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Abstract. The Ring Learning With Errors problem (RLWE) comes in
various forms. Vanilla RLWE is the decision dual-RLWE variant, con-
sisting in distinguishing from uniform a distribution depending on a se-
cret belonging to the dual O∨K of the ring of integers OK of a speci-
fied number field K. In primal-RLWE, the secret instead belongs to OK .
Both decision dual-RLWE and primal-RLWE enjoy search counterparts.
Also widely used is (search/decision) Polynomial Learning With Errors
(PLWE), which is not defined using a ring of integers OK of a number
field K but a polynomial ring Z[x]/f for a monic irreducible f ∈ Z[x].
We show that there exist reductions between all of these six problems
that incur limited parameter losses. More precisely: we prove that the
(decision/search) dual to primal reduction from Lyubashevsky et al. [EU-
ROCRYPT 2010] and Peikert [SCN 2016] can be implemented with a
small error rate growth for all rings (the resulting reduction is non-
uniform polynomial time); we extend it to polynomial-time reductions
between (decision/search) primal RLWE and PLWE that work for a fam-
ily of polynomials f that is exponentially large as a function of deg f
(the resulting reduction is also non-uniform polynomial time); and we
exploit the recent technique from Peikert et al. [STOC 2017] to obtain a
search to decision reduction for RLWE for arbitrary number fields. The
reductions incur error rate increases that depend on intrinsic quantities
related to K and f .

1 Introduction

Different shades of RLWE. Ring Learning With Errors (RLWE) was
introduced by Lyubashevsky et al. in [LPR10], as a means of speeding up
cryptographic constructions based on the Learning With Errors problem
(LWE) [Reg09]. Let K be a number field, OK its ring of integers and
q ≥ 2 a rational integer. The search variant of RLWE with parameters K
and q consists in recovering a secret s ∈ O∨K/qO∨K with O∨K denoting the
dual of OK , from arbitrarily many samples (ai, ai · s + ei). Here each ai
is uniformly sampled in OK/qOK and each ei is a small random element
of KR := K ⊗Q R. The noise term ei is sampled such that its Minkowski
embedding vector follows a Gaussian distribution with a small covariance



matrix (relative to qO∨K). The decision variant consists in distinguishing
arbitrarily many such pairs for a common s chosen uniformly in O∨K/qO∨K ,
from uniform samples in OK/qOK×KR/qO∨K . More formal definitions are
provided in Section 2, but these suffice for describing our contributions.

Lyubashevsky et al. backed in [LPR10] the conjectured hardness of
RLWE with a quantum polynomial-time reduction from the (worst-case)
Approximate Shortest Vector Problem (ApproxSIVP) restricted to the
class of Euclidean lattices corresponding to ideals of OK , with geome-
try inherited from the Minkowski embeddings. They showed its useful-
ness by describing a public-key encryption with quasi-optimal efficiency:
the bit-sizes of the keys and the run-times of all involved algorithms are
quasi-linear in the security parameter. A central technical contribution
was a reduction from search RLWE to decision RLWE, when K is cyclo-
tomic, and decision RLWE for cyclotomic fields is now pervasive in lattice-
based cryptography, including in practice [ADPS16,BDK+18,DLL+18].
The search-to-decision reduction from [LPR10] was later extended to the
case of general Galois rings in [EHL14,CLS15].

Prior to RLWE, Stehlé et al. [SSTX09] introduced what is now referred
to as Polynomial Ring Learning With Errors (PLWE), for cyclotomic poly-
nomials of degree a power of 2. PLWE is parametrized by a monic irre-
ducible f ∈ Z[x] and an integer q ≥ 2, and consists in recovering a secret
s ∈ Zq[x]/f from arbitrarily many samples (ai, ai · s + ei) where each ai
is uniformly sampled in Zq[x]/f and each ei is a small random element
of R[x]/f . The decision variant consists in distinguishing arbitrarily many
such samples for a common s sampled uniformly in Zq[x]/f , from uni-
form samples. Here the noise term ei is sampled such that its coefficient
vector follows a Gaussian distribution with a small covariance matrix.
Stehlé et al. gave a reduction from the restriction of ApproxSIVP to the
class of lattices corresponding to ideals of Z[x]/f , to search PLWE, for f
a power-of-2 cyclotomic polynomial.

Finally, a variant of RLWE with s ∈ OK/qOK rather than O∨K/qO∨K
was also considered (see, e.g., [DD12] among others), to avoid the com-
plication of having to deal with the dual O∨K of OK . In the rest of this
paper, we will refer to the latter as primal-RLWE and to standard RLWE
as dual-RLWE.
The case of cyclotomics. Even though [LPR10] defined RLWE for
arbitrary number fields, the problem was mostly studied in the literature
for K cyclotomic. This specialization had three justifications:

• it leads to very efficient cryptographic primitives, in particular if q
totally splits over K;
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• the hardness result from [LPR10] holds for cyclotomics;
• no particular weakness was known for these fields.

Among cyclotomics, those of order a power of 2 are a popular choice. In
the case of a field K defined by the cyclotomic polynomial f , we have
that OK = Z[α] for α a root of f . Further, in the case of power-of-2 cy-
clotomics, mapping the coefficient vector of a polynomial in Z[x]/f to its
Minkowski embedding is a scaled isometry. This makes primal-RLWE and
PLWE collapse into a single problem. Still in the case of power-of-2 cyclo-
tomics, the dual O∨K is a scaling of OK , implying that dual and primal-
RLWE are equivalent. Apart from the monogenicity property, these facts
do not hold for all cyclotomics. Nevertheless, Ducas and Durmus [DD12]
showed it is still possible to reduce dual-RLWE to primal-RLWE.
Looking at other fields. The RLWE hardness proof holds with respect
to a fixed field: the reduction in [LPR10] maps ApproxSIVP for lattices
corresponding to OK-ideals with small approximation factors, to deci-
sion/search dual-RLWE on K. Apart from the very specific case of field
extensions [GHPS12], hardness on K seems unrelated to hardness on an-
other field K ′. One may then wonder if RLWE is easier for some fields.
The attacks presented in [EHL14,ELOS15,CLS15,CLS16] were used to
identify weak generating polynomials f of a number field K, but they
only work for error distributions with small width relative to the geom-
etry of the corresponding ring [CIV16b,CIV16a,Pei16]. At this occasion,
the relationships between the RLWE and PLWE variants were more closely
investigated.

Building upon [CGS14,CDPR16], Cramer et al. [CDW17] gave a quan-
tum polynomial-time ApproxSIVP algorithm for ideals of OK when K is
a cyclotomic field of prime-power conductor, when the ApproxSIVP ap-
proximation factor is 2Õ(

√
degK). For general lattices, the best known al-

gorithm [SE94] runs in time 2Õ(
√
n) for such an approximation factor,

where n is the lattice dimension (here n = degK). We note that the
result from [CGS14,CDPR16] was partly extended in [BBdV+17] to prin-
cipal ideals generated by a short element in a completely different fam-
ily of fields. These results show that all fields are not equal in terms of
ApproxSIVP hardness (unless they turn out to be all weak!). So far, there
is no such result for RLWE.

On the constructive front, Bernstein et al. [BCLvV16] showed that
some non-cyclotomic polynomials f also enjoy practical arithmetic over
Zq[x]/f and lead to efficient cryptographic design (though the concrete
scheme relies on the presumed hardness of another problem than RLWE).
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Hedging against the weak field risk. Two recent works propose
complementary approaches to hedge against the risk of a weakness of
RLWE for specific fields. First, in [PRSD17], Peikert et. al give a new
(quantum) reduction from ApproxSIVP for OK-ideals to decision dual-
RLWE for the corresponding fieldK. All fields support a (quantum) reduc-
tion from ApproxSIVP, and hence, from this respect, one is not restricted
to cyclotomics. Second, following an analogous result by Lyubashevsky
for the Small Integer Solution problem [Lyu16], Roşca et al. [RSSS17]
introduced the Middle-Product LWE problem and showed that it is at
least as hard as PLWE for any f in an exponentially large family of f ’s
(as a function of their degree). Neither result is fully satisfactory. In the
first case, it could be that ApproxSIVP is easy for lattices corresponding
to ideals of OK for any K: this would make the result vacuous. In the
second case, the result of [RSSS17] focuses on PLWE rather than the more
studied RLWE problem.
Our results. The focus on the RLWE hardness for non-cyclotomic fields
makes the discrepancies between the RLWE and PLWE variants more crit-
ical. In this article, we show that the six problems considered above —
dual-RLWE, primal-RLWE and PLWE, all in both decision and search
forms — reduce to one another in polynomial time with limited error
rate increases, for huge classes of rings. More precisely, these reductions
are obtained with the following three results.

• We show that for every field K, it is possible to implement the reduc-
tion from decision (resp. search) dual-RLWE to decision (resp. search)
primal-RLWE from [LPR10, Le. 2.15] and [Pei16, Se. 2.3.2], with a lim-
ited error growth. Note that there exists a trivial converse reduction
from primal-RLWE to dual-RLWE.
• We show that the reduction mentioned above can be extended to a
reduction from decision (resp. search) primal-RLWE in K to decision
(resp. search) PLWE for f , where K is the field generated by the poly-
nomial f . The analysis is significantly more involved. It requires the
introduction of the so-called conductor ideal, to handle the transfor-
mation from the ideal OK to the order Z[x]/f , and upper bounds on
the condition number of the map that sends the coefficient embed-
dings to the Minkowski embeddings, to show that the noise increases
are limited. Our conditioning upper bound is polynomial in n only
for limited (but still huge) classes of polynomials that include those
of the form xn + x · P (x) − a, with degP < n/2 and a prime that
is ≥ 25·‖P‖21 and ≤ poly(n). A trivial converse reduction goes through
for the same f ’s.

4



• We exploit the recent technique from [PRSD17] to obtain a search to
decision reduction for dual-RLWE.
Concretely, the error rate increases are polynomial in n = degK, the

root discriminant |∆K |1/n and, for the reduction to PLWE, in the root
algebraic norm N (CZ[α])1/n of the conductor ideal CZ[α] of Z[α], where α
is a root of f defining K. We note that in many cases of interest, all these
quantities are polynomially bounded in n. To enjoy these limited error
rate growths, the first two reductions require knowledge of specific data
related to K, namely, a short element (with respect to the Minkowski
embeddings) in the different ideal (O∨K)−1 and a short element in CZ[α].
In general, these are hard to compute.
Techniques. The first reduction is derived from [LPR10, Le. 2.15] and
[Pei16, Se. 2.3.2]: if it satisfies some arithmetic properties, a multiplica-
tion by an element t ∈ OK induces an OK-module isomorphism from
O∨K/qO∨K to OK/qOK . For the reduction to be meaningful, we need t
to have small Minkowski embeddings. We prove the existence of such a
small t satisfying the appropriate arithmetic conditions, by generalizing
the inclusion-exclusion technique developed in [SS13] to study the key
generation algorithm of the NTRU signature scheme [HHPW10].

The Lyubashevsky et al. bijection works with O∨K and OK replaced by
arbitrary ideals of K, but this does not provide a bijection from OK/qOK
to Z[α]/qZ[α], as Z[α] may only be an order of OK (and not necessarily an
ideal). We circumvent this difficulty by using the conductor ideal of Z[α].
Intuitively, the conductor ideal describes the relationship between OK
and Z[α]. As far as we are aware, this is the first time the conductor
ideal is used in the RLWE context. This bijection and the existence of an
appropriate multiplier t as above provide a (non-uniform) reduction from
primal-RLWE to a variant of PLWE for which the noise terms have small
Minkowski embeddings (instead of small polynomial coefficients).

