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Abstract
We introduce a new concept called brokered delegation.
Brokered delegation allows users to flexibly delegate cre-
dentials and rights for a range of service providers to
other users and third parties. We explore how brokered
delegation can be implemented using novel trusted ex-
ecution environments (TEEs). We introduce a system
called DELEGATEE that enables users (Delegatees) to
log into different online services using the credentials of
other users (Owners). Credentials in DELEGATEE are
never revealed to Delegatees and Owners can restrict ac-
cess to their accounts using a range of rich, contextually
dependent delegation policies.

DELEGATEE fundamentally shifts existing access
control models for centralized online services. It does
so by using TEEs to permit access delegation at the
user’s discretion. DELEGATEE thus effectively reduces
mandatory access control (MAC) in this context to dis-
cretionary access control (DAC). The system demon-
strates the significant potential for TEEs to create new
forms of resource sharing around online services with-
out the direct support from those services.

We present a full implementation of DELEGATEE us-
ing Intel SGX and demonstrate its use in four real-world
applications: email access (SMTP/IMAP), restricted
website access using a HTTPS proxy, e-banking/credit
card, and a third-party payment system (PayPal).

1 Introduction
Delegation, the ability to share a portion of one’s author-
ity with another, is a well-studied concept in access con-
trol. However, delegation remains mostly unsupported
in today’s online services. Email provides no delegation
support at all, for example, while other services, such
as Facebook, support delegation in a limited and coarse-
grained way. Facebook allows a user to delegate to a
third-party application the authority to post to the user’s
wall, but not to impose a limit of three posts per day. In
any case, the expression and enforcement of delegation

policies lies entirely at the discretion of the services.
The ability to delegate access to existing online ac-

counts and services, safely and selectively, could give
rise to new forms of cooperation among users. Delega-
tion may be useful for sharing digital content, such as ac-
cess to streaming services like Netflix. Users may wish
to delegate online tasks to remote workers, for example
to reply to emails involving a particular topic or group.
Delegation of access to financial services, such as Pay-
pal, could enable broader access to banking.

Today, when delegation is needed in a way unsup-
ported by the service, users must resort to credential shar-
ing. This results in the Delegatees gaining full access
to the Owners’ accounts. Such delegation mostly works
only in closed circles with high levels of mutual trust.

In this work, we argue that the emergence of trusted
execution environments (TEEs), such as Intel Software
Guard Extensions (SGX), has enabled an alternative way
to achieve fine-grained delegation without trust between
the Owner and Delegatee. We refer this new type of del-
egation — specifically with delegation restricted under a
policy enforced by a TEE enclave holding the credential
— as brokered delegation. Brokered delegation is a new
and powerful tool that allows users to flexibly share and
delegate access, without requiring the explicit support (or
even knowledge) of the service providers.

To demonstrate the potential of brokered delegation,
we design DELEGATEE, a system that provides brokered
delegation for many existing web services according to
complex contextual access-control policies. DELEGA-
TEE also preserves the confidentiality of the managed
credentials. We develop several application prototypes
to demonstrate how brokered delegation can support new
forms of resource sharing and give rise to new markets:
secure outsourcing of personal and commercial micro-
tasks, tokenization (i.e., creation of fungible, tradeable
units), resale of resources and services, and new payment
methods - all without changes to the legacy infrastruc-
ture. One of the key features of DELEGATEE is that it



requires no changes to the service managing the resource
or to users’ accounts.

We present two design variations for DELEGATEE.
The first design encompasses a purely decentralized
peer-to-peer (P2P) system in which a Delegatee that
wants to use brokered credentials executes the secure en-
clave on her machine. The Owner of the credentials con-
nects to the enclave and delivers the credentials along
with the access control policy under which the Delega-
tee can access a specific service. The second design is
based on a centralized broker service operated by a third
party. In this architecture, an Owner can register creden-
tials and an accompanying policy, authorizing use by a
specific population of Delegatees. Both system designs
provide a comprehensive solution for brokered delega-
tion and can be used based on users’ preferences.

DELEGATEE also demonstrates a broader insight
about the security consequences of trusted hardware:
TEEs can fundamentally subvert access-control policy
enforcement in existing online services. Depending on
the application, DELEGATEE can either enrich a tar-
get service or undermine its security policies (or both).
For example, reselling limited access to a paid subscrip-
tion service in regions where the service is unavailable
undermines the service’s security policy, while delegat-
ing access to office tools such as mail, calendar, etc. to
administrative assistants can enrich the capabilities and
usability of the service itself. Brokered delegation can
also facilitate violations of web services’ terms of use.
Users may thereby circumvent mandatory access con-
trol (MAC) policies, reducing them to discretionary ac-
cess control (DAC). The effect is similar to allowing
use of setuid [28] in Unix irrespective of MAC poli-
cies [39, 36].

The fine-grained delegation offered by DELEGA-
TEE can support new forms of meaningful coopera-
tion among users, which existing online services do not
provide. In this way DELEGATEE may be related to
new technology-fueled resource-sharing models such as
Airbnb and Uber, which have challenged legal and regu-
latory frameworks while creating and delivering appeal-
ing new services. We thus view DELEGATEE as a cata-
lyst for such new contributions to the sharing economy.

In summary, we make the following contributions:
• Brokered delegation: We advance a new model for
user-specified safe delegation of resources and services
governed by fine-grained access control. Our approach
involves credential outsourcing to trusted hardware.
• DELEGATEE: We present DELEGATEE, a system
that realizes brokered delegation via Intel SGX. We
present two implemented versions: One based on a hard-
ened third party acting as a credential broker and the
other as a peer-to-peer system where users directly store,
manage, delegate, and use credentials.

• Security analysis: We show that both DELEGATEE
versions provide security in a strong adversarial model,
protecting against some compromised SGX platforms as
well as the full software stack of victims’ machines.
• Prototype implementations: We describe and imple-
ment four applications on top of DELEGATEE: Dele-
gated email, PayPal, credit card/e-banking, and full web-
site access through an HTTPS proxy. We run these
with commercial services such as Gmail and PayPal us-
ing real user credentials. We document minimal perfor-
mance overhead and the ability to support many concur-
rent users.
• Impact on access control: We show that TEEs can be
used to circumvent MAC policies in online services and
allow discretionary access control, enabling users to del-
egate rights and access at their discretion.

2 Motivation and Problem Statement

2.1 Motivation
There are two major motivations for our work: To
demonstrate the many settings in which brokered dele-
gation gives rise to new functionality, and to demonstrate
how (for good or bad) trusted hardware TEEs can trans-
form practically any mandatory access control policy in
an online service into a discretionary one. Our four dif-
ferent application scenarios illustrate both motivations.
Mail/Office. Full or restricted delegation of a personal
mailbox or other office tasks can be appealing for many
reasons. These include a desire to delegate work to ad-
ministrative assistants (e.g., read-only access, send mail
only to a specific domain) or to allow limited access
to law-enforcement authorities (e.g., read emails from a
certain time window relevant to a court case). The first is
especially valuable for virtual-assistant services, which
outsource office tasks off-site [26]. Today, these services
require users to completely share their credentials, a dan-
gerous practice that discourages many potential users.
Payments. Virtually all payments, cash and cryptocur-
rencies excepted, happen through intermediaries. Users
may naturally desire a richer array of choices of these in-
termediaries. Consider, for example, a payment system
where the users pay using each others’ bank accounts,
credit cards, or third-party providers (e.g., PayPal). This
can have large benefits in terms of cost-saving, business
operations, and anonymity guarantees.

Imagine that a company wants to allow its employ-
ees to execute online purchases with the company credit
card or PayPal, but restricted to a certain limit per expen-
diture and specific merchants. Currently, this cannot be
done since access to the card details or PayPal creden-
tials allows users to execute arbitrary payments. Compa-
nies therefore typically provide such information only to
a few employees who then execute payments for the rest,



resulting in a highly inefficient process.
Delegation of payment credentials can also enable di-

rect cost-savings for the end user. An example online
system based on this premise is Sofort [25]. Sofort works
as an internet payment middleman, with lower transac-
tion fees than for credit cards. Sofort pays merchants for
clients’ online purchases and is repaid by clients via bank
transfer. To guarantee repayment, Sofort requires users
to share their e-banking credentials with the service, a
practice that clearly raises security and privacy risks.

Finally, delegation of payments can benefit “under-
banked” populations with limited access to online pay-
ment systems, by enabling them to leverage social ties
(e.g., via brokered delegation to the bank accounts of
friends, family, and peers).
Full Website Access. The most versatile form of dele-
gation is delegation for arbitrary existing web services,
which typically authenticate user accounts through pass-
word challenges and then cookies over HTTPS. This
model includes access to users’ social networking sites,
video services, online media such as news and music,
and general website content available only to registered
users. One appealing example from the academic world
is Sci-Hub. “The site bypasses publishers’ paywalls us-
ing a collection of credentials (user IDs and passwords)
belonging to educational institutions which have pur-
chased access to the journals.” Many anonymous aca-
demics from around the world donate their credentials
voluntarily [9]. Some services, such as Netflix and var-
ious news sites, already offer users the ability to log
in from different devices. Users can thus share their
subscriptions by sharing credentials, but only in a dan-
gerous all-or-nothing manner. More fine-grained, e.g.,
service-specific, and secure delegation could facilitate
much broader sharing (for good and bad).
Sharing Economy. The examples above involve an
Owner delegating credentials to known Delegatees, e.g.,
friends or colleagues. However, Owners can also offer
access to their services on an open market to a wide range
of potentially pseudonymous or anonymous Delegatees.
This would result in a shared economy in which Owners
sell time-limited and restricted access to their accounts in
return for other services or financial compensation. For
example, users could sell access to Netflix accounts on
an open market. They could also sell space in their so-
cial networking accounts to advertisers; e.g., a user could
sell the ability to post in her name, enabling an advertiser
to target her social network. The right to post could be
restricted to a certain volume and type of content to pre-
vent abuse by advertisers.

