocol and consists of the
receipt of [f ]P2

N .

The understanding of the security of the protocol, with respect to an honest-
but-curious P2, is essentially the same as the case for P1. Since P2 is never in
possession of both shares of any of the secret shared values, the values rep-
resented by the shares are impossible to reconstruct due to the properties of
the secret sharing scheme. The possession of the true values of, for example, ri
in no way compromises any security principles since the value is used only to
hide information from P3 and allows for the removal of this additional random-
ization after the shares have been mapped into their new domain. Specifically,
where P1 calculates, in Step 5(a), [ei]

P1

N2
← ri − [ei]

P1

N2
, if ri = 1, P2 calculates

[ei]
P2

N2
← −[ei]

P2

N2
, if ri = 1.

Since P2, parallel to many of the ideas presented with respect to P1, cannot
rebuild any of the secret shared values, learns nothing of additional information
which should not be gained from the randomization values and the underlying
values or result beyond what can be surmised from it’s privately held input and
public information. Thus, the protocol is secure against a semi-honest P2.
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Semi-honest P3 The role of P3 in the overall protocol is very different from
the other two. The view of P3 during the execution of the proposed comparison
protocol includes the public domain information for inputs and outputs, receipt
of the shares of the shared value v, and bitwise shared values e, and h.

– In Step 3(c), the shares [ei]
P1
2 and [ei]

P2
2 . In Step 7(d), the shares [h′i]

P1
2 and

[h′i]
P2
2 are received. These are both bitwise shares of values related to a and

b, which are recombined to reconstruct the underlying values.

– Shares [vi]
P1

N2
and [vi]

P2

N2
are received in Step 5(j) to reconstruct the random-

ized values in ZN2
.

– Shares [f ]P1

N2
and [f ]P2

N2
received in Step 9(i) are two random integers in ZN2

.

P3 receives no shares of the output of the protocol, and holds no shares of
the inputs, so the above mentioned messages comprise the total view of the
execution of the protocol from the perspective of P3. The shares of these values
have been built from the original values based on the algorithm standard for
the secret sharing scheme in use. Since P3 receives all necessary information to
rebuild values e and h′, and in fact does rebuild them, there would be a significant
leaking of information for these cases if they were not additionally re-randomized
by uniform values in Z2 before the shares of P1 were sent to P3. This additional
layer of randomization allows for P3 to rebuild the shares and generate new
shares in a different group, namely ZN2 , without gaining any knowledge about
the true values themselves. In the case of Step 5, and the reception of the shares
of v, the only information of significance is the index of the bit position related
to the most significant difference between the inputs. This position is flagged
by being the only zero element in the array. This position is hidden by the
permutation π, so even though P3 once again rebuilds and maps the values to a
different group, no meaningful information can be gleaned.

P3 has no input and only processes results from others’ shared inputs. Since
the results have been uniformly re-randomized, they retain no information of
the actual result beyond what can be ascertained in an ideal case. The best this
player can do, independent on the availability of arbitrary computational power,
is randomly guess in the domain what the correct values can be, without any
means of verifying if the guessed values are indeed the true values. Thus, the
protocol with respect to a semi-honest P3 is information theoretically secure.

Security Summary Since for each of the preceding three cases, analyzing the
set of algorithms B = B1, B2, B3, these were seen to be admissible in the sense
that they neither yield nor leak information beyond that which is desired, and
constitute a correct implementation of the desired functionality as discussed in
Section 4.1, they are equivalent to a set of algorithms A = A1, A2, A3 which are
executed in an idealized setting. This immediately leads to their security in an
information theoretic sense, the desired property we wished to demonstrate.
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4.3 Complexity

The complexity of our protocol is analyzed from two perspectives: that of round
complexity, and communications. We define a computational round as consisting
of any arbitrary amount of local computation accompanied by at most one send
and receive cycle, as established and explained in [31]. The round complexity of
our protocol is simply a constant since the number of cooperative steps executed
by the overall protocol is fixed and independent of the size of the input values.
Specifically, the number of required rounds is 5. All the following step numbers
refer to the algorithm of our protocol given in Algorithm 2.

