
Adaptively Secure Garbling with Near Optimal Online Complexity∗

Sanjam Garg
University of California, Berkeley

sanjamg@berkeley.com

Akshayaram Srinivasan
University of California, Berkeley

akshayaram@berkeley.edu

Abstract

We construct an adaptively secure garbling scheme with an online communication complexity
of n+m+ poly(log |C|, λ) where C : {0, 1}n → {0, 1}m is the circuit being garbled, and λ is the
security parameter. The security of our scheme can be based on (polynomial hardness of) the
Computational Diffie-Hellman (CDH) assumption, or the Factoring assumption or the Learning
with Errors assumption. This is nearly the best achievable in the standard model (i.e., without
random oracles) as the online communication complexity must be larger than both n and m.
The online computational complexity of our scheme is O(n + m) + poly(log |C|, λ). Previously
known standard model adaptively secure garbling schemes had asymptotically worse online cost
or relied on exponentially hard computational assumptions.

1 Introduction

Introduced in the seminal work of Yao [Yao86], garbling techniques are one of the main cornerstones
of cryptography. Garbling schemes have found numerous applications in multiparty computation
[Yao86, AF90, BMR90], parallel cryptography [AIK04, AIK05], one-time programs [GKR08], ver-
ifiable computation [GGP10, AIK10], functional encryption [SS10, GVW12, GKP+13], efficient
zero-knowledge proofs [JKO13, FNO15] and program obfuscation [App14, LV16].

Garbling a circuit C and an input x yields a garbled circuit C̃ and a garbled input x̃ respectively.
Next, using C̃ and x̃ anyone can efficiently compute C(x) but security requires that C̃ and x̃ jointly
reveal nothing about C or x beyond C(x). Typical garbling schemes are only proved to satisfy the
weaker notion of selective security where both the circuit C and the input x are chosen a priori.
However, in certain applications, a stronger notion of adaptive security wherein the input x can be
chosen adaptively based on the garbled circuit C̃ is needed [BHR12a]. We refer to the size of C̃ as
the offline communication complexity and the size of x̃ as the online communication complexity.

Constructing such adaptively secure garbling schemes with better online communication cost has
been an active area of investigation [BHR12a, BGG+14, HJO+16, JW16, AS16, JKK+17, JSW17].
Despite tremendous effort, all standard model constructions of adaptively secure garbling which
are based on polynomially hard assumptions have online communication cost that grows with the
width of the circuit.

∗Research supported in part from 2017 AFOSR YIP Award, DARPA/ARL SAFEWARE Award W911NF15C0210,
AFOSR Award FA9550-15-1-0274, and research grants by the Okawa Foundation, Visa Inc., and Center for Long-
Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author and do not reflect the official
policy or position of the funding agencies.

1

1.1 Our Contributions

We obtain a new adaptive garbling scheme with online communication complexity of n + m +
poly(log |C|, λ) where n is the input length of the circuit C, m is its output length and λ is the
security parameter. This almost matches the lower bounds of n and m due to Applebaum et
al. [AIKW13].1 Moreover, this complexity is very close to the best known constructions for the
selective security setting [AIKW13]. More formally, our main result is:

Theorem 1.1 Assuming either the Computational Diffie-Hellman assumption or the Factoring
assumption or the Learning with Errors assumption, there exists a construction of adaptive garbling
scheme with online communication complexity of n+m+ poly(log |C|, λ) with simulation security.

All prior constructions of adaptively secure garbling schemes in the standard model had online
communication complexity that grew with either the circuit depth/width. Moreover, several of
these schemes suffered from an exponential loss in security reduction. We summarize the known
constructions and our new results in Table 1.

Assumption Online Communication Security Loss Model
Complexity

[BHR12a] Const. 1 OWF nλ poly(|C|, λ) RO
[BHR12a] Const. 2 OWF |C|+ nλ poly(|C|, λ) Std.

[BGG+14] Const.1 LWE (n+m)poly(λ, d) 2O(d) Std.

[BGG+14] Const.2 LWE + MDDH O(n+m) + poly(λ, d) 2O(d) Std.
[HJO+16] Const. 1 OWF (n+m+ w)poly(λ) poly(|C|, λ) Std.

[HJO+16] Const. 2 OWF (n+m+ d)poly(λ) 2O(d) Std.

[JW16] OWF (n+m+ d)poly(λ) 2O(d) Std.

[JKK+17] OWF (n+m+ d)poly(λ) 2O(d) Std.
This work CDH/Factoring/LWE n+m+ poly(λ, log |C|) poly(|C|, λ) Std.

Table 1: Constructions of known and new adaptive garbling schemes (with simulation security).

Additionally, we note that as a special case, our result implies selectively secure garbling scheme
with online cost n + poly(λ) from the same assumptions. Previously, this result was not known
under CDH or Factoring. Specifically, constructions were known from DDH or RSA [AIKW13].

1.2 Applications

We now mention some of the applications of our result. These applications were already noted in
the work of Hemenway et al. [HJO+16] and we improve their efficiency.

One-time Program and Verifiable Computation. Plugging our result in the one-time pro-
gram construction of [GKR08], we get a construction of one-time program where the number of
hardware tokens is O(n+m+ poly(λ, log |C|)). Similarly, the running time of verification protocol
in the work of [GGP10] can be improved to match our online complexity.

1In this work, we consider the standard simulation based security notion. Indeed, if one considers the weaker
notion of indistinguishablity based security this lower bound can be bypassed as shown in [AS16, JSW17].

2

Compact Functional Encryption. Starting with a single-key, selective functional encryption
scheme with weakly compact ciphertexts and using the transformations of [ABSV15, AS16, GS16,
LM16] along with our construction of adaptively secure garbled circuits, we obtain a multi-key
secure, adaptive functional encryption scheme whose ciphertext size grows only with the output
size of the functions.

2 Our Techniques

In this section, we outline the main techniques and tools used in the construction of adaptively
secure garbled circuits.

Adaptive Security Game. Before explaining our construction, let us first explain the adaptive
security game in a bit more detail. In this game, the adversary provides the challenger with a
circuit C and the challenger responds with a garbled circuit C̃. The adversary later provides with
an input x (that could potentially depend on C̃) and the challenger responds with garbled input x̃.
In the real world, both the garbled circuit and the garbled input are generated honestly whereas
in the ideal world, the garbled circuit C̃ is generated by a simulator Sim1 that is given the size
of C as input and the garbled input x̃ is generated by another simulator Sim2 that is given C(x)
as input. The goal of the adversary is to distinguish between the real world and the ideal world
distributions.

The reason why the proof of Yao’s construction breaks down in the adaptive setting is because
the distribution of the garbled circuit C̃ in the intermediate hybrids depends on the value of the
(adversarily chosen) input x. Naturally, Yao’s approach is not feasible when the garbled circuit
needs to be sent before the adversary gives its input x.

Prior Approaches. To solve the issue with Yao’s construction, Bellare et al. [BHR12b] en-
crypted the garbled circuit by an (fully) equivocal encryption scheme and sent the ciphertext in
the offline phase. Later, in the online phase, the key for decrypting this ciphertext was provided.
Since an equivocal ciphertext can be opened to any value, the simulator in each intermediate hybrid
opens the ciphertext sent in the offline phase to an appropriate simulated value (that depends on
C and x). However, the key size for an equivocal encryption scheme in the standard model has
to grow with the size of the message [Nie02] and in this case it grows with the size of the circuit.
Thus, the online complexity of this approach has to grow with the size of the circuit.

The work of Hemenway, Jafargholi, Ostrovsky, Scafuro and Wichs [HJO+16] improved the
online complexity by replacing the fully equivocal encryption scheme with a somewhere equivocal
encryption. Roughly speaking, a somewhere equivocal encryption allows to generate a ciphertext
encrypting a vector of messages with “holes” in some positions. Later, these “holes” could be
filled with arbitrary message values by deriving a suitable decryption key. Intuitively, in each
intermediate hybrid, “holes” are created in the garbled circuit in those positions that depend on
the input and the simulator fills these “holes” in the online phase based on the input x. The crucial
aspect of a somewhere equivocal encryption is that its key size is only proportional to number of
holes which could be much smaller than the total length of the message vector. Thus to minimize
the online complexity, it is sufficient to come up with a sequence of hybrids where the number of
holes in each intermediate hybrid is minimized. Hemenway et al. provide two sequences of hybrid
arguments: the first sequence where the number of “holes” in each hybrid is at most the width

3

of the circuit and the second sequence of hybrids where the number of “holes” in each hybrid is
at most the depth (with 2O(depth) hybrids). However, even in this approach the online complexity
could be as large as the circuit size as the circuit width or depth could be as large as the circuit
itself.

Our approach. We follow the high level idea of Hemenway et al. [HJO+16] in encrypting the
garbled circuit using a somewhere equivocal encryption but employ a crucial trick to minimize the
number of “holes” in each intermediate hybrid. At a very high level, we use the recent construc-
tion of updatable laconic oblivious transfer [CDG+17, DG17, DGHM18, BLSV18] (which can be
constructed based either on CDH/Factoring/LWE) to “linearize” the garbled circuit. Informally, a
garbled circuit is “linearized” if the simulation of a garbled gate g depends only on simulating one
additional gate. We note that all the prior approaches [HJO+16, JW16] resulted in “non-linearized”
garbled circuits. In particular, in all the prior works, simulating the garbled gate g depended on
simulating all gates that provide inputs to g (which are at least two in number). With this “lin-
earization” in place, we design a sequence of hybrids (based on the pebbling strategy of [Ben89])
where the number of “holes” in each intermediate hybrid is O(log(|C|)). This allows us to achieve
nearly optimal online complexity. We elaborate on our approach in the next subsection.

2.1 Our Approach: “Linearizing” the Garbled Circuit

We now explain our construction of “linearized” garbled circuits.