2.2 Problem Statement
If service providers regularly offered richly featured na-
tive delegation options, there would be no need for bro-

kered delegation. Most do not, however, usually for
business or regulatory reasons. Our work aims to change
this situation fundamentally — DELEGATEE empowers
users to delegate their authority, making use of any exist-
ing internet service, such that:
• The Owner’s credentials remain confidential.
• The Owner can restrict access to her account, e.g., in
terms of time, duration of access, no. of reads/writes etc.
• The system logs the actions of Owners and Delegatees
so that post-hoc attribution of their behaviors is possible
(as a means of resolving disputes).
• The system minimizes the ability of a service to dis-
tinguish between access by the Delegatee and that of the
legitimate Owner, thus, preventing delegation. (As we
shall discuss, this is not achievable for all services.)

2.3 Why the Problem is Hard
DELEGATEE leverages SGX to implement functionality
that without SGX or equivalent mechanisms would be
infeasible or impossible to achieve. Consider our dele-
gated payment scenarios involving PayPal, credit card or
e-banking. Such delegation would be easy to support on
the back end; e.g., PayPal could offer a delegation API.

Without back end support, however, there are only
two possible implementation strategies. The first is that
the Owner remains online and mediates requests, which
forecloses on the possibility of private transactions or her
inability to provide continuous service availability.

The second is that the Owner provides the Delegatee
with a digital resource for unmediated access to the target
resource. This, however, would require black-box obfus-
cation to construct a functionality that establishes a TLS
connection, authenticates a user with a concealed pass-
word, and supports a series of policy-constrained trans-
actions. General virtual black-box (VBB) obfuscation
is known to be impossible [5]. It is unclear whether in-
distinguishability obfuscation (iO), whose realization re-
mains an open problem [12], could achieve this function-
ality. iO , would in any case require circuit complexity
well beyond the bounds of feasible deployment. It would
also be subject to replay attacks unless the functionality
could somehow change or revoke the credential atomi-
cally with permissible operations. In summary, SGX is
required to solve our problem as stated, and even with
SGX, as we now explain, solution remains challenging.

3 DELEGATEE
The main idea behind the DELEGATEE system is to send
the Owner’s credentials (passwords, etc.) to a Trusted
Execution Environment (TEE) that implements the del-
egation policy. The Delegatee communicates with the
resource (web service) indirectly, using the TEE as a
proxy. In this section, we briefly introduce background
on TEEs, then present the DELEGATEE system design.



3.1 TEEs and Intel SGX Background
Modern TEE environments, most notably ARM Trust-
Zone [3, 42] and Intel SGX [13, 1], enable isolated code
execution within a user’s system. Intel introduced SGX
in the 6th generation of its CPUs as an instruction set
architecture extension. Like TrustZone, an older TEE
that permits execution of code in a “secure world” and
is used widely in mobile devices, SGX permits isolated
execution of the code in what is referred to as secure
enclaves. In TrustZone, transition to the secure world
involves a complete context switch. In contrast, the
SGX’s secure enclaves only have user-level privileges,
with ocall/ecall interfaces [20] used to switch control
between the enclaves and the OS. The SGX architecture
enables the app developer to create multiple enclaves for
security-critical code, protecting it from malicious appli-
cations [43], a compromised OS, virtual machine man-
ager [11], or BIOS [24], and even insecure hardware [16]
on the same system. Additionally, SGX includes a key
feature unavailable in TrustZone, called attestation.

In summary, the main protective mechanisms sup-
ported by SGX are: runtime isolation [33], ocall/ecall
interfaces [20], sealing [2], and attestation [22, 13]. We
relegate further details below; for in-depth treatment of
SGX, see [13, 21].

Readers familiar with Intel SGX can skip the rest of
this subsection. The main protection mechanisms of
SGX, in more detail, are:
Attestation. Attestation is the process of verifying that
enclave code has been properly initialized. We distin-
guish between two types:

• In local attestation, a prover enclave requests a state-
ment containing measurements of its initialization se-
quence, enclave code, and issuer key. Another enclave
on the same platform can verify this statement using a
shared key created by the processor.
• In remote attestation the verifier may reside on an-
other platform. A system service called Quoting Enclave
signs the local attestation statement for remote verifica-
tion. The verifier checks the signature with the help of an
online attestation service run by Intel. The signing key
used by the Quoting Enclave is based on a group signa-
ture scheme called EPID (Enhanced Privacy ID) which
supports two modes of attestation: fully anonymous and
linkable attestation using pseudonyms [22, 13].

Runtime isolation. As mentioned, the SGX security
architecture guarantees enclave isolation, using protec-
tive mechanisms enforced in the processor, from all soft-
ware running outside of the enclave. The control-flow in-
tegrity of the enclave is preserved and the state is not ob-
servable. The code and data of an enclave are stored in a
protected memory area called Enclave Page Cache (EPC)
that resides in Processor Reserved Memory (PRM) [33].

Sealing and Memory encryption. Enclaves can save
confidential data across executions trough sealing, a pro-
cess for encrypting and authenticating enclave data for
persistent storage [2] controlled by the untrusted OS.
Each enclave is provided with a sealing key, private to
the executing platform and the enclave. The sealing key
is derived from a Fuse Key (unique to the platform, not
known to Intel) and an Identity Key (either Enclave Iden-
tity or Signing Identity). Additionally, all runtime en-
clave memory is encrypted and cannot be accessed by
the OS as described above. In Section 4 we consider an
attacker that cannot break the SGX hardware protection
mechanism but can have all SGX keys used to, e.g., de-
crypt seals or the extracted memory content.
Ocall/Ecall. The interface between the trusted en-
clave and the untrusted application is implemented us-
ing ocalls and ecalls, calls from the trusted to
the untrusted part, and vice-versa, respectively. Dur-
ing an ocall/ecall all arguments are copied to
trusted/untrusted memory and then executed in order to
maintain a clear partition of trusted and untrusted parts.
These interfaces are defined and implemented by Intel in
the Intel SGX SDK [20].

3.2 System Design
We explore the DELEGATEE design space through two
system architectures: a purely decentralized P2P system,
and what we call a Centrally Brokered system, in which a
third party runs the enclaves. Both architectures involve
three distinct classes of parties: credential Owner(s) A,
Delegatee(s) B, and service(s) G. Additionally, the sys-
tem distinguishes 2 data types: credential(s) C and ac-
cess control policy(ies) P. Owners and Delegatees are
generically referred to as users.

The system supports a potentially large population
of credential Owners A1...An (henceforth referred to as
Owners) and Delegatees B1...Bn. In general, the Owner
Ai has access to a service Gk. The Delegatee B j does
not have access to the service, but she can get access
by using credentials Cx of the Owner Ai. However, the
Owner Ai does not want to reveal the credentials to the
Delegatee B j. The Owner Ai wants her credentials to
remain confidential and used only by an authorized Del-
egatee. Additionally, the Owner wants to restrict access
to the services that she enjoys (i.e. Gk) according to an
access control policy Pi jxk specific to this delegation re-
lationship. Pi jxk defines an policy involving Owner Ai,
Delegatee Bj, credentials Cx, and service Gk. The type
and structure of the access control policy depends on the
service that the Owner delegates. Definition and enforce-
ment of the policies are described in Section 3.4.
P2P system architecture. In our peer-to-peer system,
there is no need for a central management entity to medi-
ate between the Owners and the Delegatees. A Delegatee
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Figure 1: DELEGATEE’s P2P system architecture

can directly coordinate with the Owner to gain access to
a specific service from group G. In order to execute this
setup, a Delegatee from party B has to have a Intel SGX
supported machine. The steps to execute secure creden-
tial delegation, also given in Figure 1, are:

(1) The Owner Ai agrees directly with the Delegatee B j
for which specific service (Gk) access will be granted us-
ing her credentials (Cx). The agreement is done at the
users discretion and through any available channel such
as online messaging, email, phone call etc. Addition-
ally, users need to establish a method for authentication
upon enclave start (e.g. pre-shared key, certificates). This
step can be executed in an any informal communication
channel that the users consider appropriate. However, the
emphasis should be on the confidentiality of the channel
(e.g., chat over a coffee).
(2) (optional1) After that, Ai prepares the enclave.
(3) (optional1) Owner Ai sends the executable to B j.
(4) The Delegatee B j starts the enclave and enters the
secret information (shared secret exchanged during the
initial agreement) to the enclave needed for mutual au-
thentication and secure connection establishment.
(5) After the Delegatee B j starts the enclave, the Owner
Ai connects to the enclave, attests it to verify that it is the
correct code with respect to the requested service dele-
gation, and subsequently uses the secret information to
authenticate and create a secure communication channel.
(6) The Ai sends credentials Cx for the service Gk with
the access control policy Pi jxk using the secure channel.
(7) The Delegatee B j now uses the enclave as a proxy to
connect to the service Gk using the delegated credentials.
(8) The scope of usage is strictly limited by the defined

1Enclaves used for the credential delegation can also be downloaded
from a trusted source. Each different service requires implementation
of specific enclaves due to access complexity. The Owner and the Del-
egatee can verify the enclave trustworthiness with attestation.

policy and therefore Delegatee B j cannot use the parts of
the service not allowed by the Owner Ai.
(9) If the access control policy has a time limit, the Del-
egatee B j’s access to the service is terminated after the
time has passed, unless the Owner Ai extends the policy.
The enclave restarts do not change this fact, requiring the
connection from the Owner Ai to the enclave to deliver
the information again. The enclave is stateless, meaning
that any interruption, restart or termination after the ini-
tial start and the delivery of confidential information is
going to result in service abortion.

