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Abstract. We propose a new reaction attack on the public-key cryp-
tosystem LEDApkc. The adversary uses the decoding failure rate (DFR)
analysis to learn information about the secret masking matrix Q. Pro-
vided the adversary learns information about Q within 104×DFR−1 de-
cryptions (as prescribed by LEDApkc design to thwart previously known
attacks), the adversary builds a small set of candidates for Q. Using these
candidates, the adversary obtains candidates for a generator matrix of
the secret LDPC code. Afterwards, the adversary applies Stern’s algo-
rithm to recover the secret matrix H, thus recovering the full private
key.
Provided the adversary can learn information about the matrix Q, the
complexity of the attack is below 299 for a parameter set for 128-bit
security. In order to study whether the adversary can learn information
about Q from 104×DFR−1 decryptions, we conducted experiments with
a modified parameter set. The parameter set was modified only in order
to increase the DFR, and thus make experiments less computationally
expensive. We show that with the modified parameter set it is indeed
possible to learn the required information about the matrix Q.

Keywords: LEDApkc, QC-LDPC McEliece cryptosystem, reaction attack, post-
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1 Introduction

LEDApkc, [1], is a public-key cryptosystem recently submitted to NIST’s Post-
Quantum Cryptography Standardization Process. It is very similar to the QC-
LDPC McEliece cryptosystem, which was presented by Baldi and Chiaraluce in
[2], and later amended in [3]. Following the work of Guo et al., [5], Fabšič et
al. recently showed that a reaction attack can be mounted on the QC-LDPC
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McEliece cryptosystem [4]. The attack is facilitated by a dependence between
secret matrices H and Q and the probability of the decoding failure (aka de-
coding failure rate, DFR) in the decryption algorithm. This dependence allows
an adversary to learn information about the secret matrices H and Q, provided
the adversary sends a large number of ciphertexts and learns whether they were
successfully decrypted or not. In particular, the adversary learns the distances
between the set bits (i.e. the bits equal to 1) in rows of H and in rows of Q. Sim-
ilarly as in the QC-LDPC McEliece cryptosystem, the private key in LEDApkc
contains matrices H and Q. To avoid the attack of Fabšič et al., the authors of
LEDApkc propose to use a single key-pair in LEDApkc for at most 104×DFR−1

decryptions.

In this paper we propose a reaction attack on LEDApkc, which differs from
the previous reaction attack on QC-LDPC McEliece. The adversary in our attack
is limited by the fact that he can send at most 104 × DFR−1 ciphertexts for
decryption. After learning whether these ciphertexts were successfully decrypted,
the adversary only tries to learn the distances in the matrix Q. The reason for
this is that distances in Q are easier to distinguish than distances in H, as was
demonstrated in [4]. If the adversary is able to learn the distances in Q, he
can then build a set of candidates for Q. Using these candidates, the adversary
obtains candidates for a generator matrix of the secret LDPC code. Afterwards,
the adversary applies Stern’s algorithm, [8], to find low-weight codewords in the
dual of the secret LDPC code and thus recover the secret matrix H. The attack
by Stern’s algorithm was already considered in [2], and it was the reason for
adding the matrix Q to the QC-LDPC McEliece cryptosystem.

Provided the adversary can learn the distances in the matrix Q, the com-
plexity of the attack is below 299 for a parameter set for 128-bit security. The
authors of LEDApkc claim that for this parameter set the value of DFR is ap-
proximately 8.3 × 10−9. In order to study whether the adversary can learn the
distances in Q from 104 × DFR−1 decryptions we conducted experiments with
a modified parameter set. The parameter set was modified in order to increase
the DFR and thus make experiments less computationally expensive. We show
that with a modified parameter set with the DFR of around 10−2 it is indeed
possible to learn the required information about the matrix Q.

Our attack is relevant for cryptosystems based on QC-LDPC codes which
use a sparse masking matrix Q with a small number of blocks. However, this
attack is not applicable to similar QC-MDPC designs, [7], as they lack the extra
masking matrix and vectors of small enough weight in the secret matrix H.

2 LEDApkc

For a detailed description of LEDApkc, we refer the reader to [1]. Here, we only
highlight facts which are crucial for the attack.

The private key in LEDApkc consists of two matrices: H and Q. The matrix
H is a sparse parity-check matrix for an LDPC code which is able to correct t



errors. Q is a square matrix and it is very sparse. Both H and Q are composed
of circulant blocks.

