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Abstract. Polynomial-based authentication algorithms, such as GCM
and Poly1305, have seen widespread adoption in practice. Due to their
importance, a significant amount of attention has been given to under-
standing and improving both proofs and attacks against such schemes.
At EUROCRYPT 2005, Bernstein published the best known analysis of
the schemes when instantiated with PRPs, thereby establishing the most
lenient limits on the amount of data the schemes can process per key.
A long line of work, initiated by Handschuh and Preneel at CRYPTO
2008, finds the best known attacks, advancing our understanding of the
schemes’ fragility. Yet surprisingly, no known attacks perform as well as
the predicted worst-case attacks allowed by Bernstein’s analysis, nor has
there been any advancement in proofs improving Bernstein’s bounds,
and the gap between attacks and analysis is significant. We settle the
issue by finding a novel attack against polynomial-based authentication
algorithms using PRPs, and combine it with new analysis, to show that
Bernstein’s bound, and our attacks, are optimal.
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1 Introduction

Polynomial-based universal hash functions [dB93,Tay93,BJKS93] are simple and
fast. They map inputs to polynomials, which are then evaluated on keys to pro-
duce output. When used to provide data authenticity as Message Authentication
Code (MAC) algorithms or in Authenticated Encryption (AE) schemes, they of-
ten take the form of Wegman-Carter (WC) authenticators [WC81], which add
the polynomial output to randomly generated values.

Part of the appeal of such polynomial-based WC authenticators is that if the
polynomial keys and random values are generated independently and uniformly
for each message, then information-theoretic security is achieved, as initially
explored by Gilbert, MacWilliams, and Sloane [GMS74], following pioneering
work by Simmons as described in [Sim91]. However, in the interest of speed
and practicality, tweaks were introduced to WC authenticators, seemingly not
affecting security.



Wegman and Carter [WC81] introduced one of the first such tweaks3, by
holding polynomial keys constant across messages, which maintain security as
long as the polynomial outputs are still added to fresh random values each time.
Further work then instantiated the random values via a pseudorandom num-
ber generator [Bra82], pseudorandom function (PRF), and then pseudorandom
permutation (PRP) outputs [Sho96], the latter dubbed Wegman-Carter-Shoup
(WCS) authenticators by Bernstein [Ber05b]. Uniqueness of the PRF and PRP
outputs is guaranteed using a nonce. With m the message and n the nonce, the
resulting constructions take the form (n,m) 7→ π(n) + ρ(m), with π the PRF or
PRP, and ρ the universal hash function.

The switch to using PRFs and PRPs means that information-theoretic is re-
placed by complexity-theoretic security. Furthermore, switching to PRPs in WCS
authenticators results in security bound degradation, impacting the amount of
data that can be processed per key (as, for example, exploited by the Sweet32
attacks [BL16]). Näıve analysis uses the fact that PRPs are indistinguishable
from PRFs up to the birthday bound, however this imposes stringent limits.
Shoup [Sho96], and then Bernstein [Ber05b] improve this analysis significantly
using advanced techniques, yet do not remove the birthday bound limit. Re-
gardless, despite the data limits, the use of PRPs enables practical and fast
instantiations of MAC and AE algorithms, such as Poly1305-AES [Ber05c] and
GCM [MV04a,MV04b], the latter of which has seen widespread adoption in
practice [VM06,SMC08,IS09].

As a result of the increased significance of WCS authenticators schemes like
GCM, more recent work has focused on trying to understand their fragility when
deployed in the real-world. The history of attacks against WC and WCS authen-
ticators consists of work exploring the consequences of fixing the polynomial key
across all messages — once the polynomial key is known, all security is lost.

Joux [Jou] and Handschuh and Preneel [HP08] exhibit attacks which re-
cover the polynomial key the moment a nonce is repeated. Ferguson [Fer05]
explores attacks when tags are too short, further improved by Mattson and West-
erlund [MW16]. A long line of work initiated by Handschuh and Preneel [HP08],
illustrates how to efficiently exploit verification attempts to eliminate false keys,
by systematically narrowing the set of potential polynomial keys and searching
for so-called “weak” keys [Saa12,PC15,ABBT15,ZW17,ZTG13].

However, interestingly, in the case of polynomial-based WCS authenticators,
none of the nonce-respecting attacks match the success of the predicted worst-
case attacks by Bernstein [Ber05b]. Furthermore, the gap in success between the
predicted worst-case and best-known attacks grows quadratically in the number
of queries made to the authenticator. Naturally, one is led to question whether
Bernstein’s analysis is in fact the best one can do, or whether there actually is
an attack, forcing us to abide by the data limits.

3 Strictly speaking, Wegman and Carter did not tweak the constructions pioneered
by Simmons, as the connection between the two works was made only later by
Stinson [Sti91].



1.1 Contributions

We exhibit novel nonce-respecting attacks against polynomial-based WCS au-
thenticators (Sect. 3), and show how they naturally arise from a new, simplified
proof (Sect. 4). We show that our attack is optimal using the results developed
for the simplified proof, and relate our bounds to Bernstein’s bound [Ber05b]
(Sect. 5).