Authentication mechanisms. The agreement between
the users and their mutual identification and authentica-
tion is of utmost importance. The Owner needs to be
certain that the enclave used to access a specific service
with her credentials is running on the machine of the in-
tended Delegatee. Attestation only gives us proof that
the enclave is executing the presumed code, but without
any information under whose control the machine is. To
allow mutual authentication between the Owner and the
Delegatee, a separate authentication method is needed.

Several authentication mechanisms are possible. First,
the parties could use an out-of-band confidential and au-
thenticated channel to exchange a shared secret key. Af-
ter the enclave start, the Delegatee enters this pre-shared
key into the enclave. The Owner uses the same key to
establish a TLS (PSK mode) session with the enclave.
If an attacker attempts to establish an impostor or man-
in-the-middle session with the Owner, the keys will mis-
match. As an alternative, we could use a trusted PKI so
that the Owner obtains Delegatee’s public key certificate,
later used to establish a TLS session. This requires the
Delegatee to provide her private and public keys to the
enclave. Our design is agnostic to the used authentica-
tion method while the prototype uses the first option.
Centrally Brokered system architecture. Alternatively
to the P2P configuration, the Centrally Brokered sys-
tem consists of a central server that mediates all trans-
actions and communication between the involved parties
and also serves as a management entity. The server has a
trusted execution environment (SGX enclaves) that per-
forms security-critical operations. Thus, the system can
be attested to verify the running code and authenticated
to verify the service provider. In this case, the Own-
ers and the Delegatees do not need to have SGX. Steps
needed to execute secure delegation follow Figure 2:

(1) Both the Owners (A1...An) and the Delegatees
(B1...Bn) need to register with the system to acquire
unique login information (username and password) for
access. After registration, both Owners and Delegatees
can execute credential delegation for service access.
(2) The Owners A1...An now establish a secure channel
to the system (using the ordinary web PKI) and start stor-
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Figure 2: Centrally Brokered system architecture for credential delegation with DELEGATEE

ing the credentials C1...Cn for specific services G1...Gn.
The variety of credentials that can be stored depends on
the supported services (see Section 5 for details).
(3) The Owners A1...An may agree directly with the
Delegatees B1...Bn for which specific service (Gk) the
Owner will grant access using her credentials (Cx). The
agreement is done at the users discretion through any
available out-of-band channel and is limited by the im-
plemented technical capabilities of the system (i.e., for
supported use cases implemented by DELEGATEE).
(4) During the agreement, users exchange their unique
identifiers (i.e. system username) so that the Owner from
party A knows whom to authorize from party B.
(5) The Owner Ai establishes a secure channel to the
system, specifies for which credentials (Cx) she wants
to perform the delegation, for which service (Gk) and to
whom (username of B j), while she additionally specifies
the access control policy Pi jxk that restricts usage.
(6) After receiving the confirmation, Ai disconnects.
(7) The Delegatee B j now establishes a secure channel
to the system and can immediately see that she has been
delegated credentials for a certain service. The creden-
tials are hidden for the Delegatee B j. If the Delegatee
wants to access the service Gk, she may proceed.
(8) The access to the service is always proxied through
the central broker with no direct communication between
the Delegatee and the service. Any attempt to circumvent
this results in protocol termination (e.g., if the user clicks
an external link outside the proxied service).
(9) After the defined access control policy expires (e.g.
if it is time limited) the Delegatee B j loses access and the
credentials are no longer delegated.

Interoperability. In Section 5 we describe the imple-

mentation of DELEGATEE. Our prototype implemen-
tation is based on the Centrally Brokered architecture,
since this is the most plausible deployment scenario, al-
though we discuss how the P2P model applies to each
supported application. The implemented enclaves have
two operation modes that can be chosen and set prior to
the execution. In case of the Centrally Brokered system,
the enclave retrieves important data regarding services,
credentials, and access control from the management en-
clave, while in the P2P system, the enclave awaits the
connection from its issuer to receive all information.

3.3 Usage with and without anonymity
DELEGATEE supports both identity-based (non-
anonymous) and anonymous use models, as follows.
Identity-based model. An identity-based model follows
directly from the model and examples given above. Here,
the users know each other in some way, have a commu-
nication channel and can mutually identify each other.
The Owner directly delegates her credentials to a specific
Delegatee. Common use case examples include family
sharing, delegation among friends and colleagues, etc.
Anonymous model. As DELEGATEE conceals
an Owner’s credentials, it naturally preserves her
anonymity, even in the P2P model where the Delega-
tee operates the enclave executing DELEGATEE. How-
ever, the agreement is necessary in order to specify de-
tails for the delegation relationship. An Owner and Del-
egatee may negotiate and perform credential delegation
without direct interaction. For example, a bulletin board
(available on the Centrally Brokered system) might allow
Owners to publicly list services they are willing to del-
egate, specifying accompanying access control policies
and costs (or offer of free service). Owners may iden-
tify themselves with pseudonyms, e.g., onion addresses.



In the P2P model, the bulletin board can be hosted on a
third-party website, while the protocol runs through Tor
Hidden Services, thereby ensuring privacy protection for
both the Owner and Delegatee.

3.4 Policy Creation and Enforcement
Securely enforcing defined policies presents a challenge
on its own. We aim to prevent all attackers from modify-
ing the policies or circumventing the enforcement by ap-
plying a combination of allowed actions in order to reach
a desirable state. While the security analysis (Section 4)
ensures that the owner-provided access control policy is
respected, the burden remains on the Owner to choose
an appropriate access control policy in the first place.
An Owner who wants to delegate restricted access for
a specific service needs to be able to define all allowed
actions through a rich access control policy, denoted as
Pi jxk. For increased security, we prefer the white-listing
of operations based on the least-privileges in order to
prevent unwanted access and usage of the delegated ac-
count. Unfortunately, a general model for a wide variety
of different services cannot be used. For every specific
service category, and sometimes even for every specific
service provider in the same category, a new policy must
be created that resembles the exact capabilities and ac-
tions which a fully allowed user may invoke. We discuss
the limitation of policies in Section 7.
Policies in DELEGATEE. We designed and imple-
mented policies for all scenarios defined in Section 2.1,
namely, for mail, payments, and full website access.

In mail, DELEGATEE relies on the IMAP and SMTP
protocols which are standardized and well defined. In-
side the enclave we parse all incoming and outgoing re-
quest (to and from the Delegatee) and compare them
against the defined access policy. Consider a concrete
scenario: the organizer of a conference wishes to dele-
gate her email account to an assistant to respond to lo-
gistical questions from attendees. The Delegatee should
be granted read access to only subset of the organizer’s
email (e.g., defined by a regular expression query like
(*#Usenix18*)). The organizer might also wish to en-
force restrictions on message sending. Rather than send-
ing to any possible email address, the assistant may only
be allowed to reply to emails and deleting emails should
be prevented. In general, for the inbox requests the Dele-
gatee can be limited based on criteria such as date, time,
sender, subject or content of the email. In outgoing re-
quests, the limitation is set on the subject or content, and
the intended recipient(s). Additionally, the Owner can
rate-limit emails sent within a time interval, applying a
spam and abuse filter for outgoing messages.

In payments, the main restriction is on limiting the
allowed amount per transaction or the total amount us-
ing the delegated credential for either a credit card or

any other third party payment service. Additionally, the
DELEGATEE can enforce restrictions on the source, lim-
iting the Delegatee to perform payments only on specific
sites or identified merchants/services, and white-listed
geographical locations based on the IP address.

In the full website access, DELEGATEE implements
limiting the use of login credentials to specific sites (e.g.,
the Owner can have the same credentials for two different
services. However, full access is only achieved to the
site allowed by the policy). As work in progress, the
policies are expanded to restrict specific actions on sites
after the login, including, clicks on various links, loading
of specific site content or access to the account settings.

Our prototype implements delegation policies targeted
at particular services, directly in C++. These policies
rely on the mechanisms explained above; the Owner only
needs to configure the value of the policy attributes (e.g.,
time limit, max amount, regular expression, etc.). In
principle, the credential Owners could describe their own
delegation policy in a general programming language. In
Section 8 we mention existing and generic ways to ex-
tend our general functionality regarding access control.
However, specifying the policies is difficult to do cor-
rectly. We envision that a likely deployment scenario is
a curated “app store”, to which entrepreneurs or power
users submit useful policies they develop. These policies
are then evaluated by experts and users. Web services are
constantly updated, and the interfaces change over time,
requiring delegation scenarios to be continuously main-
tained as well. In Section 7 we discuss further challenges
if the services seek to actively prevent delegation.

4 Security Analysis
Brokered delegation provides a new usage pattern for po-
tentially any existing online service. It, therefore, pro-
vides new security challenges as well, arising especially
because each new service requires a customized delega-
tion mechanism. In this section we describe the main se-
curity properties that DELEGATEE is designed to ensure
across all applications:

(a) First and foremost, the Owner’s access credentials
remain confidential.
(b) The use of the delegated credentials is defined by the
access control policy which will not be violated.
(c) Use of the credentials should only be granted to the
intended Delegatee, as authorized by the Owner.

