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Abstract. In this paper, we study the relation of single-key impossible
differentials with the related-tweakey/key ones and propose an interest-
ing algorithm that can efficiently derive longer related-tweakey/key im-
possible differentials from single-key ones. With application of the MILP
technique, the algorithm can be converted an automatic tool for search-
ing related-tweakey/key impossible differentials.
We use this automatic tool to analyze QARMA-64 and give a 11-round
key recovery attack, which attacks one more round than the best previous
result. Moreover, we also analyze Joltik-BC-128, a internal tweakable
block cipher of an authenticated encryption candidate of the CAESAR
competition Joltik and our result can attack two more rounds than the
result given by the cipher designers.

Keywords: Tweakable block cipher · Impossible differential attack ·
RelatedTweakey · MILP · Tweakey framework.

1 First Section

In the last decades, a lot of block ciphers have been proposed. A key point for
these ciphers to be accepted and used by industry is to provide a reliable securi-
ty evaluation. Recently, cryptanalysts find many classical cryptanalysis methods
could be converted to mathematical optimization problems which aims to achieve
the minimal or maximal value of an objective function under certain constraints.
Mixed-integer Linear Programming (MILP) is the most widely studied technique
to solve these optimization problems. One of the most successful applications of
MILP is to search differential and linear trails. Mouha et al.[1] first applied MILP
method to count active Sboxes of word-based block ciphers. Then, at Asiacrypt
2014, Sun et al. [2] extended this technique to search differential and linear trails,
whose key idea is to derive some linear inequalities through the H-Representation
of the convex hull of all differential patterns of S-box. Sun et al. also provided
a greedy algorithm to select certain number of linear inequalities from hundreds
of linear inequalities produced by SageMath [3]. Based on H-Representation of
the convex hull of S-box and Sun et al.’s greedy algorithm, Xiang et al. [4]
introduced a MILP model to search integral distinguisher, Sasaki et al. [5] and



Cui et al. [6] gave the MILP-based impossible differential search model inde-
pendently. There are many more MILP-based tools proposed recently, such as
MILP-based differential/linear search model for ARX ciphers [7], MILP-based
conditional cube attacks [8, 9] on Keccak [10], etc. Since MILP-based automated
evaluation tools could help evaluating various complicated designs in short term,
it is being explored intensively by worldwide researchers. In the aspect of search-
ing impossible differential, Sasaki et al. [5]’s MILP model could not cover the
search of related-tweakey/key impossible differential. Cui emphet al. [6] studied
a special case of related-key impossible differential of LBlock. However, it is not
a general model and could not be applied to other ciphers trivially. In all, to
find the related-tweakey/key impossible differentials using MILP-based method
is still an open problem.

Our Contributions: We propose an interesting method that can derive
longer related-tweakey/key impossible differentials from single-key ones. The
method is heavily reliant on the key schedule. By using the MILP technique, we
convert this method to be three MILP modeling process and make it into an
automatic tool for searching related-tweakey/key impossible differentials.

We successfully apply this tool to QARMA-64 and Joltik-BC-128 and give
the best analysis results of both these two block ciphers.

2 MILP Model to Search Related-Key Impossible
Differential

In 2014 [11], the TWEAKEY framework with goal to unify the design of tweak-
able block ciphers and of block ciphers resistant to related-key attacks was pro-
posed. Since then, many proposals, for example, Deoxys-BC, Joltik-BC, SKIN-
NY and QARMA [12], have followed the TWEAKEY framework and thus take
a unified tweakey input instead of a pair key/tweak. For these proposals, the
related-key setting is more risky. There are two reasons:

1. One original feature of a tweakable block cipher is that the extra cost of
making a block cipher “tweakable” is small. To satisfy this requirement,
many tweakable block ciphers adopt a very simple (fully linearity) tweakey
schedule. The attacker can utilize the tweakey schedule to mount a related-
key attack efficiently;

2. What’s more, the tweak part can be public, thus it can be totally controlled
by the attacker. Obtaining a specific tweakey differential is more easier, for
example, we can just get all nonzero difference from the the tweak part and
set the difference of the key part to zero.

Considering the popular future that more tweakable block ciphers will adopt
the TWEAKEY framework, the related-tweakey analysis result will be a signif-
icant evaluation criteria for these ciphers.



This section introduces a method that can automatically derive longer related-
key3 impossible differentials from single-key impossible differentials. General idea
of this method is that by importing tweak/key differences that are equal to the
input and output difference of the original single-key impossible differential,
check whether the tweak/key differential and the related-key impossible differ-
ential still holds. In order to describe this idea more concretely, we introduce the
following notations, as shown in Fig. 1:

n the block size of the block cipher, in this paper we assume the bit
length of the round tweak/key is also n;

∆i the input difference (before key addition) of the i-th round cipher;
∆′i the input difference (after key addition) of the i-th round cipher;
∆ki the difference of the i-th round key or tweak ki, in Tweakable Block

cipher, it is the Tweakey.
Fig. 1 shows a framework to construct a new related tweak/key impossible

differential from a r-round single-key impossible differential. We summarise the
procedures in Algorithm 1.
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Fig. 1. Framework of Our Work

In Algorithm 1, there are three MILP models to be solved, i.e.M1,M2 and
M3.

