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Abstract. Evaluation of security margins after a side-channel attack is an important
step of side-channel resistance evaluation. The security margin indicates the brute
force effort needed to recover the key given the leakages. In the recent years, several
solutions for key rank estimation algorithms have been proposed. All these solutions
give an interesting trade-off between the tightness of the result and the time complexity
for symmetric key. Unfortunately, none of them has a linear complexity in the number
of subkeys, hence these solutions are slow for large (asymmetric) keys. In this paper,
we present a solution to obtain a key rank estimation algorithm with a reasonable
trade-off between the efficiency and the tightness that is suitable for large keys.
Moreover, by applying backtracking we obtain a parallel key enumeration algorithm.
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1 Introduction

Side-channel attacks are powerful attacks against cryptographic implementations. To
perform a side-channel attack, an attacker needs to be able to measure some physical
properties (e.g. power consumption, electromagnetic radiation) of the device while it
computes some key dependent operations. With this additional information, some attacks
can be performed against cryptographic implementations. This kind of attacks has been
used to mount some practical attacks against real devices [LYST15]. Hence, cryptographic
algorithms required secure implementations.

To defeat side-channel attacks, cryptographic implementations should embedded ap-
propriate countermeasures. The security margins that the countermeasures offer should be
tested. For this reason, evaluation labs generally launch some popular attacks to evaluate
if an adversary can break an implementation by performing, for example, a key recovery
attack. This approach is adapted since the leakage of an implementation dependents on
the device. Thus, the security obtained by an implementation is highly dependent on the
underlying device.

Most of state of the art side-channel attacks follow a divide-and-conquer strategy,
where the master key is split into several pieces, called subkeys. The attacker/evaluator
mounts an independent attack for each of these subkeys. He then needs to combine
the different results of the attacks. A security evaluation only based on a success or
failure of a key recovery attack is limited by the computational power of the evaluator.
To get rid of this limitation a solution is to compute the rank of the key instead of
performing a key recovery attack. The rank corresponds to the number of keys needed
to be tested before recovering the actual key. Recently, several papers studied how to
evaluate the security by evaluating the computational power required after a side-channel
attack [BLvV15, GGPT15, MOOS15, VGS13]. These papers compute an estimation of
the rank of the key after a side-channel attack, without being limited by the evaluator
computational power. All these papers focus on symmetric key size. In [GGPT15] the
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authors managed to evaluate ranks for 1024-bit keys, but for larger keys, this solution
could have some limitations.

Our contributions. We study the cost of the solution of Glowacz et al. for large keys.
Next, we present a variation of this key rank estimation algorithm. This variation allows
us to obtain a linear complexity of the algorithm in the number of subkeys.

We then derive some tighter bound for our construction. These tight bounds allow us
to have an efficient and tight solution for key rank estimation for large keys (size greater
than 1024 bits). Remark that our method offers a trade-off between efficiency and tightness
of the result. That is a new feature for large key evaluation as the only efficient solution of
Choudary and Popescu [CP17] can not tighten the bounds provided.

Finally, by applying a similar idea as Poussier et al. [PSG16], we transform our key
rank algorithm to a key enumeration algorithm. This key enumeration algorithm could be
useful when the CHES 2016 enumeration algorithm requires too much memory.

2 Background

2.1 Side-channel attacks

For the rank estimation/key enumeration problems, the details on the divide-and-conquer
attack are not necessary. We just need to specify the output of the attack. Let us assume
that the attacker targets a n-bit master key. An adversary using a divide-and-conquer
strategy will split this key into v subkeys of (for simplicity equally sized) x bits. For each
subkey k; the attacker will obtain a list of probability for each possible value of the key
L; = {Pr[k; = 0|SCI],...,Pr[k; = 2 — 1|SCI]}, where SCI stands for the side-channel
information the adversary obtained. Divide-and-conquer strategy is useful as v x 2" is
smaller than 27. Note that if the adversary does not obtain probabilities, but scores it
could either use a Bayesian extension [VGRS12] or use direct results [CPS16].

2.2 Key enumeration algorithms

From the result of an attack, either all the correct subkeys have the highest probability of
the list of the candidate subkeys or the attacker need to test the most likely keys. Some
solution exists to recombine this information in a smart way [BKM™*15, DW17, MMOS17,
MOOS15, PSG16, VGRS12]. All these algorithms have been tested in a symmetric key
setting and provide efficient solution.

The algorithms proposed in [BKMT15, MOOS15, PSG16] can be separate in two
phases: a construction phase (that is similar to key rank estimation) and a backtracking
part that enumerates the keys. For symmetric keys setting, the first part (construction) is
negligible in comparison to the second (backtracking).

