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Abstract

In this paper, we describe a new Las Vegas algorithm to solve the elliptic curve

discrete logarithm problem. The algorithm depends on a property of the group

of rational points of an elliptic curve and is thus not a generic algorithm. The

algorithm that we describe has some similarities with the most powerful index-

calculus algorithm for the discrete logarithm problem over a finite field.

1 Introduction

Public-key cryptography is a backbone of this modern society. Many of the public-key

cryptosystems depend on the discrete logarithm problem as their cryptographic primitive.

Of all the groups used in a discrete logarithm based protocol, the group of rational

points of an elliptic curve is the most popular. In this paper, we describe a Las Vegas

algorithm to solve the elliptic curve discrete logarithm problem.

There are two kinds of attack on the discrete logarithm problem. One is generic. This

kind of attack works in any group. Examples of such attacks are the baby-step giant-step

attack [7, Proposition 2.22] and Pollard’s rho [7, Section 4.5]. The other kind of attack

depends on the group used. Example of such attack is the index-calculus attack [7, Section

3.8] on the multiplicative group of a finite field. An attack similar to index calculus for

elliptic curves, known as xedni calculus, was developed by Silverman [8, 11]. However, it

was found to be no better than exhaustive search. Another simailar work in the direction

of ours is Semaev [10].

In this paper, we describe an attack which is particular to the elliptic curves. The

attack is a Las Vegas algorithm. The attack uses a theorem for elliptic curve. The idea

behind the attack is completely new and is of a completely different genre from the existing

ones [1, 3–5]. In comparison to xedni calculus, our algorithm is fairly straightforward to

understand, implement and is better than the exhaustive search.
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The main algorithm is divided into two algorithms. The first one reduces the elliptic

curve discrete logarithm problem to a problem in linear algebra. We call the linear

algebra problem, Problem L. This reduction is a Las Vegas algorithm with probability

of success 0.6 and is polynomial in both time and space complexity. The second half of

the algorithm is solving Problem L. This is the current bottle-neck of the whole algorithm

and better algorithms to solve Problem L will produce better algorithms to solve elliptic

curve discrete logarithm problem. The success of the main algorithm is 0.6× (log p)2 /p

where every pass is polynomial time in time and space complexity.

1.1 The central idea behind our attack

Let G be a cyclic group of prime order p. Let P be a non-identity element and Q(= mP )

belong to G. The discrete logarithm problem is to compute the m. One way to find m

is to find integers ni, for i = 1, 2, . . . , k for some positive integer k and 1 ≤ ni < p such

that
∑k

i=1 ni = m mod p. The last equality is hard to compute because we do not know

m. However we can decide whether

k∑
i=1

niP = Q (1)

and based on that we can decide if
∑k

i=1 ni = m mod p. Once the equality holds, we have

found m and the discrete logarithm problem is solved.

The number of possible choices of ni for a given k that can solve the discrete logarithm

problem is the number of partitions of m into k parts modulo a prime p. The applicability

of the above method depends on, how fast can one decide on the equality in the above

equation and on the probability, how likely is it that a given set of positive integers ni
sums to m mod p?

An obvious question is raised, can one choose a set of ni in such a way that the

probability of an equality is higher than the random selection? In the next section, we

find a way to check for equality in the case of elliptic curves, however our choice of ni is

uniformly random. Then the algorithm is somewhat straightforward, fix a k, choose ni
uniformly random and then check for equality. Once there is a set of ni for which the

equality is found, we have solved the discrete logarithm problem.

2 The elliptic curve discrete logarithm problem

The elliptic curve discrete logarithm problem (ECDLP) is the heart and soul of modern

public-key cryptography. This paper is about a new probabilistic algorithm to solve

this problem. Our algorithm is a fairly straightforward application of the Riemann-

Roch theorem. We denote by E(Fq) the group of rational points of the elliptic curve

E over Fq. It is well known that there is an isomorphism E(Fq) → Pic0(E) given by

P 7→ [P ]− [O] [9, Proposition 4.10].
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Theorem 2.1. Let E be an elliptic curve over Fq and P1, P2, . . . , Pk be points on that

curve, where k = 3n′ for some positive integer n′. Then
∑k

i=1 Pi = O if and only if there

is a curve C of degree n′ that passes through these points. Multiplicities are intersection

multiplicities.