Unlike other birthday bound attacks, our attacks work by establishing quadrat-
ically many polynomial systems of equations from the tagging queries. It applies
to polynomial-based WCS authenticators such as Poly1305-AES, as well as GCM
and the variant SGCM [Saa11]. We achieve optimality in a chosen-plaintext set-
ting, however the attacks can be mounted passively, using just known plaintext
for MACs and ciphertext for AE schemes.

1.2 Related Work

Our introduction provides only a narrow view of the history of universal hash
functions, targeted to ones based on polynomials. Bernstein [Ber05c] provides
a genealogy of polynomial-based universal hash functions and Wegman-Carter
authenticators, and both Procter and Cid [PC15,PC13] and Abdelraheem et
al. [ABBT15] provide detailed overviews of the past attacks against polynomial-
based Wegman-Carter MACs and GCM.

Zhu, Tan, and Gong [ZTG13] and Ferguson [Fer05] have pointed out that
non-96-bit nonce GCM suffers from birthday bound attacks which lead to im-
mediate recovery of the polynomial key. Such attacks use the fact that the nonce
is processed by the universal hash function before being used, resulting in block
cipher call collisions. These attacks are not applicable to the most widely de-
ployed version of GCM, which uses 96 bit nonces, nor to polynomial-based WCS
authenticators in general.

Iwata, Ohashi, and Minematsu [IOM12] identify and correct issues with
GCM’s original analysis [MV04a]. Niwa, Ohashi, Minematsu, and Iwata find
further improvements in GCM’s bounds [NOMI15]. Their proofs do not improve
over Bernstein’s analysis [Ber05b].

New constructions using universal hash functions like EWCDM [CS16] achieve
full security [MN17] in the nonce-respecting setting, and maintain security dur-
ing nonce-misuse.

McGrew and Fluhrer [MF05] and Black and Cochran [BC09] explore how
easy it is to find multiple forgeries once a single forgery has been performed.

A long line of research seeks attacks and proofs of constructions which match
each other, such as the generic attack by Preneel and van Oorschot [PvO99], tight
analysis for CBC-MAC [BPR05,Pie06], keyed sponges and truncated CBC [GPT15],
and HMAC [GPR14], and new attacks for PMAC [LPSY16,GPR16].



2 Preliminaries

2.1 Basic Definitions and Notation

The notation used throughout the paper is summarized in App. C. Unless spec-
ified otherwise, all sets are assumed to be finite. Vectors are denoted x ∈ Xq,
with corresponding components (x1, x2, . . . , xq). Given a set X, X≤` denotes the
set of non-empty sequences of elements of X with length not greater than `.

A random function ρ : M→ T is a random variable distributed over the set of
all functions from M to T. A uniformly distributed random permutation (URP)
ϕ : N → N is a random variable distributed over the set of all permutations on
N, where N is assumed to be finite. When we write ϕ : N → T is a URP, we
implicitly assume that N = T.

The symbol P denotes a probability measure, and E expected value.
We make the following simplifications when discussing the algorithms. We

analyze block cipher-based constructions by replacing each block cipher call with
a URP call. This commonly used technique allows us to focus on the construc-
tions’ security without worrying about the underlying block cipher’s quality.
See for example [Ber05b]. Furthermore, although our analysis uses information-
theoretic adversaries, the attacks we describe are efficient relative to the number
of queries made, but require large storage.

We also implicitly include key generation as part of the oracles. For example,
consider a construction E : K×M→ T, where E is stateless and deterministic,
and K is its “key” input. In the settings we consider, E-queries are only actually
made to E(k, ·), where the key input is fixed to some random variable k chosen
uniformly at random from K. Hence, rather than each time talking of E(k, ·),
we simplify notation by considering the random function ρ(m)

def
= E(k,m), with

the uniform random variable k implicitly part of ρ’s description.

2.2 Polynomial-based WCS Authenticators

Although not necessary, for simplicity we fix tags to lie in a commutative group.
The following definition is from Bernstein [Ber05b].

Definition 2.1 (WCS Authenticator). Let T be a commutative group with
operation +. Let π : N→ T be a URP, and ρ : M→ T a random function. The
Wegman-Carter-Shoup (WCS) authenticator maps elements (n,m) ∈ N×M to
π(n) + ρ(m).

We take the following definition from Procter and Cid [PC15]

Definition 2.2 (Polynomial-Based Universal Hash). Let X be a field and `
a positive integer. Given x = (x1, x2, . . . , xl) ∈ X≤`, define the polynomial px(α)
by

px(α)
def
=

l∑
i=1

xi · αi . (1)



Then the polynomial-based universal hash function ρ : X≤` → X is the random

function ρ(x)
def
= px(κ), where κ is a uniform random variable over X, and

x ∈ X≤`.

We say that the input messages X≤` to the polynomial-based universal hash
consist of blocks, with the block length of the messages being at most `.

When a WCS authenticator uses a polynomial-based universal hash function,
we call the resulting construction a polynomial-based WCS authenticator.

Let γ : N×M→ T be a WCS authenticator. An adversary A interacting with
γ is said to be nonce-respecting if it never repeats N-input to γ. Furthermore,
the verification oracle associated to γ, V : N×M× T→ {0, 1}, is defined as

V (n,m, t) =

{
1 if γ(n,m) = t

0 otherwise
. (2)

Nonce-respecting adversaries may repeat nonce-input to V .