2.3 Rank estimation algorithms

A rank estimation algorithm is a tool that allows an evaluator to estimate the brute force
an attacker need to perform a successful side-channel attack, i.e. how many keys the
attacker needs to test in the recombination phase before she recovers the actual key. As
we want to evaluate security against a smart adversary we should assume that she can
enumerate the keys from the most probable one to the least probable one (but still in its
computational power limits).

Definition 1 (Rank of the key). The rank of the key k after a side-channel attack is
defined as the number of keys that have a higher probability than k.

rank (k) = #{k*| Pr[k*|SCI] > Pr[k|SCI]}.
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Where # stands for the cardinality of the set.

In the rest of this paper, the probability of a key is equal to the product of the proba-
bilities of its subkeys. Hence, we suppose that the subkeys probabilities are independent,
and so the different attacks.

The main advantage of using a key rank estimation algorithm is that an evaluator does
not need to perform the brute force search to estimate the costs of such a search. In the past
few years, several solutions have been proposed to solve this problem [BLvV15, GGPT15,
MOOS15, VGS13]. Among these solutions only [VGS13] uses the probabilities and thus
can compute the actual rank, if enough time and memory are given to the program. Remark
this time could be (too) long and memory requirement could be (too) large. For that reason,
several rank estimation algorithms have been proposed [BLvV15, GGP*15, MOOS15]. All
these proposals share the same step that introduces error: they map the probabilities to
integers (see [PGS15] for a discussion on the errors introduced by algorithms that calculate
security margins). Using this simplification they can estimate the rank of the key quite
efficiently, with bounded error due to some truncation that appears during the conversion
from real (float) to integer. Hence, these algorithms cannot compute the rank, but an
upper bound (rank_upper__bound) and a lower bound (rank_lower__bound) of the rank.

Definition 2 (Tightness). We define the tightness of an estimation as the logarithm of
rank__upper__bound >

the ratio between the upper and lower bound for the rank log, < 1 bound
rank__lower__boun

When we manage to compute the exact rank of the key the tightness is 0. The tightness
of an estimation gives an intuition on the accuracy of security margins.

These rank estimation algorithms are based on samples, they try one attack and
calculate bounds on the rank. To obtain some indication of the security level of the device
several experiments attacks are launched and results could be displayed in a security graph
as proposed in [VGS13].

Some other solutions exist to evaluate the security of a device that can be faster and
adaptable for large keys [DFS15, YEM14]. These solutions are based on metrics. However,
the solutions based on metric could misestimate the actual computational power to recover
a key, as pointed out in [PGS15].

Another recent approach to evaluate the security for large keys has been presented
in [CP17]. The authors propose instead of using the rank of the key to use the expected
value of the key rank. They manage to compute quite efficient bound on the expected value
of the key rank. Unfortunately, this result seems disconnected to the rank/enumeration
problem. In [MMOS16] the authors show the limitations to only use the expected value of
the key rank. Moreover, the gap between the upper and lower bound can not be reduced.
As the gap is between 5 and 10 bits it can be seen as too large for some cases.

In [CP17] a list of pros and cons for some method to evaluate security margins are give.
We list in Table 1 some pros and cons for key ranking algorithms.

The tightness of rank estimation depends on the precision parameters for algorithms
that have such parameter ([BLvV15, GGP*15, MOOS15]). But also from the rank of the
key and the distribution of probabilities. Thus giving formulas to compare time efficiency
of different solutions in function of their tightness is difficult.

2.4 The histogram solution

Since our solution is based on the Glowacz et al. solution [GGP*15], we give some more
highlight on this solution. In the rest of the paper, we refer to this solution as FSE’15.
The different steps of this algorithm can be summarized as follow:

1. from multiplicative relation to additive relation: since the subkeys are independent
we have Pr[kq, ko|SCI] = Pr[k1|SCI] x Pr[ks|SCI]. To use the FSE’15 solution we
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Table 1: Comparison of key rank estimation algorithm

Method

Pros

Cons

Eurocrypt’13 [VGS13]
Pro [BLvV15]

FSE’15 [GGP*15]
Asiacrypt’ 15 [MOOS15]

CT-RSA’17 [DW17]
CHES’17 [CP17]

First solution, can compute
the exact rank (in theory)

Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient solution

Really fast even for large

Quite slow, quite loose
bounds (in practice)

Quite slow for large keys
and reasonable tightness

Quite slow for large keys
and reasonable tightness

Quite slow for large keys
and reasonable tightness

Loose bound

Expected value of the rank,

not rank estimation

key

need an additive relation. For that reason, we use the logarithm of probabilities.

Hence, we have log(Pr[k1, k2| SCI]) = log(Pr[k1|SCI]) + log(Pr[ke|SCI]).

