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Abstract. Information ratio, which measures the maximum/average share size per shared
bit, is a criterion of e�ciency of a secret sharing scheme. It is generally believed that there
exists a family of access structures such that the information ratio of any secret sharing
scheme realizing it is 2Ωpnq, where the parameter n stands for the number of participants.
The best known lower bound, due to Csirmaz (1994), is Ωpn{ lognq. Closing this gap is a
long-standing open problem in cryptology.
In this paper, using a technique called substitution, we recursively construct a family of

access structures having information ratio n
Ωp logn

log logn
q
, assuming a well-stated information-

theoretic conjecture is true. Our conjecture emerges after introducing the notion of convec
set for an access structure, a subset of n-dimensional real space. We prove some topological
properties about convec sets and raise several open problems.
Key words: secret sharing, general access structure, information ratio, perfect security

1 Introduction

A secret sharing scheme [33,8] is a powerful cryptographic tool that allows a dealer to share
a secret among a set of n participants such that only certain quali�ed subsets of participants
are able to reconstruct the secret. The secret must remain information theoretically hidden
from the remaining subsets, called forbidden. The collection of all quali�ed subsets is called an
access structure, which is supposed to be monotone, i.e., closed under the superset operation.
The original de�nition, known as threshold secret sharing, only dealt with access structures
that include all subsets of size larger than a certain threshold and the general notion was later
introduced in [20].

The information ratio [12,9,26] of a participant in a secret sharing scheme is de�ned as the
ratio between the size of his share and the size of the secret. The maximum/average information
ratio of a secret sharing scheme is the maximum/average of all participants information ratios.
The maximum/average information ratio of an access structure is de�ned as the in�mum of the
maximum/average information ratios of all secret sharing schemes that realize it.

Surprisingly, very basic questions about the information ratio of access structures have re-
mained open. For example, despite several important results (e.g., [11,32,34,27,28]), the class of
access structures with information ratio one, called ideal and known to contain the threshold
access structures, is far from being fully characterized yet. Also, determining the exact value of
information ratio of several simple access structures (for example, see [36,21]) is still open while
very few cases have been resolved (see [19,17] for two notable examples).

It is known that every access structure on n participants admits a secret sharing scheme
with information ratio 2Opnq and it is generally believed that this upper bound is tight for most
access structures. See [24] for a recent result towards achieving a lower bound on the portion
of access structures with superpolynomial information ratio. Particularly, it is conjectured (e.g.,



see [3]) that there exists a family of access structures with information ratio 2Ωpnq. Csirmaz has
explicitly constructed a family of access structures with maximum [16] (earlier presented in [14])
and average [15] information ratio Ωpn{ log nq and no better lower bound is known. In particular,
Csirmaz has also shown that his approach, a standard information-theoretic method [22,13]
based on Shannon type information inequalities, cannot be used to show a superlinear lower
bound. This negative result was further strengthened in [7,29] by showing that certain additional
non-Shannon type information inequalities [39] also fail to bypass the linear barrier.

Bridging the exponential gap between the two above-mentioned bounds is an important open
problems in cryptology. For the restricted class of linear secret-sharing schemes, however, the
lower bound has recently been shown to be exponential [31], closing the gap with the former
superpolynomial lower bound nΩplognq [1,4].

1.1 Our main result

We take one step towards beating Csirmaz celebrated lower bound. We construct a family of

access structures having information ratio nΩp logn
log logn q under some information-theoretic conjec-

ture, called substitution conjecture which will be introduced in this paper. A lifting theorem,
useful for boosting the information ratio of a well-chosen family of access structures, lies at the
heart of our improvement. Below, we present a simpli�ed and informal statement of the theorem.

Theorem (Lifting theorem�informal and simpli�ed) Let b, t : R� Ñ R� be two func-
tions and tΓkukPN be a family of access structures. Suppose that for every k, it holds that Γk,
with nk participants, has a subset of participants of size bpnkq with minimum total information

ratio tpnkq. Assuming that the function log tpxq
log bpxq satis�es some �mild� conditions and assuming the

truth of the substitution conjecture, then there exists a family of access structures with average

(and consequently maximum) information ratio nΩ
�

log tpnq
log bpnq

�
.

Csirmaz proves his Ωpn{ log nq lower bound on maximum information ratio, by constructing
a family of access structures [16] and exhibiting a subset of participants of size bpnq � Θplog nq

with minimum total information ratio tpnq � Ωpnq. Our (conjecturally) improved nΩp logn
log logn q

lower bound for average/maximum information ratio is achieved by a simple application of the
lifting theorem to his family.

1.2 Main ideas

We use three main ideas in this paper:

� Using the notion of access structure substitution. Given minimal representations of
two access structures (in the Sperner system), with disjoint participant sets of size n and m,
we substitute one for some participant of the other one. The resulting access structure will
have n�m� 1 participants. For example, by substituting the access structure Γ2 � a1� b1c1

for participant b in the access structure Γ1 � ab � bcd, we get Γ3 � Γ1rb Ñ Γ2s � apa1 �
b1c1q � pa1 � b1c1qcd � aa1 � ab1c1 � a1cd � b1c1cd. This concept has already been introduced
by Martin in [26] and some basic properties of the operation has also been studied. We are
interested in the relation between information ratio of the three involved access structures.

� Introducing the notion of convec set. We attribute a subset of Rn, the n-dimensional
real space, to an access structure on n participants, referred to as convec set, where convec
is short for contribution vector [21]. The convec of a secret sharing scheme is de�ned as the
vector of all participants information ratios. We de�ne the convec set of an access structure
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as the set of all convecs of all secret sharing schemes realizing it. Our geometrical treatment
of access structures may seem reminiscent of Yeung's [38] framework for studying the so
called entropy region.

� Connecting the two notions via the substitution conjecture. As we mentioned above,
our lifting theorem relies on a conjecture that we refer to as the substitution conjecture. This
conjecture links the notions of access structure substitution and convec set. In addition
to the notion of access structure substitution, a relevant notion of set substitution can be
de�ned for two subsets X1 � Rn and X2 � Rm with respect to some speci�c coordinate
i P rns, which results in the subset X3 � X1ri Ñ X2s � Rn�m�1. The two substitution
operations (one on access structures and one on subsets of multi-dimensional real space)
seem so coherent leading us to state the substitution conjecture as follows.

Conjecture (Substitution conjecture) Let Γ1 and Γ2 be two access structures and let
Γ3 � Γ1rpi Ñ Γ2s for some participant pi of Γ1. Let Xj denote the closure of the convec
set of Γj for j � 1, 2, 3. Then, X1ri Ñ X2s � X3, where index i P rns corresponds to the
coordinate of the information ratio of participant pi in X1 � Rn.

Proving the inclusion X3 � X1riÑ X2s remains challengingly open and the lifting theorem
relies only on the truth of this inclusion. Even though the reverse inclusion also remains open,
we prove it under a second conjecture called Uniform Share Distribution (USD) conjecture.
Informally, this conjecture states that, for every access structure, the optimal information
ratio is achieved by a secret sharing scheme (or a converging sequence of schemes) with
uniform distribution on the shares.

1.3 Paper organization

In Section 2, we provide the required background and notations. The notion of convec set and
its topological properties, along with a list of open problems, are studied in Section 3. The
substitution technique for access structures and subsets of multi-dimensional real space, as well
as the substitution and USD conjectures, are given in Section 4. In Section 5, we prove our lifting
theorem after introducing a recursive method for constructing new access structures using the
substitution technique. Finally, we conclude the paper in Section 6.

2 Preliminaries and notation

In this section, we provide the basic background along with some notations and conventions.
The information-theoretic and topological notions can be found in any standard textbook. We
refer the reader to [3,30] for surveys on secret sharing. Readers familiar with the subjects can
safely skip this section, but we encourage the reader to take a look at Remark 1, Lemma 1 and
Convension 1.