We show that for many number fields, the linear map between polyno-
mial coefficients and Minkowski embeddings has a condition number that
is polynomially bounded in n, i.e., the map has bounded distortion and
behaves not too noticeably differently from a scaling. This implies that
the latter reduction is also a reduction from primal-RLWE to standard
PLWE for these rings. We were able to show condition number bounds
that are polynomial in n only for restricted families of polynomials f ,
yet exponentially large as n increases. These include in particular those
of the form mentioned above. Note that the primality condition on the
constant coefficient is used only to ensure that f is irreducible and hence
defines a number field. For these f ’s, we use Rouché’s theorem to prove
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that the roots are close to the scaled n-th roots of unity (a1/n ·αkn)0≤k<n,
and then that f “behaves” as xn − a in terms of geometric distortion.

Our search-to-decision reduction for dual-RLWE relies on techniques
developed in [PRSD17]. In that article, Peikert et al. consider the fol-
lowing ‘oracle hidden center’ problem (OHCP). In this problem, we are
given access to an oracle O taking as inputs a vector ~z ∈ Rk and a
scalar t ∈ R≥0, and outputting a bit. The probability that the ora-
cle outputs 1 (over its internal randomness) is assumed to depend only
on exp(t) · ‖~z−~x‖, for some vector ~x. The goal is to recover O’s center ~x.
On the one hand, Peikert et al. give a polynomial-time algorithm for this
problem, assuming the oracle is ‘well-behaved’ ([PRSD17, Prop. 4.4]).
On the other hand, they show how to map a Bounded Distance Decoding
(BDD) instance to such an OHCP instance if they have access to Gaus-
sian samples in the dual of the BDD lattice, where the engine of the oracle
is the decision dual-RLWE oracle ([PRSD17, Se. 6.1]). We construct the
OHCP instance from the decision RLWE oracle in a different manner. We
use our input search dual-RLWE samples and take small Gaussian com-
binations of them. By re-randomizing the secret and adding some noise,
we can obtain arbitrarily many dual-RLWE samples. Subtracting from the
input samples well-chosen zi’s inKR and setting the standard deviation of
the Gaussian combination appropriately leads to a valid OHCP instance.
The main technical hurdle is to show that a Gaussian combination of
elements of O∨K/qO∨K is close to uniform. For this, we generalize a ring
Leftover Hash Lemma proved for specific pairs (OK , q) in [SS11].

Related works. The reductions studied in this work can be combined
with those from ApproxSIVP forOK-ideals to dual-RLWE [LPR10,PRSD17].
Recently, Albrecht and Deo [AD17] built upon [BLP+13] to obtain a re-
duction from Module-LWE to RLWE. This can be both combined with
our reductions and the quantum reductions from ApproxSIVP for OK-
modules to Module-LWE3 [LS15,PRSD17]. Downstream, the reductions
can be combined with the reduction from PLWE to Middle-Product LWE
from [RSSS17]. The latter was showed to involve an error rate growth that
is linearly bounded by the so-called the expansion factor of f : it turns
out that those f ’s for which we could bound the condition number of the
Minkowski map by a polynomial function of deg f also have polynomially
bounded expansion factor. These reductions and those considered in the
present work are pictorially described in Figure 1.

3 The reduction from [LS15] is limited to cyclotomic fields, but [PRSD17] readily
extends to module lattices.
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Fig. 1. Relationships between variants of RLWE and PLWE. The dotted box contains
the problems studied in this work. Each arrow may hide a noise rate degradation
(and module rank - modulus magnitude transfer in the case of [AD17]). The top to
bottom arrows in the dotted box correspond to non-uniform reductions. The reductions
involving PLWE are analyzed for limited family of defining polynomials. The arrows
without references correspond to trivial reductions.

The ideal-changing scaling element t and the distortion of the Minkow-
ski map were closely studied in [CIV16b,CIV16a,Pei16] for a few precise
polynomials and fields. We use the same objects, but provide bounds that
work for all (or many) fields.
Impact. As it is standard for the hardness foundations of lattice-based
cryptography, our reductions should not be considered for setting practi-
cal parameters. They should rather be viewed as a strong evidence that
the six problems under scope are essentially equivalent and do not suffer
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from a design flaw (unless they all do). We hope they will prove useful
towards understanding the plausibility of weak fields for RLWE.

Our first result shows that there exists a way of reducing dual-RLWE to
primal-RLWE while controlling the noise growth. Even though the reduc-
tion is non-uniform, it gives evidence that these problems are qualitatively
equivalent. Our second result shows that RLWE and PLWE are essentially
equivalent for a large class of polynomials/fields. In particular, the trans-
formation map between the Minkowski embeddings and the coefficient
embeddings has a bounded distortion. Finally, our search to decision fills
an important gap. On the one hand, it precludes the possibility that search
RLWE could be harder than decision RLWE. On the other hand, it gives
further evidence of the decision RLWE hardness. In [PRSD17], the authors
give a reduction from ApproxSIVP for OK-ideals to decision RLWE. But
in the current state of affairs, ApproxSIVP for this special class of lattices
seems easier than RLWE, at least for some parameters. Indeed, Cramer
et al. [CDW17] gave quantum algorithms that outperform generic lattice
algorithms for some range of approximation factors in the context of ideal
lattices. On the opposite, RLWE is qualitatively equivalent to ApproxSIVP
for OK-modules ([LS15,AD17]).

As the studied problems reduce to one another, one may then won-
der which one to use for cryptographic design. Using dual-RLWE requires
knowledge of OK , which is notoriously hard to compute for an arbitrary
field K. This may look as an incentive to use the corresponding PLWE
problem instead, as it does not require the knowledge of OK . Yet, for
it to be useful in cryptographic design, one must be able to decode the
noise from its representative modulo a scaled version of the lattice cor-
responding to Z[α]. This seems to require the knowledge of a good basis
of that lattice, which may not be easy to obtain either, depending on the
considered polynomial f .

Notations. If D is a distribution, we write x ←↩ D to say that we
sample x from D. If D1, D2 are continuous distributions over the same
measurable set Ω, we let ∆(D1, D2) =

∫
Ω |D1(x)−D2(x)|dx denote their

statistical distance. Similarly, we let R(D1‖D2) =
∫
ΩD1(x)2/D2(x)dx

denote their Rényi divergence. If E is a set of finite measure, we let U(E)
denote the uniform distribution over E. For a matrix V = (vij), we let
‖V ‖ =

√∑
1≤i,j≤n |vij |2 denote its Frobenius norm.
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2 Preliminaries

In this section, we give the necessary background in algebraic number
theory, recall properties of Euclidean lattices, and state the precise defi-
nitions of the RLWE variants we will consider.

2.1 Some algebraic number theory

In Appendix A, we recall some notions of algebraic number theory that
are standard in lattice-based cryptography. We recall here less usual no-
tions such as orders and conductor ideals. Useful references for the latter
include [Ste17,Cona].
Rings and ideals in number fields. In this article, we call any subring
of K a number ring. For a number ring R, an (integral) R-ideal is an
additive subgroup I ⊆ R which is closed by multiplication in R, i.e., such
that IR = I. A more compact definition is to say that I is an R-module.
If a1, . . . , ak are elements in R, we let 〈a1, . . . , ak〉 = a1R+ . . .+ akR and
call it the ideal generated by the ai’s. The product of two ideals I, J is
the ideal generated by all elements xy with x ∈ I and y ∈ J . The sum,
product and intersection of two R-ideals are again R-ideals.

Two integral R-ideals I, J are said to be coprime if I + J = R, and,
in this case, we have I ∩ J = IJ . Any non-zero ideal in a number ring
has finite index, i.e., the quotient ring R/I is always finite when I is a
non-zero R-ideal. An R-ideal p is said to be prime if whenever p = IJ
for some R-ideals I, J , then either I = p or J = p. In a number ring,
any prime ideal p is maximal [Ste17, p. 19], i.e., R is the only R-ideal
containing it. It also means that the quotient ring R/p is a finite field. It
is well-known that any OK-ideal admits a unique factorization into prime
OK-ideals, i.e., it can be written I = pe1

1 . . . pekk with all pi’s distinct prime
ideals. It fails to hold in general number rings and orders, but we describe
later in Lemma 2.1 how the result can be extended in certain cases.

A fractional R-ideal I is an R-module such that xI ⊆ R for some
x ∈ K×. An integral ideal is a fractional ideal, and so are the sum,
the product and the intersection of two fractional ideals. A fractional
R-ideal I is said to be invertible if there exists a fractional R-ideal J
such that IJ = R. In this case, the (unique) inverse is the integral ideal
I−1 = {x ∈ K : xI ⊆ R}. Any OK-ideal is invertible, but it is again false
for a general number ring.

The algebraic norm of a non-zero integral R-ideal I is defined as
NR(I) = |R/I|, and we will omit the subscript when R = OK . It sat-
isfies NR(IJ) = NR(I)NR(J) for every R-ideals I, J .
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The dual of a fractional R-ideal I is I∨ = {α ∈ K : Tr(αI) ⊆ Z},
which is also a fractional R-ideal. We always have II∨ = R∨, so that
I∨ = I−1R∨ when I is invertible. We also have I∨∨ = I for any R-ideal I.

A particularly interesting dual is O∨K , whose inverse (O∨K)−1 is called
the different ideal. The different ideal is an integral ideal, whose norm
∆K = N ((O∨K)−1) is called the discriminant of the number field. We
note that, for every f defining K, the field discriminant ∆K is a factor of
the discriminant of f . The latter is denoted ∆f and is defined as ∆f =∏
i 6=j(αi−αj), where α1, . . . , αn are the roots of f . This provides an upper

bound on ∆K in terms of the defining polynomial f .
Orders in number fields. An order O in K is a number ring which is
a finite index subring of OK . In particular, the ring of integers OK is the
maximal order inK. Number rings such as Z[α], with α a root of a defining
polynomial f , are of particular interest. The conductor of an order O is
defined as the set CO = {x ∈ K : xOK ⊆ O}. It is contained in O, and
it is both an O-ideal and an OK-ideal: it is in fact the largest ideal with
this property. It is never empty, as it contains the index [OK : O].

If it is coprime with the conductor, an ideal in OK can be naturally
considered as an ideal in O, and reciprocally. This is made precise in the
following lemma.

Lemma 2.1 ([Cona, Th. 3.8]). Let O be an order in K.
1. Let I be an OK-ideal coprime to CO. Then I∩O is an O-ideal coprime

to CO and the natural map O/I ∩O −→ OK/I is a ring isomorphism.
2. Let J be an O-ideal coprime to CO. Then JOK is an OK-ideal coprime

to CO and the natural map O/J −→ OK/JOK is a ring isomorphism.
3. The set of OK-ideals coprime to CO and the set of O-ideals coprime

to CO are in multiplicative bijection by I 7−→ I ∩ O and J 7−→ JOK .

The above description does not tell how to “invert” the isomorphisms.
This can be done by a combination of the following lemmas and passing
through the conductor, as we will show in the next section.

Lemma 2.2. Let O be an order in K and I an OK-ideal coprime to
the conductor CO. Then the inclusions CO ⊆ O and CO ⊆ OK induce
isomorphisms CO/I ∩ CO ' O/I ∩ O and CO/I ∩ CO ' OK/I.

Proof. By assumption we have CO+ I = OK , so that the homomorphism
CO → OK/I is surjective. By Lemma 2.1, the set I ∩ O is an O-ideal
coprime to CO so that CO + I ∩ O = O. This implies that the homo-
morphism CO → O/I ∩ O is surjective too. Both homomorphisms have
kernel I ∩ CO. ut
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Lemma 2.3 ([Cona, Cor. 3.10]). Let O be an order in K and β ∈ O
such that βOK is coprime to CO. Then βOK ∩ O = βO.

Quotients of ideals. We will use the following result.

Lemma 2.4 ([LPR10, Le. 2.14]). Let I and J two OK-ideals. Let t ∈ I
such that the ideals t · I−1 and J are coprime and letM be any fractional
OK-ideal. Then the function θt :M→M defined as θt(x) = t ·x induces
an OK-module isomorphism fromM/JM to IM/IJM.

The authors of [LPR10] also gave an explicit way to obtain a suitable t
by solving a set of conditions stemming from the Chinese Remainder
Theorem. However, this construction does not give good control on the
magnitudes of the Minkowski embeddings of t.