– In step 1-6, we follow the ideas to find single-key impossible differential from
Sasaki et al. [5] and Cui et al. [13]. IfM1 is infeasible, an r-round single-key
impossible differential is found with input and output differences (∆i

′ = ∆x,
∆i+r = ∆y).

– In step 7-9, a MILP model M2 is constructed to test whether the r′-round
tweak/key differential of the cipher’s key schedule is valid with ∆ki = ∆x
and ∆ki+r = ∆y. We are going to use the tweak/key differences to introduce
the input and output differences of the r-round cipher. If M2 is feasible,
that means there is no contradiction in the tweak/key differential of the r′-
round key/tweak Schedule. If M2 is infeasible, that means there is not any
tweak/key pair that satisfy ∆ki = ∆x and ∆ki+r = ∆y.
For linear tweakey schedule, such as Joltik-BC, Deoxys-BC, QARMA, given
∆x and ∆y:

3 We use “related-key” and “related-tweakey” equivalently as the method can be ap-
plied to both block ciphers and tweakable block ciphers.



Algorithm 1: Related-key impossible differential searching algorithm
based on MILP technique

Input: Block cipher E , i and r
Output: Related-tweak/key impossible differential

1 for All differences ∆x do
2 for All differences ∆y do
3 Construct MILP model M1 describing the differential behaviour of the

r-round cipher shown in Fig. 1 in the single-key setting;
4 Add constraints to M1 by setting ∆i

′ = ∆x and ∆i+r = ∆y;
5 if M1 is infeasible then
6 //An r-round single-key impossible differential obtained [5, 13];
7 Construct MILP model M2 describing the differential behaviour of

the r′-round tweak/key schedule;
8 Add constraints to M2 by setting ∆ki = ∆x and ∆ki+r = ∆y;
9 if M2 is feasible then

10 Construct MILP model M3 describing the related-tweak/key
differential behaviour of r′-round cipher;

11 Add constraints to M3 by setting ∆ki = ∆x and ∆ki+r = ∆y,
setting ∆i

′ = ∆x and ∆i+r = ∆y;
12 if M3 is infeasible then
13 Compute ∆ki−1 and ∆ki+r+1 from the tweak/key schedule

by setting ∆ki = ∆x and ∆ki+r = ∆y;
14 if ∆ki−1 6= 0 and ∆ki+r+1 6= 0 then
15 Return (r + 2)-round related tweak/key impossible

differential with input and output differences
(∆i−1 = ∆ki−1, ∆′i+r+1 = ∆ki+r+1)

16 else
17 If ∆ki−1 = 0, continue to compute ∆ki−2, and if

∆ki−2 6= 0, return (r + 3)-round impossible differential
(∆i−2 = ∆ki−2, ∆′i+r+1 = ∆ki+r+1);

18 ......



• If the tweakey size is n (equals to the block size), one of the two conditions
∆ki = ∆x and ∆ki+r = ∆y is satisfied, thus we could only extend
the trail in one direction, and r + 1-round related-tweakey impossible
differential is expected to find.

• If the tweakey size is 2n, it is expected that there is only one tweakey
differential characteristic, whose probability is 1, that satisfy ∆ki = ∆x
and ∆ki+r = ∆y on average. Thus an r + 2-round related-tweakey im-
possible differential is expected to find.

• If the tweakey size is 3n, not only the two conditions ∆ki = ∆x and
∆ki+r = ∆y could be satisfied, but also one of ∆ki−1 = 0 and ∆ki+r+1 =
0 conditions could be satisfied in step 17. Thus we could extend one more
round to get an r + 3-round related-tweakey impossible differential.

For nonlinear tweakey schedules, we have more freedom. Since an input key
difference of an S-boxes will get many more possible output differences, that
means if we fixed the above two constrains in the input and output sides,
there will be a key differential characteristic on average with certain proba-
bility smaller than 1. And M2 will output the feasible solution. However, it
is more like a weak-key setting, that the valid keys must belongs to a given
very small subset of the full key space. Thus for nonlinear tweakey schedules,
our algorithm still work, but the distinguisher will be weaker.

– In step 10-13, M3 is constructed and solved.

• If M3 is feasible, that means the added tweak/key differences to the
r-round single-key differential model M2 makes it feasible. Thus the r′-
round related tweak/key differential is possible. item IfM3 is infeasible,
we get a r′-round related tweak/key impossible differential.

– In step 14-18, we extend the r′-round related tweak/key impossible differen-
tial to r + 2 rounds or more.

3 The Application to QARMA Block Cipher

QARMA is a lightweight tweakable block cipher recently accepted by FSE 2017
which has been used by the ARMv8 architecture to support a software protection
feature. It contains two versions: QARMA-64 and QARMA-128. In this paper,
we focus on QARMA-64, for more information, we refer to [14].