2.1 Basic topology

Let a � pa1, . . . , anq and b � pb1, . . . , bnq be two vectors in Rn, the n-dimensional real space.
We write a ¨ b (resp. a   b) if and only if ai ¤ bi (resp. ai   bi) for every i P rns, where rns
stands for the set t1, . . . , nu. We use ra,8q to denote the set of all points b such that a ¨ b. For
a vector a � pa1, . . . , anq, we let maxpaq � maxta1, . . . , anu and }a} �

°n
i�1 |ai|. The all-one

vector is denoted by 1, whose dimension is understood from the context.
A subset of Rn is said to be convex if for every pair of points a, b in the set and for every

real λ P r0, 1s, the point λa�p1�λqb, called a convex combination of a and b, is also in the set.
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In this paper, the intersection of �nitely many half-spaces is called a convex polytope, or simply
a polytope. Let X be a convex subset of Rn. A point of X is said to be an extreme point if it
does not lie in any line segment with endpoints in X .

A point a P Rn is called a limit point for a set X � Rn if every open ball containing a
includes at least one point of X , di�erent from a itself. A set is called closed if it contains all of
its limit-points and it is called open if its complement is closed. The closure of a set X � Rn,
denoted by clpX q, is the union of X with all its limit points. When clpX q is convex, we refer to
X as a set with a convex closure. A point a is called an interior point of X if there exists an
open ball containing a which is completely contained in X . The set of all interior points of X
is denoted by intpX q. The boundary of a set X is de�ned as the set of all points in its closure
which does not belong to its interior, i.e., clpX qzintpX q. In this paper, we de�ne the frontier of
X as the set clpX qzX .

Remark 1 (Frontier vs. boundary) In the literature the boundary is also referred to as fron-
tier and some authors (for example [37]) even use the term frontier instead of boundary. How-
ever, similar to [2], our de�nition of frontier is di�erent from boundary.

2.2 Basic information theory

Let X and Y be discrete random variables. The support of X (i.e., the set of all values that
it accepts with positive probability) is denoted by supppXq. The Shannon entropy of X is
de�ned as HpXq � �

°
xPsupppXq PrrX � xs log2 PrrX � xs. The entropy of X conditioned

on Y is de�ned as HpX|Y q �
°
yPsupppY q PrrY � ysHpX|Y � yq, where HpX|Y � yq �

�
°
xPsupppXq:PrrX�x^Y �ys¡0 PrrX � x|Y � ys log2 PrrX � x|Y � ys. Finally, the mutual

information of X and Y is de�ned as IpX,Y q � HpXq �HpX|Y q.

2.3 Secret sharing schemes

Let P � tp1, . . . , pnu be a �nite set of participants. A subset Γ � 2P is called an access structure
on P if it is monotone; that is, for every A P Γ and every set B, where A � B � P , it holds
that B P Γ . A subset A � P is called quali�ed if A P Γ ; otherwise, it is called unquali�ed
or forbidden. A quali�ed subset is called minimal if none of its proper subsets is quali�ed. A
forbidden subset is called maximal if none of its proper supersets is forbidden. The set of all
minimal quali�ed subsets and that of maximal forbidden sets are, respectively, denoted by Γ�

and Γ�. A participant p P P is called important for Γ , if it appears in at least one minimal
quali�ed subset. The set of all important participants of access structure Γ is denoted by P pΓ q.
A distinguished participant p0 R P is referred to as the dealer. In the Sperner system, an access
structure can be symbolically represented as Γ �

°
APΓ�

±
pPA p.

A tuple Π �
�
Sp

�
pPPYtp0u

of jointly distributed random variables, with �nite supports, is

called a secret sharing scheme on participant set P when HpSp0q ¡ 0. The random variable
Sp0 is called the secret random variable and its support is called the secret space. The random
variable Sp, for any participant p P P , is called the share random variable of the participant p
and its support is called his share space. When we say that a secret s P supppSp0q is shared using
Π, we mean that a tuple

�
sp
�
pPPYtp0u

is sampled according to the distribution Π conditioned

on the event Sp0 � s.
We say that Π is a secret sharing scheme for Γ , or Π realizes Γ , or Γ admits Π, when:

a) HpSp0 | SAq � 0, for every quali�ed set A P Γ and,
b) HpSp0 | SBq � HpSp0q, for every forbidden set B P Γ c.
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where SA � pSpqpPA, for a subset A � P .
The information ratio of participant pi P P is de�ned as σi � HpSpiq{HpSp0q. The convec

of Π (where convec is abbreviation for contribution vector [21]) is de�ned and denoted by
σpΠq � pσiqiPrns. A secret sharing scheme Π is called ideal if σpΠq � 1.

The maximum (resp. average) information ratio of an access structure Γ is denoted by σpΓ q
(resp. σ̃pΓ q) and is de�ned as the in�mum of max

�
σpΠq

�
(resp. 1

n}σpΠq}) over all secret sharing
schemes Π realizing Γ .

We close this section by introducing a lemma by Blundo et. al. [10] and a convention regarding
our notation.

Lemma 1 ([10]). Let Π � pSpqpPPYtp0u be a secret sharing scheme for Γ . Let Π 1 � pS1pqpPPYtp0u
be a secret sharing scheme obtained from Π by changing the secret distribution to a (non-certain)
distribution S1p0 over supppSp0q (more precisely, to generate a sample according to Π 1, a secret

is sampled from S1p0 and then shared using Π). Then, Π 1 also realizes Γ . Moreover, the random

variables SA and S1A are identically distributed, for any unquali�ed subset A P Γ c.

Convention 1 We assume that all participants of all access structures are important. For such
access structures, the information ratio of each participant is at least one [22,13]. Also, we
assume that our access structures do not contain singleton sets; that is, no participant is quali�ed
on its own. Consequently, when the distribution on the secret changes, the distribution on each
individual's share does not change (see Lemma 1).

3 Convec set

In this section, we introduce the notion of convec set for access structures and study its topolog-
ical properties. Two illustrative examples are provided and some open problems are suggested.

De�nition 1 (Convec set). Let Γ be an access structure. The convec set of Γ , denoted by
ΣpΓ q, is de�ned as the set of all convecs of all secret sharing schemes that realize Γ .

For our convenience, we provide the following de�nition.

De�nition 2 (Shifted orthant inclusion property). We say that a set X � Rn has the
shifted orthant inclusion property if a P X implies ra,8q � X .

3.1 Basic properties of convec sets

In this section we provide three lemmas about the properties of convec sets, which will be of use
in later sections. The �rst one follows from the well-known result of [22,13], stating that each
(important) participant's share size is not smaller than the secret itself. The second one says
that the convec sets have the shifted orthant inclusion property. The last one states that the
convec sets remain unchanged if we restrict ourselves to secret sharing schemes with uniform
secret distribution.

Lemma 2 (A trivial superset for convec sets). We have ΣpΓ q � r1,8q, for any access
structure Γ .

Lemma 3 (Shifted orthant inclusion property of convec sets). For any access structure
Γ , the set ΣpΓ q has the shifted orthant inclusion property.
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Proof. Let a P ΣpΓ q. For any point a1 P ra,8q we show that a1 P ΣpΓ q. The reason is
that given a secret sharing scheme Π � pSpqpPPYtp0u for Γ with σpΠq � a, it is easy to
construct a secret sharing scheme Π 1 for Γ with σpΠ 1q � a1; simply give dummy shares to
the participant to increase their share size. More precisely, let Π 1 �

�
Sp0 , pSp,S

1
pqpPP

�
where

pS1pqpPP is independent form Π and it is chosen such that
�
HpS1pq

�
pPP

� HpSp0qpa
1 � aq © 0.