The public key is formed by a matrix G′. G′ is in the systematic form and it
is again composed of circulant blocks. G′ has the property that

G′(HQ)T = 0. (1)

The sender encrypts the plaintext u to obtain the ciphertext x as follows:

x = uG′ + e, (2)

where e is a randomly generated error vector with Hamming weight t.
To decrypt the message, the receiver uses a bitflipping algorithm which em-

ployes the matrices H and Q. The decryption fails with some probability. This
probability is referred to as the decoding failure rate (DFR).

To achieve IND-CCA2 security, the authors of LEDApkc use the Kobara-Imai
γ-conversion [6].

3 The Attack

To avoid the reaction attack presented in [4], the authors of LEDApkc propose
to use a single key-pair for at most 104×DFR−1 decryptions. In this section, we
propose a different reaction attack. Our attack consists of the following steps:

1. The adversary sends at most 104 ×DFR−1 ciphertexts and always observes
whether the ciphertext was successfully decrypted or not.

2. Using this information, the adversary will try to learn the distances between
the set bits in rows of Q. To learn the distances the adversary will proceed
exactly as in [4].

3. Provided he succeeded to learn the distances, the adversary will build a set
of candidates for Q (by the same method as in [4]).

4. Afterwards, the adversary will use the fact that 0 = G′(HQ)T = (G′(QT ))HT ,
which means that G′(QT ) is a generator matrix for the secret LDPC code.
Thus the attacker will build a set of candidates for a generator matrix of the
secret LDPC code.

5. The adversary will apply Stern’s algorithm [8] on these candidates to find
a low-weight codeword in the dual of the secret LDPC code and thus will
recover the matrix H.

In the rest of this section, we will present the attack for the parameter set
for 128-bit security with n0 = 2 circulant blocks in H from [1]. This means
that H will be of the form [H0|H1], where H0 and H1 are circulant matrices of
dimension p × p, where p = 27779. Each column of H0 and H1 has Hamming
weight equal to dv = 17. The matrix Q has the form

Q =

[
Q1 Q2

Q3 Q4

]
,



where each Qi is again a circulant matrix of dimension p × p (p = 27779).
Each row of Q1 and Q4 has Hamming weight equal to m0 = 4 and each row
of Q2 and Q3 has Hamming weight equal to m1 = 3. For these parameters, the
authors of LEDApkc propose the value of t equal to 224 and they claim that
the cryptosystem then has DFR equal to approximately 8.3× 10−9. In order to
decrease computational costs of our experiments, we ran the experiments with
modified values of t, resulting in higher values of DFR.

3.1 Learning Distances in Q

We define the distance between two ones in positions p1 and p2, p2 > p1, in a
vector v of length p in the same way as in [5]:

d(p1, p2, p) = min {p2 − p1, p− (p2 − p1)} .

Following [5], we call the set of all distances present in v the distance spectrum of
v, and we denote it as DS(v). Our definition implies that in a circulant matrix,
every row has the same distance spectrum. Thus by a distance spectrum of a
circulant matrix C (denoted as DS(C)) we will mean the distance spectrum of
its first row.

We ran an experiment which is a variation of experiments in [5] and [4]. This
experiment is presented in Algorithm 1. We used the reference implementation
of LEDApkc submitted to NIST’s Post-Quantum Cryptography Standardization
Process. This implementation includes the Kobara-Imai γ-conversion [6]. In the
implementation we increased the value of t to 254. We also increased the value
of the parameter MAX ENCODABLE BIT SIZE CW ENCODING to 2320, to
avoid artificially high number of ones towards the end of the error vector e. With
these changes, DFR increased to approximately 10−2.

Algorithm 1

INPUT: DFR
OUTPUT: vectors a, b, y and z

1. a ← zero-initialized vector of length bp/2c
2. b ← zero-initialized vector of length bp/2c
3. y ← zero-initialized vector of length bp/2c
4. z ← zero-initialized vector of length bp/2c
5. i← 0
6. while i < 104 ×DFR−1 do:

(a) encrypt the zero vector using LEDApkc (we denote the output by c) and
extract the error vector e used during the encryption

(b) divide e as e = (e1|e2), where each ei has length p
(c) s ← distances between ones in e1

(d) r ← distances between ones in e2

(e) decrypt c using LEDApkc
(f) l ← 1 if the decoding failure occurs, 0 otherwise