Step Circuits. To understand our construction, it is best to view the circuit C as a sequence
of step circuits. In more details, we will consider C as a sequence of step circuits along with a
database/memory D. For simplicity, we consider a circuit with a single output bit. The i-th step
circuit implements the i-th gate (with some topological ordering of the gates) in the circuit C. The
database D is initially loaded with the input x and contents of the database represent the state of
the computation. That is, the snapshot of the database before the evaluation of the i-th step circuit
contains the output of every gate g < i in the execution of C on input x. The i-th step circuit
reads contents from two pre-determined locations in the database and writes a bit to location i.
The bits that are read correspond to the values in the input wires for the i-th gate. The output of
the circuit is easily derived from the contents of the database at the end of the computation. To
garble the circuit C, we must garble each of the step circuits and the database D.

Garbling Step Circuits. Our approach of garbling the step circuits involves a primitive called
as updatable laconic oblivious transfer [CDG+17]. To make the exposition easy, we first consider
a simplistic setting where the database D is not protected i.e., it is revealed in the clear to the
adversary. We will later explain how this restriction can be removed.

A laconic oblivious transfer is a protocol between two parties: sender and a receiver. The receiver
holds a large database D ∈ {0, 1}N and sends a short digest d (with length λ) of the database to
the sender. The sender obtains as input a location L ∈ [N] and two messages m0,m1. The sender
computes a read-ciphertext c using his private inputs and the received digest d by running in time
poly(logN, |m0|, |m1|, λ) and sends c to the receiver. Note that the time required to compute the
read-ciphertext c grows logarithmically with the size of the database. The receiver recovers the
message mD[L] from the ciphertext c and the security requirement is that the message m1−D[L] is

4

computationally hidden. A laconic oblivious transfer is said to be updatable if it additionally allows
updates on the database. In particular, the sender on input a location L ∈ [N], a bit b, digest d
and a sequence of λ messages {mj,0,mj,1}j∈[λ] creates a write-ciphertext cw (by running in time
that grows logarithmically with the size of the database). The receiver on input cw can recover
{mj,d∗j

}j∈[λ] where d∗ is the digest of the updated database with bit b written in location L. As in the

previous case, the security requires that the messages {mj,1−d∗j }j∈[λ] are computationally hidden.

An updatable laconic oblivious transfer was first constructed in [CDG+17] from the Decisional
Diffie-Hellman (DDH) problem and the assumptions were later improved to CDH/Factoring in
[DG17] and to LWE in [DGHM18, BLSV18].

Let us now give details on how to use updatable laconic OT to garble the circuit C. At a very

high level, the garbled circuit consists of a sequence of garbled augmented step circuits S̃C
′
1, . . . , S̃C

′
N

and the garbled input consists of the labels for executing the first garbled step circuit S̃C
′
1. These

garbled step circuits are constructed in special way such that the output of the garbled step circuit

S̃C
′
i can be used to derive the labels for executing the next garbled step circuit S̃C

′
i+1. Thus, starting

from S̃C
′
1, we can evaluate every garbled step circuit in the sequence. Let us now give details on

the internals of the augmented step circuits.
The i-th augmented step circuit SC′i takes as input the digest d of the snapshot of database D

before the evaluation of i-th gate and two bits αi and βi. The bits αi and βi correspond to the
inputs to gate i in the evaluation of C. The augmented step circuit SC′i additionally has the set of

both labels for each input wire of S̃C
′
i+1 hardwired in its description. We denote these labels by

{labdj,0, labdj,1}j∈[λ] that correspond to the digest and {labα0 , labα1 } and {labβ0 , lab
β
1} that correspond

to the input bits of gate i+ 1. SC′i first computes the output of the i-th gate (denoted by γ) using
αi and βi. This bit must be written to the database and the updated hash value must be fed to
the next circuit SC′i+1. Towards this goal, SC′i computes a write-ciphertext cw using the digest
d, location i, bit γ and {labdj,0, labdj,1}j∈[λ]. This write-ciphertext will be used to derive the labels
corresponding to the updated value of the digest which is fed to SC′i+1. Recall that SC′i+1 must also
take in the input values to the (i+ 1)th gate of the circuit C. For this purpose, SC′i also computes
two read ciphertexts cα, cβ using the value of the (updated) digest d∗ and labels {labα0 , labα1 } and

{labβ0 , lab
β
1} respectively. These read ciphertexts will be used to derive the labels corresponding to

the values of the input wires to the gate i + 1. It finally outputs cw, cα, cβ. An evaluator for this

garbled circuit can recover the set of labels for evaluating S̃C
′
i+1 from these ciphertexts using the

decryption functionality of updatable laconic OT.

Notice that in order to simulate the garbled step-circuit S̃C
′
i, it is sufficient to simulate the

garbled step-circuit S̃C
′
i−1. This is because the labels for evaluating S̃Ci are only hardwired in

the step-circuit SC′i−1 and are not available anywhere else. Once the garbled step circuit S̃C
′
i−1

is simulated, we can use the security of updatable laconic oblivious transfer and (plain) garbled

circuits to simulate S̃C
′
i. This helps us to achieve the right “linearized” structure for simulating the

garbled step circuits.

Protecting the Database. In the above exposition, the database D is revealed in the clear
which is clearly insecure as database holds the values of all the intermediate wires in the evaluation
of the circuit. To protect the database, we mask the contents of the database with a random string.
To be more precise, each step circuit additionally has the masking bits for the two input wires

5

and the masking bit for the output wire hardwired. When the step circuit is fed with the masked
values of the input wires, it unmasks those values (using the hardwired masking bits) and computes
the output of the gate. Finally, it uses the hardwired masking bit for the output wire to mask the
output and uses this value to compute the updated digest. This trick of protecting the intermediate
computation values using random masks is closely related to the “point and permute” construction
of garbled circuits [BMR90, MNPS04].

Pebbling Game. As in the work of [HJO+16], we encrypt these garbled step circuits {S̃C
′
i} using

a somewhere equivocal encryption scheme and send the ciphertext in the offline phase. Later in the
online phase, we reveal the key for decrypting this ciphertext along with the labels for evaluating

S̃C
′
1. The task that remains is to come up with a sequence of hybrids such that the number of

“holes” in each intermediate hybrid is minimized. Recall that a “hole” appears in a position that
depends on the adaptively chosen input. To design a sequence of hybrids, we consider the following
pebbling game.2

Consider a number line 1, 2, . . . , N . We are given some pebbles and we can place a pebble on
the number line according the following rules:

• We can always place or remove a pebble from position 1.

• We can place or remove a pebble from position i if and only if there exists a pebble in position
i− 1.

The goal is to be place at position N by minimizing the number of pebbles (denoted as the
pebbling complexity) present in the graph at any point of time. A trivial strategy would be to
consecutively place pebbles starting from position 1 upto N . The maximum number of pebbles
used is N and the hope is to have a strategy that uses far less pebbles.

Intuitively, a pebble in the above game corresponds to a “hole” in the somewhere equivocal
ciphertext. Alternatively, we can view the process of placing a pebble in position i as simulating the
i-th garbled circuit.3 The above two rules naturally correspond to rules for simulating a garbled step
circuit i.e., the first garbled step circuit can always be simulated and we can simulate the i-th garbled
step circuit if the (i− 1)-th garbled step circuit is simulated. Bennett [Ben89] showed an inductive
pebbling strategy for the above game using O(logN) pebbles. This readily gives a sequence of
hybrids to prove adaptive security where the number of “holes” in each intermediate hybrid is
logarithmic in the size of the circuit. This helps us achieve nearly optimal online complexity.

Why is “linearization” important? The work of Hemenway et al. consider a pebbling game
directly on the topology of the circuit rather than on a line graph. In more details, they interpreted
the circuit C as a DAG with every gate in C being a node in the graph, the input gates represented
as sources in the graph (nodes with in-degree 0) and output gate represented as sink (node with
out-degree 0). The rules of the pebbling game are 4:

2The pebble game we describe is a simplification of the actual pebbling game we design later. This simplification
is sufficient to get the main intuition.

3These two views are equivalent since simulation of a garbled step circuit depends on the output of that step
circuit which in turn depends on the adversarily chosen input x. Thus, if a garbled step circuit is simulated we must
have a “hole” in the corresponding position of the somewhere equivocal encryption.

4For the sake of exposition, we give a simplified version of the pebbling game considered in the work of [HJO+16].
We refer the reader to their work for the full description.

6

1. A pebble can always be placed or removed from a source.

2. A pebble can be placed or removed from a node if all its predecessors have pebbles.

The goal is to place a pebble at the sink node by minimizing the number of pebbles placed in
the graph at any point of time. Note that unlike our game, in order to place a pebble at a node
it is required that pebbles are present on all the predecessors which are at least two in number.
This makes the task of using logarithmic many pebbles extremely difficult and there are strong
lower bounds [PTC76] concerning the pebbling complexity of the above game. In particular, the
work of [PTC76] shows that existence of certain families of DAGs on n nodes (with in-degree 2
and out-degree more than 1) such that the pebbling complexity of those graphs is Ω(n

logn). This
naturally corresponds to similar lower bounds on the pebbling complexity of circuits with fan-in 2
and fan-out greater than 1. Thus, to get around these lower bounds, the use of the “linearized”
garbled circuit seems necessary.

Why Garbled RAM fails? To garble the step circuits and the database D, we could hope
to use ideas from the garbled RAM literature [LO13, GHL+14, GLOS15, GLO15].5 This would
have given us a garbling scheme based on just one-way functions instead of requiring public-key
assumptions. However, all known approaches of constructing garbled RAM introduce additional
dependencies in garbling step circuits. This implies that in order to garble a particular step circuit,
at least two other step circuits must be garbled. Thus, the graph to be pebbled is no longer a
straight line and the known lower bounds apply.