Clearly, Π 1 realizes Γ and σpΠ 1q � a1; hence, a1 P ΣpΓ q. [\

Lemma 4 (Uniform secret invariance property of convec sets). Let Γ be an access
structure. The convec set of Γ is the set of all convecs of all secret sharing schemes having
uniform secret distribution and realizing Γ .

Proof. Let a P ΣpΓ q and suppose that Π � pSpqpPPYtp0u is a secret sharing scheme for Γ with
convec a. We show that there exists a secret sharing schemeΠ 1, with uniform secret distribution,
for Γ with the same convec.

By Lemma 1 (see also Convention 1), there exists a secret sharing scheme Π2 � pS2pqpPPYtp0u
for Γ such that S2p0 is uniform over supppSp0q, and S

2
p is distributed identically as Sp for every

p P P .

Consequently, a2 � σpΠ2q �
HpSp0 q

HpS2p0 q
a ¨ a; that is, a P ra2,8q. We can then construct Π 1,

realizing Γ with σpΠ 1q � a, fromΠ2 similar to the proof of the shifted orthant inclusion property
(Lemma 3), by increasing each participant's share size, without changing secret distribution. [\

3.2 On interiors of convec sets

In this section, we prove a proposition, showing that the interiors of convec sets are convex.
First, we present two lemmas, and then the proposition.

Lemma 5 (Closure convexity of convec sets). The convec set of any access structure is a
set with a convex closure.

Proof. Let Γ be an access structure on participant set P . Equivalently, we prove the following
claim. For every real number x P r0, 1s, and every pair of vectors a, b P clpΣpΓ qq, there is
a sequence tΠju of secret sharing schemes such that: 1) each Πj realizes Γ , 2) the sequence
tσpΠjqu converges to xa� p1� xqb.

It is su�cient to prove the claim for convecs a, b P ΣpΓ q. Let Πa �
�
Ap

�
pPPYtp0u

and

Πb �
�
Bp

�
pPPYtp0u

be secret sharing schemes realizing Γ with convecs a and b, respectively.

For each j, we construct a secret sharing Πj satisfying the required properties.
Assume that x � c{d is rational, the secret random variables Ap0 and Bp0 are both uniform,

and |supppAp0q| � |supppBp0q|. In this situation, Πj can be simply constructed by Stinson's
λ-decomposition technique [35] by using c instances of Πa and d�c instances of Πb (i.e., λ � d).
It is easy to remove the uniform distribution assumption on the secret, thanks to Lemma 1, and
extend this argument to the case where the ratio y � HpAp0q{HpBp0q is rational. The remaining
part of the proof is devoted to handle the general case.

Let txju, tyju be two sequences of non-negative rational numbers respectively converging to
x and y. Let xj � cj{dj and yj � ej{fj where cj , dj , ej , fj are non-negative integers. The secret
sharing scheme Πj �

�
Sp

�
pPPYtp0u

is constructed as follows. Consider a matrix of random

variables with fjcj � ejpdj � cjq rows and |P | � 1 columns. Each column is labeled with an
element of P Y tp0u and all rows are independent random variables. The top fjcj rows are
identically distributed as Πa and the bottom ejpdj � cjq rows are identically distributed as Πb.
For each p P P Y tp0u, the random variable Sp is de�ned to be the column with label p. It is
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easy to see that Πj realizes Γ . We continue to show that σpΠjq converges to xa � p1 � xqb.
By independence of the random variables, we have HpSpq � fjcjHpApq � ejpdj � cjqHpBpq, for
every p P P Y tp0u. Therefore,

HpSpq

HpSp0q
�

fjcjHpApq � ejpdj � cjqHpBpq

fjcjHpAp0q � ejpdj � cjqHpBp0q

�
xj

xj � p1� xjqyj{y

HpApq

HpAp0q
�

p1� xjq

xjy{yj � p1� xjq

HpBpq

HpBp0q
.

or more compactly,

σpΠjq �
xj

xj � p1� xjqyj{y
a�

p1� xjq

xjy{yj � p1� xjq
b ,

which clearly converges to xa� p1� xqb, concluding the claim. [\

Lemma 6. Let X � Rn be a set with a convex closure, having the shifted orthant inclusion
property. Then, the interior of X is convex.

Proof. We show that intpX q � intpclpX qq. The claim then follows since the interior of any convex
set is convex as well. Obviously, intpX q � intpclpX qq. Therefore, it is su�cient to show that
intpclpX qq � intpX q. Let b P intpclpX qq. Equivalently, we show that b P intpX q. Let B � clpX q
be an open ball that contains b. Let a P B be a point which is element-wise strictly smaller than
b, i.e, a   b. Since a P clpX q, there exists a sequence a0,a1,a2, . . . of points in X belonging to
the open set tx | x   buXB and converging to a. Since a0 P X , by the shifted orthant inclusion
property of the set, we have ra0,8q � X . Clearly, tx | a0   xu XB is an open convex set that
contains b and is completely contained in X . Therefore, b P intpX q. [\

Proposition 1 (Interior convexity of convec sets). The interior of the convec set of any
access structure is convex.

Proof. Recall the shifted orthant inclusion (Lemma 3) and closure convexity (Lemma 5) prop-
erties of convec sets. The claim is then an immediate consequence of Lemma 6. [\

3.3 On frontiers of convec sets

In this section, we prove that there is no access structure with an open convec set; that is, the
frontier of a convec set is a proper subset of its boundary. We conclude that the convec set of
an access structure is either closed or neither-open-nor-closed (NONC). Subsequently, we de�ne
the notion of closed/NONC access structures. The frontier of a closed access structure is empty
whereas that of a NONC access structure is non-empty and a proper subset of its boundary.
First, we provide a lemma, then a proposition and �nally the de�nition.

Lemma 7 (Participant-speci�c rate-one scheme). Let Γ be an access structure, m ¥ 2 be
an integer and p P P pΓ q. Then, there exist a secret sharing scheme, with secret space size m,
realizing Γ , such that the information ratio of participant p is one.

Proof. In the Sperner system, let Γ � Γ0 � pΓ1, where Γ0, Γ1 are access structures both on the
participant set P 1 � P ztpu. More precisely, Γ0 � tA � P 1 | A P Γ u and Γ1 � tA � P 1 | A R
Γ,A Y tpu P Γ u. It is well-known that every access structure admits a secret sharing scheme
with secret space Zm [20]. Let Π1, Π2 be, respectively, such secret sharing schemes for Γ1, Γ2.
We construct a secret sharing scheme for Γ such that the secret is uniform over Zm and the
information ratio of participant p is one. To share a secret s P Zm, we choose a uniformly random
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r P Zm and give the share r to p. Then, we share s�r as a secret using the scheme Π1 and share
the secret s using the scheme Π0. Consequently, every participant in P 1 receives a share from
each of the schemes. But p receives a random element of Zm as his share. Clearly, the resulting
scheme realizes Γ and the information ratio of participant p is one. [\

Proposition 2 (Convec sets are not open). There does not exist an access structure with
an open convec set.

Proof. Let Γ be an access structure on n participants. According to Lemma 2, we have ΣpΓ q �
r1,8q. Also, according to Lemma 7, for every i P rns, there exists a convec pσ1, . . . , σnq P ΣpΓ q,
such that σi � 1. Clearly, all these convecs lie on the boundary of ΣpΓ q. Therefore, ΣpΓ q is not
open. [\

De�nition 3 (Closed and NONC access structures). An access structure is called closed
(resp. NONC) if its convec set is closed (resp. neither-open-nor-closed).

Corollary 1 (Frontiers of closed and NONC access structures). The frontier of the
convec set of a closed access structure is empty and that of a NONC access structure is a non-
empty proper subset of its boundary.