(g) for d from 1 to bp/2c do:
i. if s[d] ≥ 1 then:

A. a[d]← a[d] + l
B. b[d]← b[d] + 1

ii. if r[d] ≥ 1 then:
A. y[d]← y[d] + l
B. z[d]← z[d] + 1

(h) i← i+ 1

Algorithm 1 outputs four vectors: a, b, y, z. The value of a[d]
b[d] represents the

estimated probability of the decoding failure for ciphertexts with the property
that the first half of the error vector contains distance d. Similarly, the value of
y[d]
z[d] represents the estimated probability of the decoding failure for ciphertexts

with the property that the second half of the error vector contains distance d.
We can see the results of the experiment in Figure 1 and Figure 2. The results

show that based on the values of a[d]
b[d] , one can distinguish which distances are

present in blocks Q1 and Q3 (or equivalently in blocks QT
1 and QT

3 , since a
circulant matrix and its transpose have the same distance spectrum). Similarly,

the results show that based on the values of y[d]
z[d] , one can distinguish which

distances are present in blocks Q2 and Q4 (or equivalently in blocks QT
2 and QT

4 ).
This is because during the decryption process the error vector e gets multiplied
by QT . This means that the first half of e gets multiplied by Q1

T and Q3
T and

the second half by Q2
T and Q4

T . If the first half of e shares a distance with
either Q1 and Q3, then the resulting product eQT has lower Hamming weight
which leads to a lower probability of the decoding error. Similarly for the second
half of e and blocks Q2 and Q4. A more detailed explanation of this phenomenon
can be found in [4].

We conducted the same experiment with different values of t and we no-
ticed one interesting phenomenon: As t decreased it was easier to distinguish
the distances present in Q. Details are presented in Appendix. We conjecture
that this phenomenon occurs due to the changing slope of the error-correction
performance curve (the curve which shows the DFR of the decoder as a function
of the number of errors in a codeword) of the decoder in LEDApkc.

3.2 Reconstruction of QT

Using the same method as in [4], the adversary reconstructs from the results in
Figure 1 two pairs of vectors

{
q̃11 , q̃

2
1

}
and

{
q̃13 , q̃

2
3

}
, such that one vector from the

pair
{
q̃11 , q̃

2
1

}
defines the block QT

1 up to a cyclic shift and one vector from the

pair
{
q̃13 , q̃

2
3

}
defines the block QT

3 up to a cyclic shift. Similarly, using the results

in Figure 2, adversary reconstructs two pairs of vectors
{
q̃12 , q̃

2
2

}
and

{
q̃14 , q̃

2
4

}
,

such that one vector from the pair
{
q̃12 , q̃

2
2

}
defines the block QT

2 up to a cyclic

shift and one vector from the pair
{
q̃14 , q̃

2
4

}
defines the block QT

4 up to a cyclic
shift.



Fig. 1. Values of a[d]
b[d]

from the experiment presented in Algorithm 1. Values associated
to distances present in one of the circulant blocks Q1 and Q3 are marked by red squares.

Fig. 2. Values of y[d]
z[d]

from the experiment presented in Algorithm 1. Values associated
to distances present in one of the circulant blocks Q2 and Q4 are marked by red squares.



Let us express this in terms of polynomials. We will use the fact that the
ring of circulant binary matrices of dimension p × p is isomorphic to the ring
Z2[x]/(xp + 1). The isomorphism maps a circulant matrix with the first row
(c0, c1, c2, . . . , cp−1) onto the polynomial c(x) = c0+c1x+c2x

2+· · ·+cp−1xp−1. In
addition, let v(x) be the polynomial associated to the vector v = (v0, v1, . . . , vp−1)
under the mapping v 7→ v0 +v1x+v2x

2 + · · ·+vp−1x
p−1. Below, let us represent

circulant blocks by their corresponding polynomials. Then the adversary knows
that QT is of the form

QT =

[
xk1 q̃1(x) xk3 q̃3(x)
xk2 q̃2(x) xk4 q̃4(x)

]
,

for some q̃1 ∈
{
q̃11 , q̃

2
1

}
, q̃2 ∈

{
q̃12 , q̃

2
2

}
, q̃3 ∈

{
q̃13 , q̃

2
3

}
, q̃4 ∈

{
q̃14 , q̃

2
4

}
and some

k1, k2, k3, k4 ∈ {0, . . . , p− 1}.