2.2 Lattices

For the remainder of this article, a lattice is defined as a full-rank discrete
additive subgroup of an R-vector space V which is a Cartesian power Hm

(for m ≥ 1) of H := {~x ∈ Rs1 × C2s2 : ∀i ≤ s2 : xs1+s2+i = xs1+i}.
This space H is sometimes called the “canonical” space and its definition
is recalled in Appendix A. A given lattice L can be thought as the set
of Z-linear combinations (~bi)i of some linearly independent vectors of V .
These vectors are said to form a lattice basis, and we define the lattice
determinant as detL = (det(〈~bi,~bj〉)i,j)1/2 (it does not depend on the
choice of the basis of L). For v ∈ V , let ‖v‖ = (

∑
i≤dimV |vi|2)1/2 denote

the standard Hermitian norm on V and ‖v‖∞ = maxi≤dimV |vi| denote
the infinity norm. The minimum λ1(L) is the Hermitian norm of a shortest
non-zero element in L. We define λ∞1 (L) similarly. If L is a lattice, then
we define its dual as L∗ = {~y ∈ V : ~yTL ⊆ Z}.
Ideal lattices. While it is possible to associate lattices with fractional
ideals of a number ring, we will not need it. Any fractional OK-ideal I
is a free Z-module of rank n = deg(K), i.e., it can be written as Zu1 +
· · · + Zun for some ui’s in K. Its canonical embedding σ(I) is a lattice
of dimension n in the R-vector space H ⊆ Rs1 × C2s2 . Such a lattice
is called an ideal lattice (for OK). For the sake of readability, we will
abuse notations and often identify I and σ(I). It is possible to look at the
coefficient embedding of such lattices as well, but we will not need it in this
work. The lattice corresponding to I∨ is I∗. The discriminant ofK satisfies
∆K = (detOK)2. In the following lemma, the upper bounds follow from
Minkowski’s theorem whereas the lower bounds are a consequence of the
algebraic structure underlying ideal lattices.
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Lemma 2.5 (Adapted from [PR07, Se. 6.1]). Let K be a number
field of degree n. For any fractional OK-ideal I, we have:

√
n · N (I)1/n ≤ λ1(I) ≤

√
n · (N (I)

√
∆K)1/n,

N (I)1/n ≤ λ∞1 (I) ≤ (N (I)
√
∆K)1/n.

Gaussians. It is standard practice in the RLWE setting to consider Gaus-
sian distributions with diagonal covariance matrices. In this work, we will
be interested in the behavior of samples after linear transformations that
are not necessarily diagonal. As the resulting covariance matrix may not
be diagonal, we adopt a more general framework. Let Σ � 0, i.e., a sym-
metric positive definite matrix. We define the Gaussian function on Rn
of covariance matrix Σ as ρΣ(x) := exp(−π · xTΣ−1x) for every vec-
tor x ∈ Rn. The Gaussian distribution DΣ is the probability distribution
whose density is proportional to ρΣ. When Σ = diag(r2

i )i for some ~r ∈ Rn,
we write ρ~r and D~r, respectively.

Let (~ei)i≤n be the canonical basis of Cn. We define ~hi = ~ei for i ≤ s1,
and ~hs1+i = (~es1+i+~es1+s2+i)/

√
2 and ~hs1+s2+i = (~es1+i−~es1+s2+i)/

√
−2

for i ≤ s2. The ~hi’s form an orthonormal R-basis of H. We define the
Gaussian distribution DH

Σ as the distribution obtained by sampling x←↩
DΣ and returning

∑
i xi
~hi. We will repeatedly use the observation that

if ~x is sampled from DH
Σ and t belongs to KR, then t · ~x is distributed

as DH
Σ′ with Σ′ = diag(|σi(t)|) ·Σ · diag(|σi(t)|).

For a lattice L over V = Hm (for some m ≥ 1) and a coset ~c ∈ V/L,
we let DL+~c,r denote the discretization of DH

rI over L + ~c (we omit the
subscript for DL+~c,r as all our lattices are over Cartesian powers of H).
For ε > 0, we define the smoothing parameter ηε(L) as the smallest r > 0
such that ρ(1/r)I(L∗ \~0) ≤ ε. We have the following upper bounds.

Lemma 2.6 ([MR04, Le. 3.3]). For any lattice L over Hm and ε ∈
(0, 1), we have ηε(L) ≤

√
log(2mn(1 + 1/ε))/π/λ∞1 (L∗).

Lemma 2.7 (Adapted from [PR07, Le. 6.5]). For any OK-ideal I
and ε ∈ (0, 1), we have ηε(I) ≤

√
log(2n(1 + 1/ε))/(πn) · (N (I)∆K)1/n.

The following are standard applications of the smoothing parameter.

Lemma 2.8 ([GPV08, Cor. 2.8]). Let L′ ⊆ L be full-rank lattices,
ε ∈ (0, 1/2) and r ≥ ηε(L′). Then ∆(DL,r mod L′, U(L/L′)) ≤ 2ε.

Lemma 2.9 ([PR06, Le. 2.11]). Let L be an n-dimensional lattice,
ε ∈ (0, 1/3) and r ≥ 4ηε(L). Then DL,r(~0) ≤ 2−2n+1.
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Lemma 2.10 (Adapted from [MR04, Le. 4.4]). Let L be an n-
dimensional lattice, ε ∈ (0, 1/3) and r ≥ ηε(L). Then Pr~x←↩DL,r [‖~x‖ ≥
2r
√
n] ≤ 2−2n.

2.3 Computational problems

We now formally define the computational problems we will study.

Definition 2.11 (RLWE and PLWE distributions). Let K a degree n
number field defined by f , OK its ring of integers, Σ � 0 and q ≥ 2.

For s ∈ O∨K/qO∨K , we define the dual-RLWE distribution A∨s,Σ as
the distribution over OK/qOK × KR/qO∨K obtained by sampling a ←↩
U(OK/qOK), e←↩ DH

Σ and returning the pair (a, a · s+ e).
For s ∈ OK/qOK , we define the primal-RLWE distribution As,Σ as

the distribution over OK/qOK × KR/qOK obtained by sampling a ←↩
U(OK/qOK), e←↩ DH

Σ and returning the pair (a, a · s+ e).
For s ∈ Zq[x]/f , we define the PLWE distribution Bs,Σ as the dis-

tribution over Zq[x]/f × Rq[x]/f obtained by sampling a ←↩ U(Zq[x]/f),
e←↩ DΣ and returning the pair (a, a · s+ e) (with Rq = R/qZ).

In the definition above, we identified the support H of DH
Σ with KR,

and the support Rn of DΣ with R[x]/f . Note that sampling from A∨s,Σ
and As,Σ seems to require the knowledge of a basis of OK . It is not known
to be computable in polynomial-time from a defining polynomial f of an
arbitrary K. In this article, we assume that a basis of OK is known.

Definition 2.12 (The RLWE and PLWE problems). We use the same
notations as above. Further, we let E� be a subset of Σ � 0 and D� be a
distribution over Σ � 0.

Search dual-RLWEq,E� (resp. primal-RLWE and PLWE) consists in
finding s from a sampler from A∨s,Σ (resp. As,Σ and Bs,Σ), where s ∈
O∨K/qO∨K (resp. s ∈ OK/qOK and s ∈ Zq[x]/f) and Σ ∈ E� are arbi-
trary.

Decision dual-RLWEq,D� (resp. primal-RLWE and PLWE) consists in
distinguishing between a sampler from A∨s,Σ (resp. As,Σ and Bs,Σ) and a
uniform sampler over OK/qOK ×KR/qO∨K (resp. OK/qOK ×KR/qOK
and Zq[x]/f×Rq[x]/f), with non-negligible probability over s←↩ O∨K/qO∨K
(resp. s ∈ OK/qOK and s ∈ Zq[x]/f) and Σ←↩ D�.

The problems above are in fact defined for sequences of number fields
of growing degrees n such that the bit-size of the problem description
grows at most polynomially in n. The run-times, success probabilities
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and distinguishing advantages of the algorithms solving the problems are
considered asymptotically as functions of n.

The following reduction from dual-RLWE to primal-RLWE is a conse-
quence of Lemma 2.4. A proof is given in Appendix B.

Theorem 2.13 (Adapted from [Pei16, Se. 2.3.2]). Let Σ � 0 and
s ∈ O∨K/qO∨K . Let t ∈ (O∨K)−1 such that t(O∨K) + qOK = OK . Then
the map (a, b) 7→ (a, t · b) transforms A∨s,Σ to At·s,Σ′ and U(OK/qOK ×
KR/qO∨K) into U(OK/qOK × KR/qOK), with Σ′ = diag(|σi(t)|) · Σ ·
diag(|σi(t)|). The natural inclusion OK → O∨K induces a map that trans-
forms U(OK/qOK × KR/qOK) to U(OK/qOK × KR/qO∨K), and As,Σ
to A∨s,Σ.

We will consider variants of the decision problems for which the dis-
tinguishing must occur for all s ∈ O∨K/qO∨K (resp. s ∈ OK/qOK and
s ∈ Zq[x]/f) and all Σ � 0 rather than with non-negligible probability
over s. We call this variant worst-case decision dual-RLWE (resp. primal-
RLWE and PLWE). Under some conditions on D� and E�, these variants
are computationally equivalent.

Lemma 2.14 (Adapted from [LPR10, Se. 5.2]). We use the same
notations as above. If PrΣ←↩D� [Σ /∈ E�] ≤ 2−n, then decision dual-
RLWEq,D� (resp. primal-RLWE and PLWE) reduces to worst-case decision
dual-RLWEq,E� (resp. primal-RLWE and PLWE).

Assume further that D� can be sampled from in polynomial-time.
If maxΣ∈E� R(D�‖D� + Σ) ≤ poly(n), then worst-case decision dual-
RLWEq,E� (resp. primal-RLWE and PLWE) reduces to decision dual-RLWEq,D�
(resp. primal-RLWE and PLWE).

Note that it is permissible to use the Rényi divergence here even though
we are considering decision problems. Indeed, the argument is applied to
the random choice of the noise distribution and not to the distinguish-
ing advantage. The same argument has been previously used in [LPR10,
Se. 5.2].

Proof. The first statement is direct. We prove the second statement only
for dual-RLWE, as the proofs for primal-RLWE and PLWE are direct adap-
tations. Assume we are given a sampler that outputs (ai, bi) with ai ←↩
U(OK/qOK) and bi either uniform in KR/qO∨K or of the form bi = ais+ei
with s ∈ O∨K/qO∨K and ei ←↩ DH

Σ . The reduction proceeds by sam-
pling s′ ←↩ U(O∨K/qO∨K) and Σ′ ←↩ D�, and mapping all input (ai, bi)’s
to (a′i, b′i) = (ai, bi + ais

′ + e′i) with e′i ←↩ DH
Σ′ . This transformation
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maps the uniform distribution to itself, and A∨s,Σ to A∨s+s′,Σ′′ with Σ′′ij =
Σij + Σ′ij for all i, j. If the success probability (success being enjoying
a non-negligible distinguishing advantage) over the error parameter sam-
pled from D� is non-negligible, then so is it for the error parameter sam-
pled D� + Σ, as, by assumption, the Rényi divergence R(D�‖D� + Σ)
is polynomially bounded. ut

Many choices of D� and E� satisfy the conditions of Lemma 2.14.
The following is inspired from [LPR10, Se. 5.2]. We define the distribu-
tion E� as follows, for an arbitrary r: Let sij = r2(1 + nxij) for all i > j,
sii = r2(1 + n3xii) for all i and sij = sji for all i < j, where the xij ’s
are independent samples from the Γ (2, 1) distribution (of density func-
tion x 7→ x exp(−x)); the output matrix is (sij)ij . Note that it is sym-
metric and strictly diagonally dominant (and hence � 0) with probabil-
ity 1 − 2−Ω(n). Then the set of all Σ � 0 with coefficients of magni-
tudes ≤ r2n4 satisfies the first condition of Lemma 2.14, and the set of
all Σ � 0 with coefficients of magnitudes ≤ r2 satisfies the second condi-
tion of Lemma 2.14. We can hence switch from one variant to the other
while incurring an error rate increase that is ≤ poly(n).