3.4 Pareto-optimality

In this section, we �rst de�ne two notions of optimality for convecs and a notion of optimality
for secret sharing schemes. Then, we provide an equivalent de�nition of maximum and average
information ratio of an access structure, already given in Section 2.3.

First, we recall the de�nition of Pareto-optimality for a subset of multi-dimensional real
space, as a partially ordered set.

Pareto-optimal points. Let X � Rn. A point a P X is said to be Pareto-minimal for X if for
any vector b P X , which is comparable with a, it holds that a ¨ b. A point a P clpX q is said
to be Pareto-in�mal for X if it is Pareto-minimal for clpX q. The set of all Pareto-in�mal and
Pareto-minimal points of X are, respectively, denoted by infPpX q and minPpX q. Notice that
infPpX q � minP

�
clpX q

�
.

De�nition 4 (Pareto-minimal/in�mal convecs). Let Γ be an access structure. Any vector
in the set of Pareto-minimal points of ΣpΓ q, i.e., minP

�
ΣpΓ q

�
, is called a Pareto-minimal vector

(convec). Any vector in the set of Pareto-in�mal points of ΣpΓ q, i.e., infP

�
ΣpΓ q

�
, is called a

Pareto-in�mal vector.

According to the shifted orthant inclusion property (Lemma 3) of convec sets, the closure of
a convec set is uniquely determined by its Pareto-in�mal convecs. More precisely, we have the
following corollary.

Corollary 2. We have clpΣpΓ qq �
�
xPinfP

�
ΣpΓ q

�rx,8q, for every access structure Γ .

Note that for a given access structure, there does not necessarily exist a secret sharing scheme
for a given Pareto-in�mal vector; see Example 2. However, by de�nition, a Pareto-minimal vector
corresponds to some secret sharing scheme realizing the access structure. Thus, we provide the
following notion of optimality for secret sharing schemes.

De�nition 5 (Pareto-minimal secret sharing scheme). Let Π be a secret sharing scheme
realizing an access structure Γ . We call Π a Pareto-minimal scheme for Γ if its convec is
Pareto-minimal, i.e., σpΠq P minP

�
ΣpΓ q

�
.
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Corollary 3 (Equivalent de�nition of information ratio). Let Γ be an access structure
on n participants. Then,

σpΓ q � mintmaxpxq : x P infP

�
ΣpΓ q

�
u ,

and

σ̃pΓ q �
1

n
mint}x} : x P infP

�
ΣpΓ q

�
u .

3.5 Two examples

In this section, we introduce two examples that will be referred to in later sections. Two related
open problems are mentioned in Section 3.6.

Example 1 (P3 access structure) Consider the graph access structure P3 � ab�bc�cd, i.e.,
a path of length 3. It can be shown [13] that clpΣpP3qq has two extreme points, p1, 1, 2, 1q and
p1, 2, 1, 1q, which we call extreme convecs. Therefore, any Pareto-in�mal convec x P infP

�
ΣpP3q

�
is a convex combination of the two extreme convecs, that is, of the form x � p1, 1�x, 2�x, 1q for
some real number x P r0, 1s. It can be shown (e.g., using Stinson's λ-decomposition method [35])
that when x is rational, these convecs are Pareto-minimal as well. Thus, σ̃pP3q �

5
4 , which is

achieved by any Pareto-in�mal convec, and σpP3q �
3
2 , which is achieved only by the Pareto-

minimal convec p1, 3
2 ,

3
2 , 1q. We do not know if this access structure is closed (see Question 6).

Example 2 (F � F access structure) Beimel-Livne [5,6] and Matús [28] have independently
introduced an access structure on 12 participants, which we denote by F �F (see also Example 3
and Figure 1). In the Sperner system, the minimal representation of F �F is the product of the
Sperner representations of the following two ideal access structures

F � p1p4 � p2p5 � p3p6 � p1p2p6 � p1p3p5 � p2p3p4 � p4p5p6

and
F � q1q4 � q2q5 � q3q6 � q1q2q6 � q1q3q5 � q2q3q4 � q4q5q6 � q3q4q5 ,

derived form Fano and non-Fano matroids, respectively.
Matús [28] has proved that F (resp. F) does not have an ideal scheme when the secret space

size is odd (resp. even). The access structure F � F is called nearly ideal since while it is not
ideal [28], its information ratio is one [5,6]; that is, the all-one vector is Pareto-in�mal but
not Pareto-minimal. Therefore, F � F is a NONC access structure and clpΣpF � Fqq � r1,8q.
The results of [5,6] can be used to show that ΣpF � Fq includes the points of the set tpx,yq |
x,y P R6, p1 ¨ x ^ 1   yq _ p1   x ^ 1 ¨ yqu. Lemma 7 can be used to show that ΣpF � Fq
includes additional points as well; for example, for any i P t1, . . . , 6u, some vector of the form
px1, . . . , x6,1q (resp. p1, y1, . . . , y6q), in R12, is in the set where xi � 1 (resp. yi � 1). The
exact form of ΣpF � Fq is unknown to us, and in particular, we do not know if F � F has any
Pareto-minimal convec (see Question 7).

3.6 Some open problems

Several problems regarding convec sets remain open. The ideal access structures are closed since
their convec set is r1,8q. We are not aware of any other closed access structure.

Question 1 (Non-ideal closed access structure) Is there a non-ideal closed access struc-
ture?

9



More generally, characterizing access structures with respect to De�nition 3 seems an inter-
esting question.

Question 2 (Characterizing closed access structures) Determine which access structures
are closed and which ones are NONC (i.e., characterizing them in terms of emptiness of the
frontiers of their convec sets; see Corollary 1).

Also, note that the convec set of closed access structures are convex by themselves (i.e.,
without taking closure). We do not know if there exists any NONC access structures with a
convex convec set.

Question 3 (Characterizing NONC access structures w.r.t. convexity) Determine which
NONC access structures are convex and which ones are non-convex. In particular, is there a
NONC access structure whose convec set is convex (resp. non-convex)?

Trivially, every access structure has at least one Pareto-in�mal convec. However, it is unclear
if this is also the case for some Pareto-minimal convec.

Question 4 (Existence of a Pareto-minimal scheme) Does every access structure admit
at least one Pareto-minimal secret sharing scheme?

The (closure of) convec set of some access structures (e.g., Examples 1 and 2) can be proved
to be polytopes. It is intriguing to think that this is the case for every access structure.

Question 5 (Non-polytope convec sets) Is there an access structure such that its convec
set is not a polytope?

Finally, concerning Examples 1 and 2, we present two more speci�c questions in the following.

Question 6 (Convec set of P3) Following Example 1, is the set ΣpP3q convex (equivalently,
is p1, 1� x, 2� x, 1q a Pareto-minimal convec for P3 for every irrational x P p0, 1q)?

Question 7 (Convec set of F � F) Following Example 2, determine the set ΣpF �Fq. Is it a
convex set? Does it have any Pareto-minimal convec?

Note that a positive answer to Question 6 leads to a positive answer to Question 1, while
a negative answer partially answers Question 3 (i.e., there exists non-convex NONC access
structures).

4 Substitution technique

In this section, we describe di�erent notions of substitution for real vectors, subsets of the real
space and access structures. We then propose a conjecture, referred to as the substitution con-
jecture that relates the latter two substitution operations. A second conjecture, called Uniform
Share Distribution (USD), is also presented, under which the substitution conjecture is partially
proved. More precisely, the substitution conjecture is a statement about equality of two sets. If
the USD conjecture holds, then we will show that one set includes the other one.
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4.1 Vector/Subset substitution

Let x � px1, . . . , xnq and y � py1, . . . , ymq be two real vectors. The vector x, in which the ith
element has been substituted with xiy, is denoted by xriÑ ys; that is,

xriÑ ys � px1, . . . , xi�1, xiy1, . . . , xiym, xi�1, . . . , xnq .