The first round consists of Steps 1-3 since this it is in this step that the parties
are generating shares of values to be used, exchanging them, performing some
computation and transmitting the response to P3. This is analogous to one send
and receive cycle with an arbitrary amount of local computation accompanying.
During this phase, the most complex values to be communicated are generated
and sent. Specifically, in Step 1(e), generating and sending [ai]

P2
2 , [sa]P2

N2
, ri, r

′
i,

r′′, τi and π requires the transmission of ` log2 ` + 5` + 3 log2 ` + 9 bits. Step
2(c) requires only ` + 1 bits in communication, and concludes round 1 since
the next step is dependent on the values transmitted in this step. Now we get
into the more strict send and receive relationship for the rest of the required
rounds. Steps 3 and 4 together form a round since P1 and P2 calculate and
send values to P3, and receive back from P3 a response based on those values.
The same is true for pairs of Steps 5-6 and 7-8. Step 3(c) requires 2(` + 1)
bits in transmission, and 4(c) requires 2(`+ 1)(2 + log2 `) bits. The next round
requires 2(`+ 1)(2 + log2 `) bits for Step 5(i) and 2(`+ 1) bits for Step 6(d). The
penultimate round requires 2(`+ 1) bits to be sent in Step 7(d), and in step 8(c)
2(` + 1)(2 + log2 `) bits are communicated. The final round consists of Steps 9
and 10 in which 2(2+log2 `) and 2` bits are communicated respectively. The last
step follows immediately from the values received in Step 10, and requires no
further communication. Therefore, Step 11 is considered as a final part of round
5. For the total communication complexity, we consider the number of bits need
to be transmitted, according to the steps in which they occur:

– Step 1: 3(` + 1) bits for ri, r
′
i, and [ai]

P2
2 , 1 for r′′, (` + 1)(2 + log2`) for τi,

1 + log2 ` for π, and 2 + log2 ` for [sa]P2

N2
. The total: ` log2 `+ 5`+ 3 log2 `+ 9

– Step 2: `+ 1 for [bi]
P1
2

– Step 3: 2(`+ 1) for [ei]
P1
2 and [ei]

P2
2

– Step 4: 2(`+ 1)(2 + log2 `) for [ei]
P1

N2
and [ei]

P2

N2

– Step 5: 2(`+ 1)(2 + log2 `) for [vi]
P1

N2
and [vi]

P2

N2

– Step 6: 2(`+ 1) for [hi]
P1
2 and [hi]

P2
2

– Step 7: 2(`+ 1) for [h′i]
P1
2 and [h′i]

P2
2

– Step 8: 2(`+ 1)(2 + log2 `) for [h′i]
P1

N2
and [h′i]

P2

N2

– Step 9: 2(2 + log2 `) for [f ]P1

N2
and [f ]P2

N2

– Step 10: 2` for [f ]P1

N and [f ]P2

N

Summing these leads directly to the aforementioned figure for the overall com-
munication requirement of our protocol: 7` log2 `+ 26`+ 11 log2 `+ 32 bits.
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5 Protocol Variations

In this section, we address a couple alternatives for slight changes which may
be made to our protocol to alter its complexity or expand its generality. The
first such proposed alteration allows for a trade-off in complexity which could
be desirable in some settings, trading the elimination of a computational round
for a slightly increased communication complexity. The other suggests a manner
in which it is possible to generalize our three-party protocol to any number of
parties greater than three with only slight increase in communication costs.

5.1 Variation for Alternative Complexity

If round complexity is of greater concern than overall communication costs, we
offer a trade-off which can be implemented with respect to our general protocol.
There is a one round complexity reduction which is bought at the expense of
an increase in the communication complexity. In order to affect this change,
the protocol as given previously stands for Steps 1-7. Beginning with Step 8,
alterations are necessary. We present the Algorithm 3 which consists of the
necessary steps to replace in Algorithm 2. The only other alterations occur in
Step 1(d)-(e) where sa is shared in ZN rather than ZN2

. In addition, N is now
required to be odd. Finally, Steps 10 and 11 are no longer necessary, and the
protocol ceases with completion after the finish of Step 9.