The DELEGATEE system is designed to provide these
security guarantees even against a strong attacker model.
We assume that an attacker neither corrupts the full soft-
ware stack of the Owner’s and Delegatee’s machines (un-
less the Delegatee is the attacker), nor the online service,
as existing web authentication mechanisms rely on them
anyway. However, we consider an attacker that controls



everything else (i.e., including the standard Dolev-Yao
adversary [14] that can read and manipulate network traf-
fic between parties). The two architectures we develop,
P2P and Centrally Brokered, differ mainly in where the
enclave is hosted (respectively, on the Delegatee’s own
device or at an independent third-party). Although we
rely on a TEE, our system is designed to tolerate vul-
nerabilities in the SGX enclaves as long as the software
stack on the machine running the enclave is also not com-
promised. Below we discuss several attacker configura-
tions and the design decisions made to mitigate them. It
is of utmost importance to note that our system is de-
signed in a way that breaking the SGX protection mech-
anism on an arbitrary enclave will not subvert our sys-
tem. The attacker would need to break the exact enclave
running DELEGATEE, bypass the authentication mech-
anism, and compromise the full software stack on the
same machine to violate the security properties. Addi-
tionally, we consider side-channel attacks to be out of
scope of this work.

4.1 Security through trusted enclaves
We first describe how these properties are ensured as-
suming the TEE enclaves are secure, even if the software
stack of the Centrally Brokered system is compromised.

In the Centrally Brokered architecture, the TEE guar-
antees security properties (a) and (b) even if the central
broker and the Delegatee are otherwise corrupted. The
Owner only transmits her credential after validating the
attestation that the enclave is running the correct code
and if the authentication is successful. The mechanism
for authenticating the Delegatee to the broker also lies in-
side the enclave, in the broker’s API enclave. This means
that property (c) is guaranteed even if the broker’s full
software stack is compromised since all security-critical
operations are performed inside the enclave.

In the P2P architecture, even if the Delegatee’s soft-
ware stack is corrupted, the Owner’s credentials are kept
confidential. In Step (5), the Owner receives a TEE attes-
tation before communicating further over the TLS chan-
nel, and validates it against the DELEGATEE enclave
executable. Since the Owner only sends her credentials
along this channel directly to the enclave, it is never ex-
posed to the Delegatee’s host machine, thereby ensuring
property (a). The only way the Delegatee can make use
of the credentials is by providing commands as input to
the enclave (all access is proxied through the enclave),
where they are processed according to the access con-
trol policy Pi jxk, ensuring the enforcement of (b). Since
the TEE is hosted locally by the Delegatee (that also has
to authenticate to the Owner using the agreed shared se-
cret), then property (c) is ensured against an external at-
tacker if he cannot steal the shared secret; against a rogue
Delegatee, this property is not meaningful anyway.

We note that in either architecture, the code running
in the enclave must use the credentials in application-
specific ways. We stress that in our proposed system, the
owner-provided access control policy Pi jxk for service Gk
is a configuration parameter given as input to one of the
supported application specific enclaves. Hence the proof
burden is on us to show that properties (b) and (c) hold
for any policy Pi jxk. We refer the reader to Section 3.4
and Section 5 for a detailed explanation. To summarize,
each application makes use of the credentials only to au-
thenticate with the corresponding service.

Finally, we note that Denial-of-Service attacks is out-
side the scope of our security guarantees since an exter-
nal (network) adversary can always drop messages.

4.2 Robustness to compromised enclaves
Our system relies on the TEE to provide security against
a compromised Delegatee or the broker service. How-
ever, DELEGATEE is also designed to provide defense
in depth where possible, such that even a partial com-
promise of the TEE does not impact security (as long as
the host machine is also not compromised). In particular,
we consider an attacker that can recover the internal keys
(e.g. sealing, memory encryption, etc.) of the Intel SGX.
This strong attacker would be able to decrypt any sealed
persistent storage or encrypted memory pages and create
false attestations. As of the time of writing, there have
not been any such attacks on Intel SGX keys. Regard-
less, by arguing security against this attacker model we
reduce the harm if such a vulnerability should be found.

We address these concerns by designing our proto-
col so that all communication channels are authenticated
end-to-end, even when communicating with an attested
SGX enclave. To illustrate, first consider the P2P archi-
tecture. Our authentication mechanism defends against
such an attacker by requiring authentication input from
the Delegatee before establishing the TLS endpoint in the
enclave. Notice that by Step (5), the Owner Ai opens the
TLS endpoint to the Delegatee’s enclave, over a poten-
tially insecure channel. At this point, if the attacker can
forge an enclave attestation, then the TLS channel may
actually be an impostor channel. However, by authenti-
cating the TLS channel against the pre-shared secret ini-
tially established with the Delegatee, the Owner would
detect and invalidate such an impostor channel. This au-
thentication occurs before the Owner ever transmits the
credentials, ensuring desired property (a). Furthermore,
the enclave software is guaranteed to be the correct DEL-
EGATEE executable transmitted by the Owner, as long
as the Delegatee’s host OS is uncorrupted. This ensures
that properties (b) and (c) hold as well. However if a
rogue Delegatee colludes with an attacker that can forge
TEE attestations, or if the Delegatee’s software stack is
fully compromised, then the credentials would be forfeit.



Our Centrally Brokered architecture is also designed
with end-to-end authentication to mitigate against a
potentially compromised TEE. The Delegatee and the
Owner each establish authenticated TLS channels to the
central broker (authenticating the broker’s enclaves using
the typical certificate PKI), and only communicate to the
broker over this channel. Hence all three security prop-
erties are ensured as long as the service’s own software
stack is not accessible to the attacker, regardless of any
forged TEE attestations the attacker may produce or if
the attacker can guess the SGX keys used by the enclave.

We also avoid the use of persistent encrypted storage
in the P2P model, thus, preventing potential rollback at-
tacks [32], which may otherwise occur if the enclave’s
sealing keys can be derived by the attacker. Our DELE-
GATEE enclaves, therefore, do not provide any means to
resume a previously-established delegation session if the
processor is power cycled. Instead, their state is restarted
from scratch. In the Centrally Brokered system, we do
presume that the attacker has no presence on the full soft-
ware stack, thus, for continuous operation of the system
we make use of the persistent encrypted storage. If the
attacker model would be expanded to allow attacker pres-
ence on the software stack, methods and techniques de-
scribed in [32] could be applied to prevent rollback.

For ease of exposition, we have only discussed the
highlights of our security design. A systematic security
analysis can be found in the online (eprint) version of our
paper at https://eprint.iacr.org/2018/160.

4.3 Other Security Properties
Mandatory Logging. A well-chosen policy should ide-
ally prevent any misuse from occurring. To be prudent,
we would also like to ensure support for forensic investi-
gation in the case that an incorrect policy is abused. We
propose that all the requests and responses exchanged
between the service provider and the Delegatee are se-
curely logged using a timestamped statement signed by
the enclave, for a possible later review. For example, in
the payment scenario, if the Delegatee uses the Owner’s
credit card, the following events are registered: time and
date, the website and the amount of the executed pay-
ment. As another example, in the mail scenario, if the
Delegatee manages to evade the abuse filter and send of-
fensive emails, these messages should be logged. We
imagine such logs may be used later on to prove that the
Delegatee herself performed some action and indemnify
the credential Owner. This discourages the Delegatees
to perform any actions that could harm the Owner. To
detect suppression of log entries, we could make use of
a hardware monotonic counter. The enclave could addi-
tionally require a “receipt” from an independent backup
service that replicates the log entry, before continuing.
Delegatee protection. So far our security analysis has

Enclave type Core mbedtls Total
API 4.0 (7.3%) 51.0 (92.7%) 55.0
Mail 1.9 (3.6%) 51.0 (96.4%) 52.9
Paypal 2.6 (4.9%) 51.0 (95.1%) 53.6
CreditCard 2.5 (4.7%) 51.0 (95.3%) 53.5
HTTPS Proxy 2.7 (5.0%) 51.0 (95.0%) 53.7

Table 1: TCB of DELEGATEE in LoC (thousands).

only focused on protecting the Owner. Security for the
Delegatees may be important too. For example, if a Dele-
gatee wishes to use the Owner’s payment account to pur-
chase a sensitive item, they may not wish for the trans-
action details to be disclosed to the Owner. A delegation
policy supporting the Delegatee could, in this case, offer
a way to automatically delete payment transaction logs
(if this is possible at all using the payment service).

5 Prototype Implementation
In this section we describe our prototype implementation
for the selected use cases mentioned troughout the paper.
All enclaves rely on the OS to handle incoming and out-
going TCP connections while the SSL endpoints reside
in the trusted enclaves. We use the mbedtls library de-
veloped by ARM [29], which also comprises the bulk
of our trusted-computing-base (TCB). The interface be-
tween the OS and the enclaves consists of one ecall and
ten ocalls, all of which are needed by the SSL library
to use the OS’s capability to handle the TCP connections.
The small number of calls and the small TCB, as shown
in Table 1, facilitate code verification and reduce the sur-
face area that may be affected by vulnerabilities.