Definition 2.3 (Authenticity Advantage). Let A be a nonce-respecting ad-
versary interacting with WCS authenticator γ : N × M → T and associated
verification oracle V . Then A’s authenticity advantage, denoted Authγ(A), is
the probability that A makes a V -query (n∗,m∗, t∗) resulting in V outputting 1
and γ(n∗,m∗) = t∗ was not a previous query-response from γ.

In our analysis we will also need the following definition.

Definition 2.4 (Single-Forgery Advantage). Let A be a nonce-respecting
adversary interacting with WCS authenticator γ : N × M → T, resulting in
queries γ(ni,mi) = ti for i = 1, . . . , q. Say that A outputs (n∗,m∗, t∗) after its
interaction. Then A’s single-forgery advantage is

sAuthγ(A)
def
= P

[
γ(n∗,m∗) = t∗, (n∗,m∗, t∗) 6= (ni,mi, ti) ∀i

]
. (3)

The maximum over all adversaries making at most q queries is denoted sAuthγ(q).

Bernstein connects Auth and sAuth as follows.

Theorem 2.1 ([Ber05a]). Let A be an authenticity adversary making at most
q tagging queries and v verification queries, then

Authγ(A) ≤ v · sAuthγ(q) . (4)

Bellare, Goldreich, and Mityagin prove a similar result for different construc-
tions [BGM04].

2.3 GCM

We present the details of GCM [MV04a,MV04b] necessary to describe our at-
tacks. GCM takes nonce, associated data, and plaintext input. It operates by



first encrypting the plaintext using CTR mode [Nat80] into a ciphertext c. Then
it processes the ciphertext and associated data using a WCS authenticator into
a tag.

GCM only uses one key, namely a block cipher key; as explained before, we
view the keyed block cipher as a URP π over the set of 128-bit strings, hence
the block cipher key is implicit in our description. An authentication key L
is computed as the output of π under the all-zero string, which we denote 0:

L
def
= π(0).
GCM’s WCS authenticator views the set of 128-bit strings as a finite field

with 2128 elements. Once the ciphertext c has been computed using CTR mode,
its length is encoded in a 64-bit string and the ciphertext is padded with zeros
to have length a multiple of 128 bits. The associated data is processed in the
same way. Let a1, a2, . . . , al and c1, c2, . . . , cl′ denote the padded associated data
and ciphertext, respectively, where the length of all blocks ai and ci is 128 bits.
Let x0 denote the concatenation of the encoded lengths of the associated data
and ciphertext. Then, if x = (x0, al, al−1, . . . , a1, cl′ , . . . , c1), GCM computes its
tag as

px(L) + π(n) with L = π(0) , (5)

where n is a value deduced from the nonce.
All π-input in GCM can be derived from the nonce and L, and no two π-

inputs are the same, unless some unlikely event happens, in which case GCM
loses all security [Jou,Fer05,ZTG13]. In more detail, the nonce is converted into
distinct counters for CTR mode, as well as an additional, distinct input, which
is used for the URP input in GCM’s WCS authenticator, denoted n in (5). In
96-bit nonce GCM, n is equal to the nonce concatenated with a string consisting
of 31 zeros, followed by a 1, and the counters used in CTR mode increment the
last 32 bits of n.

In our attacks and analysis below we mostly focus on plain WCS authen-
ticators, however everything translates nearly verbatim over to GCM’s WCS
authenticator.

3 Key Recovery Attacks

Most previously published attacks aim to recover the polynomial key of the
WCS authenticator to construct arbitrary forgeries. All such known key recovery
attacks focus either on reducing the set of candidate keys T , which contains the
actual key, or, equivalently, increasing T ’s complement F , the set of “false” keys.
The former can be achieved through nonce misuse [Jou,HP08], which allows one
to obtain a polynomial for which the key is a root, thereby reducing T to the
set of all roots of the polynomial. Although nonce misuse attacks are important
to understand the fragility of the schemes, we focus on attacks which stay in the
nonce-respecting model.

In contrast, the nonce-respecting attacks reduce T via repeated verification
attempts [HP08,PC15,ABBT15]. Their goal is to construct a forgery polynomial



which evaluates to zero on the key. Then the forgery polynomial is combined
with a previous tagging query into a verification attempt in such a way that if
the verification attempt fails, then one knows that the key is not one of the roots
of the forgery polynomial. If the forgery polynomial has degree `, then at most `
faulty keys can be removed for each verification attempt, resulting in a success
probability of at most

1

|T| − v`
, (6)

where v is the number of verification attempts.

Our attacks differ from the previous nonce-respecting attacks in two ways:
they do not require verification attempts in order to increase F , and F increases
quadratically as a function of the number of tagging queries, q, giving a success
probability of roughly

1

|T| − q2
. (7)

We describe chosen-plaintext attacks which perfectly match the bounds for both
polynomial-based WCS MACs and GCM. The attacks can also be applied pas-
sively, where adversaries do not have chosen-plaintext control. Success then de-
pends in a non-trivial way on the message distribution, which in turn depends on
the application in consideration; we leave further detailed analysis of the known-
plaintext attacks for future work. In Sect. 5 we show that our chosen-plaintext
attacks are optimal.