. from reals to integers: in the FSE’15 solution, this step is done by casting the results

of the side-channel attacks into histograms. For each subkey a histogram is built,
the histograms should have the same bin size. the bin height corresponds to the
number of candidate subkeys that have a log probability included between the limits
of the bin. From now the log probability is assimilated to the center of the bin. The

distance between the log probability and the center of the bin is half of the bin width.

. convolution of histograms: the convolution of histograms gives us the distribution of

the combination of the probabilities of different combination of subkeys. In order
to have some meaningful probability at the end the histograms should have bins of
equal size. Remark the height of i-th bin of Hj3 that is the result of the convolution
of Hy and hs is Hz(i) = 3_; Hi(j) x Ha(i — j). This is the number of couples of
subkey candidates that have the sum of the estimated sum of log probabilities that
correspond to the center of the bin 1.

. calculate bound: This is done by summing the bins that represent a higher log

probability than the bin of the key’s log probability (£ the error bounds). Hence,
having tight error bounds allow obtaining tighter results.

In listing 1 we give a simplified version of the code of the two last steps.

Listing 1: Matlab implementation of FSE’15 solution.

function [mini,maxi] = rank(hi,b)

% Inputs:

%hi: the list of histogram score for each subkey (hi(subkey,:))
%b: the bin index of the log probability of the actual key
Z%0utputs

%Mini the minimum rank of the key
%Maxi the maximum rank of the key
[dim,~]=size (hi);
H=conv (hi(1,:),hi(2,:));
for i=3:dim

H=conv (H, hi(i,:));
end
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mini=sum (H(b+(dim /2) +1:length (H)));
maxi=sum (H(b—dim /2:length (H) ) ) ;
end

Since the histograms put every log probabilities in the bin center some error could
appear. In [GGPT15] the authors show that the maximum distance in numbers of bin
between a bin of a sum of log probabilities and the bin where the FSE algorithm could

v
put it is 3 That is why the minimum and maximum are shifted by such a value.

Example 1. Let us assume we have two subkeys ki, ko of 3 bits. With the probabilities
given in Table 2. As our histograms will use the logarithm of the probabilities (to have an
additive relation), we also provide the logarithm values and also the key candidates’ bin.

Table 2: Probabilities of the different subkeys candidates and their logarithm and bin

values.
k1 ko
Candidate Pr log bin Pr log bin
0 0.6643 -0.5901 1 0.0012 -9.7027 3
1 0.2588 -1.9501 1 0.0011 -9.8283 3
2 0.0313 -4.9977 2 0.3588 -1.4787 1
3 0.0412 -4.6012 2 0.0713 -3.8100 1
4 0.0001 -13.2877 4 0.5643 -0.8255 1
5 0.0020 -8.9658 3 0.0012 -9.7027 3
6 0.0013 -9.5873 3 0.00005 -14.2877 4
7 0.0010 -9.9658 3 0.00205 -8.9302 3

We construct the histograms as follows. The bin 1 corresponds to the number of keys
with logarithm probabilities between -16 and -12, the bin 2 corresponds to the number
of keys with logarithm probabilities between -12 and -8, the bin 3 corresponds to the
number of keys with logarithm probabilities between -8 and -4 and the bin 4 corresponds
to the number of key with logarithm probabilities between -4 and 0. The histograms are
displayed in Figure 1.

hl h2
45 4
3 37
2 2
2 24 =22
RS RS
1 1
0 i i i ; 0 i i i ;
1 2 3 4 1 2 3 4
bin number bin number

Figure 1: The histograms for the two subkeys.



6 Scalable Key Rank Estimation (and Key Enumeration) Algorithm for Large Keys

hy is the histogram for the subkey candidates of k1. The sum of the bins gives us 8 that
is the number of subkey candidates. ho is the histogram for the subkey candidates of ks.
Then by performing the convolution we have the distribution of all possible couple
for the subkeys (k1, k2). In the histogram of Figure 2, the bin 1 should correspond to the

conv(hy, hs)
20 5

15 |

1 2 3 4 5 6 71
bin number

Figure 2: The convolution result.

number of couples of candidate keys with logarithm probabilities between -30 and -26,
since we only look at the center of the bin some error could appear here.

The most expensive part of such an algorithm is the part 3, or loop for of line 10 in
listing 1. We need to perform nb_ subkeys — 1 convolution, each convolution having a cost
in nlog(n) when FFT is used. Remark this n is the size of the outputted histogram (and
thus on the number of convolutions already performed), that means the cost of convolution
became more and more expensive as the size of the histogram H grows. It comes out that
the cost of the rank estimation of Glowacz et al. grows not linearly with the number of
subkeys. This observation is validated by experiments in Section 4.