3 Preliminaries

Let λ denote the security parameter. A function µ(·) : N → R+ is said to be negligible if for any
polynomial poly(·) there exists λ0 ∈ N such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . For a

probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the content
of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite set S,
we denote x ← S as the process of sampling x uniformly from the set S. We will use PPT to
denote Probabilistic Polynomial Time. We denote [a] to be the set {1, . . . , a} and [a, b] to be the
set {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. For a binary string x ∈ {0, 1}n, we will denote the ith

bit of x by xi. We assume without loss of generality that the length of the random tape used by
all cryptographic algorithms is λ. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao82] with selective security (see
Lindell and Pinkas [LP09] and Bellare et al. [BHR12b] for a detailed proof and further discussion).
A garbling scheme for circuits is a tuple of PPT algorithms (GarbleCkt,EvalCkt). Very roughly,
GarbleCkt is the circuit garbling procedure and EvalCkt the corresponding evaluation procedure.
We use a formulation where input labels for a garbled circuit are provided as input to the garbling

5We in fact do not require the full power of garbled RAM as the locations that are accessed by each step circuit
are fixed a priori.

7

procedure rather than generated as output. (This simplifies the presentation of our construction.)
More formally:

• C̃ ← GarbleCkt
(
1λ, C, {labw,b}w∈[n],b∈{0,1}

)
: GarbleCkt takes as input a security parameter λ,

a circuit C, and input labels labw,b where w ∈ [n] ([n] is the set of input wires to the circuit

C) and b ∈ {0, 1}. This procedure outputs a garbled circuit C̃. We assume that for each w, b,
labw,b is chosen uniformly from {0, 1}λ.

• y ← EvalCkt
(
C̃, {labw,xw}w∈[n]

)
: Given a garbled circuit C̃ and a sequence of input labels

{labw,xw}w∈[n] (referred to as the garbled input), EvalCkt outputs a string y.

Correctness. For correctness, we require that for any circuit C, input x ∈ {0, 1}|[n]| and input
labels {labw,b}w∈[n],b∈{0,1} we have that:

Pr
[
C(x) = EvalCkt

(
C̃, {labw,xw}w∈[n]

)]
= 1

where C̃← GarbleCkt
(
1λ, C, {labw,b}w∈[n],b∈{0,1}

)
.

Selective Security. For security, we require that there exists a PPT simulator SimCkt such that
for any circuit C and input x ∈ {0, 1}|[n]|, we have that{

C̃, {labw,xw}w∈[n]

}
c
≈
{
SimCkt

(
1λ, 1|C|, C(x), {labw,xw}w∈[n]

)
, {labw,xw}w∈[n]

}
where C̃ ← GarbleCkt

(
1λ, C, {labw,b}w∈[n],b∈{0,1}

)
and for each w ∈ [n] and b ∈ {0, 1} we have

labw,b ← {0, 1}λ. Here
c
≈ denotes that the two distributions are computationally indistinguishable.

Theorem 3.1 ([Yao86, LP09]) Assuming the existence of one-way functions, there exists a con-
struction of garbling scheme for circuits.

3.2 Updatable Laconic Oblivious Transfer

In this subsection, we recall the definition of updatable laconic oblivious transfer from [CDG+17] .

Definition 3.2 ([CDG+17]) An updatable laconic oblivious transfer consists of the following al-
gorithms:

• crs← crsGen(1λ) : It takes as input the security parameter 1λ (encoded in unary) and outputs
a common reference string crs.

• (d, D̂) ← Hash(crs, D) : It takes as input the common reference string crs and database D ∈
{0, 1}∗ as input and outputs a digest d and a state D̂. We assume that the state D̂ also
includes the database D.

• e ← Send(crs, d, L,m0,m1) : It takes as input the common reference string crs, a digest d, a
location L ∈ N and two messages m0,m1 ∈ {0, 1}p(λ) and outputs a ciphertext e.

8

• m ← ReceiveD̂(crs, e, L) : This is a RAM algorithm with random read access to D̂. It takes
as input a common reference string crs, a ciphertext e, and a database location L ∈ N and
outputs a message m.

• ew ← SendWrite(crs, d, L, b, {mj,0,mj,1}|d|j=1) : It takes as input the common reference string
crs, a digest d, a location L ∈ N, a bit b ∈ {0, 1} to be written, and |d| pairs of messages

{mj,0,mj,1}|d|j=1, where each mj,c is of length p(λ) and outputs a ciphertext ew.

• {mj}|d|j=1 ← ReceiveWriteD̂(crs, L, b, ew) : This is a RAM algorithm with random read/write

access to D̂. It takes as input the common reference string crs, a location L, a bit b ∈ {0, 1}
and a ciphertext ew. It updates the state D̂ (such that D[L] = b) and outputs messages

{mj}|d|j=1.

We require an updatable laconic oblivious transfer to satisfy the following properties.

Correctness: We require that for any database D of size at most M = poly(λ), any memory
location L ∈ [M], any pair of messages (m0,m1) ∈ {0, 1}p(λ) where p(·) is a polynomial that

Pr

m = mD[L]

crs ← crsGen(1λ)

(d, D̂) ← Hash(crs, D)
e ← Send(crs, d, L,m0,m1)

m ← ReceiveD̂(crs, e, L)

 = 1,

Correctness of Writes: Let database D be of size at most M = poly(λ) and let L ∈ [M] be any
memory location. Let D∗ be a database that is identical to D except that D∗[L] = b. For any
sequence of messages {mj,0,mj,1}j∈[λ] ∈ {0, 1}p(λ) we require that

Pr


m′j = mj,d∗j

∀j ∈ [|d|]

crs ← crsGen(1λ)

(d, D̂) ← Hash(crs, D)

(d∗, D̂∗) ← Hash(crs, D∗)

ew ← SendWrite
(
crs, d, L, b, {mj,0,mj,1}|d|j=1

)
{m′j}

|d|
j=1 ← ReceiveWriteD̂(crs, L, b, ew)

 = 1,

Sender Privacy: There exists a PPT simulator Sim`OT such that the for any non-uniform PPT
adversary A = (A1,A2) there exists a negligible function negl(·) s.t.,∣∣Pr[SenPrivExptreal(1λ,A) = 1]− Pr[SenPrivExptideal(1λ,A) = 1]

∣∣ ≤ negl(λ)

where SenPrivExptreal and SenPrivExptideal are described in Figure 1.

Sender Privacy for Writes: There exists a PPT simulator Sim`OTW such that the for any non-
uniform PPT adversary A = (A1,A2) there exists a negligible function negl(·) s.t.,∣∣Pr[WriSenPrivExptreal(1λ,A) = 1]− Pr[WriSenPrivExptideal(1λ,A) = 1]

∣∣ ≤ negl(λ)

where WriSenPrivExptreal and WriSenPrivExptideal are described in Figure 2.

9

SenPrivExptreal[1λ,A]

1. crs← crsGen(1λ).

2. (D,L,m0,m1, st)← A1(crs).

3. (d, D̂)← Hash(crs, D).

4. Output A2(st,Send(crs, d, L,m0,m1)).

SenPrivExptideal[1λ,A]

1. crs← crsGen(1λ).

2. (D,L,m0,m1, st)← A1(crs).

3. (d, D̂)← Hash(crs, D).

4. Output A2(st,Sim`OT(crs, D, L,mD[L])).

Figure 1: Sender Privacy Security Game

WriSenPrivExptreal[1λ,A]

1. crs← crsGen(1λ).

2. (D,L, b, {mj,0,mj,1}j∈[λ], st)←
A1(crs).

3. (d, D̂)← Hash(crs, D).

4. ew ← SendWrite(crs, d, L, b,

{mj,0,mj,1}|d|j=1)

5. Output A2(st, ew).

WriSenPrivExptideal[1λ,A]

1. crs← crsGen(1λ).

2. (D,L, b, {mj,0,mj,1}j∈[λ], st)←
A1(crs).

3. (d, D̂)← Hash(crs, D).

4. (d∗, D̂∗)← Hash(crs, D∗) where D∗ be a database
that is identical to D except that D∗[L] = b.

5. ew ← Sim`OTW(crs, D, L, b,
{mj,d∗j

}j∈[λ])

6. Output A2(st, ew).

Figure 2: Sender Privacy for Writes Security Game

Efficiency: The algorithm Hash runs in time |D|poly(log |D|, λ). The algorithms Send, SendWrite,
Receive, ReceiveWrite run in time poly(log |D|, λ).

Theorem 3.3 ([CDG+17, DG17, BLSV18, DGHM18]) Assuming either the Computational
Diffie-Hellman assumption or the Factoring assumption or the Learning with Errors assumption,
there exists a construction of updatable laconic oblivious transfer.

Remark 3.4 We note that the security requirements given in Definition 3.2 is stronger than the
one in [CDG+17] as we require the crs to be generated before the adversary provides the database D
and the location L. However, the construction in [CDG+17] already satisfies this definition since
in the proof, we can guess the location by incurring a 1/D loss in the security reduction.

3.3 Somewhere Equivocal Encryption

We now recall the definition of Somewhere Equivocal Encryption from the work of [HJO+16].

Definition 3.5 ([HJO+16]) A somewhere equivocal encryption scheme with block-length s, mes-
sage length n (in blocks) and equivocation parameter t (all polynomials in the security parameter)
is a tuple of probabilistic polynomial algorithms Π = (KeyGen,Enc,Dec,SimEnc,SimKey) such that:

10

• key← KeyGen(1λ) : It is a PPT algorithm that takes as input the security parameter (encoded
in unary) and outputs a key key.

• c← Enc(key,m1 . . .mn) : It is a PPT algorithm that takes as input a key key and a vector of
messages m = m1 . . .mn with each mi ∈ {0, 1}s and outputs a ciphertext c.

• m← Dec(key, c) : It is a deterministic algorithm that takes as input a key key and a ciphertext
c and outputs a vector of messages m = m1 . . .mn.