To demonstrate our use cases, we implemented four
service specific enclaves for delegated use of mail,
PayPal, credit card/e-banking, and full website access
through an HTTPS proxy. Additionally, a fifth man-
agement enclave is used to authenticate the users and
store credentials, implemented as a RESTful API, fur-
ther referred as the API. The API enclave is not used
in the P2P system since it is not needed. Only service
specific enclaves are deployed on the Delegatee’s ma-
chine. Additionally, we implemented a browser exten-
sion that communicates directly with the Centrally Bro-
kered system and allows ease-of-use for the delegated
credentials by the Delegatee (page parsing, detection of
forms, choosing delegated credentials, etc.). All commu-
nication between the users, the enclaves and the browser
extension is done using TLS with replay protection. We
refer the reader to Appendix B for prototype screenshots
of chosen examples. In these implementation details we
presume that the Owner Ai and Delegatee B j already
registered to the system and that the Owner authorized
the Delegatee by storing the credentials Cx and defining
the access policy Pi jxk for a specific service. Thus, the
Owner Ai is not shown in the figures.
Multithreading in Intel SGX. Intel SGX does not sup-
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Figure 3: Architecture overview for the Centrally Brokered system

port traditional multithreading within an enclave. Addi-
tional threads cannot be started by an enclave, instead
multiple threads of the untrusted app can simultaneously
perform an ecall, resulting in parallel enclave execu-
tion. The amount of concurrency is specified during
compilation of the enclave and is limited by the number
of logical cores in the processor.
Additional Authentication. In Section 7, we dis-
cuss limitations concerning the modern authentication
challenges and DELEGATEE. Our implementation sup-
ports one advanced authentication method involving
CAPTCHA. In case of website login or PayPal, a captcha
may be required as an additional authentication step. We
successfully overcome this issue by extracting the secret
image, presenting it to the Delegatee through browser ex-
tension generated pop-up, allowing her to solve it and
continue with executing the desired operation. We refer
the reader to Appendix B for prototype screenshots.

5.1 Mail/Office
Delegation of email accounts under a specific access pol-
icy, one of the DELEGATEE motivated applications, is
implemented in the mail enclave. IMAP and SMTP
clients are implemented to allow a Delegatee B j to read
and send emails using the delegated credentials Cx. Be-
low we describe the architecture depicted in Figure 3a:

(1) The Delegatee B j wants to use some credentials Cx
that have been delegated by Ai. B j connects securely
to the centralized API using her username and password
(for P2P model the communication is established as de-
scribed in Section 3.2, with both methods supported).
She then requests to perform some action using Cx.
(2) The API verifies that the Delegatee has access to Cx
and then forwards the request, Cx and the corresponding
policy Pi jxk to the mail enclave.
(3) The mail enclave connects to either the SMTP server
(for sending mail) or the IMAP server (for receiving
mail) and executes the requested operation.
(4) Pi jxk gets applied to the response from the external
servers (IMAP) or to the outgoing requests (SMTP) and
the resulting response gets forwarded to the API.

(5) The API delivers the final response to B j.

5.2 Payments
PayPal. PayPal does not want to endorse giving away
your credentials or automating the payments as this could
compromise their security. Thus it is non-trivial to au-
tomate a PayPal payment and there is no public API.
We must emulate a browser inside our enclave that accu-
rately simulates a real user. Normally the payment pro-
cess relies on a javascript library but running a javascript
interpreter in Intel SGX would bloat the TCB, and create
potential vulnerabilities associated with running an un-
measured, externally provided script inside an enclave.
We instead use the no javascript fallback mechanism
from PayPal. Our implemented emulated browser fol-
lows redirects, fills known forms, and handles cookies
until the final confirmation page is reached. The enclave
then returns a confirmation id to the issuer that is used
by the merchant to finalize the payment. Our implemen-
tation was tested using PayPal’s sandbox and real-world
environment, executing a real payment. Our browser ex-
tension simplifies the use of delegated PayPal creden-
tials by adding a DELEGATEE checkout button next to
the original PayPal checkout button if the Delegatee is
logged in to our system and has some delegated creden-
tials. Upon clicking on the DELEGATEE checkout the
Delegatee can choose one of the available PayPal creden-
tials delegated to her and then the automated payment
process starts (please see Appendix B for screenshots).
After that, no further user interaction is needed and the
Delegatee will be forwarded to the confirmation page of
the merchant if the payment succeeds. Below we de-
scribe the architecture depicted in Figure 3b:

(1) The Delegatee B j wants to buy something from a
merchant using credentials Cx delegated by Ai. B j con-
nects to the merchant and asks for a PayPal payment.
(2) The merchant uses PayPal API to create a payment.
(3) The payment is then forwarded to B j.
(4) B j connects securely to the centralized API enclave
using her username and password (for P2P model the
communication methods are described in Section 3.2).
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She then requests to pay with PayPal using Cx.
(5) The API enclave verifies that the user can access to
Cx and then forwards the request, Cx and the correspond-
ing policy Pi jxk to the PayPal enclave.
(6) The PayPal enclave connects to PayPal and pays the
payment with Cx if it is allowed by the policy Pi jxk. The
PayPal service responds with a confirmation number.
(7) The confirmation number is forwarded to the API.
(8) The API delivers the confirmation number to B j.
(9) B j forwards the confirmation number to the mer-
chant and then the PayPal payment is finalized by the
PayPal API using the received confirmation number.

Credit card/e-banking. Payments are similar to Pay-
Pal payments: upon checkout on the merchant’s website,
the browser extension is triggered if the payment form is
available. The Delegatee chooses any delegated creden-
tials she is authorized to use. The enclave fills the form
with the credentials received either from the centralized
API or directly from Ai using the P2P model. Our imple-
mentation was tested without any service provider that
would finalize the transaction. Figure 3c shows the de-
tailed architecture and the steps follow bellow:

(1) The Delegatee B j wants to buy something from a
merchant using some credentials Cx containing credit
card or e-banking information that have been delegated
by Ai. B j connects to the website and the browser ex-
tension renders a second button beside the normal credit
card and e-banking credentials submit button.
(2) Upon clicking the injected button, the browser ex-
tension requests a payment with Cx from the API.
(3) The API verifies that the user has access to Cx and
then forwards the request, Cx and the corresponding pol-
icy Pi jxk to the credit card/e-banking enclave.
(4) The enclave fills Cx into the request while taking the
policy Pi jxk into account and forwards it to the merchant.
(5) Finalization is done by the payment service provider.
(6) Response is routed through the enclaves to B j.

5.3 Full Website Access
HTTPS Proxy. For secure browsing we implemented a
HTTPS proxy enclave. We want to proxy selected web-
sites and if a user leaves the website, he also leaves the
proxy. We implemented this by using cookies to set the
correct host name. The user sends any request to the

proxy and he sets a cookie with the host name he wants
to visit through the proxy. The enclave then parses the re-
quest, replaces the host name and sends it on to the real
website. The response is also modified by the enclave so
that the host name points to the proxy again. All links
in the response are left unmodified so all relative links
point to the proxy but all absolute links direct to a differ-
ent website. The website certificates are checked against
the statically compiled root certificate list in the enclave.
Login. To log into a service using delegated credentials
we leverage similar technologies as in the HTTPS proxy
and we thus only extended the proxy enclave to support
delegated authentication for websites. Analogous to the
HTTPS proxy we use cookies to specify the Delegatee’s
session token and which credentials Cx she wants to use.
The enclave then asks the API whether the Delegatee
with the specified session token is allowed to use Cx. If
everything checks out, the API responds with the details
of Cx and Pi jxk and the proxy enclave fills the login form
before forwarding it to the website. As websites session
tokens are usually stored in cookies, we encrypt all cook-
ies forwarded to and from the website in order to prevent
session stealing by an adversarial Delegatee. We use the
browser extension in the same way as in the PayPal ex-
ample: a button is rendered next to the original login.
Figure 4 depicts the architecture and the detailed steps:
(1) The Delegatee B j wants to log into a website using
some credentials Cx that have been delegated by Ai. B j
connects to the website and the browser extension ren-
ders a second button beside the normal login button.
(2) Upon clicking this button, the browser extension
changes the URL pointing to the proxy and appends
cookies, specifying the credentials B j wants to use.
(3) The proxy asks the API for Cx. The API checks if
B j has the rights to use Cx and then forwards Cx.
(4) The proxy enclave fills in the username and pass-
word into the login request and proceeds to send it to the
website and receives the response.
(5) The proxy rewrites the header of the response to en-
crypt cookies and then forwards it to B j.
(6) All subsequent connections have to go through the
proxy where the policy Pi jxk can be enforced.

6 Performance analysis
In this section we show that the overhead imposed by
our solution stays within reasonable bounds. The per-
formance testing was done using two i7-7700 machines
with 16 GB RAM, connected via the internet and local
network. We can serve around 100 users concurrently
even running on consumer grade hardware.

Table 2-a shows an overhead of around 50ms for a full
SSL handshake using mbedtls inside an enclave. The
handshake involves three exchanged messages, thus at



Type Test case Mean (± std)

a)
SSL
handshake

openssl 52.12ms (± 3.62)
mbedtls 57.14ms (± 3.37)
mbedtls in SGX 105.22ms (± 4.23)

b) Mail
direct 1.12s (± 0.27)
mail enclave 1.19s (± 0.22)
API/mail enclave 1.45s (± 0.25)

c) PayPal
direct 25.92s (± 6.83)
direct, no js 29.96s (± 8.51)
PayPal enclave 27.00s (± 4.35)

Table 2: Latency for a) SSL handshakes, b) receiving e-mails
in inbox, and c) executing PayPal transactions. Sample: 1000.

Target (site) Test case Mean (± std)
small
(2.6KB)

direct 5.0ms (± 2.7)
proxy enclave 64.3ms (± 2.5)

medium
(411KB)

direct 12.2ms (± 1.2)
proxy enclave 76.8ms (± 3.3)

big
(15.7MB)

direct 202.6ms (±19.9)
proxy enclave 432.2ms (±16.0)

Table 3: HTTPS proxy latency with various page sizes.

least three ocalls/ecalls, all of which have to copy
buffers. In our measurements we recorded 19 ocalls

during a request to the enclave. Overhead for ocalls
and ecalls is measured and analyzed in [40] and is sig-
nificant for copying buffers from the untrusted memory.

The mail enclave incurs minimal overhead (Table 2-b)
with the extra handshake to the IMAP server (P2P sys-
tem). In our test we retrieve all emails from the account
inbox. In the Centrally Brokered system an additional
handshake with the API is leading to a higher delay.