Let X � Rn and Y � Rm be two arbitrary sets. For every i P rns, we de�ne the set
X riÑ Ys � Rn�m�1 as follows:

X riÑ Ys � txriÑ ys | px,yq P X � Yu .

4.2 Access structure substitution

Let Γ1 and Γ2 be two access structures, respectively on (not necessarily disjoint) participant
sets P and Q, and let pi P P . We refer to Γ3 � Γ1rpi Ñ Γ2s as the access structure in which the
participant pi has been substituted with Γ2, in the following sense. In the Sperner representation
of Γ1, we replace pi with Γ2 and then expand and simplify the expression naturally. This concept
has already been introduced by Martin in [26] and some basic properties of the resulting access
structure has been also studied. More precisely, the participant set of Γ3 is P pΓ3q � P�i Y Q,
where P�i � P ztpiu, and for every A � P pΓ3q we have:

A P Γ3 ô pAX P P Γ1q _
��
pAX P q Y tpiu P Γ1

�
^
�
AXQ P Γ2

�	
.

Example 3 (Access structure substitution) Let Γ1 � ab�ac�bc and Γ2 � a�cd�ce�f .
We then have Γ1rcÑ Γ2s � ab�apa�cd�ce�fq�bpa�cd�ce�fq � a�bcd�bce�bf . As another
example, let Γ � ab and F ,F ,F �F be as in Example 2. Then, Γ raÑ FsrbÑ Fs � F �F . See
Figure 1.

p1 p2 p3

p4 p5 p6

q1 q2 q3

q4 q5 q6

Fig. 1: The access structure F � F � Γ ra Ñ Fsrb Ñ Fs where Γ � ab (see Example 3). Also,
it can be viewed as F � F � Γ rp7 Ñ Fs where Γ � F � p7 (see Remark 2). See Example 2 for
descriptions of F ,F and F � F .

Our particular case of interest is when P and Q are disjoint. For subsets A,B, let AB and
Api be respectively short notations for AYB and AYtpiu. In this case, in order to characterize
the quali�ed sets and forbidden sets of Γ3 � Γ1rpi Ñ Γ2s, we de�ne:

B � tB | B � P�i ^B P Γ1u ,
C � tC | C � P�i ^ C P Γ c1 ^ Cpi P Γ1u ,
D � tD | D � P�i ^Dpi P Γ

c
1 u .

(1)

It is then easy to verify that:

Γ3 � tBA | B P B ^A � Qu Y tCK | C P C ^K P Γ2u , (2)
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and

Γ c3 � tCJ | C P C ^ J P Γ c2 u Y tDA | D P D ^A � Qu . (3)

4.3 The substitution conjecture

Consider two access structures with disjoint participant sets and denote the closure of their
convec sets by X1 and X2. Substitute the second access structure for some participant in the
�rst one to get a third access structure, with convec set closure X3. We conjecture that X1riÑ
X2s � X3, where i corresponds to the coordinate of the substituted participant in X1. Below we
present a formal statement of this conjecture.

Conjecture 1 (Substitution conjecture) Let Γ1 and Γ2 be two access structures on disjoint
participant sets. Let pi P P pΓ1q and de�ne Γ3 � Γ1rpi Ñ Γ2s. Let Xj � clpΣpΓjqq, for j � 1, 2, 3
and let index i P rns correspond to the coordinate of participant pi in X1 � Rn. Then, X3 �
X1riÑ X2s; that is,

I. X1riÑ X2s � X3,
II. X3 � X1riÑ X2s.

Remark 2 We remark that a variant of the substitution conjecture in which we let Xi � ΣpΓiq
is not valid. Towards constructing a counter example, let F ,F ,F � F be as in Example 2. Let
Γ1 � F � p7 and Γ2 � F and hence Γ3 � Γ1rp7 Ñ Γ2s � F � F . The access structures Γ1 and
Γ2 are both ideal, respectively on 7 and 6 participants. Therefore, X1r7 Ñ X2s � r1,8q, but
r1,8q � X3 as we saw in Example 2.

Proving or refuting the inclusion of Part II of the substitution conjecture seems challenging
and is not addressed further in this paper. Even though the reverse inclusion (Part I of the
substitution conjecture) also remains open, we are able to prove its correctness assuming the
truth of another conjecture, discussed in the next section.

4.4 The uniform share distribution conjecture

This section is devoted to proving the Part I of the substitution conjecture assuming the truth
of the USD conjecture, stated bellow. We will need two lemmas in the course of proving our
claim (Proposition 3).

Conjecture 2 (Uniform share distribution (USD) conjecture) Let Γ be an access struc-
ture and let x P infP

�
ΣpΓ1q

�
. Then, there exists a sequence tΠjujPN of secret sharing schemes

such that: 1) each Πj realizes Γ , 2) the sequence tσpΠjqujPN converges to x, 3) every partic-
ipant's share, in each Πj, is uniform over its support, and 4) each secret random variable, in
each Πj, is uniform over its support.

Remark 3 (USD conjecture and secret distribution) As a consequence of Lemma 1, it
can be shown that the USD conjecture is equivalent to a seemingly weaker version of the conjec-
ture in which we remove the fourth requirement. This fact justi�es our selected running title for
the conjecture.

Remark 4 (USD conjecture and information ratio variants) Two di�erent �avors of in-
formation ratio can be found in the literature [12,9,26]. One is de�ned based on the ratio between
the share entropy and the secret entropy, also adopted by us in the course of this paper. The
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other one is de�ned as the ratio between the logarithm of the share space size and the logarithm
of the secret space size. Consequently, the information ratio of an access structure Γ can be
de�ned in two di�erent ways, which we denote by σ1pΓ q and σ0pΓ q with respect to these two
�avors of information ratio (the reason for these choices will be clear in a while). It is known
that σ0pΓ q ¥ σ1pΓ q; e.g., see [3] (Section 5.2). In [23], the generalized information ratio of
an access structure Γ with parameter α ¥ 0 has been de�ned based on the Rényi entropy with
parameter α, which is denoted by σαpΓ q. It is easy to show that σαpΓ q is decreasing in α, for
every access structure Γ . In [23], it has been conjectured that σαpΓ q is constant for every Γ ,
i.e., it does not depend on α. The USD conjecture implies this conjecture.

Lemma 8. Let X1,X2 and X3 be subsets of Rn,Rm, and Rn�m�1, respectively, and let i P rns.
Suppose that each Xj, j � 1, 2, 3, has the shifted orthant inclusion property and lies in the
positive orthant (i.e., Xj � r0,8q). Then, infPpX1qri Ñ infPpX2qs � clpX3q implies clpX1qri Ñ
clpX2qs � clpX3q.

Proof. This direcly follows form the relation clpXjq �
�
aPinfPpXjqra,8q, j � 1, 2, 3.

Lemma 9. Let Γ1 and Γ2 be two access structures on disjoint participant sets. Let pi P P pΓ1q
and de�ne Γ3 � Γ1rpi Ñ Γ2s. Let Π1 and Π2 be two secret sharing schemes, each with uni-
form distribution on the secret and each individual share, respectively realizing Γ1 and Γ2, with
σpΠ1q � x and σpΠ2q � y. Then, there exists a sequence tΠj

3ujPN of secret sharing schemes
such that:

(1) Πj
3 realizes Γ3, for every j P N,

(2) the sequence tσpΠj
3qujPN converges to xriÑ ys when j goes to in�nity.

Here, index i P rns corresponds to the coordinate of participant pi, where n � |P pΓ1q|.

Proof. Let us �rst introduce the notation k � Π, where Π � pX1, . . . ,Xλq is a vector of
random variables. Let Π1, . . . ,Πk be independent random variables and identically distributed
as Π and let Πj � pXj

1, . . . ,X
j
λq, for j � 1, . . . , k. We de�ne k � Π � pY 1, . . . ,Y λq where

Y i � pX1
i , . . . ,X

k
i q for i � 1, . . . , λ.