• (st, c)← SimEnc((mi)i/∈I , I) : It is a PPT algorithm that takes as input a set of indices I ⊆ [n]
and a vector of messages (mi)i/∈I and outputs a ciphertext c and a state st.

• key′ ← SimKey(st, (mi)i∈I) : It is a PPT algorithm that takes as input the state information
st and a vector of messages (mi)i∈I and outputs a key key′.

and satisfies the following properties:

Correctness. For every key← KeyGen(1λ), for every m ∈ {0, 1}s×n it holds that:

Dec(key,Enc(key,m)) = m

Simulation with No Holes. We require that the distribution of (c, key) computed via (st, c)←
SimEnc(m, ∅) and key← SimKey(st, ∅) to be identical to key← KeyGen(1λ) and c← Enc(key,m1 . . .mn).
In other words, simulation when there are no holes (i.e., I = ∅) is identical to honest key generation
and encryption.

Security. For any PPT adversary A, there exists a negligible function ν = ν(λ) such that:∣∣Pr[Expsimenc
A,Π (1λ, 0) = 1]− Pr[Expsimenc

A,Π (1λ, 1) = 1]
∣∣ ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, a vector (mi)i 6∈I , and a
challenge j ∈ [n] \ I. Let I ′ = I ∪ {j}.

2. • If b = 0, compute c as follows: (st, c)← SimEnc((mi)i 6∈I , I).

• If b = 1, compute c as follows: (st, c)← SimEnc((mi)i 6∈I′ , I
′).

3. Send c to the adversary A.

4. The adversary A outputs the set of remaining messages (mi)i∈I .

• If b = 0, compute key as follows: key← SimKey(st, (mi)i∈I).

• If b = 1, compute key as follows: key← SimKey(st, (mi)i∈I′)

5. Send key to the adversary.

11

6. A outputs b′ which is the output of the experiment.

Theorem 3.6 ([HJO+16]) Assuming the existence of one-way functions, there exists a some-
where equivocal encryption scheme for any polynomial message-length n, black-length s and equiv-
ocation parameter t, having key size t · s · poly(λ) and ciphertext of size n · s · poly(λ) bits.

3.4 Adaptive Garbled Circuits

We provide the definition of adaptive garbled circuits from [HJO+16].

Definition 3.7 An adaptive garbling scheme for circuits is a tuple of PPT algorithms (AdaGarbleCkt,AdaGarbleInp,AdpEvalCkt)
such that:

• (C̃, st)← AdaGarbleCkt(1λ, C) : It is a PPT algorithm that takes as input the security param-
eter 1λ (encoded in unary) and a circuit C : {0, 1}n → {0, 1}m as input and outputs a garbled
circuit C̃ and state information st.

• x̃ ← AdaGarbleInp(st, x) : It is a PPT algorithm that takes as input the state information st
and an input x ∈ {0, 1}n and outputs the garbled input x̃.

• y = AdpEvalCkt(C̃, x̃) : Given a garbled circuit C̃ and a garbled input x̃, it outputs a value
y ∈ {0, 1}m.

Correctness. For every λ ∈ N, C : {0, 1}n → {0, 1}m and x ∈ {0, 1}n it holds that:

Pr
[
(C̃, st)← AdaGarbleCkt(1λ, C); x̃← AdaGarbleInp(st, x) : C(x) = AdpEvalCkt(C̃, x̃)

]
= 1

Adaptive Security. There exists a PPT simulator Sim = (SimC,SimIn) such that, for any non-
uniform PPT adversary A there exists a negligible function ν such that:∣∣Pr[ExpadaptiveA,GC,Sim(1λ, 0) = 1]− Pr[ExpadaptiveA,GC,Sim(1λ, 1) = 1]

∣∣ ≤ ν(λ)

where the experiment ExpadaptiveA,GC,Sim is defined as follows:

1. The adversary specifies the circuit C and obtains C̃ where C̃ is created as follows:

• If b = 0: (C̃, st)← AdaGarbleCkt(1λ, C).

• If b = 1: (C̃, st)← SimC(1λ, 1|C|).

2. The adversary A specifies the input x and gets x̃ created as follows:

• If b = 0, x̃← AdaGarbleInp(st, x).

• If b = 1, x̃← SimIn(st, C(x))

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

Online Complexity. The running time of AdaGarbleInp is called as the online computational
complexity and |x̃| is called as the online communication complexity.

12

4 Our Construction

In this section, we provide our construction of adaptive garbled circuits. The main theorem is:

Theorem 4.1 Assuming the existence of updatable laconic oblivious transfer, somewhere equivocal
encryption and garbling scheme for circuits with selective security, there exists a construction of
adaptive garbling scheme for circuits. The online communication complexity of our scheme is
n+m+ poly(λ, log |C|) and the online computational complexity is O(n+m+ poly(λ, log |C|)).

From Theorems 3.1, 3.3, 3.6 we obtain the following corollary:

Corollary 4.2 Assuming either the Computational Diffie-Hellman assumption or the Factoring
assumption or the Learning with Errors assumption, there exists a construction of adaptive garbling
scheme for circuits with online communication complexity of n + m + poly(λ, log |C|) and online
computational complexity of O(n+m+ poly(λ, log |C|)).

We start with some notation on how we denote circuits. We choose this notation to simplify
the description of our construction. In the rest of the paper, whenever we mention a circuit C, we
implicitly mean the universal circuit U [C] with the circuit C hardwired in it. This is done so that
the topology of the circuit U [C] does not reveal anything about C except its size.

Notation. We model a circuit C : {0, 1}n → {0, 1}m as a set of N − n NAND gates, each having
fan-in 2. We number the gates of the circuit as follows. The input gates are given the numbers
{1, . . . , n}. The intermediate gates are numbered {n+ 1, n+ 2, . . . , N −m} such that a gate that
receives its input from gates i and j is given a number greater than i and j. The output gates are
numbered {N −m + 1, . . . , N}. Each gate g ∈ [n + 1, N] is described by a tuple (i, j) ∈ [g − 1]2

where outputs of gates i and j serves as inputs to gate g.

Construction. Let (crsGen,Hash, Send,Receive,SendWrite,ReceiveWrite) be an updatable laconic
oblivious transfer scheme, and (GarbleCkt,EvalCkt) be a garbling scheme for circuits. Moreover,
let (KeyGen,Enc,Dec, SimEnc, SimKey) be a somewhere equivocal encryption with the block-length

s = |S̃C| (where S̃C denotes a garbled version of the step-circuit SC defined in Figure 4), the
message-length equal to N − n and the equivocation parameter t = logN (the choice of t comes
from the security proof).

The formal description of our adaptive garbling scheme appears in Figure 3. In this construction
a selective secure garbling scheme is used to garble a step circuit SC repeatedly. This step circuit
is described in Figure 4. We now provide an informal overview of this construction. At a high
level, the adaptive garbling of a circuit C simply consists of garbling of the N −n intermediate step
circuits using the standard selectively secure (Yao’s) garbling scheme. The entire N bit state of
the computation is stored in an external memory using laconic OT and each step circuit accesses
two bits in this memory. These garbled step circuits are encrypted using a somewhere equivocal
encryption scheme and the resulting ciphertext is sent in the offline phase. Later in the online
phase, the key for decrypting this ciphertext is revealed. Note that in our description we use the
string r ∈ {0, 1}N as a one time pad to hide the state of the computation.

13

AdaGarbleCkt(1λ, C): On input a circuit C : {0, 1}n → {0, 1}m do:

1. Sample crs← crsGen(1λ), key← KeyGen(1λ) and r ← {0, 1}N .

2. For each g ∈ [n+ 1, N + 1], k ∈ [λ] and b ∈ {0, 1} sample labgk,b ← {0, 1}λ. (We use {labgk,b}
to denote {labgk,b}k∈[λ],b∈{0,1}.)

3. for each g from N down to n+ 1 do:

(a) Let (i, j) be the description of the gate g.

(b) Compute (where the step-circuit SC is described in Figure 4)

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (ri, rj , rg), (i, j), {labg+1
k,b }, 0], {labgk,b}

)
.

4. Compute c← Enc(key, {S̃Cg}g∈[n+1,N]).

5. Output C̃ := (crs, c) and st := (r, key, {labn+1
k,b }).

AdaGarbleInp(st, x) : On input the state st and a string x ∈ {0, 1}n do:

1. Parse st as (r, key, {labn+1
k,b })

2. Set D := r1 ⊕ x1‖ . . . ‖rn ⊕ xn‖0N−n and compute (d, D̂) := Hash(crs, D).

3. Output x̃ :=
(
{labn+1

k,dk
}k∈[λ], r1 ⊕ x1‖ . . . ‖rn ⊕ xn, key, rN−m+1, . . . , rN

)
.

AdpEvalCkt(C̃, x̃) : On input garbled circuit C̃, and garbled input x̃ do:

1. Parse C̃ as (crs, c) and x̃ as ({labk}k∈[λ], s1, . . . , sn, key, rN−m+1, . . . rN).

2. Set D := s1‖ . . . ‖sn‖0N−n and compute (d, D̂) := Hash(crs, D).

3. Compute {S̃Cg}g∈[n+1,N] := Dec(key, c).

4. Set lab := {labk}k∈[λ].
5. for each g from n+ 1 to N do:

(a) Let (i, j) be the description of gate g.

(b) Compute (γ, e) := ReceiveD̂(crs,ReceiveD̂(crs,EvalCkt(S̃Cg, lab), i), j).

(c) Set lab := ReceiveWriteD̂(crs, g, γ, e).

6. Recover the contents of the memory D from the final state D̂.

7. Output DN−m+1 ⊕ rN−m+1‖ . . . ‖Dm ⊕ rN .

Figure 3: Adaptive Garbling Scheme for Circuits

14

Step Circuit SC

Input: A digest d.
Hardcoded: The common reference string crs, a triplet of masking bits (ri, rj , rg), a description (i, j)
of gate g, a set of labels {labk,b} and a bit τ (τ = 1 case is only relevant for the proof).