3.1 WCS Authenticator Attacks

Constructing the False-Key Set. Let γ(n,m) = π(n) + ρ(m) be a polynomial-
based WCS authenticator, with π a URP and ρ a polynomial-based universal
hash function. Say that we somehow know that the queries γ(ni,mi) = ti for
i = 1, . . . , q were made. This means

π(ni) + ρ(mi) = ti or π(ni) = ti − ρ(mi) , for i = 1, . . . , q . (8)

Since π is a permutation, this means

ti − ρ(mi) 6= tj − ρ(mj) , for i 6= j . (9)

In particular, we know that the real key κ does not satisfy the polynomial
equations

ρ(mi)− ρ(mj) + tj − ti = 0 , for i 6= j . (10)

Therefore, each query to γ might allow us to increase the set of false keys. In
fact, the jth query to γ gives an additional j − 1 equations which can be used
to discard keys.



Known-plaintext Attack. Given (ni,mi, ti) for i = 1, . . . , q, perform the following:

1. Construct

F def
=
{
k
∣∣ pmi(k)− pmj (k) + tj − ti = 0, i 6= j

}
. (11)

2. Pick any k∗ 6∈ F , output k∗.

Analysis of the known-plaintext attack is complicated by the choice of distribu-
tion for the messages mi. We focus instead on analyzing the chosen-plaintext
attack below.

Chosen-plaintext Attack. Choose q distinct messages of length one block, m1,
m2, . . . ,mq, and q nonces n1, n2, . . . , nq. For example, one could pick mi = ni =
i, for some encoding of i. Then conclude with the known-plaintext attack de-
scribed above. The resulting false-key set is

F =

{
ti − tj
mi −mj

, i 6= j

}
. (12)

The following proposition establishes the expected size of F for this attack.
In Sect. 5 we connect the expected size of F with the success of key recovery
attacks and forgeries.

Proposition 3.1. Let N = |T|, and say that q ≤
√
N − 3, then

E (|F|) ≥ q(q − 1)

4
, (13)

where F is from 12 and |F| denotes its cardinality.

Proof. Let κ denote the real key, then

F =

{
π(ni)− π(nj) + κmi − κmj

mi −mj
, i 6= j

}
(14)

=

{
π(ni)− π(nj) + κ(mi −mj)

mi −mj
, i 6= j

}
(15)

=

{
π(ni)− π(nj)

mi −mj
+ κ, i 6= j

}
. (16)

Let S = {(π(ni)− π(nj))/(mi −mj), i 6= j}, so that |S| = |F|.
By Markov’s inequality,

E (|S|) ≥ P
[
|S| ≥ q(q − 1)

2

]
· q(q − 1)

2
, (17)

and |S| ≥ q(q − 1)/2 only if none of the (π(ni) − π(nj))/(mi −mj) collide. By
applying a union bound we know that the probability there is such a collision is
at most q(q − 1)/(2(N − 3)), hence

P
[
|S| ≥ q(q − 1)

2

]
≥ 1− q(q − 1)

2(N − 3)
. (18)



If q ≤
√
N − 3, then

1− q(q − 1)

2(N − 3)
≥ 1

2
, (19)

and we have our desired bound. ut

3.2 GCM Attacks

With a known-plaintext attack against GCM it is possible to increase F without
resorting to verification attempts or polynomial equations. Since we know that
the authentication key is computed as π(0), and all inputs to π are distinct,
each URP output from CTR mode reduces the set of valid keys, which you can
compute easily if you know the plaintext. However, such an attack still requires
known plaintext, potentially making it more difficult to implement in practice.

In contrast, if we apply our WCS authenticator attacks described above to
GCM, by replacing messages with ciphertexts, then we arrive at an attack which
potentially only requires ciphertext. In a passive setting, the steps are identical:
create a false-key set F as in Eq. 11, except the polynomials are replaced by
GCM’s, from 5.

The optimal chosen-plaintext attack changes slightly for GCM, since we need
to deal with the encoded lengths of the ciphertexts in the polynomials of Eq. 5.
Instead of choosing q distinct plaintexts mi, we now set all plaintexts to be the
all-zero string of length one block. This results in polynomials

xL+ ciL
2 , (20)

where x is the encoding of the length of a one-block length ciphertext, and the
ci are the ciphertexts, all distinct from each other. The resulting false-key set is
as follows: {√

ti − tj
ci − cj

, i 6= j

}
. (21)

Since the square root is bijective in finite fields of characteristic two, we have
that the above set contains the same number of elements as{

ti − tj
ci − cj

, i 6= j

}
, (22)

and the analysis made for WCS authenticators holds with little modification.

4 Bounding Authenticity with Key Recovery

4.1 Bernstein’s Analysis

Bernstein analyzes a generalization of Wegman-Carter and WCS MACs, namely
those of the form (n,m) 7→ ρ(m) + ϕ(n), where ρ : M → T and ϕ : N → T
are independent random functions. Wegman-Carter authenticators fix ϕ to be



a uniformly distributed random function, and WCS authenticators fix ϕ to be
a URP. As part of his analysis, Bernstein uses differential probability [Ber05b],
more commonly known as ε-almost (XOR) universal, given by

∆ρ
def
= max

m6=m′
t∈T

P [ρ(m) = ρ(m′) + t] . (23)

Various papers [dB93,Tay93,BJKS93] establish that for a polynomial-based uni-
versal hash function ρ : M→ T, ∆ρ ≤ `/ |T|, where M = T≤`.