Proof. Assume that
∑k

i=1 Pi = O in Fq and then it is such in the algebraic closure F̄q.
From the above isomorphism,

∑k
i=1 Pi 7→

∑k
i=1[Pi]− k[O]. Then

∑k
i=1[Pi]− k[O] is zero

in the Picard group Pic0
F̄q

(E). Then there is a rational function
φ

zn′ over F̄q such that

k∑
i=1

[Pi]− k[O] = div

(
φ

zn′

)
(2)

Bezout’s theorem justifies that deg(φ) = n′, since φ is zero on P1, P2, . . . , Pk. We now

claim, there is ψ over Fq which is also of degree n′ and passes through P1, P2, . . . , Pk.

First thing to note is that there is a finite extension of Fq, FqN (say) in which all the

coefficients of φ lies and gcd(q,N) = 1. Let G be the Galois group of FqN over Fq and

define

ψ =
∑
σ∈G

φσ. (3)

Clearly deg(ψ) = n′. Note that, since Pi for i = 1, 2, . . . , k is in Fq is invariant under

σ. Furthermore, σ being a field automorphism, Pi is a zero of φσ for all σ ∈ G. This

proves that Pi are zeros of ψ and then Bezout’s theorem shows that these are the all

possible zeros of ψ on E . The only thing left to show is that ψ is over Fq. To see that,

lets write φ =
∑

i+j+k=n′ aijkx
iyjzk. Then ψ =

∑
i+j+k=n′

∑
σ∈G a

σ
ijkx

iyjzk. However, it

is well known that
∑

σ∈G a
σ ∈ Fq for all a ∈ FqN .

Conversely, if we are given a curve C of degree n′ that passes through P1, P2, . . . , Pk.

Then consider the rational function C/zn′
. Then this function has zeros on Pi, i =

1, 2, . . . , k and poles of order k at O. The above isomorphism says
∑k

i=1 Pi = O.

2.1 How to use the above theorem in our algorithm

We choose k such that k = 3n′ for some positive integer n′. Then we choose random

points P1, P2, . . . , Ps and Q1, Q2, . . . , Qt such that s+ t = k from E and check if there is a

homogeneous curve of degree n′ that passes through these points. Where Pi = niP and

Qj = −n′jQ for some integers ni and n′j. If there is a curve, the discrete logarithm problem

is solved. Otherwise repeat the process by choosing a new set of points P1, P2, . . . , Ps and

Q1, Q2, . . . , Qt. To choose these points Pi and Qj, we choose a random point ni, n
′
j and

compute niP and −n′jQ. We would choose ni and n′j to be distinct from the ones chosen

before. This gives rise to distinct points Pi and Qj on E .

The only question remains, how do we say if there is a homogeneous curve of degree n′

passing through these selected points? One can answer this question using linear algebra.

Let C =
∑

i+j+k=n′ aijkx
iyjzk be a complete homogeneous curve of degree n′. We

assume that an ordering of i, j, k is fixed throughout this paper and C is presented
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according to that ordering. By complete we mean that the curve has all the possible

monomials of degree n′. We need to check if Pi, i = 1, 2, . . . , s and Qj for j = 1, 2, . . . , t

satisfy the curve C. Note that, there is no need to compute the values of aijk, just mere

existence will solve the discrete logarithm problem.

Let P be a point on E . We denote by P the value of C when the values of x, y, z in

P is substituted in C. In other words, P is a linear combination of aijk with the fixed

ordering. Similarly for Qs. We now form a matrix M where the rows of M are Pi for

i = 1, 2, . . . , s and Qj for j = 1, 2, . . . , t. If this matrix has a non-zero left-kernel, we have

solved the discrete logarithm problem. By left-kernel we mean the kernel of MT, the

transpose of M.

2.2 Why look at the left-kernel instead of the kernel

In this paper, we will use the left-kernel more often than the (right)kernel of M. We

denote the left-kernel by K and kernel by K′. We first prove the following theorem:

Theorem 2.2. The following are equivalent:

(a) K = 0.

(b) K′ only contain curves that are a multiple of E.