The PayPal example does not seem to suffer from any
delay added by our implementation (Table 2-c). Note
that we performed tests using the sandbox environment,
provided by PayPal itself for testing integration with their
services. This environment is feature-complete but slow
as it is only functionality-oriented. Most time falls in
waiting for the PayPal servers. As the enclave uses the
fallback mechanism to execute PayPal transactions with-
out JavaScript, we measured both variants: one allow-
ing JavaScript and one blocking it. We also conducted
tests in the real PayPal environment using the Centrally
Brokered system, executing a real payment and buying
an item online with a merchant supporting PayPal. How-
ever, due to the CAPTCHA protective mechanism involv-
ing the Delegatees’ actions, it is not feasible to measure
performance, since it depends on the user input.

Table 3 shows that the proxy adds the biggest latency
overhead compared to normal browsing but still below
0.1 seconds for small to medium websites, a response
time limit for seamless user interaction [35]. A part
of the high delay stems from the enclave waiting for
the whole web server response before forwarding it to
the Delegatee. Message parsing, the additional hand-
shake, and the fact that all communication has to cross
the ocall/ecall interface twice also adds to the over-
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Figure 5: Concurrency shown in throughput and average wait-
ing time. Each user tries to send 100 requests.

head. A full HTTPS proxy enclave is in the works to re-
duce the waiting time and support all client connections.

We have also tested video streaming through our
proxy, supporting DELEGATEE’s streaming service ex-
amples (i.e., Netflix). We modeled streaming as a client
that requests some video from a webserver. Therefore
the performance of video-streaming through DELEGA-
TEE is analogous to the ordinary HTTPS proxy use case.
There was no additional overhead compared to normal
streaming for a single user, e.g. as in the P2P model (the
standard deviation is larger than the initial waiting time,
for both the normal streaming and the proxied one). The
streaming service was tested on the Centrally Brokered
system where the delegatee connects to the proxy from
the internet. This test was only done for a single user
streaming at one point in time due to hardware and band-
width limitations. As in the previous test, the overhead is
negligible once the streaming starts while the initiation
depends on the current latency.

Our multithreaded implementation was tested using 8
threads. Incoming connections are kept in a queue and
served by the enclave threads, thus reaching maximum
throughput with 8 concurrent users sending requests, as
shown in Figure 5. The average waiting time stays con-
stant until the same 8 user threshold, increasing linearly
as new requests get queued. Our implementation sup-
ports SSL session reuse which significantly improves the
throughput and lowers the waiting time. Without session
reuse we can accommodate maximum 100 req/sec for 32
concurrent users, while with session reuse this grows to
500. Numbers could vary depending on the chosen ci-
pher suite (ECDHE-RSA-AES256-GCM-SHA384).

7 Discussion & Limitations

In this section we explore limitations of DELEGATEE,
mainly focusing on how brokered delegation faces tech-
nical challenges in the authentication process, as well
as business and regulatory challenges arising from users
controlling their own resources in a more flexible and
fine-grained way than service providers intend.



Authentication challenges. Authentication in modern
web services is complex. It can involve not just pass-
words but additional factors such as personal questions,
email challenges, phone challenges, and “two-step au-
thentication” apps such as Authy and Google Authen-
ticator. Some of these can be supported with DEL-
EGATEE, such as, email challenges or 2FA apps that
could run inside the enclave as well, while for some,
e.g. phone challenges, DELEGATEE cannot overcome
the challenge.

Contextual factors often additionally come into play,
such as the IP address, time of day, and nature of ser-
vice requests. Financial services, e.g., PayPal, have par-
ticularly sophisticated fraud detection regimes; e.g., or-
dering unusual products with Paypal may trigger a fraud
alert. Consequently, a single credential in the form of a
password may not suffice to delegate a resource or ser-
vice via DELEGATEE. In Section 5 we outline a solu-
tion for an additional authentication method in form of a
CAPTCHA, that is required by some online services.

To illustrate, consider a scenario in the P2P mode
where an Owner Alice (an inhabitant of the U.S.) dele-
gates a password to DELEGATEE and allows her PayPal
account to be rented. Suppose then that Delegatee Bob,
in Nigeria, rents Alice’s PayPal account in a prescribed
way and attempts to execute a transaction. Paypal will
see an unusual request coming from an IP address in a
country with a different risk profile than the U.S., and
potentially one that Alice has never visited. Bob’s trans-
action request is likely to be suspicious. PayPal may then
deny the transaction or request additional confirmation,
e.g., via e-mail, to proceed. If Alice is unavailable or de-
nies the transaction - which she may fail to recognize as
originating with her delegation - the transaction will fail.

For future production deployment of DELEGATEE,
we will address these complications in several ways:
• Application-specific delegation: Authentication sys-
tems vary considerably across applications and service
providers. Each DELEGATEE application will include
configuration not just for the APIs of a given target Ser-
vice, but also its authentication policies.
• Delegation of multiple credentials: For services that
require multiple credentials, DELEGATEE may require
more than a password from an Owner. For example,
two-step authentication apps can be executed within the
enclaved DELEGATEE application and set up by an
Owner as an additional authentication factor. Similarly,
an Owner may delegate her email to the enclave to re-
spond to email-based authentication challenges. The
SGX platform performing the delegation may be situ-
ated in the same country or region as the Owner. Finally,
an Owner can perform a set of legitimate transactions
through DELEGATEE in order to confirm that required
credentials are present and to white-list the platform with

the authentication system of the target service.
• Failure modes: Periodic delegation failures are in-
evitable, just as legitimate users’ transactions fail spo-
radically due to false positives in the fraud-detection
systems. As DELEGATEE is not intended for mission-
critical uses, it could include graceful failure modes.

Authentication collisions. Attempts at simultaneous
use of a resource may fail, as many web services do not
support multiple concurrent sessions for a given account.
For example, if Alice has delegated use of her bank ac-
count to Bob, then she may be unable to use it herself
while Bob (or DELEGATEE, to be precise) is logged in.
Such collisions can be treated by invoking failure modes
like those for basic authentication failures. Other poli-
cies are possible, however. For example, Owner Alice
may set a policy that only delegates her resource at times
when she is unlikely to use it. A small enhancement to
DELEGATEE can also enable Alice to preempt the ses-
sion of a Delegatee if desired.

Usability, Deployment and Service Prevention.
Throughout the paper we have presented multiple
use-cases and implemented prototypes that support
delegation of different services. The usability of these
services by potential Delegatees is as if they were
using the original service as its Owner. However, the
usability of the DELEGATEE in general depends on
the supported use-cases. A limitation of our system is
that for each and every use-case a specific module (that
matches the capabilities and technical challenges) has to
be implemented. Until now, we have not found a way
in order to develop a generic module that could support
a wide variety of services. For example, interpreted
languages, such as Javascript, remain an open problem
since by executing unmeasured code in an enclave
running the interpreter we cannot guarantee the security
properties of DELEGATEE. In addition to that, almost
all services (even the ones from the same category)
have different user mechanisms, UI and control. Thus,
a specific policy needs to be created that matches these
controls in order to allow Owners to specify how their
service could be used by potential Delegatees. Due to
the complexity, for now, the policies have to be created
beforehand along with the implemented delegation
scenario, while the end-user involvement is limited to
configuring parameters, out of a set of given policy
characteristics.

If all service operators would share a unique set of
API calls that could cover the full functionality of their
services, then the deployment of DELEGATEE would be
feasible for almost all service categories. This would also
allow for the creation of more general and richer access
control policies that could be created by the end-users of
the service as well, possibly overcoming the initially dis-



cussed complexity of complete policies that require seri-
ous engineering and evaluation of each specific use-case
scenario.

However, it is hard to imagine that the service opera-
tors would view the above even as a viable option. In
many cases, DELEGATEE allows the creation of sec-
ondary markets (see the last paragraph of the section) and
poses a threat to the revenue stream of the original ser-
vice operator. Additionally, DELEGATEE reduces the
operators’ ability to control and track their users since
virtually, the number of users could grow but they would
be seen only through the increased activity of users regis-
tered to the original service. Thus, most service operators
would try to deny service access if executed through this
form of delegation. As already mentioned, IP geofenc-
ing, pattern matching of actions and service usage, 2FA,
along with the already existing fraud-detection mecha-
nisms may endanger the functionality of our system. We
have addressed several of them, however, future work in-
volves investigation into further improvements that could
make the distinction between the Owner and any Delega-
tee less possible.

Scalability. Scalability for all other supported services
except video streaming is generally not a constraint. It
comes down to running a proxy which can be adapted
in terms of processing power (adding more enclaves
horizontally) like any other service provider, while the
bandwidth requirements remain moderate. However, in
the case of video streaming in the centralized approach,
the limitation is in the number of running connections
since all video material is re-routed through the proxy.
Namely, the proxy would need to have extremely high
bandwidth, processing power and be scalable almost as
the video service provider itself. We did not perform
scalability tests to see how many users in parallel we
could support for the video streaming example. This
would require server grade hardware which we do not
possess and any reported results would be meaningless.
However, for the P2P model, since the enclave resides
on the Delegatees themselves, a single Owner can sup-
port multiple delegation of his, e.g. Netflix account (at
least based on the limit of Netflix itself – 2 or 4 devices
based on the subscription). The streaming is done di-
rectly to the Delegatee, and the access will be valid until
the policy expires.

Secondary markets. Brokered delegation could give
rise to offerings that compete directly with those of the
very platforms hosting the delegated resources.