3 Controlling noise growth in dual to primal reduction

The reduction of Theorem 2.13 is built upon the existence of t as in
Lemma 2.4. While this existence is guaranteed constructively by [LPR10],
the size is not controlled by the construction. Another t that satisfies the
conditions is t = f ′(α), where f ′ is the derivative of f defining K = Q[α].
Indeed, from [Conb, Rem. 4.5], we know that f ′(α) ∈ (O∨K)−1. However,
the noise growth incurred by multiplication by f ′(α) may be rather large
in general: we have N(f ′(α)) = ∆f = [OK : Z[α]]2 · N ((O∨K)−1).

In this section, we give a probabilistic proof that adequate t’s with
controlled size can be found by Gaussian sampling.

Let I and J be integral ideals of OK . Theorem 3.1 below states that a
Gaussian sample t in I is such that t · I−1 + J = OK with non-negligible
probability. The main technical hurdle is to show that the sample is not
trapped in IJ ′ with J ′ a non-trivial factor of J . We handle this probability
in different ways depending on the algebraic norm of J ′, extending an idea
used in [SS13, Se. 4].
• For small-norm factors J ′ of J , the Gaussian folded modulo IJ ′ is
essentially uniform over I/IJ ′, by Lemma 2.8. This requires the stan-
dard deviation parameter s to be above the smoothing parameter
of IJ ′. We use the smoothing parameter bound from Lemma 2.7.
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• For large-norm factors J ′, we argue that the non-zero points of IJ ′
are very unlikely to be hit, thanks to the Gaussian tail bound given
in Lemma 2.10 and the fact that the lattice minimum of IJ ′ is large,
by Lemma 2.5.
• For middle-norm factors J ′, neither of the arguments above applies.

Instead, we bound the probability that t belongs to IJ ′ by the prob-
ability that t belongs to IJ ′′, where J ′′ is a non-trivial factor of J ′,
and use the first argument above. The factor J ′′ must be significantly
denser than J ′ so that we have smoothing. But it should also be sig-
nificantly sparser than OK so that the upper bound is not too large.

Setting the standard deviation parameter of the discrete Gaussian so that
at least one of the three arguments above applies is non-trivial. In partic-
ular, this highly depends on how the ideal J factors into primes (whether
the pieces are numerous, balanced, unbalanced, etc). The choice we make
below works in all cases while still providing a reasonably readable proof
and still being sufficient for our needs, from an asymptotic perspective.
In many cases, better choices can be made. If J is prime, we can take
a very small s and use only the second argument. If all factors of J are
small, there is good enough ‘granularity’ in the factorization to use the
third argument, and again s can be chosen very small.

Theorem 3.1. Let I and J be integral OK-ideals, and write J = pe1
1 . . . pekk

for some prime ideals pi. We sort the pi’s by non-decreasing algebraic
norms. Assume that we can take δ ∈ [4n+log2 ∆K

log2N (J) , 1].4 We define:

s =


(
N (J)1/2N (I)∆K

)1/n
if N (pk) ≥ N (J)1/2+δ,(

N (J)1/2+2δN (I)∆K

)1/n
else.

Then we have

Pr
t←↩DI,s

[tI−1 + J = OK ] ≥ 1− k

N (p1) − 2−n+4.

Proof. We bound the probability P of the negation, from above. We have

P = Pr
t←↩DI,s

[t ∈
⋃
i∈[k]

Ipi] =
∑

S⊆[k],S 6=∅
(−1)|S|+1 · Pr

t←↩DI,s
[t ∈ I ·

∏
i∈S

pi].

4 The parameter δ should be thought as near 0. It can actually be chosen such if N (J)
is sufficiently large.

16



We rewrite it as P = P1 + P2 with

P1 =
∑

S⊆[k],S 6=∅
(−1)|S|+1 1∏

i∈S N (pi)
= 1−

∏
i∈[k]

(
1− 1
N (pi)

)
,

P2 =
∑

S⊆[k],S 6=∅
(−1)|S|+1

(
Pr

t←↩DI,s
[t ∈ I ·

∏
i∈S

pi]−
∏
i∈S

1
N (pi)

)
.

We have P1 ≤ 1−(1−1/N (p1))k ≤ k/N (p1). Our task is now to bound P2.
Assume first thatN (pk) ≥ N (J)1/2+δ. This implies that

∏
i∈S N (pi) ≤

N (J)1/2−δ for all S ⊆ [k] not containing k. By Lemma 2.7, we have
s ≥ ηε(I

∏
i∈S pi) for all such S’s, with ε = 2−2n. We “smooth” out those

ideals, i.e., we use Lemma 2.8 to obtain, for all S ⊆ [k] \ {k}:∣∣∣∣∣ Pr
t←↩DI,s

[t ∈ I ·
∏
i∈S

pi]−
∏
i∈S

1
N (pi)

∣∣∣∣∣ ≤ 2ε.

Now if S is a subset containing k, then we have N (
∏
i∈S pi) ≥ N (J)1/2+δ.

By Lemma 2.5, we have λ1(I
∏
i∈S pi) ≥

√
n · N (I)1/nN (J)(1/2+δ)/n. On

the other hand, by Lemma 2.10, we have Prt←↩DI,s [‖t‖ ≥ 2s
√
n] ≤ 2−2n.

Thanks to our choice of s, the assumption on δ and Lemma 2.9, we obtain

Pr
t←↩DI,s

[t ∈ I
∏
i∈S

pi] ≤ Pr
t←↩DI,s

[t = 0] + 2−2n ≤ 2−2n+2.

This allows us to bound P2 as follows:

P2 ≤ 2k ·
(
ε+ 2−2n+2 +N (J)−(1/2+δ)

)
.

By assumption on δ, we haveN (J) ≥ 22n and P2 ≤ 2−n+3. This completes
the proof for the large N (pk) case.

Now, assume thatN (pk) < N (J)1/2+2δ. Then, as above, the definition
of s implies that, for any S ⊆ [k] with N (

∏
i∈S pi) ≤ N (J)1/2+δ, we have

|Pr[t ∈ I
∏
i∈S pi] − 1/

∏
i∈S N (pi)| ≤ 2−2n+1. Also as above, if we have

N (
∏
i∈S pi) ≥ N (J)1/2+3δ, then λ1(I

∏
i∈S pi) is too large for a non-zero

element of I
∏
i∈S pi to be hit with significant probability. Assume finally

that
N (J)1/2+2δ ≤ N (

∏
i∈S

pi) ≤ N (J)1/2+3δ.

As N (pk) < N (J)1/2+δ, there exists S′ ⊆ S such that

N (J)δ ≤ N (
∏
i∈S′

pi) ≤ N (J)1/2+2δ.
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By inclusion, we have that Pr[t ∈ I
∏
i∈S pi] ≤ Pr[t ∈ I

∏
i∈S′ pi]. Now, as

the norm of
∏
i∈S′ pi is small enough, we can use the smoothing argument

above to claim that

Pr
t←↩DI,s

[t ∈ I
∏
i∈S′

pi] ≤ 2−2n+1 + 1
N (
∏
i∈S′ pi)

≤ 2−2n+1 + 1
N (J)δ .

By assumption on δ, the latter is ≤ 2−n+2. Collecting terms allows to
complete the proof. ut

The next corollary shows that the needed t can be found with non-
negligible probability.

Corollary 3.2. Let I be an integral OK-ideal. Let q ≥ max(2n, 216·∆8/n
K )

be a prime rational integer and pk a prime factor of qOK with largest
norm. We define:

s =
{
q1/2 · (N (I)∆K)1/n if N (pk) ≥ q(5/8)·n,

q3/4 · (N (I)∆K)1/n else.

Then, for sufficiently large n, we have

Pr
t←↩DI,s

[tI−1 + qOK = OK ] ≥ 1/2.

Proof. The result follows from applying Theorem 3.1 with J = qOK
and δ = 1/8. The first lower bound on q ensures that k/N (p1) ≤ 1/2,
where k ≤ n denotes the number of prime factors of qOK and p1 denotes a
factor with smallest algebraic norm. The second lower bound on q ensures
that we can indeed set δ = 1/8. ut

We insist again on the fact that the required lower bounds on s can
be much improved under specific assumptions on the factorization of q.
For example, one could choose a q such that all the factors of qOK have
large norms, by sampling q randomly and checking its primality and the
factorization of the defining polynomial f modulo q. In that case, the
factors q1/2 and q3/4 can be decreased drastically.

We note that if the noise increase incurred by a reduction from an
LWE-type problem to another is bounded as nc1 · qc2 for some c1 < 1
and some c2 > 0, then one may set the working modulus q so that the
starting LWE problem has a sufficient amount of noise to not be trivially
easy to solve, and the ending LWE problem has not enough noise to be
information-theoretically impossible to solve (else the reduction would be
vacuous). Indeed, it suffices to set q sufficiently larger than nc1/(1−c2).
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4 From primal-RLWE to PLWE

The goal of this section is to describe a reduction from primal-RLWE to
PLWE. As an intermediate step, we first consider a reduction from primal-
RLWE to a variant PLWEσ of PLWE where the noise is small with respect
to the Minkowski embedding rather than the coefficient embedding. Then,
we assess the noise distortion when looking at its Minkowski embedding
versus its coefficient embedding.

If K = Q[x]/f for some f =
∏
j≤n(x − αj), the associated Van-

dermonde matrix Vf has jth row (1, αj , . . . , αn−1
j ) and corresponds to

the linear map between the coefficient and Minkowski embedding spaces
(see Appendix A). Thus a good approximation of the distortion is given
by the condition number Cond(Vf ) = sn/s1, where the si’s refer to
the largest/smallest singular values of Vf . As we also have Cond(Vf ) =
‖Vf‖ · ‖V −1

f ‖, these matrix norms also quantify how much Vf distorts
the space. For a restricted, yet exponentially large, family of polynomials
defining number fields, we show that both ‖Vf‖ and ‖V −1

f ‖ are polyno-
mially bounded.

To do this, we start from fn,a = xn − a whose distortion is easily
computable. Then we add a “small perturbation” to this polynomial.
Intuitively, the roots of the resulting polynomial should not move much,
so that the norms of the “perturbed” Vandermonde matrices should be
essentially the same. We formalize this intuition in Section 4.2 and locate
the roots of the perturbed polynomial using Rouché’s theorem.

Mapping a sample of PLWEσ to a sample of the corresponding PLWE
simply consists in changing the geometry of the noise distribution. A
noise distribution with covariance matrix Σ in the Minkowski embedding
corresponds to a noise distribution of covariance matrice (V −1

f )TΣV −1
f

in the coefficient space. The converse is also true, replacing V −1
f by Vf .

Moreover, the noise growths incurred by the reductions remain limited
whenever ‖Vf‖ and ‖V −1

f ‖ are small.
Overall, reductions between primal-RLWE to PLWE can be obtained

by combining Theorems 4.2 and 4.7 below (with Lemma 2.14 to randomize
the noise distributions).

4.1 Reducing primal-RLWE to PLWEσ

We keep the notations of the previous section, and let Z[x]/(f) = O.

Definition 4.1 (The PLWEσ problem). Let also Σ be a positive def-
inite matrix, and q ≥ 2. For s ∈ O/qO, we define the PLWEσ distribu-

19



tion Bσs,Σ as the distribution over O/qO ×KR/qO obtained by sampling
a←↩ U(O/qO), e←↩ DH

Σ and returning the pair (a, a · s+ e)
Let D� be a distribution over Σ � 0. Decision PLWEσ consists in

distinguishing between a sampler from Bσs,Σ and a uniform sampler over
O/qO×KR/qO, with non-negligible probability over s←↩ O/qO and Σ←↩
D�.