Proof. The proof uses a simple counting argument. First recall the well-known fact that

the number of monomials of degree d is
(
d+2

2

)
. Furthermore, notice two things – all

multiples of E belongs to K′ and the dimension of that vector-space (multiples of E) is(
n′−1

2

)
=

(n′ − 2)(n′ − 1)

2
, where n′ is as defined earlier.

Now, M was as defined earlier, has 3n′ rows and
(n′ + 1)(n′ + 2)

2
columns. Then

K = 0 means that the row-rank of M is 3n′. So the dimension of the K′ is

(n′ + 1)(n′ + 2)

2
− 3n′ =

(n′ − 2)(n′ − 1)

2
.

This proves (a) implies (b).

Conversely, if K′ contains all the curves that are a multiple of E then its dimension is

at least
(n′ − 2)(n′ − 1)

2
, then the rank is 3n′, making K = 0.

It is easy to see, while working with the above theorem M cannot repeat any row.

So from now onward we would assume that M has no repeating rows. For all practical

purposes this means that we are working with distinct(unique) partitions.

A question that becomes significantly important later is, instead of choosing k points

from the elliptic curve what happens if we choose k + l points for some positive integer

l. The answer to the question lies in the following theorem.

Theorem 2.3. If l ≥ 1, the dimension of the left kernel of M is l.
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Proof. First assume l ≥ 1. In this case, any non-trivial element of K′ will define a curve

which passes through more than 3n′ point of the elliptic curve. Since the elliptic curve is

irreducible, it must be a component of the curve. Thus the equation defining the curve

must be divisible by the equation defining the elliptic curve. Thus, the dimension of K′ is
the dimension of all degree n′ homogeneous polynomials which are divisible by the elliptic

curve. This is the same is the dimension of all degree n′ − 3 homogeneous polynomials.

Thus, we get

dim(K′) =
(n′ − 2)(n′ − 1)

2
.

On the other hand, by rank-nullity theorem, it follows:

dim(K′) + dim(image(M)) = (n′−2)(n′−1)
2

dim(K) + dim(image(MT)) = 3n′ + l.

Thus, since row rank and the column rank of a matrix are equal,

dim(K) = 3n′ + l − (n′ − 2)(n′ − 1)

2
+ dim(K′) = l.

Corollary 2.4. Assume that M has 3n′ + l rows, computed from the same number of

points of the elliptic curve E. If there is a curve C intersecting E non-trivially in 3n′ points

among 3n′ + l points, then there is a vector v in K with at least l zeros. Conversely, if

there is a vector v in K with at least l zeros, then there is a curve C passing through those

3n′ points that correspond to the non-zero entries of v in M.

Proof. Assume that there is a non-trivial curve C intersecting E in 3n′ points. Then

construct the matrixM′ whose rows are the points of intersection. Then from the earlier

theorem we see that K for this matrix M′ is non-zero. In all the vectors of K if we put

zeros in the place where where we deleted rows then those are element of the left kernel

of M. It is clear that these vectors will have at least l zeros.

Conversely, if there is a vector with at least l zeros in K, then by deleting l zeros from

the vector and corresponding rows fromM we have the required result from the theorem

above.

2.3 Veronese embedding and our algorithm

There is an alternate way of looking at our algorithm through Veronese embedding [6,

Page 21: Example 2.4 ]. We present that in this section.

We know that the sum of 3n′ points P1, P2, . . . , P3n′ on an elliptic curve E , embedded

in P2, is zero if and only if there exists a curve C of degree n′ in P2 such that the

algebraic-geometric intersection C ∩ E is the set {P1, . . . , P3n′}, counting multiplicity.

Given a collection of points P = {P1, P2, . . . , P3n′+l} on the elliptic curve, we need to find

some subset that has sum zero. To find this subset, we try to find a curve of degree n′
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which passes through 3n′ points of P . This can be thought of in the following way in

terms of the Veronese embedding.