Bernstein also introduces the concept of interpolation probabilities of a ran-
dom function ϕ, which is the probability that ϕ(xi) = yi for some values
x1, . . . , xq and y1, . . . , yq. Bernstein establishes that ρ(m) + ϕ(n) is secure if
ρ’s differential and ϕ’s interpolation probabilities are small. Ultimately when
applied to polynomial-based WCS authenticators, we get the following.

Theorem 4.1. Let γ : N × M → T be a polynomial-based WCS authenticator
with M = T≤` and let A be a nonce-respecting adversary against γ making at
most q γ queries and v verification queries, then

Authγ(A) ≤ v · `
|T|
·
(

1− q

|T|

)− q+1
2

. (24)

4.2 Reshaping Authenticity Advantage

Although Bernstein’s analysis is general and applies to more than just polynomial-
based WCS MACs, a targeted analysis will elucidate the gap between currently
known attacks and the bound given by Bernstein.

Whereas Bernstein proves bounds for ϕ(n) + ρ(m) in terms of ϕ’s inter-
polation and ρ’s differential probability, we instead rework the bounds to ϕ’s
unpredictability (Sec 4.3) and key recovery against ρ (Sec. 4.4), the latter only
applying to polynomial-based MACs. The concepts introduced in this section
will allow us to prove that the CPA attacks introduced in Sec. 3 are in fact
optimal.

Instrumental to our analysis is the fact that an adversary’s single-forgery ad-
vantage can be split in two, according to whether its attempted forgery (n∗,m∗, t∗)
uses a nonce n∗ that was never used before, or not. We let sAuthnewγ (A) denote

the probability that A forges and uses a new nonce, and sAutholdγ (A) the prob-
ability that A forges and uses an old nonce. By basic probability theory,

sAuthγ(A) ≤ max
{
sAuthnewγ (A), sAutholdγ (A)

}
. (25)

Letting KR denote polynomial key recovery advantage (see Def. 4.2), we
establish the following result.

Corollary 4.1. Let γ : (n,m) 7→ ρ(m) + π(n) be a polynomial-based WCS au-
thenticator with ρ : M → T a random function, and π : N → T an independent



URP. Let A be an authenticity adversary against γ making at most q queries of
length at most `. Then

Authγ(A) ≤ v ·max

{
` · KRγ(q) ,

1

|T| − q

}
. (26)

The proof can be found in App. A, which relies on results developed in the next
sections.

4.3 Unpredictability

We show how any attempted forgery using a new nonce against a WCS au-
thenticator has low success probability. This means if authenticity adversaries
want to achieve significant advantage, then they must re-use nonces during forg-
eries. We state the result more generally than for only polynomial-based WCS
authenticators.

Definition 4.1 (Unpredictability). Let A be an adversary interacting with
random function ϕ : X→ Y. Say that A produces the sequence x ∈ Xq and ϕ re-
sponds with outputs y ∈ Yq. Let (x∗, y∗) be A’s output, then A’s unpredictability
advantage against ϕ is

Unpredϕ(A)
def
= P

[
ϕ(x∗) = y∗, x∗ 6= xi, i = 1, . . . , q

]
, (27)

where the probability is taken over the randomness of A and ϕ.

Let γ : (n,m) 7→ ρ(m) + π(n) be any Wegman-Carter-style MAC using
random functions ρ : M→ T and ϕ : N→ T which are independent of each other.
Let A be an authenticity adversary against γ. We construct an unpredictability
adversary B 〈A〉 against ϕ as follows.

1. B runs A.
2. B simulates ρ using its own randomness; call it ρ′.
3. Every γ-query made by A is reconstructed by B using ρ′ and the ϕ-oracle

B interacts with. Concretely, every γ(n,m) made by A gets forwarded as
ϕ(n), and B returns ϕ(n) + ρ′(m).

4. B receives A’s final output, (n∗,m∗, t∗), and finally outputs (n∗, t∗−ρ′(m∗)).

Proposition 4.1.

sAuthnewγ (A) ≤ Unpredϕ(B 〈A〉) . (28)

Proof. First note that B perfectly reconstructs A’s authenticity game since ρ’
is independent of ϕ. Then, if A wins its authenticity game, γ(n∗,m∗) = t∗, or
in other words, ϕ(n∗) + ρ(m∗) = t∗. In particular, ϕ(n∗) = t∗− ρ(m∗). If n∗ has
never been queried to ϕ before, t∗ − ρ(m∗) would correctly predict ϕ’s output
on an unknown input, hence B〈A〉 would win its unpredictability game. ut

Lemma 4.1. Let π : N → T be a URP and B an adversary making at most q
queries, then

Unpredπ(B) ≤ 1

|T| − q
. (29)



4.4 Bounding Forgeries with Key Recovery

Having set aside adversaries which use new nonces for forgeries, we can focus
on those that re-use nonces. This section applies only to polynomial-based WCS
authenticators.

Definition 4.2 (Polynomial Key Recovery). Let A be a nonce-respecting
adversary interacting with polynomial-based WCS authenticator γ using URP
π and polynomial-based universal hash ρ, with κ denoting the random variable
representing the key underlying ρ. Say that A outputs an element k∗ ∈ K, then
A’s polynomial key recovery advantage against γ is

KRγ(A)
def
= P

[
k∗ = κ

]
, (30)

where the randomness is taken over A and γ. We let KRγ(q) denote the maxi-
mum of KRγ(A) over all adversaries A making at most q queries.