1. Compute eb ← SendWrite(crs, d, g, b, {labk,0, labk,1}k∈[λ]) for b ∈ {0, 1}.

2. Define for all α, β ∈ {0, 1}, γ(α, β) :=

{
NAND(α⊕ ri, β ⊕ rj)⊕ rg if τ = 0

rg if τ = 1

3. Generate
f0 ← Send

(
crs, d, j, (γ(0, 0), eγ(0,0)), (γ(0, 1), eγ(0,1))

)
,

f1 ← Send
(
crs, d, j, (γ(1, 0), eγ(1,0)), (γ(1, 1), eγ(1,1))

)
.

4. Output
Send (crs, d, i, f0, f1)

Figure 4: Description of the Step Circuit

Communication Complexity of AdaGarbleInp. It follows from the construction that the com-
munication complexity of AdaGarbleInp is λ2 + n + m + |key|. From the parameters used in the

somewhere equivocal encryption, we note that |key| = |S̃C|poly(logN,λ). It follows from the effi-
ciency properties of updatable laconic oblivious transfer that |SC| is poly(logN,λ). Thus, |key| is
poly(logN,λ).

Computational Complexity of AdaGarbleInp. The running time of AdaGarbleInp described in
Figure 3 grows with the circuit size N . We note that the running time can be made independent
of the circuit size N by analyzing the specific laconic OT construction of Cho et al. [CDG+17].
The construction of Cho et al. uses a Merkle tree to hash a large database into a short digest.
Recall that Merkle hash is efficiently updatable. Specifically, let y and y′ be two strings given as
a sequence of blocks of λ bits and y, y′ differ in only the first k blocks. Given the Merkle hash on
y and a set of log |y| hash values, there is an efficient procedure running in time O(λ(k + log |y|))
that computes the Merkle hash on y′. We use this property to reduce the online computational
complexity of our construction.

Recall that in our construction, the contents of the database at the very beginning of our
computation needs to be set to ((r[1,n] ⊕ x)||0N−n) where x is the n-bit input. However, note that

the input x is specified in the online phase. So the goal is to compute the hash of ((r[1,n]⊕x)||0N−n)

in the online phase efficiently. To do this, we compute the hash of 0N in the offline phase and store
the value of this hash along with the specific hash values for updating the first dn/λe blocks. Once
x is specified in the online phase, we use the stored value to compute the hash on ((r[1,n]⊕x)||0N−n)
by performing the Merkle hash update. The crucial point is that this update is efficient (i.e. grows
only with |x|+ logN).

Also, the algorithm AdaGarbleInp does not need the entire input r as input. It suffices to provide
the first n and the last m bits of r (i.e., {r1 . . . rn, rN−m+1 . . . rN} as input to AdaGarbleInp.

15

Correctness. Let Dg∗ be the contents of the database at the end of Step 5.(c) of AdpEvalCkt in
the g∗-th iteration of the for loop. We first argue via an inductive argument that for each gate
g∗ ∈ [1, N], Dg∗

g is the output of gate g masked with rg for every g ∈ [1, g∗]. Given this, the
correctness follows by setting g∗ := N and observing that the {DN

k }k∈[N−m+1,N] is unmasked using
r[N−m+1,N] in Step 7 of AdpEvalCkt.

The base case is g∗ = n which is clearly true since in the beginning Dn is set as (r[1,n]⊕x||0N−n).
In order to prove the inductive step for a gate g∗ (with description (i, j)), we now argue that that

the γ recovered in Step 4.(b) of AdpEvalCkt corresponds to NAND(Dg∗−1
i ⊕ ri, Dg∗−1

j ⊕ rj) ⊕ rg∗
which by inductive hypothesis corresponds to output of the gate g∗ masked with rg∗ . This is shown
as follows.

(γ, e) := ReceiveD̂(crs,ReceiveD̂(crs,EvalCkt(S̃Cg, lab), i), j)

= ReceiveD̂(crs,ReceiveD̂(crs,Send (crs, d, i, f0, f1) , i), j)

= ReceiveD̂(crs, f
Dg
∗−1
i

, j)

= ReceiveD̂
(
crs, Send

(
crs, d, j, (γ(Dg∗−1

i , 0), e
γ(Dg

∗−1
i ,0)

), (γ(Dg∗−1
i , 1), e

γ(Dg
∗−1
i ,1)

)
)
, j
)

=

(
γ(Dg∗−1

i , Dg∗−1
j), e

γ(Dg
∗−1
i ,Dg

∗−1
j)

)
=

(
NAND(Dg∗−1

i ⊕ ri, Dg∗−1
j ⊕ rj)⊕ rg∗ , eNAND(Dg

∗−1
i ⊕ri,Dg

∗−1
j ⊕rj)⊕rg∗

)

5 Proof of Security

In this section, we prove that the construction presented in the previous section satisfies adaptive
security. In Subsection 5.1, we start by defining circuit configurations. Next, in Subsection 5.2 we
show that both the real and ideal world executions are special cases of this circuit configuration
(this will also provide a formal description of our simulator). Finally, in the rest of the subsection
we show that the real and ideal world executions are indistinguishable. The indistinguishability
argument proceeds by a sequence of hybrids over different configurations.

5.1 Circuit Configuration

Our proof of security proceeds via a hybrid argument over different circuit configurations which
we describe in this section. A circuit configuration denoted by conf = (I, {(g,modeg)}g∈[n+1,N])
consists of a set I ⊆ [n + 1, N] and a set of tuples (g,modeg) where for each gate g ∈ [n + 1, N]
modeg ∈ {White,Gray,Black} describes the mode of operation of gate g.

The subset I denotes the set of indices in which there is a “hole” in the outer encryption layer.
At an intuitive level, the White mode corresponds to the Real Garbling (as is done in the honest
execution), the Gray mode corresponds to the Input Dependent Simulation (where the step circuit
for this gate is in simulation but depends on the input), and the Black mode corresponds to the
Input Independent Simulation (where simulation is done independent of the input). In other words,
White mode matches the real execution, Black mode matches the ideal execution and Gray mode is
an intermediate execution mode. Looking ahead, initially all the step circuit will be in White mode

16

and the goal will be to convert all of them to Black in the simulation. Note that we refer to modes
with color names as these modes will coincide with the pebbling game that we later describe.

Valid configurations. We say that a configuration conf = (I, {(g,modeg)}g∈[n+1,N]) is valid if
and only if:

1. If modeg = Black then for every k > g, modek = Black.

2. If modeg = Gray then g ∈ I.

In other words, if gate g is in Black mode then we require that all the subsequent gates are also
in Black mode. Moreover, if a gate g is in the Gray mode then there is a hole in positions g in the
outer encryption layer.

Simulation in a valid configuration. In Figure 5 we describe the simulated circuit garbling
SimC and the simulated input garbling SimIn functions for any given valid configuration conf. Note
that these simulated garbling functions take as input the circuit C and x respective as inputs which
the ideal world simulation does not. We describe our simulator functions with these additional
inputs so that it captures simulation in all of our intermediate hybrids. We note that final ideal
world simulation does not uses these values.

5.2 Our Hybrids

For every valid circuit configuration conf = (I, {(g,modeg)}g∈[n+1,N]), we define Hybridconf to be

a distribution of C̃ and x̃ as given in Figure 5. We start by observing that both real world
and ideal distribution from Definition 3.7 can be seen as instance of Hybridconf where conf =
(∅, {(g,White)}g∈[n+1,N]) and conf = (∅, {(g,Black)}g∈[n+1,N]), respectively. In other words, the real
world distribution corresponds to having all gates in White mode and the ideal world distribution
corresponds to having all gates in Black mode. The goal is to move from the real world distribution
to the ideal world distribution while minimizing the maximum number of gates in the Gray mode
in any intermediate hybrid.

5.2.1 Rules of Indistinguishability

We will now describe the two rules (we call these rule A and rule B) to move from one valid circuit
configuration conf to another valid configuration conf ′ such that Hybridconf is computationally
indistinguishable from Hybridconf′ .

Rule A: Very roughly, rule A says that for any valid configuration conf we can indistinguish-
ably change gate g∗ in White mode to Gray mode if it is the first gate or if its predeces-
sor is also in Gray mode. More formally, let conf = (I, {(g,modeg)}g∈[n+1,N]) and conf ′ =
(I ′, {(g,mode′g)}g∈[n+1,N]) be two valid circuit configurations and g∗ ∈ [n + 1, N] be a gate
such that:

• For all g ∈ [n+ 1, N] \ g∗ we have that modeg = mode′g.

• g∗ 6∈ I, I ′ = I ∪ {g∗}, and |I ′| ≤ t (where t is the equivocation parameter).

• Either g∗ = n+ 1 or (g∗ − 1,Gray) ∈ conf.

17

SimC(1λ, C): On input a circuit C : {0, 1}n → {0, 1}m do:

1. Sample crs← crsGen(1λ) and r
$← {0, 1}N .

2. For each g ∈ [n+ 1, N + 1], k ∈ [λ] and b ∈ {0, 1} sample labgk,b ← {0, 1}λ. (We use {labgk,b}
to denote {labgk,b}k∈[λ],b∈{0,1}.)

3. for each g from N down to n+ 1 such that g 6∈ I do:

(a) Let (i, j) be the description of the gate g.

(b) If modeg = White then compute (where the step-circuit SC is described in Figure 4)

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (ri, rj , rg), (i, j), {labg+1
k,b }, 0], {labgk,b}

)
.

(c) If modeg = Black then compute

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (0, 0, rg), (i, j), {labg+1
k,b }, 1], {labgk,b}

)
.