Recall that the Veronese embedding νn′ : P2 → PD where D = (n′+1)(n′+2)
2

, is given by

νn′(x0 : x1 : x2) = (z1 : z2 : · · · : zD), where zi = x
ai1
1 x

ai2
2 x

ai3
3 for some bijection

Φ : {k ∈ Z | 1 ≤ k ≤ D} →
{

(n1, n2, n3) ∈ N3
∣∣n1 + n2 + n3 = n′

}
.

i 7→ (ai1, a
i
2, a

i
3)

We claim that a curve passes through 3n′ points {Pmi
, 1 ≤ i ≤ 3n′} if and only if

νn′(Pmi
) lie in a hyperplane H of PD. First, suppose that the curve of degree n′, given

by the equation
∑

i,j,k:i+j+k=n′ cijkx
i
1x

j
2x

k
3 = 0. Consider, the hyperplane H given by the

equation

H(z1, . . . , zD) =
D∑
i=1

cΦ(i)z
D.

It is clear that νn′(Pmi
) ∈ H. On the other hand, if νn′(Pmi

) ∈ H =
∑D

i=1 hizi, they lie

on the curve
∑D

i=1 hix
ai1
1 x

ai2
2 x

ai3
3 where (ai1, a

i
2, a

i
3) = Φ(i) as above.

To put it in an algebraic-geometric context, let v be the composition

E // //

v

>>P2 νn′ // PD.

The intersection of E with a curve of degree n′ corresponds to the zeroes of a section of

a degree n′ line bundle. Any such line bundle is the pull-back of a degree 1 line bundle

on PD via the Veronese map νn′ . The H, as defined above, defines the degree 1 divisor

corresponding to this line bundle on PD. Thus, the problem of finding which 3n′ points

among a collection of points P on an elliptic curve lie on a degree n′ curve reduces to

finding which 3n′ points in the image νn′(P) lie on a hyperplane. The latter is the linear

algebra problem that we are interested in.

3 The main algorithm – reducing ECDLP to a linear

algebra problem (Problem L)

The algorithm that we present in this paper has two parts. One reduces it to a problem

in linear algebra and the other solves that linear algebra problem which we call Problem

L. The first algorithm, Algorithm 1, is Las Vegas in nature with high success probability.

Furthermore, the algorithm is polynomial time in both time and space complexity.
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Algorithm 1: Reducing ECDLP to a linear algebra problem (Problem L)

Data: Two points P and Q, such that mP = Q

Result: m

Select a positive integers, n′ and l = 3n′. Initialize a matrix with 3n′ + l rows

and
(
n′+2

2

)
columns. Initialize a vector I of length 3n′ − 1 and another vector J

of length l + 1. Initialize integers A,B = 0.

repeat

for i = 1 to 3n′ − 1 do

repeat

choose a random integer r in the range [1, p)

until r is not in I
I[i]← r

compute rP

compute rP

insert rP as the ith row of the matrix M
end

for i = 1 to l + 1 do

repeat

choose a random integer r in the range [1, p)

until r is not in J
J [i]← r

compute −rQ
compute −rQ
insert −rQ as the (3n′ + i− 1)th row of the matrix M

end

compute K as the left-kernel of M
until K has a vector v with l zeros (Problem L)

for i = 1 to 3n′ − 1 do

if v[i] 6= 0 then

A = A+ I[i]

end

end

for i = 3n′ to 3n′ + l do

if v[i] 6= 0 then

B = B + J [i− 3n′ + 1]

end

end

return A×B−1 mod p
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3.0.1 Why is this algorithm better than exhaustive search

In the exhaustive search we would have picked a random set of 3n′ points and then

checked to see if the sum of those points is Q. In the above algorithm we are taking a

set of 3n′ + l points and then checking all possible 3n′ subsets of this set simultaneously.

There are
(

3n′+l
l

)
such subsets. This is one of the main advantage of our algorithm.

3.0.2 Probability of success of the above algorithm

To compute the probability, we need to understand the number of unique partitions of

an integer m modulo a prime p. For our definition of partition, order of the parts does

not matter. The number of partitions is proved in the following theorem:

Theorem 3.1. Let k be an integer greater than 2. The number of k unique partitions of

m modulo a odd prime p is
(p− 1)(p− 2) . . . (p− k + 2)(p− k)

k!
.

Proof. The argument is a straight forward counting argument. We think of k parts as k

boxes. Then the first box can be filled with p − 1 choices, second with p − 2 choices as

so on. The last but one, k − 1 box can be filled with p − k + 1 choices. When all k − 1

boxes are filled then there is only one choice for the last box, it is m minus the sum of

the other boxes. So it seems that the count is (p− 1)(p− 2) . . . (p− k + 1) choices.