Forgeries can be used to recover authentication keys. We construct a poly-
nomial key recovery adversary C 〈A〉 against γ.

1. C runs A.
2. Every (n,m) query by A gets forwarded to C’s oracle, and C returns the

output γ(n,m) to A.
3. When A outputs (n∗,m∗, t∗), then C checks to see if n∗ = ni for some pre-

vious query γ(ni,mi) = ti. If this is not the case, then C aborts. Otherwise
C computes the roots of the polynomial4 pm∗(α)− pmi(α)− t∗+ ti = 0, and
chooses a key uniformly at random from the set of roots.

Proposition 4.2. Let A be an adversary making queries of length at most `.
The probability that A wins its authenticity game and outputs (n∗,m∗, t∗) where
n∗ = ni for some previous query (ni,mi) to γ, is bounded above by

` · KRγ(C 〈A〉) . (31)

Proof. If A wins with n∗ = ni, then

γ(n∗,m∗) = γ(ni,m
∗) = ϕ(ni) + ρ(m∗) = t∗ , (32)

and

γ(ni,mi) = ϕ(ni) + ρ(mi) = ti , (33)

therefore ρ(m∗) − ρ(mi) − t∗ + ti = 0. We know that the key used by ρ is in
the set of roots of the polynomial pm∗(α) − pmi

(α) − t∗ + ti, which has size at
most max {|m∗| , |mi|}. Picking an element uniformly at random from this set,
we have that C wins with probability at least 1/max {|m∗| , |mi|}. ut
4 Finding roots of polynomials over a finite field is computationally efficient using

Berlekamp’s algorithm [Ber70] or the Cantor-Zassenhaus algorithm [CZ81]



5 Using Key Recovery to Mount Forgeries

The previous section discussed how to convert authenticity attacks into key
recovery attacks to reshape the upper bounds on forgery attacks. Here we discuss
the opposite, namely how to use key recovery adversaries to mount forgeries. This
will allow us to not only show that the analysis of Sect. 4 is tight, but also that
the attacks of Sect. 3 are optimal, using Bernstein’s analysis.

5.1 Key-Set Recovery

The obvious way to convert a key recovery attack into an authenticity attack
is to run the key recovery adversary and use the output of the key recovery
adversary to mount a forgery. We explain this formally in App. B. However, this
method constructs authenticity adversaries which are about as successful as key
recovery adversaries.

In contrast, as seen in Sect. 4.4, Prop. 4.2, authenticity adversaries might
improve over key recovery adversaries by up to a factor of `. Intuitively, given
a key recovery adversary, one could try to do this by taking the candidate key
k∗ output by the key recovery adversary, and finding a polynomial of degree `
which contains k∗ as a root, and then construct a forgery using this polynomial.
The problem with this approach is that most of the roots of the polynomial
chosen by the resulting authenticity adversary could be useless, as they could,
for example, lie in some false-key set determined by the key recovery adversary.
Without any further information about the key recovery adversary it does not
seem possible to improve the authenticity adversary.

However, if we instead look at key-set recovery adversaries, we can improve
our chances of constructing forgeries. We will show that key-set recovery and key-
recovery adversaries are in fact very similar, allowing us to prove tight bounds
on the connection between key-recovery and forgeries.

Definition 5.1 (Polynomial Key-Set Recovery). Let A be a nonce-respecting
adversary interacting with polynomial-based WCS authenticator γ using URP π
and polynomial-based universal hash ρ, with κ denoting the random variable rep-
resenting the key underlying ρ. Say that A outputs a set K∗ ⊂ K, and let 1K∗

denote the random variable which equals one if κ ∈ K∗ and zero otherwise. Then
A’s polynomial key-set recovery advantage against γ is

KSγ(A)
def
= E

(
1K∗

|K∗|

)
, (34)

where the randomness is taken over A and γ. We let KSγ(q) denote the maximum
of KSγ(A) taken over all adversaries making at most q queries.

Let C be a key-set recovery adversary. Once C has made all its queries, it
is possible to compute FC, the random set of false keys given by Equation (11),
and TC its complement. Then it is straightforward to construct key-set adversary
D 〈C〉 which runs C, and then returns TC. We argue that C’s advantage is not
greater than D’s.



Lemma 5.1. Let C and D 〈C〉 be defined as above, then

KSγ(C) ≤ KSγ(D 〈C〉) . (35)

Proof. First note that κ, the key underlying the polynomial-based universal
hash, must be in TC, since by definition it cannot satisfy any of the equations
given in (11). Therefore, if C’s output, denoted K∗, contains elements not in TC,
then it is possible to improve C’s advantage by having C output K∗ ∩TC, since
that would reduce C’s output set size without affecting the probability that κ
is in the set. Therefore without loss of generality we assume that K∗ ⊂ TC.