4. Compute (st1, c)← SimEnc(I, {S̃Cg}g 6∈I).

5. Output C̃ := (crs, c) and st := (r, st1, {labgk,b}k,b,g).

SimIn(st, x, y): On input state st = (r, st1, {labgk,b}k,b,g), a string x ∈ {0, 1}n, and y ∈ {0, 1}m do:

Notation: For g ∈ [n+ 1, N + 1] we let Dg be such that

Dg,w =


xw ⊕ rw w ≤ n,
Ew ⊕ rw n+ 1 ≤ w < g,

0 otherwise,

where Ew is the bit assigned to wire w of the circuit C computed on input x. Finally, we let dg
be the digest of Dg (i.e., (dg, ·) := Hash(crs, Dg)) and dg,k be the kth bit of dg.

1. for each g from N down to n+ 1 such that g ∈ I:

(a) Set e← Sim`OTW(crs, Dg, g,Dg+1,g, {labg+1
k,dg+1,k

}k∈[λ]).
(b) Set out← Sim`OT (crs, Dg, i,Sim`OT (crs, Dg, j, e))

(c) Compute S̃Cg ← SimCkt

(
1λ, 1|SC|, out, {labgk,dg,k}k∈[λ]

)
.

2. Compute key← SimKey(st1, {S̃Cg}g∈I).
3. for each g ∈ [N −m+ 1, N] do:

(a) If modeg ∈ Black then set r′g = rg ⊕ yw−N+m.

(b) Else, r′g = rg.

4. Output x̃ :=
(
{labn+1

k,dn+1,k
}k∈[λ], r1 ⊕ x1‖ . . . ‖rn ⊕ xn, key, r′N−m+1,N . . . r

′
N

)
.

Figure 5: Garbling in configuration conf = (I, {(h,modeh)}h∈[n+1,N]).

• (g∗,White) ∈ conf and (g∗,Gray) ∈ conf ′.

18

In Lemma 5.3 we show that for an valid configurations conf, conf ′ satisfying the above con-

straints we have that Hybridconf
c
≈ Hybridconf′ . Note that we can also use this rule to move a

gate g∗ from Gray mode to White mode. We refer to those invocations of the rule as inverse
A rule.

Rule B: Very roughly, rule B says that for any configuration for any valid configuration conf
we can indistinguishably change gate g∗ in Gray mode to Black mode if all gates subse-
quent to g∗ is in Black mode and the predecessor is in Gray mode. More formally, let
conf = (I, {(g,modeg)}g∈[n+1,N]) and conf ′ = (I ′, {(g,mode′g)}g∈[n+1,N]) be two valid circuit
configurations and g∗ ∈ [n+ 1, N] be a gate such that:

• For all g ∈ [n+ 1, N] \ g∗ we have that modeg = mode′g.

• g∗ ∈ I, I ′ = I \ {g∗}, and |I| ≤ t (where t is the equivocation parameter).

• For all g ∈ [g∗ + 1, N] we have that (g,Black) ∈ conf.

• Either g∗ = n+ 1 or (g∗ − 1,Gray) ∈ conf.

• (g∗,Gray) ∈ conf and (g∗,Black) ∈ conf ′.

In Lemma 5.4 we show that for an valid configurations conf, conf ′ satisfying the above con-

straints we have that Hybridconf
c
≈ Hybridconf′ .

5.2.2 Interpreting the rules of indistinguishability as a pebbling game

Our sequence of hybrids from the real to the ideal world follow an optimal strategy for the following
pebbling game. The two rules described above correspond to the rules of our pebbling game below.

Consider the positive integer line n+1, n+2, . . . N . We are given pebbles of two colors: gray and
black . A black pebble corresponds to a gate in the Black (i.e., input independent simulation) mode
and a gray pebble corresponds to a gate in the Gray (i.e., input dependent simulation) mode. A
position without any pebble corresponds to real garbling or in the White mode. We can place the
pebbles on this positive integer line according to the following two rules:

Rule A: We can place or remove a gray pebble in position i if and only if there is a gray pebble
in position i − 1. This restriction does not apply to position n + 1: we can always place or
remove a gray pebble at position n+ 1.

Rule B: We can replace a gray pebble in position i with a black pebble as long as all the positions
> i have black pebbles and there is a gray pebble in position i− 1 or if i = n+ 1.

Optimization goal of the pebbling game. The goal is to pebble the line [n+ 1, N] such that
every position has a black pebble while minimizing the number of gray pebbles that are present on
the line at any point in time.

5.2.3 Optimal Pebbling Strategy

To provide some intuition, we start with the näıve pebbling strategy. The näıve pebbling strategy
involves starting from position n+ 1 and placing a gray pebble at every position in [n+ 1, N] and
then replacing them with black pebbles from N to n + 1. However, this strategy uses a total of
N − n gray pebbles. Using a more clever strategy it is actually possible to do the same using only
log(N − n) gray pebbles. This is argued in the following lemmas.

19

Lemma 5.1 For any integer n + 1 ≤ p ≤ n + 2k − 1, it is possible to make O((p − n)log2 3) ≈
O((p− n)1.585) moves and get a gray pebble at position p using k gray pebbles.

Proof This proof is taken verbatim from [GPSZ17]. First we observe to get a gray pebble placed
at p, for each i ∈ [n+ 1, p− 1] there must have been at some point a gray pebble placed at location
i.

Next, we observe that it suffices to show we can get a gray pebble at position p = n + 2k − 1
for every k using O(3k) = O((p − n)log2 3) steps. Indeed, for more general p, we run the protocol
for p′ = n + 2k − 1 where k = dlog2(p − n − 1)e, but stop the first time we get a gray pebble at
position p. Since p′/p ≤ 3, the running time is at most O((p− n)log2 3).

Now for the algorithm. The sequence of steps will create a fractal pattern, and we describe the
steps recursively. We assume an algorithm Ak−1 using k−1 gray pebbles that can get a gray pebble
at position n+ 2k−1 − 1. The steps are as follows:

• Run Ak−1. There is now a gray pebble at position n+ 2k−1 − 1 on the line.

• Place the remaining gray pebble at position n + 2k−1, which is allowed since there is a
gray pebble at position n+ 2k−1 − 1.

• Run Ak−1 in reverse, recovering all of the k − 1 gray pebbles used by A. The result is that
there is a single gray pebble on the line at position n+ 2k−1.

• Now associate the portion of the number line starting at n+2k−1 +1 with a new number line.
That is, associate n+ 2k−1 + a on the original number line with n′+ a (where n′ = n+ 2k−1)
on the new number line. We now have k − 1 gray pebbles, and on this new number line, all
of the same rules apply. In particular, we can always add or remove a gray pebble from the
first position n′ + 1 = n+ 2k−1 + 1 since we have left a gray pebble at n+ 2k−1. Therefore,
we can run Ak+1 once more on the new number line starting at n′ + 1. The end result is a
pebble at position n′ + 2k−1 − 1 = n+ 2k−1 + (2k−1 − 1) = n+ 2k − 1.

It remains to analyze the running time. The algorithm makes 3 recursive calls to Ak−1, so by
induction the overall running time is O(3k), as desired.

Using the above lemma, we now give an optimal strategy for our pebbling game.

Lemma 5.2 For any N ∈ N, there exists a strategy for pebbling the line graph [n+ 1, N] according
to rules A and B by using at most logN gray pebbles and making poly(N) moves.

Proof The strategy is given below. For each g from N down to n+ 1 do:

1. Use the strategy in Lemma 5.1 to place a gray pebble in position g. Note that there exists a
gray pebble in position g − 1 as well.

2. Replace the gray pebble in position g with a black pebble. This replacement is allowed since
all positions > g have black pebbles and there is a gray pebble in position g − 1.

3. Recover all the gray pebbles by reversing the moves.

The correctness of this strategy follows by inspection and the number of moves is polynomial in N .

20

5.2.4 Completing the Hybrids

Using the strategy given in Lemma 5.2 yields a sequence of configurations conf0 . . . conf` for an
appropriate polynomial ` with conf0 and conf` being the real and the ideal world distributions and

for each i ∈ [`] we have that Hybridconfi−1

c
≈ Hybridconfi either using rule A (i.e., Lemma 5.3) or

using rule B (i.e., Lemma 5.4). Finally note that the number of holes in the garbled circuit needed
is the maximum size of I over the sequence of hybrids (i.e. the maximum number of gray pebbles
used). Thus, it suffices to set the equivocation parameter t for somewhere equivocal encryption
scheme to logN . This completes the proof of security.

5.3 Proof of Indistinguishability for the Rules

In this subsection, we will use the security of underlying primitives to implement the two rules.

5.3.1 Implementing Rule A

Lemma 5.3 (Rule A) Let conf and conf ′ be two valid circuit configurations satisfying the con-
straints of rule A, then assuming the security of somewhere equivocal encryption, garbling scheme

for circuits and updatable laconic oblivious transfer, we have that Hybridconf
c
≈ Hybridconf′.

Proof We prove this via a hybrid argument.

• Hybridconf : This is our starting hybrid and is distributed as Hybrid(I,{(g,modeg)}g∈[n+1,N])
.

• Hybrid1: In this hybrid, we change the configuration to (I ′, {(g,modeg)}g∈[n+1,N]). This hybrid
is distributed as Hybrid(I′,{(g,modeg)}g∈[n+1,N])

.

Computational indistinguishability between hybrid Hybridconf and Hybrid1 reduces directly
to the security of somewhere equivocal encryption scheme. We give a formal reduction in
Appendix A

• Hybrid2: By conditions of Rule A we have that modeg∗−1 = Gray. Thus, we have that g∗−1 ∈
I ′. Therefore, we note that the input labels {labg

∗

k,b} are not used in SimC but only in SimIn

where it is used to generate S̃Cg∗−1 and S̃Cg∗ . In this hybrid, we postpone the sampling of

{labg
∗

k,b} and the generation of S̃Cg∗ from SimC to SimIn.

The change in hybrid Hybrid2 from Hybrid1 is just syntactic and the distributions are identical.