During the computation, we need to use large numbers (a bin can contain a number
between 0 and 27). Hence, to avoid precision error due to large number we need to use
large integer library and/or the Chinese remainder theorem as proposed in Appendix B
of [GGPT15].

Another limitation for large keys is the size of the histogram that will grow linearly in
the number of subkeys. After the convolution i-th the size of the histogram H is of size
(i — 1) x dim, the value stored in that table could go up to 27. This could be expensive for
large key and high precision. The FSE’15 solution needs to store the last histogram.

Example 2. That means for histograms with 26 bins and for a key of 256 subkeys, we
need to store a table of ~ 22* values. These values are integers of at most 2048 bits (if
subkeys are bytes). That means around 4GB.

If the size of the key doubles the memory required double. Remark for the enumeration
all intermediate histograms need to be stored to apply the backtracking solution this could
require some large amount of memory.

3 Scalable rank estimation algorithm

The main idea of our solution is to keep histogram with a constant number of bins. This
is achieved by batching two by two the bins of the convolution’s result histograms (line 20
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in listing 2).

Listing 2: Matlab implementation of our solution.

function [mini,maxi] = rank(hi)
% Inputs:
%hi: the list of histogram score for each subkey (hi(subkey,:))
%b: the bin index of the log probability of the actual key
%Outputs
%Mini the minimum rank of the key
%Maxi the maximum rank of the key
[dim,~]=size (hi);
H2=cell (log2 (dim) ,dim/2) ;
for i=2:2:dim
H=conv (hi(i—1,:),hi(i,:));
H2{1,i/2}=[H(2:2:length (H)),0]+H(1:2:1length (H));

end
dim=dim /2;
j=1
while dim>1
=i+
for i=2:2:dim
H=conv (H2{j —1,i —1} H2{j —-1,i});
H2{j,i/2}=[H(2:2:1length (H)) ,0]+H(1:2:length (H));
end
dim=dim / 2;
end

mini=sum (H2{j ,1}(bterror (dim)+1:length (H2{j,1})));
maxi=sum (H2{j ,1} (b+error (dim):length (H2{j ,1})));
end

Where the error function is a function that gives the approximation error due to
our casting and batching. This function and the values outputted are discussed in
Subsection 3.3.

As for the FSE’15 solution we perform convolution on histograms and obtain the

histogram H, but after this step we batch bins in pairs and obtain the histogram Hs.

The i-th bin of Hs is equal to the sum of the 2i-th and the 2i 4+ 1-th bins of H, Ha(i) =
H(2i)4+ H(2i+1). Doing so Hy has the same number of bins as the initial histogram. But
then the bin size of the histogram after the batching is twice as large as the bin size of the
loop input histograms.

For rank estimation, we need to perform convolution between histogram with equally
sized bins. By performing the batching we increase the width of the bins. To solve the
problem we use a recursive approach, we do convolutions of histograms two by two, batch
and start a new level of convolutions. Hence we perform convolution in a tree like structure,
see the right part of Figure 4.

Example 3. In our example 1, the batching step outputs the histogram in figure 3. The
batching step merge bin 2 by 2. That means the first bin in the new histogram corresponds
to the sum of the bins 1 and 2 from the result of the convolution histogram of figure 2.

20

21

22

23

24

25

26
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batching(conv(hy, hz))

30 ¢
20
wm
o —
[}
-~
$
10 |
0 ‘ ‘
1 2 3 4

bin number

Figure 3: The batched result.

3.1 On the time complexity

Our algorithm performs the same number of convolutions as FSE’15. But in our solution,
the size (i.e. the number of bins) of the histogram stays the same, the bin size increase.

h 1 hQ h3 h4
H H

Hy

uryojeq
Surygeq

Hy H3

ho H;

sur

convolution convolution convolution P
2

hy hs3 I convoh\m/
H

Suryogeq

g

Figure 4: Representation of the FSE’15 solution (left) and ours (right).

While for the FSE’15 solution the size of H; histograms grows, size(H;) = ((i + 1) x
nb_bin_init) — i, the size of the Hy histograms in our solution stay the same as the initial
histograms, i.e. size(Hs) = nb_bin_init. That means that convolution in level 1 of the
tree (right part of figure 4) should require similar computation as the convolution in the
last level. Thus, we expect for our solution to have a time that grows linearly with the

number of subkeys. This is verified by experiments in Subsection 4.1.
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3.2 On memory complexity

As we can see on the figure 4 our method is a tree exploration. That means we can explore
it in breadth first or in depth first search.

In the case of a breadth first search, the most expensive step we have to store is the
batched histograms after the first step of convolutions, in that case, we need to store %

tables of nb_ bin_ init values. If the size of the key doubles the memory required double.