3.1 The Tweakable Block Cipher QARMA-64

QARMA-64 is a SPN structure with 14 rounds and the central construction (two-
round functions and a Pseudo-Reflector construction). The encryption process
can be seen as a sequence of operations on the 64-bit internal state together
with a tweak and the key. Internal state size of QARMA-64 can be represented
as sixteen 4-bit cells, which are indexed in big endian order, while the bits in a



cell are ordered in little endian order, e.g., a plaintext P can be expressed as:

P = p0‖p1‖p2‖ · · · ‖p15 =


p0 p1 p2 p3

p4 p5 p6 p7

p8 p9 p10 p11

p12 p13 p14 p15

 (1)

The forward round function F includes 4 operations:
KeyAddition(K ): The ith 64-bit round key Ki is XORed to the state S

with the round tweak Ti and round constant ci.
ShuffleCell(τ): This operation is a simple cell permutation, i.e.,

S0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 → S0,11,6,13,10,1,12,7,5,14,3,8,15,4,9,2. (2)

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→ �→ �→ �→ �→ �→

�→ �→ �→

Fig. 2. The Column-wise Active State Transitions for the Matrice in QARMA-64

MixColumn(M ): Each column of the cipher internal state array is mul-
tiplied by an involutory matrix M . All possible transitions of M is depicted in
Fig. 2.

M =


0 ρ ρ2 ρ
ρ 0 ρ ρ2

ρ2 ρ 0 ρ
ρ ρ2 ρ 0

 . (3)

The multiplication of an element of the array with ρi is just a simple left circular
rotation of the element by i bits.



Table 1. Sbox of QARMA-64

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

δ0 0 14 2 10 9 15 8 11 6 4 3 7 13 12 1 5

δ1 10 13 14 6 15 7 3 5 9 8 0 12 11 1 2 4

δ2 11 6 8 15 12 0 9 14 3 7 4 5 13 2 1 10

SubCell(S): Apply the non-linear 4× 4 S-box in parallel on each nibble of
the state. The designer propose three kinds of Sbox shown in 1.

The backward round function is the inverse of the forward round function.
Notice that a short version of the forward round function exists in the first
forward round and the last backward round which omits the ShuffleCell and
MixColumn operation.

The central construction is made up of one forward round, one backward
round and a Pseudo-Reflector constructions. The Pseudo-Reflector construction
includes four parts which is essentially a ShuffleCell-MixColumn-KeyAddition-
Inverse ShuffleCell operation.

For convenience, we use T ji to denote the jth nibble of the tweak state inside

the ith round, similarly, for the cipher internal state: Xi
τ−→ Yi

M−→ Zi
S−→Wi.

The Tweak (T) Update Function
There are two operations for the tweak during every round:W and H. The H

operation is a nibble permutation:H = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11];
the W operation is essentially a LFSR that updated the 4-bit tweak cells from
(b3, b2, b1, b0) to (b0⊕ b1, b3, b2, b1) with indexes (0, 1, 3, 4, 8, 11, 13).

The Key Schedule
In the attack on QARMA-64 of this paper, all used round keys(K5,6,13,14,15)

are the same value. They are decided by the same 64 bits of the master key. For
more information about the key schedule, we refer to [14].

3.2 Proposition

Proposition 1 (Differential Property of Sbox, [15]).
Given the nonzero input and output differences of an Sbox, there exists only

one pair of actual values on average to satisfy these two differences.

3.3 A 7-Round Related-tweak Impossible Distinguisher for
QARMA-64

Apply Algorithm 1 to QARMA-64, we obtain a related-tweak impossible distin-
guisher of QARMA that contains 7 round functions (6-12) and the Pseudo −
Reflector construction, shown in Fig. 3. The distinguisher is explained in a
miss-in-the-middle method.

Distinguisher:



The differential: (00000000000∆W 11
5 0000)→ (000000∆W 6

13000000000) is im-
possible when the following conditions are satisfied:

(1) ∆W 11
5 is the only active nibble of ∆W5; (2) ∆T 11

6 is the only active nibble
of ∆T6; (3) ∆W 11

5 = ∆T 11
6 ; (4) ∆W 6

13 is the only active nibble of ∆W13; (5)
∆T 6

12 is the only active nibble of ∆T12; (6) ∆W 6
13 = ∆T 6

12; (7) Choose ∆T 0
11 that

Sbox(ρ ·∆T 0
11 ⊕ x)⊕Sbox(x)=W(∆T 0

11) has no solutions4.
Proof:
In the forward direction, as shown in Fig. 3, when condition (1)-(3) are

satisfied, according to the transition property of the ShuffleCell operation and
the MixColumn operation, ∆X0,5,10,15

8 will be inactive nibbles with probability
1.

And when condition (2) is satisfied, according to tweak update function,
∆T 15

8 will be an active nibble. Thus, after an KeyAddition operation, ∆W 10
9 is

still inactive.
In the backward direction, when condition (4)-(6) are satisfied, it’s easy to

verify that ∆Y12, ∆Z12 and ∆W12 will be all inactive. The only active nibble
∆X0

11 will come from ∆T 0
11. After a round function, ∆W 4,8,12

11 will be all active.
Notice that ∆Z4

11 = ρ · ∆Y 0
11 = ρ · ∆X0

11 = ρ · ∆T 0
11 and ∆W 4

11 = ∆T 4
10 ⊕

∆X4
10 =W(∆T 0

11)⊕∆X4
10, thus condition (7) will insure that ∆X4

10 is an active
nibble as Sbox(∆Z4

11) = (∆W 4
11) must have solutions.

After another two backward rounds, the active nibbles (∆X4,8,12
10 , ∆T 11

9 ) will
insure that ∆Y 1,4,5,7,8,9,10,12,14,15

9 are all active nibbles and the other 6 nibbles
in ∆Y9 are all inactive nibbles.

