Unbounded ABE via Bilinear Entropy Expansion, Revisited
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Abstract. We present simpler and improved constructions of unbounded attribute-based encryption (ABE) schemes
with constant-size public parameters under static assumptions in bilinear groups. Concretely, we obtain:

- asimple and adaptively secure unbounded ABE scheme in composite-order groups, improving upon a previous
construction of Lewko and Waters (Eurocrypt '11) which only achieves selective security;

- an improved adaptively secure unbounded ABE scheme based on the k-linear assumption in prime-order
groups with shorter ciphertexts and secret keys than those of Okamoto and Takashima (Asiacrypt '12);

- the first adaptively secure unbounded ABE scheme for arithmetic branching programs under static assump-
tions.

At the core of all of these constructions is a “bilinear entropy expansion” lemma that allows us to generate any
polynomial amount of entropy starting from constant-size public parameters; the entropy can then be used to
transform existing adaptively secure “bounded” ABE schemes into unbounded ones.
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1 Introduction

Attribute-based encryption (ABE) [25, 13] is a generalization of public-key encryption to support fine-
grained access control for encrypted data. Here, ciphertexts and keys are associated with descriptive
values which determine whether decryption is possible. In a key-policy ABE (KP-ABE) scheme for instance,
ciphertexts are associated with attributes like ‘(author:Waters), (inst:UT), (topic:PK)’ and keys with access
policies like ‘((topic:MPC) OR (topic:Qu)) AND (NOT(inst:CWI))’, and decryption is possible only when the
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attributes satisfy the access policy. A ciphertext-policy (CP-ABE) scheme is the dual of KP-ABE with
ciphertexts associated with policies and keys with attributes.

Over past decade, substantial progress has been made in the design and analysis of ABE schemes,
leading to a large families of schemes that achieve various trade-offs between efficiency, security and
underlying assumptions. Meanwhile, ABE has found use as a tool for providing and enhancing privacy in
a variety of settings from electronic medical records to messaging systems and online social networks.

As institutions grow and with new emerging and more complex applications for ABE, it became clear
that we need ABE schemes that can readily accommodate the addition of new roles, entities, attributes and
policies. This means that the ABE set-up algorithm should put no restriction on the length of the attributes
or the size of the policies that will be used in the ciphertexts and keys. This requirement was introduced and
first realized in the work of Lewko and Waters [21] under the term unbounded ABE. Their constructions have
since been improved and extended in several subsequent works [18, 23, 24, 2, 17, 3, 5, 12, 1] (cf. Fig 1, 2).

In this work, we put forth new ABE schemes that simultaneously:

(1) are unbounded (the set-up algorithm is independent of the length of the attributes or the size of the
policies);

(2) can be based on faster asymmetric prime-order bilinear groups;

(3) achieve adaptive security;

(4) rely on simple hardness assumptions in the standard model.

All four properties are highly desirable from both a practical and theoretical stand-point and moreover,
properties (1) — (3) are crucial for many real-world applications of ABE. Indeed, properties (2), (3) and
(4) are by now standard cryptographic requirements pertaining to speed and efficiency, strong security
guarantees under realistic and natural attack models, and minimal hardness assumptions. Property (2) is
additionally motivated by the fact that pairing-based schemes are currently more widely implemented and
deployed than lattice-based ones. There is now a vast body of works (e.g. [19, 22, 27, 2, 6, 3]) showing how to
achieve properties (2) — (4) for “bounded” ABE where the set-up time and public parameters grow with the
attributes or policies, culminating in unifying frameworks that provide a solid understanding of the design
and analysis of these schemes. Unbounded ABE, on the other hand, has received comparatively much less
attention in the literature; this is in part because the schemes and proofs remain fairly complex and delicate.
Amongst these latter works, only the work of Okamato and Takashima (OT) [23] simultaneously achieved

1) -@).

Our results. We present simpler and more modular constructions of unbounded ABE that realize properties
(1) - (4) with better efficiency and expressiveness than was previously known.

(i) We present new adaptively secure, unbounded KP-ABE schemes for monotone span programs —-which
capture access policies computable by monotone Boolean formulas— whose ciphertexts are 42% smaller
and our keys are 8% smaller than the state-of-the-art in [23] (with even more substantial savings with
our SXDH-based scheme), as well as CP-ABE schemes with similar savings, cf. Fig 3.

(ii) Our constructions generalize to the larger class of arithmetic span programs [15], which capture many
natural computational models, such as monotone Boolean formulas, as well as Boolean and arithmetic
branching programs; this yields the first adaptively secure, unbounded KP-ABE for arithmetic span
programs. Prior to this work, we do not even know any selectively secure, unbounded KP-ABE for
arithmetic span programs.

Moreover, our constructions generalize readily to the k-Lin assumption.

At the core of all of these constructions is a “bilinear entropy expansion” lemma [17] that allows us to
generate any polynomial amount of entropy starting from constant-size public parameters; the entropy can
then be used to transform existing adaptively secure bounded ABE schemes into unbounded ones in a single
shot. The fact that we only need to invoke our entropy expansion lemma once yields both quantitative and



reference adaptive assumption standard model reference |mpk| adaptive assumption

oriz 23 v 2-Lin v IW11 [21] OV static v/
RW13 [24] g-type v Attl4 2] OV v qg-type
Attl6 [3] v’ g-type+ k-Lin v KL15[17] Ologn) static v/
AC17 [1] v k-Lin, k=2 ours omv v static v/
ours v k-Lin, k=1V v

Fig. 2. Summary of unbounded KP-ABE schemes for
monotone span programs with n-bit attributes (i.e.