Algorithm 3: Replacement steps for alternative complexity for
SC(〈P1, a〉, 〈P2, b〉, 〈P3,⊥〉)→ (〈P1, [f ]P1

N 〉, 〈P2, [f ]P2

N 〉)
Input: Public info: N and N2, N > N2, N is an odd integer and the modulus

of the secret sharing scheme, ` is the required bitwidth for the domain
of a and b, N > 2`. N2 is a prime such that
dlog2 `e+ 1 < log2N2 < dlog2 `e+ 2, 0 ≤ i ≤ `, and j ∈ {1, 2}

Output: f is secretly shared between P1 and P2. f = 1 if a ≥ b; otherwise,
f = 0

88 P3

(a) h′i ← [h′i]
P1
2 + [h′i]

P2
2

(b) Generate [h′i]
Pj

N

(c) Send [h′i]
Pj

N to Pj

9 Pj

(a) [h′i]
P1
N ← r′i − [h′i]

P1
N , if r′i = 1

(b) [h′i]
P2
N ← −[h′i]

P2
N , if r′i = 1

(c) [s′a]
Pj

N ←
∑
i[h
′
i]
Pj

N

(d) [f ]
Pj

N ← [sa]
Pj

N − [s′a]
Pj

N

(e) [f ]P1
N ← [f ]P1

N + 1

(f) [f ]
Pj

N ← 2−1[f ]
Pj

N
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The communications required in this version of the protocol are as follows:

– Step 1: 3(` + 1) bits for ri, r
′
i, and [ai]

P2
2 , 1 for r′′, (` + 1)(2 + log2`) for τi,

1 + log2 ` for π, and ` for [sa]P2

N the total is ` log2 `+ 6`+ 2 log2 `+ 7 bits

– Step 2: `+ 1 for [bi]
P1
2

– Step 3: 2(`+ 1) for [ei]
P1
2 and [ei]

P2
2

– Step 4: 2(`+ 1)(2 + log2 `) for [ei]
P1

N2
and [ei]

P2

N2

– Step 5: 2(`+ 1)(2 + log2 `) for [vi]
P1

N2
and [vi]

P2

N2

– Step 6: 2(`+ 1) for [hi]
P1
2 and [hi]

P2
2

– Step 7: 2(`+ 1) for [h′i]
P1
2 and [h′i]

P2
2

– Step 8: 2`(`+ 1) for [h′i]
P1

N and [h′i]
P2

N

The result of this alteration results in a complexity of 2`2 + 5` log2 ` + 23` +
6 log2 ` + 22. There is some change in the groups used for shared values, but
the functionality and overall procedure is changed in no substantive manner for
the considerations of security and correctness. Therefore, we do not introduce
detailed complexity and security discussion as we did for the primary version of
our protocol. All the arguments are essentially the same.

5.2 Variation for Shared and Bit-decomposed Inputs

Similar to the previously referenced related protocol from [12], we can, with slight
alteration, accept values which already exist in a shared and bitwise decomposed
state as inputs to our protocol rather than only privately held values from two
parties. This can allow arbitrarily many parties to be shareholders and still
perform the comparison with minimal additional communication cost. Additive
secret sharing is required due to its ability to recombine incomplete sets of shares
into a share which is correct, and uniformly random, for a set of fewer parties.
Recall that under additive secret sharing, shares of a value x are constructed,
for m parties and modulus N , according to the following equation:

[x]Pm

N = x− [x]P1

N − · · · − [x]
Pm−1

N

where all [x]P1

N through [x]
Pm−1

N are randomly selected elements of ZN and [x]Pm

N

satisfies the equation. Once these shares are distributed, all m parties hold an
equal share of the secret, and all m are required to reconstruct the secret. If,
however, P3 through Pm were to send their shares to P2, then P2 could sum them
with its own share and hold a new share which would allow for P2 and P1 to
compute functions without interaction from the rest of the parties. At the end of
the desired functionality, shares can be redistributed to the remaining parties in
a manner similar, though inverse, to the process by which they were combined.
The share held by P2 has gained no information since it is still uniform random,
and both security and correctness have been maintained. It is this property which
additive secret sharing possesses, and Shamir’s scheme does not, that we exploit
to maintain efficiency of our scheme in this variation. The steps, 1-5 and 11, in
need of alterations are given in Algorithm 4. The messages exchanged in this
version of the protocol are as follows:
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– Step 1: 4(` + 1) + 1 + (` + 1)(2 + log2 `) + 1 + log2 ` + 2`(m − 2) for qi, ri,
r′i, r