Let P pΓ1q � P and P pΓ2q � Q. Denote Π1 � pSpqpPPYtp0u and Π2 � pSqqqPQYtq0u. Let
N � |supppSpiq| and M � |supppSq0q| and, without loss of generality, suppose that N ¤ M ;
Otherwise, if M   N , we can replace Π2 with k �Π2, where k � rN{M s. Note that k �Π2 is
still a secret sharing scheme, with uniform shares and secret, realizing Γ2 with σpk �Π2q � y.

For every j P N, de�ne αj � t j logM
logN u and let αj � Π1 � pSjpqpPPYtp0u and j � Π2 �

pSjqqqPPYtq0u. Note that |supppSjpiq| ¤ |supppSjq0q|, since |supppSjpiq| � Nαj , |supppSjq0q| �M j

and αj ¥ 1. Therefore, there exists an injection g : supppSjpiq Ñ supppSjq0q.

For each j P N, we construct the secret sharing scheme Πj
3 , satisfying (1) and (2), as follows.

Let P�i � P ztpiu and P pΓ3q � T , where T � P�i Y Q. To generate a sample pstqtPTYtt0u
according to Πj

3 , we �rst generate a sample pspqpPPYtp0u according to αj�Π1. We let st0 � sp0 ,
that is, the same secret is used. Each participant p P P�i (as a participant of P pΓ3q) receives
sp as his share, which is trivially distributed according to Sjp. Then, gpspiq is shared using the
scheme j�Π2 to produce the shares psqqqPQ. Each participant q P Q (as a participant of P pΓ3q)
receives sq as his share, which according to Lemma 1, is distributed as Sjq. Clearly, the scheme

Πj
3 realizes Γ3 and its convec is:

σpΠj
3q � xriÑ

HpSjq0q

HpSjpiq
ys .
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Since HpSjq0q � j logM and HpSjpiq � αj logN , it follows that
HpSjq0 q

HpSjpi q
(� j logM

αj logN ) converges to

one. Consequently, σpΠj
3q converges to xriÑ ys. [\

Proposition 3 (USD conjecture ñ Part I of the substitution conjecture). The USD
conjecture (Conjecture 2) implies the Part I of the substitution conjecture (Conjecture 1).

Proof. According to Lemma 8, it is su�cient to prove that infP

�
ΣpΓ1q

�
riÑ infP

�
ΣpΓ2q

�
s � X3.

Equivalently, we prove that for every x P infP

�
ΣpΓ1q

�
and y P infP

�
ΣpΓ2q

�
it holds that

xri Ñ ys P clpΣpΓ3qq. To prove this, we show that there exists a sequence tΠj,k
3 upj,kqPN�N of

secret sharing schemes such that:

(1') Πj,k
3 realizes Γ3, for every j, k P N,

(2') the sequence tσpΠj,k
3 qu converges to xriÑ ys when j, k both go to in�nity.

Assuming that the USD conjecture is true, there exists a sequence tΠk
1 ukPN (resp. tΠk

2 ukPN)
of secret sharing schemes, with uniform distributions on secrets and individual shares, realizing
Γ1 (resp. Γ2), such that the sequences txkukPN � tσpΠk

1 qukPN (resp. tykukPN � tσpΠk
2 qukPN)

converge to x (resp. y).

Consequently, for each k P N, according to Lemma 9, there exists a sequence tΠj,k
3 ujPN of

secret sharing schemes such that:

(1�) Πj,k
3 realizes Γ3, for every j P N,

(2�) the sequence tσpΠj,k
3 qujPN converges to xkriÑ yks when j goes to in�nity.

Therefore, (1') and (2') also hold, �nishing the proof. [\

5 Conjecturally improving Csirmaz lower bound

The aim of this section is to, assuming the Part II of the substitution conjecture is true, construct

a family of access structures with information ratio nΩp logn
log logn q, beating Csirmaz Ωpn{ log nq lower

bound. Our candidate family is recursively constructed from a carefully selected access structure
Γ on participant set Q and a well-chosen subset I � Q.

Below, we introduce a de�nition and some notations. We de�ne our recursive procedure for
constructing a family of access structures in Section 5.1. We will then present a lifting theorem
in Section 5.2. As we will see in Section 5.3, direct application of this theorem leads to our su-

perpolynomial nΩp logn
log logn q lower bound for information ratio. We discuss possible improvements

of our bound in Section 5.4.

De�nition 6 (Information ratio of a family of access structures). Let g : RÑ R be some
function and F � tΓkukPN be a family of access structures. We say that the average information
ratio of F is gpnq, and write σ̃F pnq � gpnq, if σ̃pΓkq � gpnkq, where nk � |P pΓkq|. A similar
de�nition is given for the maximum information ratio of the family F , denoted by σF pnq.

Notation. In Section 4, we introduced the notation xri Ñ x1s and Γ rp Ñ Γ 1s for vectors
and access structures for single element substitution. In this section, we use the notation
xrpi1, . . . , iλq Ñ px11, . . . ,x

1
λqs and Γ rpp1, . . . , pλq Ñ pΓ 1

1, . . . , Γ
1
λqs for multiple elements sub-

stitution. We do not bother to provide a formal de�nition.

Remark 5 It is easy to see that a variant of the substitution conjecture with multiple elements
substitution is equivalent with the single element substitution description as stated in Conjec-
ture 1.
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5.1 The family FΓ,I of access structures

Let Γ and Γ 1 be two access structures on participant sets Q and Q1, respectively, and let I � Q.
We assume that Q and I � Q1 are disjoint; the reason for this assumption will be clear in a
moment. We �rst de�ne the access structure Γ rI Ñ Γ 1s.

Informally, Γ rI Ñ Γ 1s is an access structure obtained by substituting an instance of Γ 1 for
every participant of I in Γ , where the participant sets of all involved |I| � 1 access structures
are assumed to be disjoint.

More formally, for every p P I, let Q1
p � tpu � Q1 and de�ne the access structure Γ 1

p on

Q1
p as Γ 1

p �
 
tpu � A | A P Γ 1

(
. Note that Γ 1

p's are all isomorphic with Γ 1 and they all have
disjoint participant sets, also disjoint form Q. Let I � tp1, . . . , pλu. We then de�ne Γ rI Ñ Γ 1s �
Γ rpp1, . . . , pλq Ñ pΓ 1

p1 , . . . , Γ
1
pλ
qs.

Corollary 4. |P pΓ rI Ñ Γ 1sq| � |Q| � |I|p|Q1| � 1q.

The family FΓ,I � tΓmumPN of access structures is then recursively de�ned as Γm � Γ rI Ñ
Γm�1s, where Γ1 � Γ .

Example 4 Figure 2 depicts the �rst three members of the family FP3,I where P3 � ab�bc�cd
and I � tb, cu.

(a) Γ1 � P3 (b) Γ2 � P3rI Ñ Γ1s (c) Γ3 � P3rI Ñ Γ2s

Fig. 2: The �rst three members of the family FP3,I where P3 � ab� bc� cd and I � tb, cu

5.2 The lifting theorem

In this section, we present a lifting theorem, useful for boosting the information ratio of a family
of access structures under some conditions. First, we provide a de�nition and a key lemma.
Then, we present a second de�nition before stating our lifting theorem.

De�nition 7 (pB, T q-access structure). Let B P N, T P R� and Γ be an access structure. We
call Γ a pB, T q-access structure if there exists a subset I � P pΓ q of size |I| � B with minimum
total information ratio T . That is, for every pσpqpPP pΓ q P ΣpΓ q we have

°
pPI σp ¥ T .