Example 4. For the same values as example 2, 2'¢ bins and 256 subkeys, we need to
store 223 values. That is around 2 GB.

In the case of depth first search, we need to store at most one batched histogram per
level (log, v). If the size of the key doubles the memory required increase by one histogram.

Example 5. For the same values as example 2, we need to store 2'° values. That is
around 128 MB.

For simplicity we describe in listing 2 the breadth first search.

3.3 Bounded error

The tight bounds we obtain for our method lead to efficient tight results. The error is
introduced when we cast real numbers into integers as for FSE’15. Our solution also
introduces error when the batching step is performed.

For the rounding error that appears when we goes from real numbers to integers. For
every log probability of a subkey candidate k = ¢ and for histogram of bin width 2¢ there
exist a bin b; of center ¢; such that ¢; — e < log(Pr[k =i]) < ¢; + €.

If we look at the combined candidate (k1 = i,ky = j) we know that for the initial
histogram we have:

c;i — e <log(Pr[ky =1]) < c¢;+¢
c; —e <log(Prlks = j]) <c¢; +e

By summing the inequalities we obtain:
¢i +¢j — 2e <log(Prlky = 1)) + log(Prlks = j]) < ¢ + ¢ + 2e.

The convolution will consider that the couple (k1 = 4, k2 = j) has log probability ¢; +c¢;.
Hence the distance between the real log probability and the log probability considered by
the convolution is 2¢. If we add v of such inequalities the distance between the real log
probability and its bin is bounded by ve. That is the bound of the FSE’15 method.

In our case we have also to consider the batching step. Remark when we batch the

¢ + ¢ w
bins of width w center ¢;, ¢;+1 (resp. ¢;—1,¢;), the new center is lTZH =c; + £} (resp.
Ci—1+¢ w
S 12 t—¢ — +§) That means we have the inequality:
w w
G5 < batch(c;) < ¢; — 7

Putting the two errors for each level in our tree we double the error of the histograms
inputs and add an error of half bin width of histogram inputs. For the first level, we will
have:

batch(c;+cj)—3e < ¢;+cj—2¢ < log(Pr[ky = i])+log(Pr[ks = j]) < ¢i+c¢;+2€e < batch(c;+c;)+3e.

By iterating the error propagation we obtain error for our method. Some values of
errors for different numbers of subkeys are displayed in Table 3. Remark the error can
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be calculated by the following formula if the input histograms at the first level have bin
width 2e:

error = ve + [logy (V)] %e.
Remark that the final histogram has bin width of 2*1e

Table 3: Error evolution for our method, we assume that initial histogram have bin width

of 2e.
v | bin width final histogram error
1 2¢ €
2 4e 3e
4 8e 8e
8 16e 20e
16 32¢ 48¢
32 64¢ 112¢
64 128¢ 256¢

We do not give error bounds as a number of bins as for FSE as the size of our bins are
large calculate the lower and upper bins from the log probability of the key + error give a
better result than starting from the bin center of the log probability £+ number of margin
bins.

Remark that such approach to calculate the error bound could be applied to the case
of non equally sized histograms. In such a case we can have more bins close to the actual
bin of the key. This may lead to tighter bounds on the rank.

3.4 Non power of 2 cases

If the number of subkeys is not a power of two our first convolution step (line 10 in listing 2)
should be adapted as described in listing 3.

Listing 3: Matlab implementation for non power of 2.

function [mini,maxi] = rank3(hi, b)

% Inputs:

%hi: the matrix of histogram score for each subkey (hi(subkey,:)
)

[dim, shi]=size (hi);

tmp=floor (log2 (dim))

H2=cell (ceil (log2(dim)) ,dim/2);

for i=2:2:dim—tmp
H=conv (hi(i—1,:),hi(i,:));
H2{1,i/2}=[H(2:2:length (H)),0]+H(1:2:1length (H));

end

for i=dim—tmp+1:dim
H2{1,i/2}=hi(i,2:2:shi)+hi(i,1:2:shi);

end

During the first step of convolutions, we perform a reduced number of convolutions
such that at the end of this step the number of histograms is a power of 2. To keep the
histograms with the same bin size we need to perform batching on all histograms, even
the ones that do not go to the first convolution loop.
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4 Experiments

We compare the efficiency of different approaches of key ranking based on histograms (i.e.
FSE’15 and our method) in terms of time efficiency and precision.

In all our experiment we consider simulations. We target the memory loading of the
key (or subkeys). The memory load target seems to fit the assumption of independence of
subkeys for large keys. Note that such attacks have been used, for example against Mifare
DESFire [OP11].

We assume that the attacker was able to perfectly recovered the leakage function.