Then, given any sequence of q queries that C makes, TC describes exactly
those keys which satisfy the transcript, and in particular κ is uniformly dis-
tributed over TC. Therefore, if K∗ ⊂ TC, then C’s advantage is the same as
D:

E
(

1K∗

|K∗|

)
=
∑
n

1

n

∑
m

P
[
κ ∈ K∗, |K∗| = n, |TC| = m

]
(36)

=
∑
n

1

n

∑
m

P
[
κ ∈ K∗

∣∣∣ |K∗| = n, |TC| = m
]
P
[
|K∗| = n, |TC| = m

]
(37)

=
∑
n

1

n

∑
m

n

m
· P
[
|K∗| = n, |TC| = m

]
(38)

=
∑
m

1

m
P
[
|TC| = m

]
(39)

= E
(

1TC
|TC|

)
. (40)

ut

Since our focus is on optimal, information-theoretic adversaries, without loss of
generality we assume that all key-set recovery adversaries return T .

Given such a key-set recovery adversary D, we construct single-forgery ad-
versary A 〈D〉 as follows:

1. A runs D, and responds to any D-query (n,m) with γ(n,m).
2. When D outputs the candidate set TD, A picks ` distinct elements uniformly

at random from TD and constructs a polynomial pm∗ with those elements as
roots.

3. A picks any previous query γ(n,m) = tmade by D, addsm∗ tom component-
wise to get m′ = (m1 +m∗1,m2 +m∗2, . . .), and submits the forgery attempt
(n,m′, t).

Naturally this reduction becomes void if the size of TD is less than `, however as
we will see in Sec. 5.2, this can only happen if q is nearly as large as the number
of nonces the adversary can query. We capture this limit on q with Mγ , which



is defined to be

Mγ
def
= max

q
∣∣∣∣∣∣ min
m1,...,mq,
t1,...,tq

|T | ≥ `

 . (41)

The following proposition shows that one can construct better forgeries using
key-set recovery adversaries.

Proposition 5.1. Let q ≤Mγ , then

` · KSγ(D) ≤ sAutholdγ (A 〈D〉) . (42)

Proof. Let L denote the ` elements that A picks from TD. Adversary A wins if
κ ∈ L, since then pm∗(κ) = 0 and so pm+m∗(κ) + π(n) = t.

P
[
κ ∈ L

]
=
∑
n

P
[
κ ∈ L

∣∣∣ |TD| = n, κ ∈ TD
]
P
[
κ ∈ TD, |TD| = n

]
(43)

=
∑
n

`

n
· P
[
κ ∈ TD, |TD| = n

]
(44)

= ` · E
(

1TD
|TD|

)
= ` · KSγ(D) . (45)

ut
Furthermore, there is little real difference between key-recovery and key-set

recovery advantage.

Proposition 5.2.
KSγ(q) = KRγ(q) . (46)

Proof. If the output set size of a key-set recovery adversary is always one, then
key-set recovery advantage is identical to key-recovery advantage. Since any
key-recovery adversary can be converted into a key-set recovery adversary with
output set size one, we have that KRγ(q) ≤ KSγ(q).

Given any key-set recovery adversary C, we convert it into a key-recovery
adversary C′ by picking a candidate key k∗ uniformly at random from the output
set K∗. Then

KRγ(C′) = P
[
κ = k∗

]
(47)

=
∑
n

P
[
κ = k∗

∣∣∣ κ ∈ K∗, |K∗| = n
]
P
[
κ ∈ K∗, |K∗| = n

]
(48)

=
∑
n

1

n
P
[
κ ∈ K∗, |K∗| = n

]
= KSγ(C) . (49)

ut
Prop. 4.2, Prop. 5.1, and Prop. 5.2 establish the following result, confirming

that the analysis of Sect. 4.4 is tight.

Corollary 5.1. Let q ≤Mγ , then

` · KRγ(q) = sAutholdγ (q) . (50)



5.2 Attack Success Probability and Optimality

Our chosen-plaintext attack only uses messages of length one block, which is
reflected in the fact that |F| only grows as a function of q. Intuitively one would
expect to be able to increase F as well by taking advantage of longer messages
and the fact that polynomials of higher degree have more roots. However, here
we show that this is impossible.

The success probability of the key recovery attacks from Sect. 3 is given as
follows, which results from the observation that the real key cannot be in F by
definition.

Proposition 5.3. Let A denote the chosen-plaintext attack from Sect. 3, then

KRγ(A) ≥ 1

|T| − E (|F|)
. (51)

Combining this result with Bernstein’s result, we have the following.

Theorem 5.1. Let F be defined as in Sect. 3, then

E (|F|) ≤ q(q + 1)

2
. (52)

Proof. Using Thm. 4.1, Cor. 5.1, and Prop. 5.3, we have

` · 1

|T| − E (|F|)
≤ `

|T|
·
(

1− q

|T|

)− q+1
2

. (53)

Letting x denote E(|F|) and N = |T|, we have

1

N − x
≤ 1

N

(
1− q

N

)− q+1
2

(54)

x ≤ N
[
1−

(
1− q

N

) q+1
2

]
. (55)

We apply Bernoulli’s inequality, namely that (1 + x)r ≥ 1 + rx if r ≥ 1 and
x ≥ −1, which holds in our case when 1 ≤ q ≤ N , to get

(
1− q

N

) q+1
2 ≥ 1− q + 1

2
· q
N
, (56)

hence

x ≤ q(q + 1)

2
. (57)

ut



6 Conclusions, Limitations, and Open Problems

Using new analysis and attacks we have shown that, without further restrictions
on the adversaries, Bernstein’s analysis is in fact optimal. We can therefore
conclude that the data limits imposed by Bernstein’s bounds are necessary.