Theorem 4.2. Assume that qOK+CO = OK . Let Σ be a positive definite
matrix and s ∈ OK/qOK . Let t ∈ CO such that tC−1

O + qOK = OK .
Then the map (a, b) 7→ (t · a, t2 · b) transforms U(OK/qOK ×KR/qOK)
to U(O/qO ×KR/qO) and As,Σ to Bσt·s,Σ′, where the new covariance is
Σ′ = diag(|σ(ti)|2) ·Σ · diag(|σi(t)|2).

Let Bσs,Σ be a PLWEσ distribution. The natural inclusion O → OK
induces a map that transforms U(O/qO × KR/qO) to U(OK/qOK ×
KR/qOK) and Bσs,Σ to As,Σ.

Proof. Let (a, b = a · s + e) be distributed as As,Σ. Let a′ = t · a and
b′ = t2 · b = a′ · (t · s) + e′, with e′ = t2 · e. Then a′ is uniformly distributed
in CO/qCO by applying Lemma 2.4 for I = CO, J = qOK andM = OK .
It is also uniformly distributed in O/qO by combining Lemma 2.2 and
Lemma 2.3. The noise follows the claimed distribution, see the observation
in Section 2.2. The fact that t · s ∈ O/qO completes the proof that As,Σ
is mapped to Bσt·s,Σ′ .

Now, let (a, b) be uniform in OK/qOK ×KR/qOK . We already know
that a′ is uniformly distributed inO/qO. Let us now consider the distribu-
tion of b′. Thanks to the assumption on qOK , we also have t2C−1

O +qOK =
OK . Therefore, by Lemma 2.4, multiplication by t2 induces an isomor-
phism OK/qOK ' CO/qCO, and hence, by Lemmas 2.2 and 2.3, an iso-
morphism OK/qOK ' O/qO. This gives the first reduction.

We now turn to the converse reduction. By coprimality and Lem-
mas 2.2 and 2.4, we have |O/qO| = |OK/qOK |. This implies that any
(a, b) uniform in O/qO×KR/qO is also uniform in OK/qOK ×KR/qOK .
The inclusion O ⊆ OK allows to conclude. ut

As Theorem 2.13, Theorem 4.2 relies on a the existence of a good
multiplier. Writing K = Q[x]/(f) = Q[α] and O = Z[α], the element
f ′(α) again satisfies the constraints. Indeed, we know that O∨ = 1

f ′(α)O
(see [Conb, Th. 3.7]), and we have the inclusion OK ⊆ O∨. Multiplying by
f ′(α), we obtain f ′(α)OK ⊆ O. By definition, this means that f ′(α) ∈ CO,
as claimed. While a large f ′(α) would mean a large noise growth in the
primal-RLWE to PLWEσ reduction, we described in Section 3 how to find
a smaller adequate multiplier if needed.
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We have N (f ′(α)) = [OK : Z[α]]2 · ∆K , and, from [Ste17, p.48], the
prime factors of [OK : Z[α]] are exactly those ofN (CO). Provided the valu-
ations are not too high, there should be smaller elements in CO than f ′(α).
We provide in Appendix D concrete examples of number fields with defin-
ing polynomials f such that the norm of f ′(α) is considerably larger than
both the norms of CO and (O∨K)−1.

4.2 Distortion between embeddings

To bound the norms of a Vandermonde matrix associated to a poly-
nomial and its inverse, we study the magnitude of the roots and their
pairwise distances. It is known that ‖V ‖2 = Tr(V ∗V ), where ∗ denotes
the transpose-conjugate operator. For Vandermonde matrices, this gives

‖Vf‖2 =
∑
j∈[n]

∑
k∈[n]

|αj |2(k−1), (1)

which can be handled when the magnitudes of the αj ’s are known. The
entries of V −1

f = (wij) have well-known expressions as:

wij = (−1)n−i en−i(~α
j)∏

k 6=j
(αj − αk)

, (2)

where e0 = 1, ej for j > 0 stands for the elementary symmetric polynomial
of total degree j in n−1 variables, and ~αj = (α1, . . . , αj−1, αj+1, . . . , αn),
the vector of all roots but αj . We have the following useful relations with
the symmetric functions Ei of all the roots (for all j):

E1(~α) = αj + e1(~αj),
Ei(~α) = αjei−1(~αj) + ei(~α

j) for 2 ≤ i ≤ n− 1,
En(~α) = αjen−1(~αj).

(3)

Combining (3) with Vieta’s formulas, bounds on the magnitudes of the
roots leads to bounds on the numerators of the wij ’s. The denominators
encode the separation of the roots, and deriving a precise lower bound
turns out to be the main difficulty. By differentiating f(x) =

∏
j∈[n](x−

αj), we note that
∏
k 6=j |αj − αk| = |f ′(αj)|.

A family of polynomials with easily computable distortion.
We first introduce a family of polynomials for which ‖Vf‖ and ‖V −1

f ‖ are
both simple to estimate. For n ≥ 2 and a ≥ 1, we define fn,a = xn − a.

21



The roots can be written5 as αj = a1/ne2iπ j
n , for 0 ≤ j < n. As these are

scalings of the roots of unity, both their magnitude and separation are
well-understood. With (1), we obtain ‖Vfn,a‖ ≤ na

n−1
n ≤ na.

For any j, we readily compute |f ′n,a(αj)| = na
n−1
n . Using (3), we ob-

serve that |ei(~α
j)| = |αj |i for 1 ≤ i < n. We obtain that the row norm of

V −1
fn,a

is given by its first row as

∑
j∈[n]
|w1j | =

1
na

n−1
n

·
∑
j∈[n]
|αj |n−1 = 1,

from which it follows that ‖V −1
fn,a
‖ ≤
√
n.

Small perturbations of fn,a. Let P (x) =
∑

1≤j≤ρ·n pjx
j for some

constant ρ ∈ (0, 1), where the pj ’s are a priori complex numbers. Locating
the roots of gn,a = fn,a + P is our first step towards estimating ‖Vgn,a‖
and ‖V −1

gn,a‖. We will use the following version of Rouché’s theorem.

Theorem 4.3 (Rouché, adapted from [Con95, p.125-126]). Let
f, P be complex polynomials, and let D be a disk in the complex plane. If
for any z on the boundary ∂D we have |P (z)| < |f(z)|, then f and f +P
have the same number of zeros inside D, where each zero is counted as
many times as its multiplicity.

The lemma below allows to determine sufficient conditions on the
parameters such that the assumptions of Theorem 4.3 hold. We consider
small disks Dk = D(αk, 1/n) of radius 1/n around the roots α1, . . . , αn
of fn,a, and we let ∂Dk denote their respective boundaries. We let ‖P‖1 =∑
j |pj | denote the 1-norm of P .

Lemma 4.4. We have, for all k ≤ n and z ∈ ∂Dk:

|P (z)| ≤ (ae)ρ · ‖P‖1 and |fn,a(z)| ≥ a
(

1− cos(a−1/n)− 2ea−1/n

na2/n

)
.

Proof. Write z = αk + eit

n for some t ∈ [0, 2π). We have |z| ≤ a1/n +
1/n, and hence |z|ρn ≤ aρ

(
1 + 1

na1/n

)ρn
. The first claim follows from the

inequality |P (z)| ≤ max(1, |z|ρn) · ‖P‖1.
Next, we have |fn,a(z)| = a|(1 + eit′

na1/n )n − 1|, where t′ = t − 2kπ/n.
W.l.o.g., we assume that k = 0. Let Log denote the complex logarithm,

5 For the rest of this section, ‘i’ will refer to the imaginary unit.

22



defined on C \R−. Since the power series
∑
k≥1(−1)k−1uk/k converges to

Log(1+u) on the unit disk, we have Log(1+ eit

na1/n ) = eit

na1/n +δ, for some δ
satisfying |δ| ≤ |u| ·

∑
k≥1 |u|k/(k + 1) ≤ |u|2 for u = eit

na1/n (note that it
has modulus ≤ 1/n ≤ 1/2). Similarly, we can write exp(nδ) = 1 + ε for
some ε satisfying |ε| ≤ 2n|δ| ≤ 2/(na2/n). We hence have:

|fn,a(z)| = a · |A · (1 + ε)− 1| ≥ a · ||A− 1| − |ε ·A|| ,

with A = exp(eita−1/n). Elementary calculus (see Appendix B) leads to
the inequalities |A−1| > 1−cos(a−1/n) and |A| ≤ ea−1/n for all t ∈ [0, 2π).
The second claim follows. ut

We note that when a = 2o(n) and n is sufficiently large, then the lower
bound on |fn,a(z)| may be replaced by |fn,a(z)| > a/3. To use Rouché’s
theorem, it is then enough that a, ρ and ‖P‖1 satisfy a > (3eρ‖P‖1)

1
1−ρ .

We can now derive upper bounds on the norms of Vgn,a and its inverse.

Lemma 4.5. For any a > (‖P‖1 ·C−1 ·eρ)
1

1−ρ with C = |1−cos(a−1/n)−
2ea−1/n

na2/n |, we have:

‖Vgn,a‖ ≤ ane and ‖V −1
gn,a‖ ≤ n

5/2(‖P‖1 + 1)a1/ne2.

Proof. Let αj = a1/ne2iπj/n be the roots of fn,a (for 0 ≤ j < n). Thanks
to the assumptions and Lemma 4.4, Theorem 4.3 allows us to locate
the roots (βj)0≤j<n of gn,a within distance 1/n from the αj ’s. Up to
renumbering, we have |αj −βj | ≤ 1/n for all j. In particular, this implies
that |βj | ≤ a1/n + 1/n for all j. The first claim follows from (1).

Another consequence is that any power less than n of any |βj | is ≤ ae.
We start the estimation of ‖V −1

gn,a‖ by considering the numerators in (2).
Let k0 = 1 + bn(1 − ρ)c. For any k < k0, we know that Ek(~β) = 0.
Using (3), we obtain |ek(~β

j
)| = |βj |k ≤ ae for k < k0 and that ek0−1(~β

j
) =

(−1)k0−1βk0−1
j . Then (3) gives Ek0(~β) = (−1)k0pn−k0 = (−1)k0−1βk0

j +

ek0(~β
j
), which implies that |ek0(~β

j
)| ≤ |βj |k0 + |pn−k0 |. By induction, we

obtain, for all k < n− k0:

|ek0+k(~β
j
)| ≤ |pn−k0−k|+ |pn−k0−k+1βj |+ · · ·+ |pn−k0β

k
j |+ |βj |k0+k

≤ (‖P‖1 + 1) max(1, |βj |n),

so that |ek(~β
j
)| ≤ (‖P‖1 + 1)ae for k ≥ 1.
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We now derive a lower bound on the denominators in (2). The sep-
aration of the βj ’s is close to that of the αj ’s. Concretely: |βj − βk| ≥
|αj−αk|−2/n for all j, k. Therefore, we have

∏
k 6=j |βj−βk| ≥

∏
k 6=j(|αj−

αk|−2/n). Using the identity |αj−αk| = 2a1/n sin(|k−j|π/n) and elemen-
tary calculus (see Appendix B), we obtain

∏
k 6=j |βj − βk| ≥ a

n−1
n /(ne).

Thus any coefficient wij of V −1
gn,a satisfies |wij | ≤ n(‖P‖1 + 1)a1/ne2. The

claim follows from equivalence between the row and Frobenius norms. ut

We now assume that the pj ’s and a are integers. The following lemma
states that, for a prime and sufficiently large, the polynomial gn,a is irre-
ducible, and thus defines a number field.

Lemma 4.6. Assume that P is an integer polynomial. For any prime
a > ‖P‖1 + 1, the polynomial gn,a is irreducible over Q.

Proof. Let β be a root of gn,a. Then we have a = |βn + P (β)| ≤ |β|n +
‖P‖1 max(1, |β|n). The assumption on a implies that |β| > 1. In other
words, all the roots of gn,a have a magnitude > 1. Now, assume by con-
tradiction that gn,a = h1h2 for some rational polynomials h1, h2. Since
gn,a is monic, it is primitive and we can choose h1, h2 as integer polynomi-
als. The product of their constant coefficients is then the prime a. Hence
the constant coefficient of h1 or h2 is ±1, which contradicts the fact that
the roots of gn,a have magnitude > 1. ut

Overall, we have proved the following result.