By now, as the contradiction is only related to ∆Y 10,14
9 , we only consider the

transition situation of the third column. According to Fig. 2, when ∆Y 10,14
9 are

the only two active nibbles in the third column of ∆Y9, ∆Z10,14
9 will also be two

active nibbles with probability 1.
Thus, in the backward direction, ∆Z10

9 is active; after a SubCell operation,
in the forward direction, ∆W 10

9 is inactive.
This is a contradiction, thus when all 7 conditions are satisfied, the differential

is impossible.

3.4 Attack on 11-Round QARMA-64

Based on the distinguisher in 3.3, we mount an attack on 11-round QARMA-
64 with the Pseudo − Reflector construction from round 5 to round 15. The
distinguisher used in the attack is from round 7 to round 12.

Attack Procedure

(1) Choose two tweaks (T, T ) satisfying that Sbox(ρ·∆T 0
11⊕x)⊕Sbox(x)=W(∆T 0

11)
has no solutions.

4 There are many values of ∆T 0
11 that satisfy condition (7), e.g., ∆T 0

11 = 0001 for
QARMA-64 employing Sbox δ0 or δ1 and ∆T 0

11 = 0010 for QARMA-64 employing
Sbox δ2.
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Fig. 3. 7-Round Related-tweak Impossible Distinguisher of QARMA-64. White nibbles
have zero difference, nibbles with x have non-zero difference, nibbles with o can be zero
or non-zero difference.

(2) Under T , construct 2n structures that each structure traverse 4 nibbles:
P 7,8,11,13
5 and the other 12 nibbles are constants; under T , construct 2n

structures that each structure satisfies that a): P 7,8,11,13
5 traverses all possible

values, b): P 4
5 = ∆T 4

5

⊕
Y 4
5 , and c): the values of the other 11 nibbles are

the same as the corresponding 11 nibbles of P5.
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Fig. 4. Related-tweak Impossible Attack on 11 Rounds of QARMA-64

Totally, we can get 2n+32 pairs.
(3) Encrypt the plaintexts and only choose the pairs that satisfy ∆C0,5,13,15 = 0

and ∆C10 = ∆T 10
15 .

This step performs a 20-bit filter, there are 2n+12 pairs remaining.
(4) For the remaining pairs, do the following steps:

(4.a) Guess the value of K7,8,13
5 and encrypt the pairs to deduce the value of

(W 7,8,13
5 ,W 7,8,13

5 ).
According to the key schedule, we can also known the value of K7,8,13

6 , so we
can deduce ∆X7,8,13

6 . As Y 3,7,11
6 = X13,7,8

6 , we also get the value of ∆Y 3,7,11
6 .

After a MixColumn operation, 2n+4 pairs that satisfy ∆Z3,7,11
6 = 0 remain.

(4.b) According to key schedule, K7,8
15 = K7,8

5 . By guessing the value of K2
15, we

can know the value of K2,7,8
15 and get the value of (Z2

15, Z
2
15) by decrypting

(C2, C2). After a SubCell operation, we get (W 2
15,W

2
15).

Also asK2,7,8
14 = K2,7,8

15 , we can get the value of (X2,7,8
14 , X2,7,8

14 ). After another
ShuffleCell and MixColumn operation, we can get the value of ∆Z3,7,11,15

14 .

2n−4 pairs that satisfy ∆Z7,11,15
14 = 0 remain. The value of (W 3

14,W
3
14) can

also be deduced.
(4.c) Guess the value of K11

5 , encrypt the pairs to get the value of ∆W 11
5 . About

2n−8 pairs that satisfy ∆W 11
5 = ∆T 11

6 remain.
Till now, we get the pairs that satisfy the input difference of the distinguisher:
∆Z15

6 is the only active nibble in ∆Z6.



(4.d) By guessing K1,4
15 , together with the value of K11

15 as K11
15 = K11

5 , we decrypt

(C1,4,11, C1,4,11). We can get the value of (W 1,4,11
15 ,W 1,4,11

15 ).

As K1,4,11
14 = K1,4,11

15 , we can also get the value of (X1,4,11
14 , X1,4,11

14 ). After
a ShuffleCell and Mixcolumn operation, we can get the value of ∆Z1,5,9,13

14 .
About 2n−16 pairs that satisfy ∆Z1,5,13

14 = 0 remain. For the left pairs,

(W 9
14,W

9
14) is also known.

(4.e) Guess the value of K14
15 and decrypt (C14, C14) to deduce the value of

(Z14
15 , Z

14
15 ). After a SubCell operation, we can get the value of ∆W 14

15 . About
2n−20 pairs that satisfy ∆W 14

15 = ∆T 14
14 remain.

(4.f) Guess the value of K3,6,9,12
15 and decrypt (C3,6,9,12, C3,6,9,12) to deduce the

value of (X3,6,9,12
14 , X3,6,9,12

14 ) as K3,6,9,12
14 = K3,6,9,12

15 .

After another ShuffleCell and MixColumn operation, we can get the value of

(Z2,6,10,14
14 , Z2,6,10,14

14 ). To get the output difference of the distinguisher, only
pairs that satisfy ∆Z10,14

14 = 0 and ∆W 2
14 = ∆T 2

13 remain. For the pairs, the

value of (W 6
14,W

6
14) can also be deduced.