However there is a problem, the choice in the last box might not be different from the

first k − 1 choices. To remove that possibility we remove a choice from the last but one

box. That choice is m minus the sum of the first k − 2 boxes divided by 2.

Since order does not matter, we divide by k!.

Consider the event, m is fixed, we pick k integers less than p. What is the probability

that those numbers form a partition of m. From the above theorem, number of favorable

events is
(p− 1)(p− 2) . . . (p− k + 2)(p− k)

k!
and the total number of events is

(
p
k

)
. Since

for all practical purposes k is much smaller than p, we approximate the probability to be
1
p
.

Now we look at the probability of success of our algorithm. In our algorithm we choose

3n′ points from 3n′ + l points. This can be done in
(

3n′+l
l

)
ways. Then the probability of

success of the algorithm is 1−
(

1− 1
p

)(3n′+l
l )

.

Let us first look at the
(

1− 1
p

)p
. It is well known that

(
1− 1

p

)p
tends to 1

e
when p

tends to infinity. So if we can make
(

3n′+l
l

)
close to p, then we can claim the asymptotic

probability of our algorithm is 1− 1
e

which is greater than 1
2
.

Since we are dealing with matrices, it is probably the best that we try to keep the

size of it as small as possible. Note that the binomial coefficient is the biggest when it is

of the form
(

2n
n

)
for some positive integer n. Furthermore, from Stirling’s approximation

it follows that for large enough n,
(

2n
n

)
≈ 4n√

πn
.

So, when we take 3n′ = l and such that
(

3n′+l
l

)
= p then l is the solution to the

equation l = O(1) + log l + log p.
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To understand the time complexity of this algorithm (without the linear algebra prob-

lem), the major work done is finding the kernel of a matrix. Using Gaussian elimination,

there is an algorithm to compute the kernel which is cubic in time complexity. Thus we

have proved the following theorem:

Theorem 3.2. When p tends to infinity, the probability of success of the above algorithm

is approximately 1− 1
e
≈ 0.6321. The size of the matrix required to reach this probability

is O(log p). This makes our algorithm polynomial in both time and space complexity.

3.1 Few comments

3.1.1 Accidentally solving the discrete logarithm problem

It might happen, that while computing rP and rQ in our algorithm, it turns out that for

some r1 and r2, r1P = r2Q. In that case, we have solved the discrete logarithm problem.

We should check for such accidents. However, in a real life situation, the possibility of

an accident is virtually zero, so we ignored that in our algorithm completely.

3.1.2 On the number of P s and Qs in our algorithm

The algorithm will take as input P and Q and produce different P s and Qs and the

produce a vector v with l many zeros. If all of these l zeros fall either in the place of P s

or Qs exclusively, then we have not solved the discrete logarithm problem. To avoid this,

we have chosen P s and Qs of roughly same size, with one more P than Q. This way the

vector v will have atleast one non-zero in the place of both P and Q.

3.1.3 Allowing, detecting and using multiple intersection points in our algo-

rithm

One obvious idea to make our algorithm slightly faster: allow multiplicities of intersection

between the curve C and the elliptic curve E . This will increase the computational

complexity. Since the elliptic curve is smooth at the points one is interested in, one

observes that with high probability the multiplicity of intersection will coincide with the

multiplicity of the point in C. This reduces to checking if various partial derivatives are

zero. This can easily be done by introducing extra rows in the matrix M. Then the

algorithm reduces to finding vectors with zeroes in a particular pattern. This is same as

asking for special type of solutions in Problem L. However, this has to be implemented

efficiently as probability of such an event occurring is around 1/p for large primes p.

4 Dealing with the linear algebra problem

This paper provides an efficient algorithm to reduce the elliptic curve discrete logarithm

problem to a problem in linear algebra. We call it the Problem L.

At this stage we draw the attention of the reader to some similarities that emerge

between the most powerful attack on the discrete logarithm problem over finite fields,
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the index-calculus algorithm, and our algorithm. In an index-calculus algorithm, the

discrete logarithm problem is reduced to a linear algebra problem. Similar is the case

with our algorithm. However, in our case, the linear algebra problem is of a different

genre and not much is known about this problem. In this paper, we have not been able

to solve the linear algebra problem completely. However, we made some progress and we

report on that in this section.