Theorem 4.7. Let ρ ∈ (0, 1) and pj ∈ Z for 1≤ j ≤ ρ · n. Then for
a ≥ (3eρ‖P‖1)1/(1−ρ) smaller than 2o(n) and prime, and n sufficiently
large, the polynomial gn,a = xn +

∑
1≤j≤ρ·n pjx

j + a is irreducible over Q
and satisfies:

‖Vgn,a‖ ≤ ane and ‖V −1
gn,a‖ ≤ n

5/2(‖P‖1 + 1)a1/ne2.

In particular, if a and ‖P‖1 are polynomial in n, then both ‖Vgn,a‖ and
‖V −1

gn,a‖ are polynomial in n.

In Appendix C, we give another family of well-behaved polynomials.

5 Search to decision dual-RLWE

The reduction relies on the recent technique of [PRSD17]. To leverage it,
we use a generalized Leftover Hash Lemma over rings. The proof gener-
alizes a technique used in [SS11] to the case where the irreducible fac-
tors of the defining polynomial (of K) reduced modulo q do not share
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the same degree. Alternatively, a generalization of the regularity lemma
from [LPR13, Se. 7] to arbitrary number fields could be used. Such a
generalization may go through and improve our results a little.

5.1 A ring-based Leftover Hash Lemma

Let m ≥ 2. We identify any rank m OK-moduleM ⊆ Km with the lattice
σ(M) ⊆ Hm. For such modules, the dual may be defined as

M̂ = {t ∈ Km : ∀x ∈M,Tr(〈t,x〉) ∈ Z}.

Here 〈·, ·〉 is the K-bilinear map defined by 〈x,y〉 =
∑m
i=1 xiyi. We have

σ(M̂) = σ(M)∗ in Hm. For some q ≥ 2 and a fixed a ∈ (OK/qOK)m, we
focus on the modules:

L(a) = a
q
O∨K + (O∨K)m and a⊥ = {t ∈ OmK : 〈t,a〉 = 0 mod qOK}.

To prove our Leftover Hash Lemma variant, the main argument relies
on an estimation of λ∞1 (â⊥), which is obtained by combining the following
two lemmas. The first one was stated in [LS15, Se. 5] without a proof,
for the case of cyclotomic fields (this restriction is unnecessary). For the
sake of completeness, we give a proof in Appendix B.

Lemma 5.1. Let q ≥ 2 and a ∈ (OK/qOK)m. Then we have â⊥ = L(a).

We now obtain a probabilistic lower bound on λ∞1 (â⊥) = λ∞1 (L(a)).
In full generality, it should depend on the ramification of the selected
prime integer q, i.e., the exponents appearing in the factorization of qOK
in prime ideals. It is a classical fact that the ramified prime integers are
exactly the primes dividing the discriminant of the field, so that there
are only finitely many such q’s. Moreover, it is always possible to use
modulus switching techniques ([BLP+13,LS15]) if q ramifies. Therefore,
we consider only the non-ramified case.

Lemma 5.2. Let q ≥ 2 a prime that does not divide ∆K . For any m ≥
2 and δ > 0, and except with a probability ≤ 23n(m+1)q−mnδ over the
uniform choice of ~a ∈ ((OK/qOK)×)m, we have:

λ∞1 (L(a)) ≥ ∆−1/n
K · q−

1
m
−δ.

Proof. Thanks to the assumption on q, we can write qOK = p1 . . . pk
for distinct prime ideals pi. By Lemma 2.4 and the Chinese Remainder
Theorem, we haveO∨K/qO∨K ' OK/qOK '

⊕k
i=1 Fqdi , where qdi = N (pi).
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Let a = (a1, . . . , am) sampled uniformly in ((OK/qOK)×)m. Fix some
bound B > 0 and let pB be the probability that qL(a) = aO∨K + q(O∨K)m
contains a t = (t1, . . . , tm) such that 0 < ‖t‖∞ < B. Our goal is to bound
pB from above. By the union bound, we have that

pB ≤
∑

s∈O∨K/qO
∨
K

∑
t∈(O∨K/qO

∨
K)m

0<‖t‖∞<B

p(t, s),

with p(t, s) = Pra[∀ j, tj = ajs mod qO∨K ] for any s and ~t over O∨K/qO∨K .
By independance of the aj ’s, we can write p(t, s) =

∏
j∈[m] p(tj , s) with

p(tj , s) = Praj [tj = ajs mod qO∨K ]. As O∨K/qO∨K and OK/qOK are iso-
morphic, estimating this probability amounts to studying the solutions
in (OK/qOK)× of the equation t = as mod qOK , for all t, s ∈ OK/qOK .

Note that if there is an i such that t = 0 mod pi and s 6= 0 mod pi,
or vice-versa, then there is no solution, so that p(t, s) = 0. Now, assume
that s and t are 0 modulo the same pi’s. Let S ⊆ [k] denote the set
of their indices, and let dS be such that qdS = N (

∏
i∈S pi). On the one

hand, for all i ∈ [k] \ S, both t and s are invertible modulo pi so there is
exactly one solution modulo those i’s. On the other hand, for all i ∈ S,
all the elements of F×

qdi
are solutions. This gives

∏
i∈S(qdi−1) possibilities

out of the
∏
i(qdi − 1) elements of (OK/qOK)×. Overall, we obtain that

p(t, s) =
∏
i∈[k]\S(qdi − 1)−1. Hence, for t with coordinates tj such that s

and all tj ’s are 0 modulo the same pi’s, we have:

p(t, s) = q−m(n−dS) ∏
i∈[k]\S

(1− 1
qdi

)−m ≤ q−m(n−dS) · 2mk,

the last inequality coming from the fact that 1− 1/qdi ≥ 1/2 for all i.
Let τ denote the isomorphism mapping O∨K/qO∨K to OK/qOK . The

probability to bound is now

pB ≤ 2mk ·
∑
S⊆[k]

∑
τ(s)∈OK/qOK
∀i∈S:pi | τ(s)

∑
τ(t)∈(OK/qOK)m

0<‖t‖∞<B
∀ j,∀i∈S:pi | τ(tj)

q−m(n−dS).

For any r > 0, we let B(r) denote the (open) ball in H of center 0
and radius r, with respect to the infinity norm. Such a ball has a vol-
ume Vol(B(r)) = (2r)n. For any S ⊆ [k], we define N(B,S) = |B(B) ∩
L(τ−1(

∏
i∈S pi))|−1. Since there are 2k subsets in [k] and qn−dS elements

τ(s) ∈ OK/qOK such that pi|s for all i ∈ S, we have
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pB ≤ 2k(m+1) · max
S⊆[k]

N(B,S)m

q(n−dS)(m−1) . (4)

We now give an upper bound for N(B,S), from which we will obtain
the result. Let IS =

∏
i∈S pi and λS = λ∞1 (τ−1(IS)). Observe that any

two distinct balls of radius λS/2 and centered around elements of B(B)∩
L(τ−1(IS)) do not intersect. Moreover, all of them are contained in B(B+
λS/2). This implies that

N(B,S) ≤ Vol(B(B + λS/2))
Vol(B(λS/2)) =

(2B
λS

+ 1
)n

.

It remains to give a lower bound on λS . As τ−1(IS) = ISO∨K , we have
N (τ−1(IS)) = qdS/∆K . With Lemma 2.5, this gives ∆−1/n

K qdS/n ≤ λS . If
we set B = ∆

−1/n
K qβ, then nβ < dS leads to N(B,S) = 0 and nβ ≥ dS

implies the upper bound N(B,S) ≤ 22nqnβ−dS . With (4), this gives

pB ≤ 2(m+1)(k+2n) · max
S⊆[k]
dS≤nβ

qm(β−1)n+(n−dS).

The maximum is reached for dS = 0 (i.e., when S = ∅). In this case, the
exponent of q is −mnδ for β = 1− 1

m − δ. We obtain that λ∞1 (qL(a)) ≥
∆
−1/n
K q1− 1

m
−δ except with probability ≤ 23n(m+1)q−mnδ. ut

We are now ready to state the variant of the Leftover Hash Lemma.

Theorem 5.3. Let q ≥ 2 prime that does not divide ∆K . Let δ > 0, ε ∈
(0, 1/2) and m ≥ 2. For a given a in ((OK/qOK)×)m, let Ua be the
distribution of

∑
i≤m tiai where the vector t = (t1, . . . , tm) is sampled

from DOK ,s with s ≥
√

log(2mn(1 + 1/ε))/π ·∆1/n
K q1/m+δ. Then, except

for ≤ 23n(m+1)q−mnδ of a’s, the distance to uniformity of Ua is ≤ 2ε.

Proof. First we note that the map t 7→
∑
i≤m tiai is a well-defined surjec-

tive OK-module homomorphism from OmK to OK/qOK , with kernel a⊥.
The distance to uniformity of Ua is hence the same as the distance to
uniformity of t mod a⊥. By Lemma 2.8, the claim follows whenever s ≥
ηε(a⊥). By Lemma 2.6, t it suffices to find an appropriate lower bound
on λ∞1 (L(a)). Lemma 5.2 allows to complete the proof. ut

Corollary 5.4 (Leftover Hash lemma). If t is sampled from DOK ,s

with s ≥
√

log(2mn(1 + 1/ε))/π · ∆1/n
K q1/m+δ, and the ai’s are sampled
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from U((OK/qOK)×), then:

∆

[(
a1, . . . , am,

∑
i≤m

tiai

)
, U

(
((OK/qOK)×)m ×OK/qOK

)]
≤ 2ε+ 23n(m+1) · q−mnδ.

5.2 Search RLWE to decision RLWE

We now give the reduction from search to decision. As all proofs can be
done similarly, we focus on the dual-RLWE version of the problems. For
the sake of simplicity, we consider only the case of diagonal covariance
matrices. The proof readily extends to general covariance matrices. To
obtain the reduction, we need to generate suitable new samples from a
starting set of samples from search dual-RLWE.

The lemma below is adapted from [LS15, Le. 4.15]. We will use it to
analyze the error distribution we get when generating new samples.

Lemma 5.5. Let α > 0, L a rank-m OK-module, ε ∈ (0, 1/2), a vector
t ∈ DL+c,r for some c ∈ Hm, and e′ ∈ KR chosen according to DH

α . If
ri ≥ ηε(L) and α

δi
≥ ηε(L) for all i, then ∆(〈t, e〉 + e′, DH

x ) ≤ 4ε with
xi =

√
(riδi)2 + α2 and δi = (

∑
k∈[m] |σi(ek)|2)1/2 for all i.

We can now give a reduction from search dual-RLWE to worst-case
decision dual-RLWE. It may be combined with the worst-case decision
dual-RLWE to decision dual-RLWE from Lemma 2.14.

Theorem 5.6. Let r ∈ (R≥0)n be such that ri = ri+s2 for any i > s1 and
ri ≤ r for some r > 0. Let d =

√
n ·∆1/n

K q1/m+1/n, and consider Σ = {r′ :
r′i ≤

√
d2 · r2 ·m+ d2}. Then there exists a probabilistic polynomial-time

reduction from search dual-RLWEq,Dr with m ≤ q/(2n) input samples to
worst-case decision dual-RLWEq,Σ.

Proof. We have m samples (ai, bi = ais+ei) ∈ OK/qOK×KR/qO∨K from
the dual-RLWE distributionA∨s,r, for a uniform s ∈ O∨K/qO∨K that we want
to find. This is equivalent to finding the error term e = (e1, . . . , em). By
assumption on m, the ai’s are all invertible with non-negligible probabil-
ity. If it is not the case, the reduction aborts. From now on, we hence
assume that they are uniformly distributed in (OK/qOK)×.