By now, only ∆X3,6,9
13 can be active nibbles in ∆X13. As K3,6,9

13 = K3,6,9
15 ,

we can get the value of (X3,6,9
13 , X3,6,9

13 ). After a ShuffleCell and MixColumn
and SubCell operation, we can get the value of ∆Z2,6,10,14

13 . Only pairs that

satisfy ∆Z2,10,14
13 = 0 and Sbox(Z6

13)
⊕
Sbox(Z6

13) = ∆T 6
12 remain.

This step performs a 24-bit filter, about 2n−44 pairs remain.

(5) Eliminate all the wrong key values and get the correct value of k1,4,11,14,3,6,9,12,2,7,8,130 .
Finally, we exhaustively search the other 80-bit value of the master key.

Complexity: For each 48-bit value of k1,4,11,14,3,6,9,12,2,7,8,130 , the expected num-
ber of left pairs is N = 2n−44. To ensure that N > 1, we choose n = 44. Then,
the date complexity is 244+16+1 = 261 plaintexts. The time complexity of the at-
tack procedure is shown in 2. E denotes a 11-round encryption unit from round
5 to round 15.

Table 2. Time Complexity of Attack on 11-Round QARMA-64

Step Time Complexity

(3) 261E
(4.a) 269 × 2× 3

16
× 1

12
≈ 264E

(4.b) 265 × 2× 3
16
× 1

12
≈ 260E

(4.c) 261 × 2× 1
16
× 1

12
≈ 254.5E

(4.d) 269 × 2× 3
16
× 1

12
≈ 260E

(4.e) 261 × 2× 1
16
× 1

12
≈ 254.5E

(4.f) 269 × 2× 1
16
× 1

12
+ 249 × 2× 1

16
× 1

12
≈ 262.5E

SUM 264.4E



4 The Application to Joltik-BC Block Cipher

4.1 The Tweakable Block Cipher Joltik-BC

In this section, we recall the details of Joltik-BC-128 block cipher. We assume
that the reader is familiar with the AES block cipher [16]. Fig. 5 shows the
structure of Joltik-BC-128.
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Fig. 5. Structure of Joltik-BC-128

Joltik-BC is the internal ad-hoc tweakable block cipher of the Joltik authenti-
cated encryption scheme, conforming to the TWEAKEY framework [11]. Except
the two standard inputs of a block cipher, a plaintext P and a key K, it adopts a
third input called a tweak T , i.e., EK(T, P ) = C. According to the TWEAKEY
framework, we can use a single input, called the tweakey, to unified view the the
tweak and the key. The length of the tweakey is the cumulative size of the key
and the tweak. For Joltik-BC-128, the tweakey size is 128-bit; for Joltik-BC-192,
the tweakey size is 192-bit. In this paper, we focus on Joltik-BC-128. For more
information, we refer to [17].

Joltik-BC is an AES-like design, i.e. it is an iterative substitution-permutation
network that transforms the initial plaintext through series of round function-
s (that depend on the key and the tweak) to a ciphertext. As most AES-like
designs, the state of Joltik-BC is seen as 4 × 4 matrix of nibbles, where each
nibble is a 4-bit word. We denote the base field by K as GF (16) defined by
the irreducible polynomial x4 + x+ 1 (sometimes noted in hexadecimal display
0x13). The number r of rounds is 24 for Joltik-BC-128. One round, similarly to
a round in AES, has the following four transformations applied to the internal
state.

Firstly we stress that to be consistent with the Joltik document, the index of
the internal state is in column major order, e.g., a plaintext P can be expressed
as:

P = p0‖p1‖p2‖ · · · ‖p15 =


p0 p4 p8 p12

p1 p5 p9 p13

p2 p5 p10 p14

p3 p6 p11 p15

 , (4)

which is different from the index rule of the QARMA block cipher.
Joltik-BC-128 round function. The round function, similar with AES,

has four operations applied to the internal state as follows:



– AddRoundTweakey(AK) - XOR the 64-bit round subtweakey (defined
further) to the internal state,

– SubNibbles(SB) - Apply the 4-bit Sbox S odefined below to the 16 nibbles
of the internal state,

– ShiftRows(SR) - Rotate the 4-nibble i-th row left by ρ[i] positions, where
ρ=(0,1,2,3),

– MixColumns(MC) - Multiply the internal state by the 4×4 constant MDS
matrix M defined below.

After the last round, a final AddRoundTweakey operation is performed
to produce the ciphertext.

The 4-bit SBox S we use in Joltik-BC is the one selected for the Piccolo block
cipher [18], and is exhaustively defined by: The MDS matrix M with coefficients

Table 3. Sbox of Joltik-BC-128

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 14 4 11 2 3 8 0 9 1 10 7 15 6 12 5 13

in K we use in Joltik-BC is non-circulant, MDS and involutory:

M =


1 4 9 13
4 1 13 9
9 13 1 4
13 9 4 1

 = M.

After the last round, a final AK operation is performed to produce the ci-
phertext.

Definition of the Subtweakey. The structure of the tweakey schedule
distinguish Joltik-BC from the classical construction of an AES-like block cipher.

Let us denote with STKi the subtweakey (a 64-bit word) that is added to
the state at round i of the cipher with the AddRoundTweakey operation. For
Joltik-BC-128, subtweakey is defined as:

STKi = TK1
i ⊕ TK2

i ⊕RCi.