Our attacks illustrate for the first time how to maximally take advantage
of tagging queries without needing verification queries in order to attack WCS
authenticators. However, there are limitations on the applicability of the attacks.

As implied by the introduction, our attacks only work against polynomial-
based WCS authenticators when they re-use the polynomial key, and is there-
fore not applicable to, for example, SNOW 3G [3GP17] or Poly1305 as used in
NaCl [Ber09,Ber09].

The attacks work best when tags are not truncated, since the underlying PRP
behaves more like a PRF with increased truncation [GGM18,HWKS98]. How-
ever, as pointed out by Ferguson [Fer05] and Mattsson and Westerlund [MW16],
one must take care when truncating tags in WCS authenticators. In some cases
standards mandate that tags not be truncated [VM06,SMC08,IS09].

The attacks are not directly applicable to constructions which do not fol-
low the WCS authenticator structure of mapping (n,m) to π(n) + ρ(m). A
few different constructions are discussed by Bernstein [Ber05c] and Handschuh
and Preneel [HP08]. In particular, if a PRF instead of a PRP is used to hide
the polynomial output, or if multiple PRP calls are XORed together as with
CWC [KVW04] and GCM/2+ [AY12], then the attacks are not applicable; it
remains an open problem whether the analyses of the latter constructions are
tight.

WCS authenticators can also be instantiated using non-polynomial-based
universal hash functions, [BHK+99,HK97,EPR99,Joh97,KYS05,Kro06,BHK+99].
We expect that similar attacks are applicable to these functions.

As shown by Luykx, Mennink, and Paterson [LMP17], the attacks’ success
probability will not improve in the multi-key setting.

Finally, although our attacks show that one should abide by Bernstein’s
bounds, implementing the attacks seems to require a large amount of storage
to achieve significant success probability. It is unclear whether there is a com-
pact way of representing the set of false keys. Alternatively, if one were able
to prove lower bounds on the storage requirements for any attacker, one could
possibly afford to use keys beyond the data limits recommended by Bernstein’s
analysis, assuming adversaries have bounded storage capabilities.

Acknowledgments. The authors would like to thank Guy Barwell, Dan Bern-
stein, Bart Mennink, Scott Fluhrer, and the anonymous reviewers for their com-
ments, as well as Mridul Nandi for pointing out an error in a previous version
of the manuscript.

A Proof of Cor. 4.1

We re-use the notation and definitions from Sec. 4.3 and Sec. 4.4.



Corollary. Let γ : (n,m) 7→ ρ(m) + π(n) be a polynomial-based WCS authen-
ticator with ρ : M→ T a random function, and π : N→ T an independent URP.
Let A be an authenticity adversary against γ making at most q queries of length
at most `. Then A’s advantage against γ is bounded by

v ·max

{
` · KRγ(C 〈A〉), 1

|T| − q

}
. (58)

Proof. We restrict our attention to single-forgery adversaries, and use Thm. 2.1
to generalize to any authenticity adversary.

Let E denote the event that n∗ does not equal a previous query to ϕ. By
Prop. 4.1, the probability that A wins and E occurs is bounded above by the
probability that B 〈A〉 wins, which is at most 1/(|T| − q) by Lem. 4.1. By
Prop. 4.2, the probability that A wins and E does not occur is bounded above
by ` times the probability that C 〈A〉 wins. ut

B From Key Recovery to Forgeries

Let C be a polynomial authenticator key recovery adversary against γ, then we
construct an authenticity adversary A 〈C〉 against γ as follows:

1. A runs C.
2. Every (n,m) query by C gets forwarded to A’s oracle, and A returns the

output γ(n,m) to C.
3. When C outputs k∗, A uses it to compute y∗ = γ(n1,m1)− pm1(k∗), where

(n1,m1) is the first query made by C. Then A picks a message m∗, and
attempts the forgery (n1,m

∗, y∗ + pm∗(k
∗)).

Proposition B.1.
KRγ(C) ≤ Authγ(A 〈C〉) . (59)

Proof. If C wins its game, then k∗ = k, the key used by the polynomial hash.
Then we have

γ(n1,m
∗) = π(n1) + pm∗(k) (60)

= γ(n1,m1)− pm1
(k) + pm∗(k) (61)

= γ(n1,m1)− pm1
(k∗) + pm∗(k

∗) , (62)

which is exactly the tag submitted by A. ut



C Notation

Table 1. List of notation.

Symbol Description

Quantities
v number of verification queries
q number of tagging queries
` maximum message length
N size of T

Random Variables
ϕ random function
π URP
γ authenticator
ρ polynomial-based universal hash
κ key of a polynomial hash

Sets
x ∈ X domain, block
y ∈ Y range
k ∈ K Key set
n ∈ N Nonce set
m ∈ M Message space
t ∈ T Tag space
F Faulty keys output by attacks
T Complement of F , i.e. K \ F

Adversaries
A Adversary (generic or authenticity)
B Unpredictability adversary
C Key recovery or key set recovery adversary
D Optimal key recovery or key set recovery adversary

Miscellaneous
x vector of elements
pm(k) polynomial defined by m evaluated at k
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