We use the same technique as in [PRSD17], in that we find the ith
embeddings σi(e1), . . . , σi(em) of the error terms by constructing an m-
dimensional instance of the Oracle Hidden Center Problem (OHCP). The
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only difference consists in the way we create the samples that we give to
the decision oracle. The reduction uses the dual-RLWE decision oracle to
build the oracles Oi : Rm×R≥0 → {0, 1} for i ≤ s1 and Oi : Cm×R≥0 →
{0, 1} for s1 < i ≤ s1 + s2.

For i ≤ s1, we define ki : R → KR as ki(x) = σ−1(x · vi) and for
s1 < i ≤ s1 + s2, we define ki : C→ KR as ki(x) = σ−1(x · vi + x · vi+s2),
where the vi’s form the canonical basis of H.

On input (z1, . . . , zm, α), oracle Oi will output 1 with probability de-
pending on exp(α)‖e − z‖, where z = (ki(z1), . . . , ki(zm)). It works as
follows. It first chooses a uniform s′ ∈ O∨K/qO∨K . On input (z1, . . . , zm, α),
it samples t = (t1, . . . , tm) ∈ OmK Gaussian with parameter exp(α) ·

√
n ·

∆
1/n
K q1/m+1/n and some e′ from Dd. The oracle then creates (a′, b′) =

(〈t,a〉, 〈t,b− z̄〉+ a′s′ + e′), where b = (b1, . . . , bm).
By Corollary 5.4, the distribution of (a, 〈t,a〉) is exponentially close

to U(((OK/qOK)×)m × OK/qOK). Since bj = ajs + ej for all j, we get
b′ = a′(s + s′) + 〈t, e − z̄〉 + e′, so oracle Oi creates RLWE samples for
a uniformly distributed s + s′, provided the error term follows a suit-
able distribution. We let δ` = (

∑
j∈[m] σ`(ej − ki(zj))|2)1/2 for ` ≤ n.

In particular, we have δi = ‖σi(e1) − z1, . . . , σi(em) − zm‖. Let us now
study the distribution of the error term 〈t, e − z〉 + e′. We can see that
once the value of 〈t,a〉 = c and the ai’s are known, one can write
t = (ca−1

1 , 0, . . . , 0)+(−a−1
1
∑
i≥2 tiai, t2, . . . , tm), where the second vector

belongs to a⊥. This means that the actual support of t is a shift of the
a⊥ lattice by the vector (ca−1

1 , 0, . . . , 0). Using Lemma 5.5, we get that
the distribution of the error is DH

x where xj =
√

exp2(α) · d2 · δ2
j + d2.

Let Si,(z1,...,zm,α) be the samples obtained by applying the procedure
above many times. Oracle Oi calls the dual-RLWE decision oracle with
these and outputs 1 if and only if the latter accepts. With non-negligible
probability over the choice of the initial errors, the distribution of the
samples we get when we call the oracle Oi on (0, 0) belongs to the set Σ.
One can now show that using the same technique as in [PRSD17], it is
possible to recover good approximations of the vector (σi(e1), . . . , σi(em)).
By substracting them from the initial search samples, rounding and then
taking the inverses of the ai’s, we obtain s. ut
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A Standard background in algebraic number theory

A number fieldK is a finite extension of Q, which can always be described
as Q[x]/f for some monic irreducible polynomial f ∈ Z[x], or Q[α] for
some root α of f . Note that a given K admits several such f ’s. In this
setup, the polynomial f is called a defining polynomial of K and the
extension degree ofK is deg f . The set of all elements ofK whose minimal
polynomials have coefficients in Z is a ring called the ring of integers
and is denoted by OK . It contains the subring Z[α] ' Z[x]/f and, in
general, the inclusion is strict. Examples where OK = Z[α] include some
quadratic extensions, cyclotomic fields (i.e., when α is a primitive root of
the unity) and number fields with a defining polynomial f of squarefree
discriminant ∆f . To avoid confusion with elements of OK , elements in Z
are called rational integers.

A number field K = Q[α] of degree n has exactly n ring embeddings
σi : K → C in the complex field. If we let α1, . . . , αn be the n roots of
its defining polynomial, then these embeddings are defined by σi(α) = αi
and extended Q-linearly. They are often called Minkowski embeddings. If
the image of an embedding is contained in the real field R it is said to
be real, else it is said to be complex. As complex roots come by pairs of
conjugates, so do the complex embeddings. We let s1 denote the number
of real embeddings and s2 the number of pairs of complex embeddings, so
that n = s1 + 2s2. The embedding map is then defined as σ : K → H by
mapping an element in K to its vector of (suitably ordered) embeddings.
Note that via the embedding map, we have KR := K ⊗Q R ' H. Among
its nice properties, the multiplicative structure of K is preserved, i.e.,
σ(xy) = (σ1(x)σ1(y), . . . , σn(x)σn(y)). If we are given a (geometric) norm
‖ · ‖ on the space Rs1 × C2s2 , then we can consider the geometric norm
of an element in K by means of the Minkowski embeddings. The (field)
trace is the Q-linear map defined as Tr(x) =

∑
i≤n σi(x) and the (field)

norm is N(x) =
∏
i≤n σi(x).

Another way is to use the so-called coefficients embedding, which
amounts to viewing an element a =

∑n
i=0 aix

i as its vector of coeffi-
cients ~a = (ai)i<n. Different defining polynomials for K = Q[x]/f give
different coefficient embeddings, and coefficient and Minkowski embed-
dings have different geometric settings. Going from the coefficient repre-
sentation ~a of K to its Minkowski equivalent is done by the linear trans-
formation σ(a) = Vf~a, where Vf denotes the Vandermonde matrix of
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f =
∏n
i=1(x− αi):

Vf =


1 α1 . . . α

n−1
1

1 α2 . . . α
n−1
2

... . . .
...

1 αn . . . αn−1
n

 .
It is well-known that the square determinant of this matrix is the dis-
criminant of f , i.e., we have (detVf )2 = ∆f =

∏
i 6=j(αi − αj). When it

defines a number field, the polynomial f does not have any double root
thus Vf is invertible and we have ~a = V −1

f σ(a).

B Missing proofs

Proof (Th. 2.13). First, let (a, b = a ·s+e) be distributed as A∨s,Σ. We de-
fine b′ = t · b = a · (t · s) + e′, with e′ = t · e. By Lemma 2.4, multiplication
by t induces an OK-module isomorphism O∨K/qO∨K ' OK/qOK , hence
t · s ∈ OK/qOK . Also, the distribution of the error term e′ is DH

Σ′ . As a
consequence, the sample (a, b′) is distributed as At·s,Σ′ . Second, if (a, b) is
uniform in OK/qOK ×KR/qO∨K , as multiplying by t induces an isomor-
phism, we have that b′ is uniform in KR/qOK , independently from a. ut

Proof (Le. 4.4). Define A(t) = exp(eita−1/n) for t ∈ [−π, π]. We have

argA(−t) = − argA(t) = a−1/n sin(−t),
|A(−t)| = |A(t)| = exp(a−1/n cos(t)).

Therefore, the graph of A(t) is symmetric with respect to the real axis.
We can hence restrict the study of A(t) to [0, π]. As |A(t)| decreases for
such t’s, this implies that |A(t)| ≤ |A(π)| ≤ ea−1/n for all t.

Let <A(t) and =A(t) respectively denote the real and imaginary
parts of A(t). Their derivatives are − exp

(
a−1/n cos(t)

)
a−1/n · sin

(
t +

a−1/n sin(t)
)
and exp

(
a−1/n cos(t)

)
a−1/n · cos

(
t + a−1/n sin(t)

)
, respec-

tively. The study of their signs shows that <A(t) decreases on [0, π], and
that there exists a t0 ∈ (π/4, π/2) such that =A(t) increases on [0, t0] and
decreases on [t0, π]. We have:

• when t ∈ [π/2, π], <A(t) ≤ <A(π/2) so that |A(t)−1| ≥ 1−cos(a−1/n),
• when t ∈ [π/4, π/2], =A(t) ≥ min{=A(π/2),=A(π/4)} so that |A(t)−

1| ≥ min{sin(a−1/n), e
√

2/(2a1/n) sin(
√

2
2 a
−1/n)} ≥ 1− cos(a−1/n),

• when t ∈ [0, π/4], <A(t) ≥ <A(π/4), so that |A(t)− 1| > |<A(π/4)−
1| > e

√
2/(2a1/n) cos(

√
2

2a1/n )− 1 ≥ 1− cos(a−1/n).
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These inequalities and the symmetry imply the claimed lower bound
on |A(t)− 1|. ut

Proof (Le. 4.5). Recall that
∏
k 6=j |βj − βk| ≥

∏
k 6=j(|αj − αk| − 2/n),

and that |αj − αk| = 2a1/n sin(|k − j|π/n). Standard bounds on the sine
function give that sin(kπ/n) ≥ 2k/n for 1 ≤ k ≤ n/2, and sin(kπ/n) ≥
2− 2k/n for n/2 < k ≤ n. We derive that:∏

k 6=j
|βj − βk| ≥

∏
k 6=j
|αj − αk| ·

∏
k 6=j

|k−j|≤n/2

(
1− 1

2a1/n|k − j|

)2

≥ |f ′n,a(αj)| · exp

2
∑

1≤k′≤n/2
log

(
1− 1

2a1/nk′

) .
We have log(1− 1

2a1/nk′
) ≥ −1

a1/nk′
, and from the asymptotic expression of

harmonic numbers, we can write
∑n/2
k′=1 1/k′ ≤ log(n/2) + 1. We obtain:

∏
k 6=j
|βj − βk| ≥ na(n−1)/n ·

(
ne
2

)−2a−1/n

≥ a(n−1)/n/(ne).

ut

Proof (Le. 5.1). We proceed by double inclusion, starting with L(a) ⊆
â⊥. Let x = (x1, . . . , xm) ∈ a⊥ and t = (t1, . . . , tm) ∈ L(a). By definition,
there exist s ∈ O∨K and b1, . . . , bm ∈ O∨K such that ti = ai

q s + bi, for
all i. Then the element Tr(〈t,x〉) = 1

qTr(s〈a,x〉) +
∑m
i=1 Tr(xibi) is an

integer. Indeed, by definition of x, the product s〈a,x〉 belongs to qO∨K .
This implies that all traces are rational integers, which completes the
proof of the first inclusion.

By duality, the reverse inclusion is equivalent to L̂(a) ⊆ a⊥. Let y ∈
L̂(a). As a

q ∈ L(a) we obtain that Tr(〈y,a〉) ∈ qZ. This implies that
we have Tr(〈y,b〉) ∈ Z for all b ∈ (O∨K)m. Taking for b vectors with
one coordinate arbitrary in O∨K and 0 for the rest, we see that all yi’s
belong to O∨∨K = OK , hence y ∈ OmK . The fact that Tr(〈y,b〉) ∈ Z for all
b ∈ (O∨K)m also implies that Tr(s〈aq ,y〉) is an integer for all s ∈ O∨K , so
that 〈aq ,y〉 ∈ O

∨∨
K = OK . Equivalently, we have y ∈ a⊥. ut

C Other “good” families of polynomials

We consider polynomials as fn,ε0,ε1 = xn+ε1 ·x+ε0 for εi ∈ {±1}. Notice
that this class of polynomials includes the polynomials used in [BCLvV16].
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Recall that Vfn,ε0,ε1
denotes the Vandermonde matrix associated to fn,ε0,ε1 .

We prove the following result.

Lemma C.1. For every n > 2 and any ε0, ε1 ∈ {±1}, we have:

‖Vfn,ε0,ε1
‖ ≤ 2n and ‖V −1

fn,ε0,ε1
‖ ≤ 6n7/2.

We first use a general result on lacunary polynomials to estimate the
magnitudes of the roots.

Proposition C.2 ([Mig00, Thm. 1]). For any positive integer n and
1 ≤ k < n − 1, let P (x) = xn + an−k−1x

n−k−1 + · · · + a0 be a complex
polynomial, such that a0 6= 0. For any root α of P , we have

|α| ≤ (n− k)
1
k+1 · max

1≤j≤n
|an−j |1/j .