′′, τi, π, and [a′i]
P1
2 , as well as [ai]

Pk
2 and [bi]

Pk
2 , where k = 3 . . .m

– Step 2: `+ 1 for [ai]
P2
2

– Step 3: 2(`+ 1) for [ei]
P1
2 and [ei]

P2
2

– Step 4: 4(`+ 1)(2 + log2 `) for [ei]
P1

N2
, [ei]

P2

N2
, [a′i]

P1

N2
, and [a′i]

P2

N2

– Step 5: 2(`+ 1)(2 + log2 `) for [vi]
P1

N2
and [vi]

P2

N2

– Step 6: 2(`+ 1) for [hi]
P1
2 and [hi]

P2
2

– Step 7: 2(`+ 1) for [h′i]
P1
2 and [h′i]

P2
2

– Step 8: 2(`+ 1)(2 + log2 `) for [h′i]
P1

N2
and [h′i]

P2

N2

– Step 9: 2(2 + log2 `) for [f ]P1

N2
and [f ]P2

N2

– Step 10: 2` for [f ]P1

N and [f ]P2

N

– Step 11: 2`(m− 2) for [f ]
Pj,k

N , where k = 3 . . .m and j = 1, 2

This leads directly to a total communication cost of 9` log2 ` + 4m` + 25` +
12 log2 `+35 bits. Even though we are operating on already bit decomposed and
shared values, our protocol is still very efficient in comparison to others due to
the fact that we share our bit decomposed values in Z2 as opposed to ZN . This
boosts efficiency through immediate savings in communication, but it is also the
means by which we can compute xor locally without requiring secure multi-party
multiplications. In the following we present Table 4, which clearly demonstrates
that not only is our proposed protocol of lower asymptotic complexity in both
m and `, and lower complexity in terms of required overall rounds, but it is also
lower in the coefficients of the dominating terms, thus presenting a substantial
reduction in required communication costs.

Table 4. Overall round and communication complexity for secure comparison protocols

Presented in Type Overall Rounds Bits transmitted overall

[12] A 44 m(m− 1)(184`2 log2 `+ 209`2)

[13] A 15 m(m− 1)(279`2 + 5`)

[7] A 10 m(m− 1)(153`2 + 432` log2 `+ 24`)

[7] R 8 m(m− 1)(27`2 + 36` log2 `+ 5`)

[9] R 9 m(m− 1)(10(`(`+ κ)) + 3`)

This paper Section 5.2 A 5
9` log2 `+ 4m`+ 25`

+ 12 log2 `+ 35
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Algorithm 4: Replacement steps for shared, bit-decomposed inputs for
SC(〈P1, [ai]

P1
2 , [bi]

P1
2 〉 . . . 〈Pm, [ai]

Pm
2 , [bi]

Pm
2 〉)→ (〈P1, [f ]P1

N 〉 . . . 〈Pm, [f ]Pm

N 〉)
Input: Public info: N and N2, N > N2, N is an integer and the modulus of the

secret sharing scheme, ` is the required bitwidth for the domain of a and
b which are bitwise shared among the m parties, N > 2`. N2 is a prime
such that dlog2 `e+ 1 < log2N2 < dlog2 `e+ 2, 0 ≤ i ≤ `, and j ∈ {1, 2}

Output: f is secretly shared between all P1 . . . Pm. f = 1 if a ≥ b; otherwise,
f = 0

1 P1

(a) [ai+1]P1
2 = [ai]

P1
2 for i = `− 1, . . . , 0

(b) [bi+1]P1
2 = [bi]

P1
2 for i = `− 1, . . . , 0

(c) [a0]P1
2 ← 0

(d) [b0]P1
2 ← 0

(e) Generate qi, ri, r
′
i ∈R Z2, r′′ ∈R Z2, τi ∈R Z∗N2

, and random shift π

(f) [a′i]
P1
2 ← qi − [ai]