• Hybrid3: In this hybrid, we change the sampling of {labg
∗

k,b} and the generation of S̃Cg∗ . Specif-

ically, we do not sample the entire set of labels {labg
∗

k,b} but a subset namely {labg
∗

k,dg∗,k
}k and

we generate S̃Cg∗ from the simulated distribution. (Note that since g∗ − 1 is also in Gray

mode. Thus we have that S̃Cg∗−1 is also simulated and only {labg
∗

k,dg∗,k
}k are needed for its

generation.) More formally, we generate

S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

where out← SC[crs, (ri, rj , rg), (i, j), {labg
∗+1
k,b }, 0](dg∗).

21

The only change in hybrid Hybrid3 from Hybrid2 is in the generation of the garbled circuit

S̃Cg∗ and the security follows directly from the selective security of the garbling scheme. We
show this reduction in Appendix A.

• Hybrid4: In this hybrid, we change how the output value out hardwired in S̃Cg∗ is generated.
Recall that in hybrid Hybrid3 this value is generated by first computing f0 and f1 as in Figure 4
and then generating out as Send (crs, d, i, f0, f1). In this hybrid, we just generate fDg∗,i and
use the laconic OT simulator to generate out. More formally, out is generated as

out← Sim`OT

(
crs, Dg∗ , i, fDg∗,i

)
.

Computational indistinguishability between hybrids Hybrid3 and Hybrid4 follows directly from
the sender privacy of the laconic OT scheme. The reduction is given in Appendix A.

• Hybrid5: In this hybrid, we change how the value fDg∗,i is generated. Recall from Figure 4
that fDg∗,i is set as Send(crs, d, j, (γ(Dg∗,i, 0), eγ(Dg∗,i,0)),
(γ(Dg∗,i, 1), eγ(Dg∗,i,1))). We change the distribution of fDg∗,i to Sim`OT(crs, Dg∗ ,
j, eDg∗+1,g∗), where eDg∗+1,g∗ is sampled as in Figure 4.

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 follows directly from
the sender privacy of the laconic OT scheme. The argument is analogous to the argument of
indistinguishability between Hybrid3 and Hybrid4.

• Hybrid6: In this hybrid, we change how eDg∗+1,g∗ is generated. More specifically, we generate
it using the simulator Sim`OTW. In other words, eDg∗+1,g

is generated as

Sim`OTW(crs, Dg∗ , g
∗, Dg∗+1,g∗ , {labg

∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 follows directly from
the sender privacy for writes of the laconic OT scheme.

• Hybrid7: In this hybrid, we reverse the changes made earlier with respect to sampling of

{labg
∗

k,b}. Specifically, we sample all values {labg
∗

k,b} and not just {labg
∗

k,dg∗,k
}k. Additionally,

this is done in SimC rather than SimIn.

Note that this change is syntactic and the hybrids Hybrid6 to Hybrid7 are identical. Finally,
observe that hybrid Hybrid7 is the same as Hybridconf′ .

This completes the proof of the lemma. We additionally note that the above sequence of hybrids
is reversible. This implies the inverse rule A.

5.3.2 Implementing Rule B

Lemma 5.4 (Rule B) Let conf and conf ′ be two valid circuit configurations satisfying the con-
straints of rule B, then assuming the security of somewhere equivocal encryption, garbling scheme

for circuits and updatable laconic oblivious transfer, we have that Hybridconf
c
≈ Hybridconf′.

22

Proof We prove this via a hybrid argument starting with Hybridconf′ and ending in hybrid
Hybridconf . We follow this ordering of the hybrids as this keeps the proof very close to the proof
of Lemma 5.3. In particular, we start with hybrid Hybridconf′ and make changes to get a hybrid
Hybrid7 which are almost the same as the hybrids in Lemma 5.3. One key difference is that we set
the value Dg∗+1,g differently than how it is set in the execution of SimIn in Figure 5. Specifically,
we set Dg∗+1,g∗ as rg∗ rather than Eg∗⊕rg∗ . Note that this also corresponding changes the value of
dg∗+1 which is the hash of Dg∗+1. Finally we provide argument that hybrids Hybrid7 and Hybridconf
are identical.

• Hybridconf′ : This is our starting hybrid and is distributed as Hybrid(I′,{(g,mode′g)}g∈[n+1,N])
.

• Hybrid1: In this hybrid, we change the configuration to (I, {(g,mode′g)}g∈[n+1,N]). This hybrid
is distributed as Hybrid(I,{(g,mode′g)}g∈[n+1,N])

.

Computational indistinguishability between hybrid Hybridconf′ and Hybrid1 reduces directly
to the security of somewhere equivocal encryption.

• Hybrid2: By conditions of Rule B we have that modeg∗−1 = Gray. Thus, we have that g∗−1 ∈
I ′. Therefore, we note that the input labels {labg

∗

k,b} are not used in SimC but only in SimIn

where it is used to generate S̃Cg∗−1 and S̃Cg∗ . In this hybrid, we postpone the sampling of

{labg
∗

k,b} and the generation of S̃Cg∗ from SimC to SimIn.

The change in hybrid Hybrid2 from Hybrid1 is just syntactic and the distributions are identical.

• Hybrid3: In this hybrid, we change the sampling of {labg
∗

k,b} and the generation of S̃Cg∗ . Specif-

ically, we do not sample the entire set of labels {labg
∗

k,b} but a subset namely {labg
∗

k,dg∗,k
}k and

we generate S̃Cg∗ from the simulated distribution. (Note that since g∗ − 1 is also in Gray

mode. Thus we have that S̃Cg∗−1 is also simulated and only {labg
∗

k,dg∗,k
}k are needed for its

generation.) More formally, we generate

S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

where out← SC[crs, (0, 0, rg), (i, j), {labg
∗+1
k,b }, 1](dg∗).

The only change in hybrid Hybrid3 from Hybrid2 is in the generation of the garbled circuit

S̃Cg∗ and the security follows directly from the selective security of the garbling scheme.

• Hybrid4: In this hybrid, we set change how the output value out hardwired in S̃Cg∗ is generated.
Recall that in hybrid Hybrid3 this value is generated by first computing f0 and f1 as in Figure 4
and then generating out as Send (crs, d, i, f0, f1). In this hybrid, we just generate fDg∗,i and
use the laconic OT simulator to generate out. More formally, out is generated as

out← Sim`OT

(
crs, Dg∗ , i, fDg∗,i

)
.

Computational indistinguishability between hybrids Hybrid3 and Hybrid4 follows directly from
the sender privacy of the laconic OT scheme.

23

• Hybrid5: In this hybrid, we change how the how the value fDg∗,i is generated in hybrid Hybrid4.

Recall from Figure 4 that fDg∗,i is set as Send
(
crs, d, j, erg∗ , erg∗

)
. We change the distribution

of fDg∗,i to Sim`OT

(
crs, Dg, j, erg∗

)
, where erg∗ is sampled as in Figure 4.

Computational indistinguishability between hybrids Hybrid3 and Hybrid4 follows directly from
the sender privacy of the laconic OT scheme. The argument is analogous to the argument of
indistinguishability between Hybrid2 and Hybrid3.

• Hybrid6: In this hybrid, we change how erg∗ is generated. More specifically, we generate it
using the simulator Sim`OTW. In other words, erg∗ is generated as

Sim`OTW(crs, Dg∗ , g
∗, rg∗ , {labg

∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 follows directly from
the sender privacy for writes of the laconic OT scheme.

• Hybrid7: In this hybrid, we reverse the changes made earlier with respect to sampling of

{labg
∗

k,b}. Specifically, we sample all values {labg
∗

k,b} and not just {labg
∗

k,dg∗,k
}k. Additionally,

this is done in SimC rather than SimIn.

Note that this change is syntactic and the hybrids Hybrid6 to Hybrid7 are identical.

• Hybridconf : This corresponds to the hybrid Hybrid(I,{(g,modeg)}g∈[n+1,N]
.

Observe that the only difference between Hybrid7 and Hybridconf is howDg∗+1,g∗ is set. Namely,
in Hybrid7 this value is set to be rg∗ while in Hybridconf this value is set as rg∗⊕NAND(Dg∗,i⊕
ri, Dg∗,j ⊕ rj ,). We argue that the distributions Hybrid7 and Hybridconf are identical. Two
cases arise:

– g∗ ≤ N − m: In this case, note that since rg∗ is not anywhere else we have that the
distribution rg∗ and rg∗ ⊕ NAND(Dg∗,i ⊕ ri, Dg∗,j ⊕ rj) are both uniform and identical.

– g∗ > N −m: In this case, we have that rg∗ = yg∗−N+m ⊕ r′g∗ which is again identical to
the distribution of rg∗ in Hybridconf .

This completes the proof of the lemma.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From se-
lective to adaptive security in functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume
9216 of Lecture Notes in Computer Science, pages 657–677, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

[AF90] Mart́ın Abadi and Joan Feigenbaum. Secure circuit evaluation. Journal of Cryptology,
2(1):1–12, 1990.

24

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
Annual Symposium on Foundations of Computer Science, pages 166–175, Rome, Italy,
October 17–19, 2004. IEEE Computer Society Press.

[AIK05] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. In Proceedings of the 20th Annual IEEE
Conference on Computational Complexity, CCC ’05, pages 260–274, Washington, DC,
USA, 2005. IEEE Computer Society.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Effi-
cient verification via secure computation. In Samson Abramsky, Cyril Gavoille, Claude
Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP 2010:
37th International Colloquium on Automata, Languages and Programming, Part I, vol-
ume 6198 of Lecture Notes in Computer Science, pages 152–163, Bordeaux, France,
July 6–10, 2010. Springer, Heidelberg, Germany.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding func-
tions with constant online rate or how to compress garbled circuits keys. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume
8043 of Lecture Notes in Computer Science, pages 166–184, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 162–172, Kaoshiung,
Taiwan, R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing ma-
chines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of
Cryptography Conference, Part I, volume 9562 of Lecture Notes in Computer Science,
pages 125–153, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Com-
put., 18(4):766–776, 1989.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EURO-
CRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 533–556,
Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun Wang
and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume 7658
of Lecture Notes in Computer Science, pages 134–153, Beijing, China, December 2–6,
2012. Springer, Heidelberg, Germany.