For our experiments, we have a set of parameters that we modify that we detailed
hereafter.

e The number of subkeys. The number of subkeys is the principal parameters we want
to compare. In particular, we want to verify the good performance of our method
when the number of subkeys increases.

e The precision. The precision is an important point of comparison for rank estimation
algorithms. In our case, we compare histogram based solution the precision is the
number of bins. Note that the precision and the tightness are different notions. The
precision is a parameter of the solution, while the tightness is obtained from the
output of the algorithm and the tightness depends on several parameters (e.g. rank,
leakage function, precision ... ).

o The leakage function. As we target the memory load of a subkey we can observe
only one output of the leakage function £. The only observation we get is L(k) + N,
where k is the subkey and A is some noise. If we perform several measurements for
the same subkey we will observe the same deterministic part of the leakage. Hence,
if £(k1) = L(k2), we will obtain the same probability for k; and k. Such a property
will impact the tightness result of any key rank algorithm that targets such values.

e The noise. We consider white Gaussian noise with different variance noise. As we
can observe only one deterministic value per subkey, the number of trace and noise
are directly linked, as more measurement will allow dividing the noise.

o The size of the subkeys. For our experiments, we target 8-bit subkeys. The size of
subkeys has an impact mostly on the creation of histogram as we need to enumerate
all subkeys. But this could be done as a side-channel attack is possible on the
subkeys.

All these parameters and the values used are summarized in Table 4.

Table 4: Parameters of our simulation and their principal values

Parameter Values

number of subkeys | 16,32,64,128,256,512,1024

precision 28 212 216

leakage function Identity, Hamming weight

noise variance 2392 91 20 9-1 9-2 9=3 o—4 = 98
size of subkeys 8-bit

4.1 Same precision

First, we compare our method with the FSE’15 method for the same number of bins. In a
first time, we just check that our method gives loose bounds. Indeed for the results, we
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get the max rank of our method is higher than the max rank of FSE and the min of our
method is lower than the min of FSE’15. This is a sanity check for our method. Result
are display in Tables 5 and 6.

Table 5: Result for our method versus FSE’15 for 16 subkeys, 2'2 bins, identity leakage.

o 8 4 2 1 0.5 0.25
pop | logx(max) | 127.231 | 126.966 | 110.386 | 108.297 105 88.2963
log,(min) | 127.224 | 126.956 | 119.332 | 108.159 | 104.778 | 87.6903
Ours | 082(maz) | 127.234 | 126.968 | 119.426 | 108.341 | 105.16 88.4205
log,(min) | 127.211 | 126.929 | 119.222 | 107.815 | 104.31 85.9786
o 0.125 | 0.0625 | 0.03125 | 0.015625 | 0.0078125 | 0.00390625
pop | logx(max) | 69.405 | 58.2386 | 33.3047 | 25.8204 | 5.2854 0
log,(min) | 68.6052 | 57.6567 | 37.4963 | 25.2285 | 4.58496 0
Ours | 1082(maz) | 69.663L | 58.7153 | 38.8743 | 26.1853 | 5.39232 0
log,(min) | 66.3938 | 56.4592 | 35.6711 | 23.8557 1 0

Table 6: Result for our method versus FSE’15 for 16 subkeys, 2'2 bins, hamming weight
leakage.

o 8 4 2 1 0.5 0.25

FSE log,(max) | 125.679 | 124.641 | 120.576 | 113.205 95.0947 83.7449
log,(min) | 125.652 | 124.607 | 120.484 | 113.016 94.3633 83.2428

Ours log,(max) | 125.698 | 124.658 | 120.66 113.3 95.5892 83.7449
log,(min) | 125.596 | 124.526 | 120.308 | 112.577 92.6648 82.7093

o) 0.125 0.0625 | 0.03125 | 0.015625 | 0.0078125 | 0.00390625

FSE log,(max) | 78.1395 | 86.2688 | 87.72 92.8492 78.5248 86.0761
log, (min) 0 0 0 0 0 0

Ours log,(max) | 78.1395 | 86.2688 | 87.72 92.8492 78.5248 86.0761
logy (min) 0 0 0 0 0 0

For the hamming weight leakage (the results are display in Table 6), we can see that
the methods do not provide tight bounds. This comes from the leakage function and the
fact we can observe only one value per subkey. That means if there exist k and k' such
that the leakage function gives the same output, we cannot differentiate the two subkeys.
Thus the two subkeys will have the same probability. Typically if the 16 subkeys have a

Hamming weight of 4 we have (i) 10 996 keys that we cannot differentiate. In [MOOS15]
they said that in such case the key should be considered as the first one tested. It makes
some senses if we want to asset security, but it seems to reduce highly the security margins
in the example of memory Hamming weight leakage. In order to avoid such problem we
next just use the identity leakage. While the Hamming weight is a good approximation in
general of the leakage behavior more precise model could increase the success of an attack.