P1
2 , if qi = 1

(g) Send qi, ri, r
′
i, r
′′, τi and π to P2, and send [a′i]

P1
2 to P3

Pk (k = 3 . . .m)

(a) Send [ai]
Pk
2 and [bi]

Pk
2 to P2

2 P2

(a) [ai+1]P2
2 =

∑m
k=2[ai]

Pk
2 , for i = `− 1, . . . , 0

(b) [bi+1]P2
2 =

∑m
k=2[bi]

Pk
2 , for i = `− 1, . . . , 0

(c) [a0]P2
2 ← 1

(d) [b0]P2
2 ← 0

(e) Send [ai]
P2
2 to P3

3 Pj

(a) [ei]
Pj

2 ← [ai]
Pj

2 + [bi]
Pj

2

(b) [ei]
P1
2 ← ri − [ei]

P1
2 , if ri = 1

(c) Send [ei]
Pj

2 to P3

4 P3

(a) ei ← [ei]
P1
2 + [ei]

P2
2

(b) Generate [ei]
Pj

N2

(c) a′i ← [a′i]
P1
2 + [ai]

P2
2

(d) Generate [a′i]
Pj

N2

(e) Send [ei]
Pj

N2
and [a′i]

Pj

N2
to Pj
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5 Pj

(a) [ei]
P1
N2
← ri − [ei]

P1
N2

, if ri = 1

(b) [ei]
P2
N2
← −[ei]

P2
N2

, if ri = 1

(c) [ai]
P1
N2
← qi − [ai]

P1
N2

, if qi = 1

(d) [ai]
P2
N2
← −[ai]

P2
N2

, if qi = 1

(e) [sa]
Pj

N2
←
∑
i[ai]

Pj

N2

(f) [γ′`]
Pj

N2
← [e`]

Pj

N2

(g) [γ′i]
Pj

N2
← [γ′i+1]

Pj

N2
+ [ei]

Pj

N2
, for i = `− 1, . . . , 0

(h) [γ`]
Pj

N2
← [γ′`]

Pj

N2

(i) [γi]
Pj

N2
← [γ′i+1]

Pj

N2
+ [γ′i]

Pj

N2
, for i = `− 1, . . . , 0

(j) [γi]
P1
N2
← [γi]

P1
N2
− 1

(k) [ui]
Pj

N2
← τi[γi]

Pj

N2

(l) [vi]
Pj

N2
← Shiftπ

(
[ui]

Pj

N2

)
(m) Send [vi]

Pj

N2
to P3

11 Pj

(a) [f ]P1
N ← r′′ − [f ]P1

N , if r′′ = 1
(b) [f ]P2

N ← −[f ]P2
N , if r′′ = 1

(c) Generate [f ]
Pj,k

N ∈R ZN , for k = 3, . . . ,m

(d) [f ]
Pj

N ← [f ]
Pj

N −
∑m
k=3[f ]

Pj,k

N

(e) Send [f ]
Pj,k

N to Pk, for k = 3, . . . ,m

Pk (k = 3, . . . ,m)

(a) [f ]
Pk
N ← [f ]

P1,k

N + [f ]
P2,k

N
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6 Conclusion

Our contribution in this paper amounts to a proposed protocol for secure multi-
partly computation, specifically comparison, which can be implemented very
efficiently in a secret sharing scheme. Using dynamic groups for share creation
as well as protocol asymmetry, we have significantly reduced both the local com-
putation as well as the communication complexity for this vital operation (mul-
tiple orders of magnitude less than other extant protocols as well as a reduction
of order). It is our hope that our contributions thus far may be of immediate
benefit to the academic and research communities for immediate use and ef-
ficiency improvement of many other protocols and programs dependent on a
secure multi-party comparison operator.

Our future work in this area includes an extended presentation of our proto-
cols to include security guarantees for different adversary models. We also plan
to formally present the generalization of our protocol to function in the more
general setting of values which have already been secretly shared rather than
those privately and locally held at the initialization of the protocol, or those
which have already been bit decomposed in the secret sharing scheme. Further-
more, we will investigate the necessary strategies to make our design applicable
for Shamir’s secret sharing scheme.
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