Problem L. Let W be a l-dimensional subspace of a n-dimensional vector space V . The

vectors in the vectors space are presented as linear sum of some fixed basis of V . The

problem is to determine, if W contains a vector with l zeros. If there is one such vector,

find that vector.

This problem is connected with the earlier algorithm in a very straightforward way.

We need to determine if the left-kernel of the matrix M contains a vector with l zeros

and that is where Problem L must be solved efficiently for the overall algorithm to run

efficiently. As is customary, we would assume that the kernel K is presented as a matrix

of size l × (3n′ + l), where each row is an element of the basis of K.

A algorithm that we developed, uses Gaussian elimination algorithm multiple times to

solve Problem L. In particular we use the row operations from the Gaussian elimination

algorithm. Abusing our notations slightly, we denote the basis matrix of K by K as well.

Now we can think of K to be made up of two blocks of l × l matrix. Our idea is to do

Gaussian elimination to reduce each of these blocks to a diagonal matrix one after the

other. The reason that we do that is, when the first block has been reduced to diagonal,

every row of the matrix has at least l − 1 zeros. So we are looking for another zero in

some row. The row reduction that produced the diagonal matrix in the first block might

also have produced that extra zero and we are done. However, if this is not the case, we

go on to diagonalize the second block and check for that extra zero like we did for the

first block.

Algorithm 2: Multiple Gaussian elimination algorithm

Data: The basis matrix K
Result: Determine if Problem L is solved. If yes, output the vector that solves

Problem L

for i=1 to 2 do

row reduce block i to a lower triangular block

check all rows of the new matrix to check if any one has l zeros

if there is a row with l zeros then

STOP and return the row

end

row reduce the lower-triangular block to a diagonal block

check all rows of the new matrix to check if any one has l zeros

end

STOP (Problem L not solved)
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5 Complexity, implementation and conclusion

5.1 Complexity

We describe the complexity of the whole algorithm in this section. First note that the

whole algorithm is the composition of two algorithms, one is Algorithm 1, which has

success probability 0.6 and the other is the linear algebra problem. It is easy to see

from conditional probability that the probability of success of the whole algorithm is the

product of the probability of success of Algorithm 1 and Algorithm 2.

Let us now calculate the probability of Algorithm 2 under the condition that Algo-

rithm 1 is successful. In other words, we know that Algorithm 1 has found a K whose

span contains a vector with l zeros. What is the probability that Algorithm 2 will find

it?

Notice that Algorithm 2 can only find zero if they are in certain positions and the

number of such positions is l2. Total number of ways that there can be l zeros in a vector

of size 3n′ + l is
(

3n′+l
l

)
. In our setting we have already assumed that

(
3n′+l
l

)
≈ p. Then

the probability of success of the whole algorithm is

0.6× (log p)2

p
.

Which is a significant improvement over exhaustive search!

One thing to notice, the probability of success is 1−
(

1− 1
p

)(3n′+l
l )

and in the proba-

bility estimate we have
(

3n′+l
l

)
in the denominator. Furthermore, one observes that in this

paper we have taken
(

3n′+l
l

)
to approximately equal the prime p. One can now question

our choice and argue, if we took
(

3n′+l
l

)
to be much smaller than p, we might get a better

algorithm. Alas, this is not the case, 1−
(

1− 1
p

)p 1
n

tends to 0 as p tends to infinity for

n ≥ 2.

5.2 Implementation

We have implemented the algorithm in sage [2]. Since the complexity of the algorithm is

only little better than exhaustive search there is no point in providing details of imple-

mentation. However, we would like to mention that the algorithm works flawlessly with

elliptic curves on fields of all characteristics.

5.3 Conclusion

We conclude this paper by saying that we have found a new genre of attack against the

elliptic curve discrete logarithm problem. This attack has some similarities with the well-

known index-calculus algorithm. In an index-calculus algorithm, the discrete logarithm

problem is reduced to a problem in linear algebra and then the linear algebra problem

is solved. However, the similarities are only skin deep as our linear algebra problem in

completely new.
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