Next, we compare in term of efficiency our method versus the FSE method. In this

experiment we look at the tightness and time of our method with 2'6 bins per histogram
16

2
at the beginning, FSE’15 with the same amount of bins and FSE’15 with less bins | —
v

such that the final histogram have a similar amount of bins as our method. The choice
of 26 bins per histogram at the beginning is motivated by the fact this gives quite tight
bound in an efficient manner for FSE’15.
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Figure 5: Execution time (left) and tightness of the bound (right) of Matlab implementa-
tions of the FSE’15 solution and ours for different sizes of keys (16 bits of precision) and
an SNR of 8.

On the graph, we can see that the FSE’15 solution with a constant number of bins
(216) have an execution time that grows faster than linearly, but it is the solution that
offers the tightest bound. However, if we use FSE’15 with the same number of bins for the
final histogram the solution is quite efficient but the tightness explodes for large keys. Our
method seems to have a linear time complexity and a linear increase of the tightness in
the size of the key.

4.2 Similar tightness

We compare our method to the FSE’15 method to obtain similar tightness. We look at
two levels of tightness 1 bit and 0.3 bit. To obtain similar tightness when the size of the
key increase we need to increase the number of bins of the initial histograms. The results
are plotted in Figure 6.

1.2 T T T T T T
6|—=—  FSE’15 (1 bit) ]
——  FSE’15 (0.3 bit) 1k il
/1; —— Our solution (1 bit)
S —— Our solution (0.3 bit)
s 0.8 2
= 4 i ——  FSE’15 (1 bit)
g £ 06| ——  FSE’15 (0.3 bit)
= < :
o eb —— Our solution (1 bit)
é 9 | 04 —— Our solution (0.3 bit)
3
g —
0.2 |
0 po— —“4’ | 0 | | | | | | |
0 20 40 60 80 100 120 140 0 20 40 60 8 100 120 140
# subkeys # subkeys

Figure 6: Execution time (left) and tightness of the bound (right) of Matlab implementa-
tions of the FSE’15 solution and ours for similar tightness.

The first observation we can make is that the tighter we want the rank estimation, the
smallest is the ratio between the time gap between our method and FSE’15. Secondly,
since we need to increase the number of bins of the initial histograms the time complexity
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grows faster than linearly even for our method. However, for a large number of subkeys
our solution more efficient than the FSE’15 solution.

4.3 NTL implementation

Matlab implementation of the solution has some limitations mainly due to the fact that
large integers are stored in doubles. That means that bins cannot be higher than 21024,
Thus for large keys (>1024-bit), the implementation could lead to an incorrect result. To
solve this problem Glowacz et al. [GGPT15] suggest to use Chinese remainder theorem.
Another issue of using doubles instead of integers is that above 2°% not all integers are
represented and thus some error could appear. In the same time, the CRT requires to
compute several times the convolutions and thus impact the efficiency of the solutions.

To override these issues we implement our solution using a big integer library: the
NTL library.! We look at histograms starting with 2'2 and perform the convolution of :
16, 32, 64, 128, 256, 512 and 1024 histograms. For the classical FSE’15 method for the
128 convolutions and an initial number of bins 22 we get an error message saying that
histograms where too large (the number of bins) to perform the convolution. The results
are reported in the figure 7.

40 200
—— FSE’15 —— FSE’15
—— Our solution —— Our solution
T s0f ) 150 | 1
S
% wn
2 <
3 20 1 = 100 8
S .ob
2 *
S 10 i 50 - .
%)
O | | | | | O P 1 1 1 | |
0 200 400 600 800 1,000 0 200 400 600 800 1,000
# subkeys # subkeys

Figure 7: Execution time (left) and tightness of the bound (right) of NTL convolutions for
histogram using FSE’15 method and ours, starting with histograms of 2'? bins and SNR 8.

We can see that for the NTL implementation our method is more efficient even for
small key size. The efficiency gap is probably due to the fact that the NTL implements
several techniques for the convolution by using large coefficients and a small number of bins
the NTL select to use the Schoenhage and Strassen [SS71] rather than the CRT technique
because it is more efficient in that case. Another remark is that for the FSE method the
NTL seems less efficient than the Matlab implementation here also this is probably due to
the underlying method to perform convolutions.

Finally, we can see that our method offer an efficient manner to calculate rank even for
the case when the key is divided into 1024 subkeys.