The 64-bit words TK1
i , TK

2
i are outputs produced by a special key schedule

algorithm. A single instance of this algorithm, denotedas KS(W,α), takes as
inputs a 64-bit word W and a nibble α and produces subkeys TK0, TK1, . . . The
subkeys are produced sequentially, one from another (where TK0 = W ), by ap-
plying two permutations: a nibble permutation h, and a finite field multiplication
g:

TKi+1 = g(h(TKi)).



The nibble permutation h is defined as:(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
.

Furthermore, g is a finite field multiplication K of each nibble by α (recall
that α is input to the key schedule algorithm).

Let us define the inputs W and α. Denote the concatenation of the key K
and the tweak T as KT , i.e. KT = K||T . Then, in Joltik-BC-128, the size of KT
is 128 bits. The first (most significant) 64 bits of KT is W1, while the second W2.
Then, TK1

i are the output words of the key scheduling algorithm KS(W1, 1),
and TK2

i are the output words of the key scheduling algorithm KS(W2, 2).
Finally, RCi are the key schedule round constants, and are defined as:

RCi =


1 (rc5||rc4||rc3) 0 0
2 (rc2||rc1||rc0) 0 0
4 (rc5||rc4||rc3) 0 0
8 (rc2||rc1||rc0) 0 0


where rci are fixed constants.

4.2 Proposition

Proposition 2 (Subtweakey Difference Cancellation).
As noticed by the designers [17], a single subtweakey difference cancellation

can happen every 15 rounds for Joltik-BC-128. Suppose that a single cell of TK1

and TK2 are active. Let a1 and a2 be differences of the active cells respectively.
Then the subtweakey difference of the first round is a2 ⊕ a1 at this cell, and in
the ith round, the subtweakey difference is KSi(a2, 2)⊕ a1 ignoring the position
permutation h. Since a1 and a2 are both nonzero differences, KSi(a2, 2)⊕a1 = 0
can happen no more than one time.

4.3 A 6-round Related-Tweakey Impossible Distinguisher

Apply Algorithm 1 to Joltik-BC-128, we get a 6-round related-tweak impossible
distinguisher as shown in Fig. 6.

Similarly, we will explain the distinguisher in a miss-in-the-middle method.
Distinguisher
In Fig. 6, it is easy to verify that the differential from X1 to Z4 is impossible

in the single-tweakey scenario. X1[11] is the only active nibble of X1, after a
2-round encryption, all nibbles of Z2 are active. Z4[0, 1, 2] are the only 3 active
nibbles of Z4, after a 2-round decryption, X3 only have 12 active nibbles. As
Z2 = X3, we get contradictions in 4 nibbles.

In the related-tweakey setting, the differential:
(00000000∆W0[8]∆W0[9]0∆W0[11]0000)→ (000000∆X7[6]00000000∆X7[15])

is impossible when the following conditions are satisfied:
(1) ∆W0[8, 9] = ∆STK1[8, 9];



(2) ∆X7[6, 15] = ∆STK7[6, 15];

(3) ∆STK6 are inactive in all 16 nibbles;

(4) ∆Z4[3] = 0.

Proof:

In the forward direction, when condition (1) is satisfied, X1[11] will be the
only active nibble of X1. After a 1-round encryption, the fourth column of W1

will be active in all 4 nibbles. In the second round, STK2[9, 14] are the two active
tweakey nibbles, after xoring the internal state difference with ∆STK2 and the
second round function, W2 will be active in all 12 nibbles in the 1st, 2nd and
4th column.

In the backward direction, when conditions (2) and (3) are satisfied, all inter-
nal state nibbles in R5 and R6 are inactive. The difference of W4 will be imported
from STK5. Considering condition (4), Z4[0, 1, 2] are the only 3 active nibble of
Z4. After a SR and MC operation, X4 will be active only in X4[0, 5, 10]. Xor
∆X4 with ∆STK4, as the 4th column of W3 is inactive, after a MC, SR and SB
operation, the value of ∆X3[1, 6, 11, 12] will be 0. As ∆STK3[1, 6, 11, 12] = 0,
∆W2[1, 6, 11, 12] will also be 0.

So there are contradictions in W2[1, 11, 12] when considering both the forward
and backward direction, thus when all 4 conditions are satisfied, the differential
is impossible.

Note. In fact, the differential before the contradictions can have more possi-
bilities, for example, the active nibble of X1 can be anyone of the four nibbles of
the third column. It’s easy to verify that there are still contradictions existing,
but the index of contradict nibbles changes, the corresponding active nibbles of
W0 also change, respectively. In total, there are 24 × 4 = 26 possible related-
twekaey impossible differential applicable for the distinguisher.

4.4 The 9-round Key Recovery Attack

By adding one round on the top and two rounds on the bottom of the distin-
guisher in Sect. 4.3, we mount a 9-round key recovery attack on Joltik-BC-128.
The attack differential is shown in Fig. 7. The attack process is as follows:

1. Construct 2n structures that each structure is made up of 216 plaintexts. In
each structure, we set∆P [15] = ∆STK0[15] (a fixed value) and∆P [2, 7, 8, 13]
the 4 active bytes.