3.3 Reconstruction of a Generator Matrix for the Secret LDPC
Code

Afterwards, the adversary can build a set of candidates for the matrix G =
G′(QT ). Since 0 = G′(HQ)T = (G′(QT ))HT , G is a generator matrix for the
secret LDPC code. Since G′ is in systematic form, we can represent it as G′ =
[1|g(x)], g(x) ∈ Z2[x]/(xp + 1). Thus we obtain that G is of the form

G =
[
xk1 q̃1(x) + xk2 q̃2(x)g(x) xk3 q̃3(x) + xk4 q̃4(x)g(x)

]
, (3)

for some q̃1 ∈
{
q̃11 , q̃

2
1

}
, q̃2 ∈

{
q̃12 , q̃

2
2

}
, q̃3 ∈

{
q̃13 , q̃

2
3

}
, q̃4 ∈

{
q̃14 , q̃

2
4

}
and some

k1, k2, k3, k4 ∈ {0, . . . , p− 1}.
If G given by Equation (3) is a generator matrix of the secret LDPC code,

then so is the matrix G̃ given by

G̃ =
[
q̃1(x) + xk2−k1 q̃2(x)g(x) xk3−k1 q̃3(x) + xk4−k1 q̃4(x)g(x)

]
,

since it can be obtained from G by a row permutation. Thus, for the adversary
it is enough to consider only matrices G of the form

G =
[
q̃1(x) + xl2 q̃2(x)g(x) xl3 q̃3(x) + xl4 q̃4(x)g(x)

]
, (4)

for some q̃1 ∈
{
q̃11 , q̃

2
1

}
, q̃2 ∈

{
q̃12 , q̃

2
2

}
, q̃3 ∈

{
q̃13 , q̃

2
3

}
, q̃4 ∈

{
q̃14 , q̃

2
4

}
and some

l2, l3, l4 ∈ {0, . . . , p− 1}.

3.4 Application of Stern’s algorithm

After obtaining the set of candidates for the matrix G, the adversary will apply
Stern’s algorithm [8] on these candidates to find a codeword of weight n0 × dv
in the dual of the secret LDPC code. Such word will allow the adversary to
reconstruct the matrix H.



In fact, it suffices to apply Stern’s algorithm on a subset of the set of can-
didates for G. Let v be a codeword of weight n0 × dv in the dual of the secret
LDPC code. Let v = (v1|v2), where each vi has length p. Suppose that

G =
[
q̃1(x) + xl2 q̃2(x)g(x) xl3 q̃3(x) + xl4 q̃4(x)g(x)

]
is a generator matrix of the secret LDPC code. Then we have

[
q̃1(x) + xl2 q̃2(x)g(x) xl3 q̃3(x) + xl4 q̃4(x)g(x)

](v1T
v2

T

)
= 0,

which can be rewritten as

[
q̃1(x) + xl2 q̃2(x)g(x) q̃3(x) + xl4−l3 q̃4(x)g(x)

] [1 0
0 xl3

](
v1

T

v2
T

)
= 0.

Thus, the dual of the code generated by the matrix[
q̃1(x) + xl2 q̃2(x)g(x)|q̃3(x) + xl4−l3 q̃4(x)g(x)

]
contains the vector w, such that

wT =

[
1 0
0 xl3

](
v1

T

v2
T

)
.

The first half of w is equal to v1, and the second half is equal to v2 cyclically
shifted by l3 positions. This means that it suffices to apply Stern’s algorithm
only to matrices of the form

G =
[
q̃1(x) + xj2 q̃2(x)g(x) q̃3(x) + xj4 q̃4(x)g(x)

]
, (5)

for some q̃1 ∈
{
q̃11 , q̃

2
1

}
, q̃2 ∈

{
q̃12 , q̃

2
2

}
, q̃3 ∈

{
q̃13 , q̃

2
3

}
, q̃4 ∈

{
q̃14 , q̃

2
4

}
and some

j2, j4 ∈ {0, . . . , p− 1}. One of these matrices will then generate a code, dual of
which will contain a vector w of weight n0 × dv. Let w = (w1|w2), where each
wi has length p. The secret matrix H then must have the form

H = [xsw1(x)|xs+p−l3w2(x)], (6)

for some s ∈ {0, . . . , p− 1} and for the same l3 as in Equation (4).
For the parameter set for 128-bit security with n0 = 2 from [1], the adversary

has to consider 24 × 277792 < 233.5235 different candidates for G. The adversary
knows that one of these candidates generates a code, dual of which contain
a vector w of weight n0 × dv. The adversary will apply Stern’s algorithm to
candidates for G.