4.4 Comparison with CHES 2017

At CHES 2017 Choudary and Popescu present an “impressively fast, scalable and tight
security evaluation tools” [CP17]. Note that their tool does not calculate the rank of the
key but the expected value of the rank. As pointed out in [MMOS16] it is not clear how

1. http://www.shoup.net/ntl/
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to evaluate the power computation required to recover the key from the expected value of
the rank.

However, we want to compare our method, the FSE’15 method and the CHES 2017
method in terms of efficiency/tightness. As the CHES 2017 do not offer parameters to
tighten the bounds we play with the number of bins for FSE and our method to have
similar tightness. The results are plotted in Figure 8.

1072
—+— FSE’l5
8 | —— Our solution b ] |
=) CHES’17
g
g 9 1, 6 |
o) 9] ¥
E Z
t 4+ | &b 40 B
S =
g
5 20 i 2|—— FSE'15 a
—— Qur solution
‘ CHES’17 ‘ ‘ ‘ ‘
0 L . . . 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
# subkeys # subkeys

Figure 8: Execution time (left) and tightness of the bound (right) of Matlab implementa-
tions of the FSE’15 solution and ours for similar tightness as CHES’17.

We can see that indeed the CHES’17 solution is quite efficient. In the same time, for
such a tightness all solutions run in less than 100ms for 128 subkeys. For such bounds, it
seems that the rank computation’s time is not the bottleneck of an evaluation.

In CHES’17 Choudary et al. leave some figures as references for large key evaluation.
For that, we use our C implementation describe in Subsection 4.3. To obtain tighter
bounds. We choose to merge list of the 1024 lists of 8-bit probability. Thus we have 512
lists of 16-bit key candidates. We then use our technique with 2'3 bins. In such setting,
we manage to obtain bound of tightness 30 bits in 48 seconds for average rank 2°°%°. Our
method is less efficient/precise but we calculate different things.

5 Key enumeration

We can apply similar idea as the backtracking used in [PSG16]. The idea of this paper is
to first perform a construction step that is the three first steps of rank estimation. Then a
backtracking of the solution is performed to recover the key candidates of each bin. Our
technique speed up the construction phase of a solution like [PSG16]. In general, this step
is negligible in such solution. So our solution seems to do not brings any major speed up
of enumeration algorithms.

In Algorithm 1 we describe our solution the adaptation of “decompose bin" of [PSG16].
We need to adapt the algorithm to the shape of our tree versus the tree they used (see
Figure 4). The modifications are the different conditions the if and the elseif (lines 1 and
4). The second adaptation came from the fact we have batching to take into account. The
modifications for this part are in the else condition (lines 6).
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Algorithm 1 Decompose bin
Require: H: the structure containing all the histograms output by the construction step
ch (current hist): the index of the current histogram of H we target
Tpin: The bin index of H., we want to decompose.
Ensure: k;: A data structure containing the candidate keys.
1: if ch =0 then
20 ky + get(Hop,xpin)
3. process(ky)
4: else if ch < v then
5. ky < get(Hep, Tpin)
6: else
7
8
9

x « sizeof (right_son_of(H.p))
while (z > 0)and (x + sizeof (left_son_of(Hep)) > 2 X Xpip) do
if right_son_of(He)(z) > 0)and
(left_son_of (Hep)(2 X Tpin, — ) > Oor
left_son_of(Hep)(2 X Tpin — 2+ 1) >)0 then

10: Decomposebin(right_son_of(Hep), x, H, kf)

11: if left_son_of(Hep)(2 X xpin, — ) > 0 then

12: Decomposebin(left_son_of(Hep),2 X Ty, — x, H, kf)
13: end if

14: if left _son_of(Hep)(2 X Tpin —x + 1) > 0 then

15: Decomposebin(left_son_of (Hep),2 X Zpin —x + 1, H, kf)
16: end if

17: end if

18: r+—z—1

19: end while

20: end if

21: return

Our enumeration algorithm has an advantage over the previous Poussier et al. when
memory needed to store histograms is too large.

6 Conclusion

This paper presents a simple trick to reduce the cost of rank estimation for a large number
of subkeys based on the rank estimation of [GGP*15]. It can be applied to evaluate
security against side-channel of cryptographic implementation that uses large keys. Our
solution has the advantage to have a linear complexity in the number of subkeys. Another
advantage of keeping the number of bin “small” with large coefficient is that the method
for convolution used could vary and for example some techniques as the Schoenhage and
Strassen [SS71] could be more efficient than the CRT method for such a case. Our method
allows to estimate efficiently rank of the key thanks to the tight bounds we manage to
evaluate. Finally, our algorithm could be used as a construction phase for an enumeration
algorithm. This algorithm could be useful when the number of subkeys if large and thus
classical enumeration algorithm required a large amount of memory. Finally, our error
bound estimation could be applied to other cases, in particular we can look at not equally
sized histograms.
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