Lemma 10 (Key lemma). Let Γ be a pB, T q-access structure on participant set Q and let
I � Q be a subset of size B with minimum total information ratio T . Let FΓ,I � tΓmumPN.
Then, for every m P N, we have

I. |P pΓmq| � p|Q| � 1qp1�B � . . .�Bm�1q � 1,
II. }x} ¥ Tm for every x P clpΣpΓmqq, assuming that the Part II of the substitution conjecture

(Conjecture 1) is true.

Proof. The �rst claim can be proved by an easy induction on m and using Corollary 4.
We continue to prove the second claim, also, by induction on m. The base case, m � 1,

trivially holds. Assuming that the claim holds for m P N, we show that it holds as well for
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m � 1; that is, }x1} ¥ Tm�1 for every x1 P clpΣpΓm�1qq. Let I � tpi1 , . . . , piλu. By Part
II of the substitution conjecture (see also Remark 5), there exists convecs x P clpΣpΓ qq and
xpi1 , . . . ,xpiλ P clpΣpΓmqq such that

x1 � xrpi1, . . . , iλq Ñ pxpi1 , . . . ,xpiλ qs .

Note that, by the induction hypothesis, }xp} ¥ Tm, for every p P I. Let x � pσpqpPQ and
recall that, by assumption,

°
pPI σp ¥ T . Consequently,

}x1} �
°
pPQzI σp �

°
pPI

�
σp}xp}

�
¥

°
pPI

�
σpT

m
�

� Tm
°
pPI σp

¥ Tm�1 .

[\

Corollary 5 (Simple lifting). Assume that the Part II of the substitution conjecture (Con-
jecture 1) is true. If there exist a pB, T q-access structure with B ¥ 2, then there exists a family
of access structures with average (and consequently maximum) information ratio ΩpnlogBpT {Bq

�
.

Proof. The condition B ¥ 2 implies T ¥ 2. Consequently, from Lemma 10, it follows that n �
|P pΓmq| ¤ |Q|Bm and }x} ¥ Tm ¥ T logBpn{|Q|q � ΩpnlogB T

�
. Hence, σ̃pΓmq � ΩpnlogBpT {Bq

�
.
[\

De�nition 8 (
�
bpnq, tpnq

�
-family of access structures). Let b, t : R� Ñ R� be two func-

tions. Let F � tΓkukPN be a family of access structures and denote nk � |P pΓkq|. We call F
a pbpnq, tpnqq-family if, for every k P N, Γk is a

�
bpnkq, tpnkq

�
-access structure. That is, there

exists a subset Ik � P pΓkq of size |Ik| � bpnkq with minimum total information ratio tpnkq.

Theorem 1 (Lifting theorem). Assume that the Part II of the substitution conjecture (Con-

jecture 1) is true. Let b, t : R� Ñ R� be two functions such that bpxq ¥ 2 and fpxq � log tpxq
log bpxq

is increasing. If there exists a
�
bpnq, tpnq

�
-family of access structures, then, for any 0   ε   1

2 ,

there exists a family of access structures with total information ratio at least np1�2εq log tpnεq
log bpnεq . Ad-

ditionally, if fpxq is eventually everywhere di�erentiable, f 1pxqx ln x
fpxq � Op1q, and fpxq � ωp1q,

then the the average (and consequently maximum) information ratio of the family is nΩ
�

log tpnq
log bpnq

�
.

Proof. Let F � tΓkukPN be the
�
bpnq, tpnq

�
-family. For every k P N, denote nk � |P pΓkq| and let

Ik � P pΓkq be a subset of size |Ik| � bpnkq with minimum total information ratio tpnkq. That
is, for every pσpqpPP pΓkq P ΣpΓkq it holds that

°
pPIk

σp ¥ tpnkq.
Consider the setting of Lemma 10 for the family FΓk,Ik � tΓk,mumPN. We have |Q| � nk,

B � bpnkq and T � tpnkq. Let d �
1
ε ¡ 2 and denote mk � pd� 2q lognk

log bpnkq
.

Consider the family F 1 � tΓ 1
kukPN of access structures where Γ 1

k � Γk,rmks. By Lemma 10
(Part I), our choice for mk and taking into account that 2 ¤ bpnkq ¤ nk, we have:

|P pΓ 1
kq| ¤ |Q|Brmks ¤ nkbpnkq

mk�1 � nkn
d�2
k bpnkq ¤ ndk .

Also, by Part II of Lemma 10, for every x P clpΣpΓ 1
kqq, we have

}x} ¥ T rmks ¥ tpnkq
mk � n

pd�2q
log tpnkq
log bpnkq

k .

By letting n � |P pΓ 1
kq| and taking into account the increasing propery of fpxq � log tpxq

log bpxq , we

then get:
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}x} ¥ n
d�2
d

log tp d?nq
log bp d?nq � np1�2εq log tpnεq

log bpnεq ,

proving the �rst part of the claim.

Consequently, σ̃F 1pnq ¥ np1�2εq log tpnεq
log bpnεq�1 and the additional condition log tpxq

log bpxq � ωp1q implies

that σ̃F 1pnq � nΩ
�

log tpnεq
log bpnεq

�
. The remaining part of the claim is a corollary of Lemma 11 (Part

I), given below. [\

For proving the �nal claim of Theorem 1, we only relied on the Part I of Lemma 11. Roughly
speaking, Part II of the lemma shows that if, for some function fpxq, it is possible to ignore ε
and simplify the lower bound, then f is polylogarithmic (that is, fpxq � Opplog xqkq for some
real number k ¥ 0). Part III of the lemma indicates that, not for every polylogarithmic function,

the simpli�cation is allowed. In fact, due to Part I, f
1pxqx ln x
fpxq is necessarily unbounded for such

functions.

Lemma 11. Let f : R� Ñ R� be some function.

I. If f is eventually everywhere di�erentiable and f 1pxqx ln x
fpxq � Op1q, then fpxεq � Ωpfpxqq for

every 0   ε   1.
II. If f is bounded on any bounded interval and fpxεq � Ωpfpxqq for some 0   ε   1, then f is

polylogarithmic.
III. There exist a continuous, di�erentiable and polylogarithmic f such that fpxεq � Ωpfpxqq for

every 0   ε   1.

Proof. To prove I, assume that f
1pxqx ln x
fpxq � Op1q. We show that, for any 0   ε   1, fpxq

fpxεq � Op1q;

this is equivalent to fpxεq � Ωpfpxqq.

Let hpxq � ln fpee
x

q and hence fpxq � ehpln ln xq. We have ln fpxq
fpxεq � hpzq � hpz � ε1q where

ε1 � � ln ε ¡ 0 and z � ln lnx. Also, by the Mean Value Theorem, we have hpzq � hpz �

ε1q � h1pz0qε
1 for some z0 P pz � ε1, zq. Since h1pzq � f 1pxqx ln x

fpxq � Op1q, it then follows that

hpzq � hpz � ε1q � Op1q for any ε1 ¡ 0, indicating that fpxq
fpxεq � Op1q.

To prove II, let fpxεq � Ωpfpxqq for some 0   ε   1. That is, there exisit some M ¡ 1 and
α ¡ 1 such that fpxq ¤ αfpxεq for all x ¥M .

Let x ¥M and choose an integer m such that

xε
m

 M ¤ xε
m�1

,

or equivalently, m � r log logM�log log x
log ε s� 1.

It is easy to prove by induction that fpxq ¤ αmf
�
xε
m�

. Also, note that

αm�1 ¤ α
log logM�log log x

log ε � α
log logM

log ε � plog xq�
logα
log ε .

Since 1 ¤ xε
m

  M and f is bounded on any bounded interval, it holds that f
�
xε
m�

¤ T ,
for some T P R�. Consequently, we have

fpxq ¤ ααm�1T � α
log logM

log ε �1 � T � plog xq�
logα
log ε .