Facebook users could sell opportunities for “spon-
sored post” - unsolicited advertisements sent to their net-
works of friends or shown on their walls, as discussed
above. Facebook users would then compete with Face-
book itself in selling ads. Similarly, users could rent use

of their Netflix account. Account sharing is already com-
mon within families and close friend circles. Brokered
delegation could enable broad reselling and foster com-
petition with direct sales of the subscription service.

Such secondary markets would in many cases violate
providers’ existing terms of service and might resem-
ble markets for underground sales of virtual goods [27,
44]. Those underground markets have met with two re-
sponses, sometimes used in tandem: (1) providers aim
to detect facilitators of secondary markets and penalize
or ban them, and (2) providers themselves seek to cap-
ture the revenue streams generated by secondary mar-
kets; e.g., online role-playing game providers have of-
fered virtual goods for sale through their own shops [31].
DELEGATEE could provoke similar responses.

Peer-to-peer cryptocurrency-for-fiat exchanges is an-
other setting that can benefit from DELEGATEE. Today,
websites like LocalBitcoins.com receive Bitcoin deposits
and hold them in escrow. Then they match-make and al-
low a buyer and a seller to negotiate a e-banking trans-
fer. When the receiver gets the bank transfer, they in-
struct the LocalBitcoins service to complete the payment
from the escrowed funds. If the receiver raises a dispute,
then the service must investigate and ultimately deter-
mine whether to release the funds. However, such ser-
vices naturally have limited investigative ability. They
may call the user’s bank, or ask both parties for evidence
(i.e., screenshots). Neither option is satisfactory; the lat-
ter is prone to forgery, while the former may inadver-
tently draw suspicion to the user’s bank account. Creden-
tial delegation provides an alternative, simplifying this
business model and implementing a secure intermediary
that guarantees execution and fair exchange.

8 Related Work
TEEs are widely used today. ARM TrustZone, for ex-
ample, is commonly used to protect data on mobile de-
vices, e.g., biometric templates and encryption keys in
iOS devices [4]. Intel SGX has been proposed for a num-
ber of applications, including confidential map-reduce
tasks [37], trustworthy data feeds for blockchain ora-
cles [45] and retrofitting of legacy applications [7], se-
cure payment channels [30], etc. With DELEGATEE we
extend this line of work with a new class of applications
based on credential delegation.

Delegation of authority has been an important focus in
access control security. Two mechanisms are commonly
used. First, the credential Owner can interact with an
authentication service to mint new credentials or tokens
(representations of capabilities) for the Delegatee (e.g.,
Active Directory, Kerberos, and Oauth [17, 18]). Sec-
ond, using chains of cryptographic assertions or certifi-
cates (as in X.509 or SPKI/SDSI), which can be digi-
tally signed and communicated without interacting with



a central server [10, 15, 34, 8, 6]. In either case, the dele-
gation mechanism must be supported by the resource (or
a reference monitor guarding the resource). Our system
is different in that we use a trusted enclave-based proxy
that stores the user’s credentials and is transparent to the
resource. It is, therefore, used to retrofit delegation for
existing web services, without requiring additional effort
(or even explicit support) from the provider.

Many web services like Facebook, and Twitter, sup-
port delegation for third-party applications typically us-
ing OAuth or OpenID (e.g., a user may delegate to a
Facebook app the authority to read her friends-list but
not to post new messages on her behalf). However, this
delegation is not very expressive. The authority to post
on a users Facebook wall is all-or-nothing, for example;
we cannot express restrictions such as no more than 1
post per day. Much of the research literature has focused
on flexible languages for specifying and reasoning about
delegation policies [10, 6, 38, 19]. Our approach is com-
plementary, as our enclave-based proxy can be used to
apply more expressive policies to existing services.

Without support for fine-grained delegation, users
sometimes resort to sharing passwords with each other
or with third parties [38]. For example, to use the fi-
nancial dashboard service Mint.com, users often need to
share their bank account passwords with the service [41].

Delegation based on TEEs promises a more secure al-
ternative to this status quo. Credential delegation us-
ing SGX was first explored in [45] to support ”oracle”
queries. Use of SGX for credential management was also
proposed in [23]; there the goal was validation and resale
of credentials for criminal purposes. More recent work
involves the delegation of private keys for cryptocurren-
cies in order to secure a payment channel [30]. DELE-
GATEE is much more general than these prior works, as
it supports delegation of credentials for any desired goal.

9 Conclusion
In this paper we propose a new concept called brokered
delegation, using TEEs to enable flexible delegation of
credentials and access rights to internet services. We ex-
plored two design spaces, the decentralized P2P mode as
well as a more pragmatic Centrally Brokered mode. Our
implementation and experiments show that Delegatee in
either mode can be applied to several real-world applica-
tions with minimal overhead, while preserving security
against a strong attacker. Delegatee therefore has poten-
tial to enable delegation for any existing services, even
without support from the service itself. This raises sig-
nificant questions for future work: Can we enable robust
delegation even against services that act to prevent it? Or
can services defend against unwanted delegation? Lastly,
given secure delegation, how would the economy of on-
line services change?
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A Case by case Security analysis
In this section we show that even in specific cases where
the attacker controls machines with compromised SGX
or holds secret SGX keys, our system still preserves the
relevant security properties. Below we outline assump-
tions along with the attacker model, followed by a de-
tailed analysis on how the security properties hold.

In both models, we presume that the attacker has full
control of the network described as the standard Dolev-
Yao network adversary [14]. Additionally, we trust the
service provider since the Owner and the Delegatee are
already using its service. There will be no collusion be-
tween the service provider and the Delegatee. Also, the
external attacker and the Delegatee as an attacker are two
separate entities and when one is present the other is not,
thus collusion between them is not possible as well. We
intrinsically trust Intel, as the manufacturer of processors
and SGX creator on top of which the secure enclaves are
running. We trust the secure enclaves to execute code
under properties of its architecture.

Our system is designed to provide the following main
security properties:
(a) First and foremost, the Owner’s access credentials
remain confidential.
(b) The use of the delegated credentials is defined by the
access control policy which will not be violated.
(c) Use of the credentials should only be granted to the
intended Delegatee, as authorized by the Owner.

The security analysis is structured by different case
scenarios (further referred as Case 1-4) that might occur
as an intersection of both the P2P and Centrally Brokered
system of DELEGATEE with an external or Delegatee as
an attacker. Furthermore, the cases are divided with re-
spect to each of the security guarantees (Subcases a-c).

The attacker can re-route the network traffic, delay or
modify the messages, but due to the use of an authenti-
cated and confidential channel the attacker cannot gain
any advantage, yet only cause a DoS attack. These at-
tacks are out of scope in this paper.



1) External Attacker in the P2P system

• We assume that the attacker has access to an arbitrary
number of SGX-enabled systems and can compromise a
set of SGX enclaves (i.e., can extract all SGX keys)2.
• We assume that the attacker cannot compromise the
system of the Owner.
• We assume that the attacker cannot compromise the
systems of the Delegatees. However, the attacker can
have the SGX keys of the Delegatees’ machines.

Case 1-(a): In order to obtain the Owner’s credentials
the external attacker can do the following. She can
try to steal the credential from the Owner at the time
of input into the P2P system, however, the attacker
is not present on the Owner’s software stack, and the
connection to the enclave is secured end-to-end. Thus
the credentials cannot be stolen. Additionally, she can
try to use one of her machines that have compromised
SGX in order to trick the Owner into delivering the
credentials. However, the Owner and the Delegatee
perform an initial agreement over an authenticated and
confidential channel (e.g. messenger, a cup of coffee,
etc.). They use the channel to exchange a symmetric
key (or a certificate; depending on the implementation3,
as discussed in Section 3.2) that is used for subsequent
authentication when the credentials are delegated. Since
the external attacker cannot compromise the system (full
software stack) of both the Owner and the Delegatee,
the initial exchange of the shared secret and further au-
thentication of the enclave is secure. Thus, the attacker’s
ability to own a set of machines with compromised
SGXs yields no advantage and all re-routed requests
to some machines other than the Delegatee’s will fail
upon authentication. The attacker’s knowledge of the
Delegatee’s SGX keys is useless due to the inability to
be present on the Delegatee’s software stack. Thus, the
attacker cannot decrypt the runtime memory where the
credentials reside after they are delegated to the enclave
since she cannot access that part of the system.
Case 1-(b): The external attacker wants to violate the
access control policy defined by the credential Owner to
extend the rights and use the credentials in an unwanted
way, causing harm to the Owner. Due to the fact that the
attacker cannot compromise the full software stack of
the Owner, she cannot modify or influence the process of
defining the policy. After the policy has been defined, it
is delivered to the enclave of the Delegatee and remains
confidential. Even though the attacker possesses the
SGX keys of the Delegatee’s system, she has no access
to the software stack of the Delegatee, thus modifying

2Although attacks that extract SGX keys have not been demon-
strated, we still consider them in this model.

3The method does not influence the security analysis and in this
case we have chosen the pre-shared key mode.

the policy is not possible. Furthermore, as explained, the
attacker cannot impersonate the Delegatee by using one
of his compromised SGX machines, thereby she cannot
gain access to the service even under the defined access
control policy, nor perform a violation of it.
Case 1-(c): In order to achieve that an unauthorized user
can access some service using the Owner’s credentials
the attacker might try to steal the exchanged secret key
used for authentication. However, if we presume that the
attacker does not have the control over the full software
stack of the Delegatee and the Owner, she cannot acquire
the shared secret that they agreed upon. Without it, the
attacker is not able to authenticate to the Owner after
the enclave starts even with the machines that have the
compromised SGX. Thus, only the authorized Delegatee
will be able to use the credentials.