We consider Stern’s algorithm with parameters p = 3 and l = 48, and base
further results on the analysis of Stern’s algorithm in [8]. If the algorithm is
applied to the correct candidate for G, the algorithm will find w in one iteration
with probability PStern > 2−15.5540. If we run the algorithm 218 times then the



probability that it will succeed is greater than 1− (1−PStern)2
18

, which is more
than 99%.

Algorithm 2

INPUT: a set of candidates for the matrix G
OUTPUT: vector w of weight n0 × dv or ”No vector found.”

1. for every candidate G̃ for the matrix G do:
(a) for i from 1 to 218 do:

i. run one iteration of Stern’s algorithm on G̃
ii. if the iteration successfully finds w then:

A. return w
2. return ”No vector found.”

Let us consider Algorithm 2. With probability greater than 99%, Algorithm
2 will find the vector w. On average, the algorithm will have to test 232.5235

candidates for the matrix G before finding w. Using the analysis of Stern’s
algorithm in [8], the cost of one iteration of Stern’s algorithm for our parameters
is less than 247.9870 bit operations. Thus, the expected cost of Algorithm 2 is
below 232.5235 × 218 × 247.9870 = 298.5105.

3.5 Reconstruction of the Private Key

Suppose that Algorithm 2 ran successfully and that the adversary obtained the
vector w. The adversary then knows that the secret matrix H has the form
as described in Equation (6). In addition, when obtaining the vector w the
adversary also learns which candidate forG is the correct one. Thus the adversary
knows the correct values of q̃1, q̃2, q̃3, q̃4, j2 and j4 in Equation (5). Thus the
adversary knows that the secret matrix QT is of the form

QT =

[
xk1 q̃1(x) xk1+l3 q̃3(x)

xk1+j2 q̃2(x) xk1+l3+j4 q̃4(x)

]
,

for some k1, l3 ∈ {0, . . . , p− 1}, where l3 is the same l3 as in Equation (6).
Let

Q̃T =

[
q̃1(x) xl3 q̃3(x)

xj2 q̃2(x) xl3+j4 q̃4(x)

]
,

and let
H̃ = [w1(x)|xp−l3w2(x)].

Then

H̃Q̃ = [xp−s]HQ

[
xk1 0
0 xk1

]
= [xk1+p−s]HQ.

Thus H̃Q̃ is a parity-check matrix for the code generated by the public key G′.
Thus matrices H̃ an Q̃ can be used for decrypting ciphertexts. Everything in
matrices H̃ an Q̃ is known to the adversary, except for the value of l3. The value
of l3 can be determined by testing candidates for H̃ an Q̃ against a plaintext-
ciphertext pair. The cost of this testing is negligible compared to the cost of
Algorithm 2.
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Appendix

In figures 3, 4, 5 and 6 we present results from the experiment presented in
Algorithm 1 for different values of t.



Fig. 3. Values of a[d]
b[d]

from the experiment presented in Algorithm 1 with t = 268. The
parameter MAX ENCODABLE BIT SIZE CW ENCODING was set to 2400. Values
associated to distances present in one of the circulant blocks Q1 and Q3 are marked
by red squares.

Fig. 4. Values of a[d]
b[d]

from the experiment presented in Algorithm 1 with t = 263. The
parameter MAX ENCODABLE BIT SIZE CW ENCODING was set to 2400. Values
associated to distances present in one of the circulant blocks Q1 and Q3 are marked
by red squares.



Fig. 5. Values of a[d]
b[d]

from the experiment presented in Algorithm 1 with t = 258. The
parameter MAX ENCODABLE BIT SIZE CW ENCODING was set to 2350. Values
associated to distances present in one of the circulant blocks Q1 and Q3 are marked
by red squares.

Fig. 6. Values of a[d]
b[d]

from the experiment presented in Algorithm 1 with t = 251. The
parameter MAX ENCODABLE BIT SIZE CW ENCODING was set to 2280. Values
associated to distances present in one of the circulant blocks Q1 and Q3 are marked
by red squares.