That is, fpxq � Opplog xqkq for k � � logα
log ε .

The function fpxq � 22rlog log log xs

is an example for Part III, but it is not continuous. It is
easy to construct continuous and di�erentiable approximations of this function, satisfying the
required conditions.

[\
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5.3 A nΩp log n
log log n q lower bound

The following theorem is proved by direct application of our lifting theorem.

Theorem 2 (A nΩp logn
log logn q lower bound). There exists a family of access structures with

average (and consequently maximum) information ratio nΩp logn
log logn q, assuming that the Part II

of the substitution conjecture (Conjecture 1) is true.

Proof. For any integer k ¥ 2, Csirmaz [16] has constructed an access structure Ak with 2k�k�2
participants. Csirmaz has proved that the maximum information ratio of the family tAku is
Ωpn{ log nq. To show this, he has exhibited a subset I � P pAkq of size k such that for every
pσpqpPP pAkq P ΣpAkq it holds that

°
pPI σp ¥ 2k � 1. That is, tAku is a

�
Θplog nq,Ωpnq

�
-family.

Consequently, the lifting theorem promisses a family of access structures with average/maximum

information ratio nΩp logn
log logn q. [\

5.4 Can we do better?

Let �rst introduce some notations.

De�nition 9 (pb1, t1q-regular family of access structures). Let f, g : R� Ñ R� be two
functions. We say that g is f -regular if g � Opfq or g � ωpfq. Let b, t, b1, t1 : R� Ñ R� be
functions and F be a

�
bpnq, ntpnq

�
-family of access structures. We call F a pb1, t1q-regular family

if b is b1-regular and t is t1-regular.

Notation. The restriction of a function f with domain D on domain A � D is denoted by
f |A. Let f, g : R� Ñ R� be two functions and A � R�. We say that f |Apxq � Opgpxqq, if there
exists positive numbers c, x0 such that for every x P AX rx0,8q it holds that fpxq ¤ cgpxq.

Suppose that one wishes to improve our bound by applying the lifting theorem on a plog n, 1q-
regular family of access structures; i.e., one that falls into one of the following four categories:�
Oplog nq, nOp1q

�
-,
�
ωplog nq, nOp1q

�
-,
�
Oplog nq, nωp1q

�
-, or

�
ωplog nq, nωp1q

�
-family.

Lemma 13 rules out the �rst three categories; that is, improvements may be possible only
by lifting a

�
ωplog nq, nωp1q

�
-family when restricted to plog n, 1q-regular families. Unfortunately,

a well-known negative result shows that the currently known techniques fail to �nd such a
family. More precisely, Csirmaz has shown that, by merely using the Shannon information in-
equalities [22,13], the best that one can achieve is to construct a

�
bpnq, tpnq

�
-family of access

structures with tpnq ¤ n2; see Theorem 3.5 in [16]. Beimel and Orlov [7] have shown that even by
incorporating the so-called non-Shannon information inequalities [39] with four or �ve variables,
unknown at time of publication of [16], the Csirmaz barrier still is valid; see [29] for a follow-up.
We conclude that the best lower bound that can be achieved by lifting a plog n, 1q-regular family

of access structures, constructed using similar methods, is nΩp logn
log logn q.

We need the following lemma, which is a generalization of Lemma 7, for proving Lemma 13.

Lemma 12. Let Γ be a pB, T q-access structure. Then, T ¤ B2B�1.

Proof. Let I � P pΓ q be a subset of size B with total information ratio at least T . To prove the
claim, we show that Γ admits a secret sharing scheme such that the information ratio of every
participant p P I is exactly 2B�1.

In the Sperner system, let Γ �
°
J�I

�
ΓJ

±
pPJ p

�
, where ΓJ is an access structure on

participant set P 1 � P zI. More precisely, ΓH � tA � P 1 | A P Γ u and ΓJ � tA � P 1 |
A R Γ,AY J P Γ u, for every non-empty J � I.
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Let m ¥ 2 be an integer. It is well-known that every access structure admits a secret sharing
scheme with secret space Zm [20]. Let ΠJ be such a secret sharing schemes for ΓJ . We construct
a secret sharing scheme for Γ such that the secret is uniform over Zm and every participant p P I
receives a random vector of length 2B�1 over Zm. To share a secret s P Zm, for each non-empty

J � I, we choose a uniformly random prp,JqpPJ P Z|J|m and give the share rp,J to p P J . Then,
we share s �

°
pPJ rp,J as a secret using the scheme ΠJ . The secret s is also shared using the

scheme ΠH. Clearly, the resulting scheme realizes Γ . Every participant p P I receives an element
of Zm for each subset of I that includes p; there are exactly 2B�1 such subsets. Consequently,
the information ratio of each participant p P I is 2B�1. [\

Lemma 13 (Lifting limit). Let b, t : R� Ñ R� be two functions where bpxq ¥ 2. Let F �
tΓkukPN be a

�
bpnq, tpnq

�
-family of access structures. Denote A � t|P pΓkq|ukPN and fpxq �

log tpxq
log bpxq .

I. If bpxq � Oplog xq, then f |Apxq � Op log x
log log x q.

II. If tpxq � xOp1q and bpxq � ωplog xq, then f |Apxq � Op log x
log log x q.

Proof. According to Lemma 12, we have tpnq ¤ bpnq2bpnq�1, for every n P A. Consequently,

fpnq � log tpnq
log bpnq ¤

bpnq�1
log bpnq � 1, for every n P A.

Note that the function x�1
log x is increasing for x ¥ 2. Therefore, bpxq � Oplog xq implies that

f |Apxq � Op log x
log log x q, proving Part I.

For proving Part II, �rst note that tpxq � xOp1q implies log tpxq � Oplog xq and bpxq �
ωplog xq implies log bpxq � Ωplog log xq. Consequently, f |Apxq � Op log x

log log x q. [\

6 Conclusion

The crypto community lacks suitable approaches for constructing complex, yet analyzable, access
structures. We believe that the substitution technique, originally introduced by Martin in [26]
and further developed in this paper, is an initiation in this direction.

The introduced notion of convec set leaves several problems unanswered. Apart from the in-
triguing substitution conjecture, a list of suggested open problems were discussed in Section 3.6.
Solving any of these questions may change our understanding of secret sharing schemes.

Additionally, proving/refuting the USD conjecture is left for future. Fortunately, if this con-
jecture turns out to be false, our lifting theorem �Theorem 1, which is useful for amplifying
the information ratio of a family of access structures� will not be a�ected.

Our best lower bound nΩ
�

log tpnq
log bpnq

�
for information ratio is achieved by applying our lifting

theorem to Csirmaz [14,16] family of access structures. This family has a subset of size Θplog nq
with total information ratio Ωpnq. To improve our lower bound using the lifting theorem, roughly
speaking, it is necessary to �nd a family of access structures that has a subset of size ωplog nq with
total information ratio nωp1q. A negative result by Csirmaz, strengthened by others, shows that
current techniques are impotent in �nding such a family; see Section 5.4 for further discussion.

The concept of convec set is an initiation for studying other sets associated to access struc-
tures, which are probably easier to comprehend. For an access structure Γ , the convec set
ΣpΓ q conveys much more information than the parameter σpΓ q (and its tilde version). One can
naturally de�ne the linear and polymatroid convex sets ΛpΓ q and KpΓ q, which are natural ex-
tensions of the parameters λpΓ q and κpΓ q (and their tilde version), introduced in [25]. Studying
the properties of these sets is left for future.
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Last but not least, our statement of the substitution conjecture is given for two access
structures with disjoint participant sets. It is unclear what to expect when the participant sets
are not disjoint.

Acknowledgment. The proof of Lemma 11 is due to Morteza Fotouhi.
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