2) Delegatee Attacker in the P2P system

• We assume that an attacker has access to an arbitrary
number of SGX-enabled systems and cannot compro-
mise a set of SGX enclaves.
• We assume that the attacker cannot compromise the
system of the Owner.
• We assume that the attacker controls the system of the
Delegatee. However, the attacker cannot compromise
the enclaves running on the Delegatee’s machine nor has
access to the SGX keys of that machine.

Case 2-(a): In this case the delegatee/attacker aims
to obtain the Owner’s credentials. The Delegatee can
use any of the machine available to her to initiate
the credential delegation according to the P2P system
model. However, the attacker cannot compromise the
SGX nor does it have the underlying SGX keys of
those machines and is, therefore, unable to extract the
delivered credentials that remain in the runtime memory
of the enclave. Additionally, the attacker does not have
access to the Owner’s system which prevents her from
sniffing the credentials on input into the enclave. Taking
into consideration all given abilities of the attacker, the
attacker cannot reveal the confidential credentials if we
presume safe delivery of them to the enclave (Owner
performs attestation of the enclave after which Delegatee
authenticates and secure communication is established
from the Owner directly to the enclave, delivering the
credentials subsequently...).
Case 2-(b): The Delegatee aims to violate the access
control policy set by the Owner in order to use the
delegated credentials in ways not defined by the policy.
The security reasoning for this case closely follows
the above Case 2-(a). Since the adversary cannot
compromise the SGX in the machine she uses for
delegation, she cannot access the runtime memory of
the enclave and perform modifications to the access



control policy. Thus, if we presume that the policies
are defined correctly, the Delegatee cannot violate them
during enclave execution. Additionally, the P2P system
model is operational only on a single run, indicating
that when credential delegation is executed, the enclave
does not store or seal any data to disk. This prevents
the adversary from performing a rollback attack [32].
Enclave monitors the usage of delegated credentials and
records all activities. If the execution could be stopped
and continued at a later time, the attacker could offer
an older seal to the enclave thereby evading the limits
defined in the policy. We prevent these attacks with a
simple constraint that all data is lost after the enclave is
stopped and the whole system has to be re-initiated to
allow further use of delegated credentials.
Case 2-(c): Here we consider that Delegatee is the
attacker. She is therefore already authorized to use the
Owner’s credentials. This property can be violated only
if the Delegatee forwards the shared secret created with
the Owner to another user. This action is out of scope.

3) External Attacker in the Centrally Brokered system
• We assume that an attacker has access to an arbitrary
number of SGX-enabled systems and can compromise a
set of SGX enclaves.
• We assume that the attacker cannot compromise the
system of the Owner.
• We assume that the attacker cannot compromise the
systems of the Delegatees4.
• 1st possibility: Attacker can compromise the full soft-
ware stack of the Centrally Brokered system. However,
we assume that he doesn’t have access to the SGX keys
and cannot compromise the system enclaves.
• 2nd possibility: Attacker cannot compromise the full
software stack of the Centrally Brokered system. Thus,
he cannot compromise the enclaves on the servers, but
he can have access to the SGX keys of the server.
Case 3-(a): In order to obtain the Owner’s credentials,
the attacker has the following choices. She can try to
forward all requests addressed to the central system into
her own set of machines where the SGX is compromised.
Here we have two possibilities. Firstly, the attacker
has the ability to compromise the full software stack of
the central system but not the SGX enclaves running
there. In this way, all requests can be re-routed with
ease. However, we use an end-to-end secure connection
from the users to the enclaves and the attacker cannot
modify the communication. Additionally, users can
always attest and authenticate the enclave, verifying its
origin5. This prevents the attacker from impersonating

4Delegatees do not use SGX in the Centrally Brokered system, thus
the difference from the external attacker model from the P2P system

5The Centrally Brokered system has a public certificate signed by a

the server and acquiring confidential credentials into
machines with compromised SGX. Secondly, if the
attacker cannot compromise the full software stack
and the running enclaves, she might possess the SGX
keys of the central system. she can try to use these
keys in machines with compromised SGX to trick users
into believing that they communicate with the correct
system. Nevertheless, the authentication step will fail
even though the attestation will succeed due to the
inability of the attacker to own the secret certificate key
(note that without access to the software stack of the
central system the attacker has no way of obtaining the
full certificate information nor to extract the enclave seal
which could be later on decrypted with the SGX keys
she owns). Thus, impersonating the central system is not
possible by the external attacker. The attacker can try to
steal the credentials from the Owner at the time of input
to the system but since she does not control the Owner’s
software stack, credentials remain confidential.
Case 3-(b): In this case the attacker aims to violate the
access control policy defined by the credential Owner.
The attacker may try to modify the credentials when the
Owner is defining them in the system. However, the
attacker has no control over the Owner’s system and the
connection to the central system is secured (see Case
3-(a)). Thus, this attack vector is not successful. The
attacker might try to circumvent the policy enforcement
in the enclave during execution of some service with
the delegated credentials or change the policies inside
the central system. In respect to the two possibilities
that the attacker has, the policy cannot be violated since
the attacker cannot change the defined policy (if he
has access to the software stack he does not have the
SGX keys and cannot compromise the running enclaves,
thus preventing any modification of the policy, while
if the attacker has the SGX keys of the central system,
she is not present on the system and cannot extract the
encrypted sealed nor the runtime memory where the
policy resides) and cannot interrupt and compromise
the policy enforcement (the attacker cannot compromise
running enclaves when the system is compromised
and when the system is not compromised she has no
access to the execution environment, thus preventing
any circumvention of the defined policy).
Case 3-(c): In order to use the Owner’s credential with-
out implicit authorization the attacker has the following
possibilities. She might try to steal the login information
of the authorized Delegatee in order to access the central
system or obtain the login information of the Owner
to modify the details of the credential delegation and
authorize somebody else (i.e. herself). However, since

certificate authority, such as Verisign. Delivering the certificate private
key to the enclave is presumed to be secure and works on the trust-on-
first-use principle when the central system is bootstrapped.



the system uses end-to-end secure connection between
all users and enclaves residing on the central system,
and since the attacker does not control the software
stack of either the Owner nor the Delegatee, she cannot
sniff the network traffic or log the user input upon login
into the system. Without knowing the login information
(i.e. username and the password) of the Owner and the
Delegatee, the attacker has no other means of accessing
the central system and using the delegated credentials.
Additionally, she can try to modify the information
about the authorized Delegatees directly on the central
system, however, analysis shown in Case 3-(a) implies
that the attacker cannot perform any modifications.

4) Delegatee Attacker in the Centrally Brokered system
• We assume that an attacker has access to an arbitrary
number of SGX-enabled systems and can compromise a
set of SGX enclaves.
• We assume that the attacker cannot compromise the
system of the Owner.
• We assume that the attacker controls the system of the
Delegatee. Furthermore, the Delegatee’s SGX system is
not involved in the protocol and thus out of scope.
• 1st/2nd possibility: Same as Case 3 (external attacker
in the Centrally Brokered system).

Case 4-(a): In this case the Delegatee’s role is the same
as in the case of an external attacker and the Centrally
Brokered system. No other attack capabilities exist (ex-
cept the control over the full software stack at the Delega-
tee, which yields no advantage) that extend the external
attacker and thus the same security analysis is applied as
in the Case 3-(a), the Owner’s credentials remain confi-
dential. SGX at the Delegatee’s side is not relevant when
the Centrally Brokered system is deployed.
Case 4-(b): Similarly as above, the Delegatee’s role is

the same as of the external attacker with the difference
that the Delegatee own login information to connect to
the central system. However, this does not enable any
new attack vectors that could be used to violate the ac-
cess control policy. Even the external attacker could reg-
ister to the central system, thereby acquiring authorized
login information. Following the analysis of Case 3-(b),
it is straightforward to conclude that the policy referring
to the use of Owner’s credentials cannot be violated.
Case 4-(c): Here we consider that the Delegatee is the
attacker. She is therefore already authorized to use the
Owner’s credentials. As in Case 2-(c), this property can
be violated only if the Delegatee forwards her login in-
formation to another user. This action is out of scope in
this analysis.
B DELEGATEE Prototype Demo

In this section we show prototype screenshots when a
Delegatee, Alice, is buying something or logging in to
a website using DELEGATEE. First, Bob enters his cre-
dentials into DELEGATEE and delegates them to Alice.
Alice then logs into the browser extension (Figure 6a,
Figure 6b) and the new button appears next to the PayPal
checkout button (Figure 6c), the credit card/e-banking
checkout button (Figure 6d) or the login button (Fig-
ure 6e). After clicking the DELEGATEE button, Al-
ice is presented with a list of delegated credentials to
choose from (Figure 6f). Upon selecting some creden-
tials, the enclave takes over and completes the transac-
tion and Alice is redirected to the confirmation page. If
a CAPTCHA has to be solved to continue with the trans-
action, the user is asked to solve (Figure 6g).

Receiving and sending emails using delegated creden-
tials can be done with our mail client for DELEGATEE.
It allows to view the inbox and read single mails of the
delegated mail account (Figure 7a). Sending emails is
also supported (Figure 7b).



(a) Browser extension: Login (b) Browser extension: Welcome

(c) Extra button rendered next to
the PayPal checkout button

(d) Extra button rendered next to
the credit card checkout button

(e) Extra button rendered next to
the login button

(f) Delegated credentials selection. (g) The Delegatee is asked to solve CAPTCHA

Figure 6: Demo of a payment/login process using DELEGATEE. The buttons and the dialog get injected
to the website by the browser extension.

(a) Receiving mail (b) Sending mail

Figure 7: DELEGATEE mail client example. All links and other details have been anonymized for review.