2. Choose (KT,KT ′) that the tweakey difference satisfy the subtweakey dif-
ference trail. Encrypt the plaintexts under two tweakeys and only choose the
pairs that satisfy∆Z8[1, 2, 4, 5, 11, 14, 15]MC(∆C⊕∆STK9)[1, 2, 4, 5, 11, 14, 15] =
0.

In total, we will get about 2n+16×2−4×7 = 2n+4 pairs.

For each of the remaining pairs, do the following steps:

3. As mentioned by the Note in the end of Sect. 4.3, there are 26 possible values
of ∆Z0[8, 9, 10, 11]. For each possible value of ∆Z0[8, 9, 10, 11], by a MC and
SR operation, we can deduce the difference value ∆Y0[2, 7, 8, 13].
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Fig. 6. The 6-round related-tweakey impossible distinguisher of Joltik-BC-128.

Considering that we can get the value of ∆X0[2, 7, 8, 13] from ∆P and
∆STK0 (known and fixed), by using Proposition. 2, we can deduce the
value of X0[2, 7, 8, 13]. So we can get 6-bit information of STK0[2, 7, 8, 13]
as STK0[2, 7, 8, 13] = P [2, 7, 8, 13]⊕X0[2, 7, 8, 13].

4. Guess the value of ∆Z7[3, 14].

We can straightly deduce ∆W7[0, 1, 2, 3, 12, 13, 14, 15] by a MC operation.
By xoring∆W7 with∆STK8, we get the value of∆X8[0, 1, 2, 3, 8, 12, 13, 14, 15].

In the backward direction, from ∆C and ∆STK9, we can get ∆W8. Af-
ter a MC and SR operation, we get the differences of active nibbles of
Y8:∆Y8[0, 1, 2, 3, 8, 12, 13, 14, 15]. By using Proposition. 2, we can get the val-
ue ofX8[0, 1, 2, 3, 8, 12, 13, 14, 15] and Y8[0, 1, 2, 3, 8, 12, 13, 14, 15]. As Y8[0, 1, 2, 3, 8, 12, 13, 14, 15]
= SRZ8[0, 13, 10, 7, 8, 12, 9, 6, 3] = MCSTK9⊕MCC. So we get 8-bit infor-
mation of STK9.
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Fig. 7. The 9-round attack on Joltik-BC-128.

What’s more, as ∆X7[6, 15] = ∆STK7[6, 15] and ∆Y7[6, 15] = ∆Z7[3, 14],
by using Proposition. 2, we can get the value of Y7[6, 15] and Z7[3, 14] =
Y7[6, 15]. As Z7[3, 14] = MC(X8)[3, 14]⊕MC(STK8)[3, 14]. So we also get
8-bit information of

5. We can use as the above steps to filter the wrong key values and then ex-
haustively search the left key bits.

Complexity Computation:

In total, the number of deduced key nibbles is 4 + 2 + 9 = 15, i.e., 60 bits
information of the tweakey. As we guess 28 values of ∆Y7[6, 15] and there are 26

possible values of ∆W0[8, 9, 10, 11], each pair can eliminate 214 values of the 60-
bit guessed tweakey information. To balance the time complexity and the data
complexity, we do not eliminate all wrong values of the 60-bit key information
but only filter 2−4 of it. So, to satisfy 260 × (1− 214/260)2

n+4 � 256, we choose
n = 44.

The data complexity is 244+16 = 260 plaintexts. The time complexity of step 3
for encrypting the plaintexts is 2 · 244+16 = 261. In step (3), the total number of
guesses is 24+n+14 = 262, which is equivalent to 262 ·(3/16+2/16+9/16)·1/9·2 ≈
260.4 9-round encryptions. Thus the time complexity is approximately 261.7 9-
round encryptions.



4.5 The 10-round Key Recovery Attack

x

x

x

x

x

x

x

x

o o x

o o x

x o o
o o o

x

x

o o x

o o x

x o o
o x o

o o x

o o x

x o o
o x o

o o x

o o x

o o x

o o x

o
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Contradiction!

R2

R3

R4

R5

R6

R7

R1
SB SR MC

SB SR

o
o
o
o

SB SR MC

SB SR MC

SB SR MC

SB SR MC

x

x

x

x

x

x

x
MC

R0

Fig. 8. The 6-round distinguisher for attacking 10-round Joltik-BC-128.

Distinguisher We also seek out another distinguisher and based on which
we propose a 10-round key recovery attack. The distinguisher is depicted in
Fig. 8.

The original single-key impossible differential used to derive the related-key
one is from X2 to Z4. It’s a 2.5-round impossible differential and easy to verify.

By utilizing Proposition. 2 and extending rounds both on the top and the bot-
tom of the single-key impossible differential, we get this 6-round related-tweakey
impossible distinguisher. As it is very similar with the one in Sect. 4.3, we do not
provide the detailed introduction. The only area of note is that once the MC
operation in R4 is a 3−to−2 transformation, so is the MC operation in R0. This



is because that ∆W4[0, 1] = ∆STK5[0, 1] and ∆W0[0, 1] = ∆STK1[0, 1] and the
correlation of ∆STK1 and ∆STK5. So we include Z0 into the distinguisher. The
full derivation process is given in 5.