In our case, we see that any root α of fn,ε0,ε1 is less than 2
1

n−1 . We use
this observation several times below. Thanks to Equation (1), this gives
that ‖Vfn,ε0,ε1

‖ ≤ 2n.
We use (2) to estimate ‖V −1

fn,ε0,ε1
‖. From (3), we get that |ei(~α

j)| =

|αj |i for i ≤ n−2 and j ≤ n, and |en−1(~αj)| = |ε0−αj ·en−2(~αj)| ≤ 3. We
now study the denominators of (2), that we can rewrite as f ′n,ε0,ε1(αj) =
αj(1−n)ε1−nε0

αj
. Using the triangle inequality, we have |αj(1−n)ε1−nε0| ≥

n−(n−1)·2
1

n−1 . Since the function g(x) = (1+1/x)x is strictly increasing,
so is the sequence an = (1 + n+1

n2 )
n2
n+1 . This gives that a1−1/n2

n = (1 +
n+1
n2 )n−1 ≥ 2 for any n ≥ 3. It follows that n−(n−1)·2

1
n−1 ≥ 1/n2 for any

n ≥ 3. We conclude by observing that |αj | < 2 implies that |f ′(αj)| ≥ 1
2n2

and then |wij | ≤ 6n2. Equivalence between row and Frobenius norms gives
the claim.

In this situation, fn,ε0,ε1 may not be irreducible over Q. For example,
if n ≡ 2 mod 3 and ε0 = ε1 = 1, then the primitive third roots of unity
are also roots of fn,1, hence x2 + x + 1 is a factor. A similar situation
occurs with x2−x+ 1 if n ≡ 2 mod 6 and ε0 = 1, ε1 = −1. This does not,
however, impact the estimation of the norms.

D On small elements and f ′(α)

In Section 4.1, we discussed the possibility to use f ′(α) for reductions
between dual (resp. primal) RLWE and primal-RLWE (resp. PLWE), as it is
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the case that f ′(α) ∈ CO∩(O∨K)−1. The results of Section 3 are meaningful
for our applications when there are smaller elements in (O∨K)−1 and CO
than in the ideal generated by f ′(α). More formally, we show that there
are fields K for which

λ1
(
(O∨K)−1) < λ1

(
f ′(α)

)
( resp. λ1(CO) < λ1

(
f ′(α)

)
).

By Lemma 2.5, it suffices that ∆f > ∆
3/2
K (resp. ∆f > NOK (CO)∆1/2

K ).
Below, we give a family of number fields K of degree 3 with defining
polynomials f such that f ′(α) can have an arbitrarily large algebraic
norm, relatively to those of (O∨K)−1 and CO.

Lemma D.1. Let q 6= 3 be a prime integer such that q2 6≡ 1 mod 9. Let
f = x3 − q2, K = Q[x]/f and O = Z[x]/f ' Z[α].

1. We have N (f ′(α)) = ∆f = 33 · q4 and N ((O∨K)−1) = ∆K = 33 · q2.
2. If CO is the conductor of O, then NO(CO) = [OK : O] = q and
NOK (CO) = q2.

The family of f ’s considered in Lemma D.1 is restrictive. Numerical
experiments suggest that polynomials f = xp−q2 with p, q distinct primes
and q2 6≡ 1 mod p2 give [OK : O] = NO(CO) = q

p−1
2 and NOK (CO) =

qp−1.

Proof. A determinant computation gives ∆f = Res(f, f ′) = 33 · q4. From
this factorization and the formula ∆f = [OK : O]2 ·∆K , we can deduce
that 3 and q are the only possible prime factors of [OK : O]. It is known
(see, e.g., [Ste17, p.48]) that a prime integer p divides this index if and only
if there is at least one prime O-ideal factor of pO which is not invertible
as an O-ideal. This property amounts to checking divisibility between
polynomials (Kummer-Dedekind’s theorem, [Ste17, Thm. 3.1, p.31]), and
O is said to be singular over p.

We first show that O is not singular over 3 but is singular over q.
The reduction of f modulo 3 is x3 − 1 = (x− 1)3 in F3. Division of f by
x − 1 gives f = (x − 1)(x2 + x + 1) + 1 − q2, so from the assumptions
on q, 32 does not divide the remainder 1− q2. This precisely means that
O is not singular over 3, and we deduce that 3 divides ∆K . On the other
hand, the reduction of f modulo q is x3 in Fq. Division of f by x gives
f = x · x2 − q2, so that q2 divides the remainder: the order O is singular
over q. In particular, the index [OK : O] is either q or q2.

From the factorization of f modulo q, we also know that the ideal
pq = 〈q, α〉 is the only prime in O containing qO, and that it is not
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invertible. From [Ste17, ex. 25, p. 53], this also means that CO ⊆ pq,
where CO is the (non-trivial) conductor of O.

Using [Ste17, Cor. 3.2, p. 32], we know that β := 1
qα

2 is not in O. One
checks that the minimal polynomial of β over Q is x3− q, hence β ∈ OK .
In particular, we have a ring extension O ⊆ O[β] ⊆ OK . Observe that
Z[β] is regular above q: reducing x3 − q modulo q gives again x3, but the
remainder by division by x is now q. Now, the order O[β] is a common
extension of O and Z[β], and from [Ste17, Le. 3.8, p. 33], ring extensions
do not add new singular primes. This implies that O[β] is a Dedekind ring
in OK . Moreover, from [Ste17, Le. 3.20, p. 39], we get that O[β] = OK .
We also obtain that qOK ⊆ Pq := 〈q, β〉 = βOK .

We first observe that β2−α = 0, which means that O[β] = {λβ+µ :
λ, µ ∈ O}. We readily check that q(λβ + µ) and α(λβ + µ) are elements
in O for any λ, µ ∈ Z[α], so we actually have that pq := 〈q, α〉O = CO.
This means that O/pq ' Fq or, equivalently, that NO(CO) = q. We now
show that |O[β]/O| = [O : CO], where the left cardinality is taken for
the quotient of the additive groups. Now two elements λβ + µ, λ′β + µ′

are in the same class if and only if (λ − λ′)β is in O. This amounts to
asking that λ − λ′ ∈ CO, so that the classes of the quotient ring O/CO
are in one-to-one correspondance with the classes of the quotient group
O[β]/O. In other words, we have [OK : O] = q.

We now describe CO as anOK-ideal. Since β2 = α, we have CO ( Pq =
βOK as OK-ideals. On the other hand, we haveP2

q = β2OK = αOK ⊆ CO
as OK-ideals. As Pq is prime in OK , we get CO = P2

q . We now obtain
that NOK (CO) = NOK (P2

q) = q2. ut

E On Vandermonde matrices and the expansion factor

In studies of polynomial variants of LWE, the so-called expansion factor
is an important parameter. For example, the reduction from PLWE to
MP-LWE from [RSSS17] requires that the expansion factor of the poly-
nomial parameterizing PLWE be small. The polynomials f for which
we bound ‖Vf‖ and ‖V −1

f ‖ have small expansion factors. This natu-
rally raises the question of the relationship between the condition num-
ber ‖Vf‖·‖V −1

f ‖ and the expansion factor of f . Below, we show that there
exist polynomials f with small expansion factors but large ‖Vf‖ · ‖V −1

f ‖.
For a polynomial f ∈ Z[x] of degree n, the expansion factor of f is

defined as

EF(f) = max
{‖g mod f‖∞

‖g‖∞
: g ∈ Z[x] \ {0},deg g ≤ 2n

}
,
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where ‖g‖∞ is the height of the g, i.e., the largest magnitude of its co-
efficients. It is known [LM06] that “gap” polynomials f = xn + h with
deg h ≤ n/2 and ‖h‖∞ ≤ poly(n) satisfy EF(f) ≤ poly(n). We show that
this family also contains polynomials f for which ‖V −1

f ‖ grows exponen-
tially with n. For this, we use results on roots separation from Bugeaud
and Mignotte [BM04,BM10].

For integers n ≥ 4, 2 ≤ k < n/2, a ≥ 2, consider the family of polyno-
mials given by

gn,a,k = xn − 2(ax− 1)k.

The factor 2 is used to ensure irreducibility by way of Eisenstein’s cri-
terion. Such polynomials have a “gap” in their coefficients. Considering
a, k as function of n, their expansion factors are polynomially bounded
if for example a ≤ poly(n) and k is constant, or if a is constant and
k ≤ O(logn).

Besides, Bugeaud and Mignotte showed that there is a cluster of k
roots exponentially close to the real 1/a. In particular, if the other roots
are not too far away from this cluster, the denominators in (2) force ‖V −1

f ‖
to be exponentially large. We adapt some results of [BM10]; in particular,
we locate the roots outside the cluster to be at distance at most a from
the origin. This enables us to prove that ‖V −1

f ‖ is exponentially large
in n.

Lemma E.1 (Adapted from [BM10]). If (1 + 21−n/k)n/k < a, then
the polynomial gn,k,a has k roots in the disk D( 1

a ,
1

an/k
).

Proof. We apply Rouché’s theorem. Write gn,k,a = f + P , where f =
−2(ax− 1)k, and P = xn is the “perturbation.” For any z = 1

a + eit

an/k
on

the circle, we have |f(z)| = 2
an−k

and |P (z)| ≤
( 1
a + 1

an/k

)n, so that the
assumption gives |P (z)| < |f(z)| . We conclude using Theorem 4.3 and
the fact that f has a root of multiplicity k in the disk. ut

Lemma E.2. If a > 4
n+2k
n−2k , then the polynomial gn,k,a has all its roots in

the disk D( 1
a , a

n
2(n−k) − 1

an/k
).

Proof. Write P = −2(ax − 1)k and f = xn. For any z on the boundary

of the disk, we have |f(z)| ≥
(
a

n
2(n−k) − 1

a −
1

an/k

)n ≥ a
n2

2(n−k) · 2−n. If we
write P =

∑
i pix

i, then |pi| = 2ai
(k
i

)
so that ‖P‖1 = 2(a+1)k. We obtain

|P (z)| ≤ max(1, |z|k) · ‖P‖1 ≤ 2(a+ 1)k
(
a

n
2(n−k) − 1

a
− 1
an/k

)k
,
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and the assumption implies that |P (z)| < |f(z)| on the boundary of the
disk. We conclude using Rouché’s theorem (Theorem 4.3). ut

The term “− 1
an/k

” in the radius cancels in the next proof. As a con-
sequence of these lemmata, we can show that the inverse Vandermonde
associated to gn,k,a has several exponentially large entries.

Proposition E.1 Let n ≥ 4, 2 ≤ k < n/2, a ≥ 2 be integers such that
a > max

(
(1 + 21−n/k)n/k, 4

n+2k
n−2k

)
. Then ‖V −1

gn,k,a
‖∞ ≥ an/2−n/k

2k−1 .

Proof. The assumption on a allows us to apply the two lemmata above.
Let α1, . . . , αk be the roots in the disk D( 1

a ,
1

an/k
) (their cardinality is

provided by Lemma E.1). We have, for all i ≤ k, that
∏k
j=1,j 6=i |αi−αj | ≤

2k−1

an−n/k
. Let αk+1, . . . , αn denote the other roots. From Lemma E.2 and

for i ≤ k, we see that maxj>k |αi−αj | ≤ a
n

2(n−k) and thus
∏
j 6=i |αi−αj | ≤

2k−1

an/2−n/k . From (2), the latter inequality implies that the k first entries in
the last row of V −1

gn,k,a
have magnitudes at least an/2−n/k

2k−1 . This gives us the
claim. ut

Proposition E.1 shows how to define polynomials for which the expan-
sion factor is small and the inverse Vandermonde has very large entries.
The following is an example. Note that there is some flexibility in the
choice of a and k with respect to n to achieve the desired behavior. For
example, one can also fix a and look for k ≤ C log(n) for a constant C > 0.

Corollary E.3. For k = 3 and 5 ≤ a ≤ poly(n), the polynomials gn,3,a
satisfy

EF(gn,3,a) ≤ poly(n) and ‖V −1
gn,3,a‖ ≥ 2Ω(n).
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