25

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12: 19th Confer-
ence on Computer and Communications Security, pages 784–796, Raleigh, NC, USA,
October 16–18, 2012. ACM Press.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
ibe, leakage resilience and circular security from new assumptions. To appear in Euro-
crypt, 2018. https://eprint.iacr.org/2017/967.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd Annual ACM Symposium on Theory of Com-
puting, pages 503–513, Baltimore, MD, USA, May 14–16, 1990. ACM Press.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic receiver oblivious transfer and applications. To appear in
Crypto, 2017.

[DG17] Nico Döttling and Sanjam Garg. Identity based encryption from diffie-hellman assump-
tions. To appear in Crypto, 2017.

[DGHM18] Nico Dttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New con-
structions of identity-based and key-dependent message secure encryption schemes. To
appear in PKC, 2018. https://eprint.iacr.org/2017/978.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free gar-
bled circuits with applications to efficient zero-knowledge. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume
9057 of Lecture Notes in Computer Science, pages 191–219, Sofia, Bulgaria, April 26–
30, 2015. Springer, Heidelberg, Germany.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In Tal Rabin, editor, Advances
in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 465–482, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg,
Germany.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, edi-
tors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in
Computer Science, pages 405–422, Copenhagen, Denmark, May 11–15, 2014. Springer,
Heidelberg, Germany.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM
Symposium on Theory of Computing, pages 555–564, Palo Alto, CA, USA, June 1–4,
2013. ACM Press.

26

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of
Lecture Notes in Computer Science, pages 39–56, Santa Barbara, CA, USA, August 17–
21, 2008. Springer, Heidelberg, Germany.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In Venkatesan
Guruswami, editor, 56th Annual Symposium on Foundations of Computer Science,
pages 210–229, Berkeley, CA, USA, October 17–20, 2015. IEEE Computer Society
Press.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
Annual ACM Symposium on Theory of Computing, pages 449–458, Portland, OR, USA,
June 14–17, 2015. ACM Press.

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking
the sub-exponential barrier in obfustopia. In Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part III,
pages 156–181, 2017.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryp-
tion with polynomial loss. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B:
14th Theory of Cryptography Conference, Part II, volume 9986 of Lecture Notes in
Computer Science, pages 419–442, Beijing, China, October 31 – November 3, 2016.
Springer, Heidelberg, Germany.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 162–179, Santa Barbara, CA, USA, August 19–23,
2012. Springer, Heidelberg, Germany.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel
Wichs. Adaptively secure garbled circuits from one-way functions. In Matthew Rob-
shaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part III,
volume 9816 of Lecture Notes in Computer Science, pages 149–178, Santa Barbara,
CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof
Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, volume
10401 of Lecture Notes in Computer Science, pages 133–163, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference

27

on Computer and Communications Security, pages 955–966, Berlin, Germany, Novem-
ber 4–8, 2013. ACM Press.

[JSW17] Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs. Adaptively indistinguishable
garbled circuits. In TCC 2017: 15th Theory of Cryptography Conference, Part II, Lec-
ture Notes in Computer Science, pages 40–71. Springer, Heidelberg, Germany, March
2017.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled circuits. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography
Conference, Part I, volume 9985 of Lecture Notes in Computer Science, pages 433–458,
Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg, Germany.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of
Cryptography Conference, Part II, volume 9986 of Lecture Notes in Computer Science,
pages 443–468, Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg,
Germany.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 719–734, Athens, Greece, May 26–30,
2013. Springer, Heidelberg, Germany.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th Annual
Symposium on Foundations of Computer Science, pages 11–20, New Brunswick, NJ,
USA, October 9–11, 2016. IEEE Computer Society Press.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-
party computation system. In Proceedings of the 13th USENIX Security Symposium,
August 9-13, 2004, San Diego, CA, USA, pages 287–302, 2004.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Moti Yung, editor, Advances in Cryptology
– CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 111–126,
Santa Barbara, CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany.

[PTC76] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a
game on graphs. Mathematical systems theory, 10(1):239–251, Dec 1976.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors,
ACM CCS 10: 17th Conference on Computer and Communications Security, pages
463–472, Chicago, Illinois, USA, October 4–8, 2010. ACM Press.

28

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago,
Illinois, November 3–5, 1982. IEEE Computer Society Press.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto,
Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press.

A Completing Proofs of Lemma 5.3

Claim A.1 Assuming the security of somewhere equivocal encryption scheme, we have Hybridconf
c
≈

Hybrid1.

Proof We give a reduction to the security of somewhere equivocal encryption.

Generating the Garbled Circuit. To generate the garbled circuit C̃:

1. Execute the steps 1,2,3 as described in Figure 5.

2. Interact with the external challenger by giving {S̃Cg}g 6∈I as the challenge messages, I as
the challenge subset and g∗ as the challenge index. Obtain c as the challenge ciphertext.

3. Output (crs, c) as the garbled circuit C̃ and (r, st1, {labgk,b}k,b,g) as the state st.

Generating the Garbled Input. To generate the garbled input x̃:

1. Execute the steps 1,2 as described in Figure 5.

2. Interact with the external challenger by providing {S̃Cg}g∈I as the remaining messages
and obtain key′.

3. Execute the rest of the steps as described in Figure 5 and output x̃ using the key key′

obtained from the external challenger.

Notice that if the reduction is playing in the experiment Expsimenc
B,Π (1λ, 0) then the distribution

of inputs to the adversary is identical to Hybridconf . Else, it is distributed identically to Hybrid1.
Thus, the reduction breaks the security of somewhere equivocal encryption.

Claim A.2 Assuming the selective security of garbling scheme for circuits, Hybrid2

c
≈ Hybrid3

Proof We give a reduction to the security of garbling scheme for circuits.

Generating the Garbled Circuit. For each g ∈ [n + 1, N + 1] \ {g∗}, k ∈ [λ] and b ∈ {0, 1}
sample labgk,b ← {0, 1}

λ. Generate the garbled circuit C̃ as in Hybrid2. Note that there is a

“hole” in position g∗ in the outer encryption layer and hence {labg
∗

k,b} is not needed in the

generation of C̃. Also, recall that by assumption the gate g∗ − 1 is Gray or g∗ = n+ 1.

Generating the Garbled Input: To generate the garbled input x̃ do:

29

1. Interact with the garbled circuits challenger and give SC[crs, (ri, rj , rg), (i, j),

{labg
∗+1
k,b }, 0] (where the description of g∗ is (i, j)) as the challenge circuit and dg∗ as the

challenge input. Obtain S̃Cg∗ and {labg
∗

k,dg∗,k
}k∈[λ].

2. For each g ∈ I ′ \ {g∗}, generate S̃Cg as described in Figure 5. Note that for generating

S̃Cg∗−1 it is sufficient to only know {labg
∗

k,dg∗,k
}k∈[λ].

3. Execute the rest of the steps as described in Figure 5 and output x̃.

Notice that if the garbling S̃Cg∗ is generated using the honest procedure then the inputs to the
adversary are distributed identically to Hybrid2. Else, they are distributed identically to Hybrid3.
Thus, the reduction breaks the selective security of garbling scheme for circuits which is a contra-
diction.

Claim A.3 Assuming the sender privacy of updatable laconic oblivious transfer, Hybrid3

c
≈ Hybrid4

Proof
We show that Hybrid3

c
≈ Hybrid4 by giving a reduction to the sender privacy of updatable laconic

oblivious transfer.

Generating the Garbled Circuit. Obtain crs from the external challenger and generate the
garbled circuit C̃ as in Hybrid3.

Generating the Garbled Input: 1. To generate S̃Cg∗ with the description of g∗ equal to (i, j):

(a) Compute e0, e1, f0, f1 as described in Figure 4.

(b) Interact with the laconic OT challenger by giving Dg∗ as the challenge database,
i as the challenge locations and give f0, f1 as the challenge messages. Obtain the
challenge ciphertext out.

(c) Compute S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

2. Generate S̃Cg for all g ∈ I ′ \ {g∗} as in Hybrid3.

3. Execute the rest of the steps as described in Figure 5 to generate the garbled input x̃.

Note that if out is generated using the honest procedure then the distribution of inputs to the
adversary is identical to Hybrid3. Else, it is identical to Hybrid4. Thus, the above reduction breaks
the sender privacy of updatable laconic oblivious transfer.

Claim A.4 Assuming the sender privacy for writes of updatable laconic oblivious transfer, Hybrid5

c
≈

Hybrid6.

Proof We give a reduction to the sender privacy for writes of updatable laconic oblivious transfer.

Generating the Garbled Circuit. Obtain crs from the external challenger and generate the
garbled circuit C̃ as in Hybrid5.

Generating the Garbled Input: 1. To generate S̃Cg∗ with the description of g∗ equal to (i, j):

30

(a) Interact with the laconic OT challenger by giving Dg∗ as the challenge database, g∗

as the challenge location, Dg∗+1,g∗ as the challenge bit and {labg
∗+1
k,b } as the sequence

of challenge messages. It obtains eDg∗+1,g∗ as the challenge ciphertext.

(b) Generate fDg∗+1,g∗ and out as in Hybrid5.

(c) Compute S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

2. Generate S̃Cg for all g ∈ I ′ \ {g∗} as in Hybrid5.

3. Execute the rest of the steps as described in Figure 5 to generate the garbled input x̃.

Note that if eDg∗+1,g∗ is generated using the honest procedure then the distribution of inputs
to A is identical to Hybrid5. Else, it is identical to Hybrid6. Thus, the reduction breaks the sender
privacy for writes of updatable laconic oblivious transfer.

31