Attack Process By adding two rounds both on the top and the bottom of
the distinguisher in Fig. 8, we successfully mount a 10-round key recovery attack
on Joltik-BC-128, shown in Fig. 9.

x

x

x

x

Distinguisher

R8

x

x

x

x

x
MC

R1 x

x

x

SR

x

x

x

SB

x

x

o
x

x

x

x o o
x o o
x o o
x o o

MC

R0 x o o
o x o
o o x

o o x

SR

x o o
o x o
o o x

o o x

SB

x

x

x o o
o x o
o o x

o o o

x x x

x x

x o
x x

x x x

x x

o x

x x

o o o o
o o o o
o o o o
o o o o

x

x

x x x

x x

x o
x x

R9
SB SR MC

x

x

x

x

x x

x x

x x

x x

SB SR MC

x

x

o o o o
o o o o
o o o o
o o o o

R10

P

C

Fig. 9. The 10-round attack on Joltik-BC-128.

The attack process is as follows:

1. Construct 2n structures that each structure is made up of 248 plaintexts. In
each structure, P [0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15] are the 12 active nibbles.

2. Choose (KT,KT ′) that the tweakey difference satisfy the subtweakey differ-
ence trail. Encrypt the plaintexts under two tweakeys and choose the pairs
that satisfy MC(∆C ⊕∆STK10)[1, 2, 4, 5, 11, 14, 15] = 0.

In total, we will get about 2n+48×2−4×7 = 2n+68 pairs.

For each of the remaining pairs, do the following steps:

3. Guess the value of ∆W0[2, 8, 13]. Since ∆STK1[8, 15] is known, we get the
value of ∆X1[2, 8, 13]. From ∆W1[8, 9], after a MC and SR operation, we
get the value of ∆Y1[2, 8, 13]. By using Proposition. 1, we can deduce the
value of X1[2, 8, 13].



What’s more, the difference value of all 4 active nibbles of W0 is also known,
by aMC and SR operation, we can know the value of∆Y0[0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15].

According to plaintext difference and∆STK0[6, 15], we can get the difference
value of X0[0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15]. Using Proposition. 1, we get the
value ofX0[0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15] and Y0[0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15].

Since STK0[0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15] = X0[0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15]⊕
Y0[0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15], we can get 12-bit information of the 12
nibbles tweakey information.

From Y0[0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 15], we can deduce the value ofW0[2, 8, 13],
together with the value of X1[2, 8, 13], we can get the value of STK1[2, 8, 13].

4. To recover the 28-bit of 11-nibble tweakey information of STK9 and STK10,
the guessing and deducing process is totally same with Step. 4 as the differ-
ential of R8 and R9 in Fig. 9 is same with the differential of R7 and R8 in
Fig. 7.

5. Once there are pairs left, the guessing values are wrong. Eliminate all wrong
tweakey values and exhaustively search the left key bits and recover the
whole tweakey.

Complexity Computation:

In total, we can deduce 12 + 3 + 9 + 2 = 26 nibbles, 104 bits information of
the tweakey. As we guess 220 values of (∆W0[2, 8, 13], ∆Y8[14, 7]), each pair can
eliminate 220 values of the 104-bit guessed tweakey information. Also, to balance
the time and data complexity, 2104× (1− 220/2104)2

68+n � 1, we choose n = 23.

The data complexity is 248+23 = 271 plaintexts. The time complexity of step
(1) for encrypting the plaintexts is 2·248+23 = 272. The total number of guesses is
268+n+20 = 2111, which is equivalent to 2111·(12/16+3/16+2/16+9/16)·1/10·2 ≈
2109.5 10-round encryptions. Thus the time complexity is approximately 2109.5

10-round encryptions.

5 Conclusion

We propose an algorithm that can derive longer related-tweakey/key impossible
differentials from single-key ones. By utilizing the MILP technique, we convert
this algorithm into three MILP models and propose an automatic tool for search-
ing relate-tweakey/key impossible differentials.

The analysis results of QARMA-64 and Joltik-BC-128 give proofs of the
validity of this tool. In fact, the results of these two block ciphers are both best
results as far as we know. What’s more, we can apply this method to more
ciphers with similar key schedules, for example, SKINNY and Deoxys-BC.

We welcome other researcher using this method to analyze other ciphers and
give improvements.



Appendix

Considering the tweakey schedule,

TK1
6 [i] = TK1

5 [i] = TK1
1 [i],

TK2
6 [i] = 32 · TK2

1 [i],

TK2
5 [i] = 16 · TK2

1 [i].

As we set the MC in R4 a 3-to-2 transformation, then:

13 ·∆W4[0]⊕ 9 ·∆W4[1] = 13 ·∆STK5[0]⊕ 9 ·∆STK4[1] = 0,

STK5[0] = TK1
5 [0]⊕ TK2

5 [0],

STK5[1] = TK1
5 [1]⊕ TK2

5 [1].

STK6 is inactive in all 16 nibbles, so:

∆TK1
1 [8] = 32 ·∆TK2

1 [8],

∆TK1
1 [9] = 32 ·∆TK2

1 [9].

Combing all above equations, we get:

13 ·∆TK1[8]⊕ 9 ·∆TK2[9] = 0.

Then, as ∆W0[8, 9] = ∆STK1[8, 9], after a MC operation, as shown in Fig. 8,
the third column of Z1 will active only in the first three nibbles.
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