Fig. 1. Summary of unbounded KP-ABE schemes for monotone
universe [n]) from composite-order groups.

span programs from prime-order groups with O(1)-size mpk.

reference Impk]| Isk| [ctl assumption
KP-ABE OT12 [23] 79|1G11+1G| 14n+5 1l4n+5 DLIN
Ours 9|G1|+1GT| 8n 5n+3 SXDH
28|G11+2|Grl 13n 8n+5 DLIN

(5k2+4k)|G1|+k|GT| Bk+3)n  @Bk+2)n+2k+1 k-LIN

CP-ABE OT12 [23] 791G +IGT] 14n+5 14n+5 DLIN
Ours 11|G11+ G| 5n+5 n+3 SXDH
32|G1|+2|GTl In+9 12n+6 DLIN

(7k% +4)|G1 | + kIGrl (4k+1)(n+1) (Gk+2)n+3k k-LIN

Fig. 3. Summary of adaptively secure, unbounded ABE schemes for read-once monotone span programs with n-bit attributes (i.e.
universe [n]) from prime-order groups. The columns |sk| and |ct| refer to the number of group elements in G2 and G respectively
(minus a |G| contribution in ct).

qualitative advantages over prior works [23, 17]: (i) we achieve security loss O(n + Q) for n-bit attributes (i.e.
universe [n]) and Q secret key queries, improving upon O(n - Q) in [23] and O(logn - Q) in [17] and (ii) there
is clear delineation between entropy expansion and the analysis of the underlying bounded ABE schemes,
whereas prior works interweave both techniques in a more complex nested manner.

Following the recent literature on adaptively secure bounded ABE, we first describe our constructions
in the simpler setting of composite-order bilinear groups, and then derive our final prime-order schemes
by building upon and extending previous frameworks in [6, 11, 7]. Along the way, we also present a
simple adaptively secure unbounded KP-ABE scheme in composite-order groups whose hardness relies on
standard, static assumptions (cf. Fig 2).

1.1 Technical overview

We will start with asymmetric composite-order bilinear groups (Gy, Hy, Gr) whose order N is the product
of three primes p1, p2, p3. Let g;, h; denote generators of order p; in Gy and Hy, fori =1,2,3.

Warm-up. We begin with the LOSTW KP-ABE for monotone span programs [19]; this is a bounded,
adaptively secure scheme that uses composite-order groups. Here, ciphertexts cty are associated with
attribute vector® x € {0, 1} and keys sky with read-once monotone span programs M.6

mpk := (g1,8,",-... 8", e(g1, h)®) @

5 Some works associate ciphertexts with a set S < [n] where [n] is referred to as the attribute universe, in which case x € {0,1}"
corresponds to the characteristic vector of S.

6 All known adaptively secure ABE for monotone span programs under static assumptions in the standard model (even in the
bounded setting and even with composite-order groups) have a read-once restriction [19, 22, 27, 2, 6, 3].



SU;j
Cty = (gf; {gl ]}xj:b e(gl) hl)as : m)
aj+rjv; o r1j
skm := (thy" 7 By Y jem)
where a;,...,a, are shares of @ w.r.t. the span program M; the shares satisfy the requirement that for anyx €
{0,1}", the shares {a ;} xj=1 determine « if x satisfies M, and reveal nothing about a otherwise. For decryption,
observe that we can compute {e(g, h1)%/®} x=1 from which we can compute the blinding factor e(g, 71)%°.
The proof of security relies on Waters’ dual system encryption methodology [26, 20, 27, 2], in the most basic
setting at the core of which is an information-theoretic statement about « , v;.

Towards our unbounded ABE. The main challenge in building an unbounded ABE lies in “compressing”
g/"-..,&" in mpk down to a constant number of group elements. The first idea following [21, 23] is to
generate {v;} e Vvia a pairwise-independent hash function as wy + j - w, as in the Lewko-Waters IBE.
Simply replacing v; with wy + j - wy leads to natural malleability attacks on the ciphertext, and instead,
we would replace sv; with sj(wg + j - wy), where si,...,s, are fresh randomness used in encryption.
Next, we need to bind the s;(wo + j - w1)’s together via some common randomness s; it suffices to use
sw+sj(wo+ j-wn) in the ciphertext. That is, we start with the scheme in (1) and we perform the substitutions
(*) for each j € [n]:

ciphertext: (s,507) — (s,sw+sj(wo+ j-wr),s;) -

secret key: (aj + vjrj,rj) — (aj +rjw, rj,rj(w0+j- w1))
This yields the following scheme:

mpk = (gl)glwyglwoyglujlye(gl) hl)a) (2)

sw+s;j(wo+j-wr)

Ctx = (gf’{gl y gfj}ijI) e(gly hl)as' m)

aj+rjw S rj 5 ri(we+j-w)
SkM:: ({hlj ! yhlj’hll ’ 1}]€[n])

As a sanity check for decryption, observe that we can compute {e(g, hl)“fs}szl and then e(g1, h)*° as
before. We note that the ensuing scheme is similar to Attrapadung’s unbounded KP-ABE in [2, Section 7.1],
except the latter requires g-type assumptions.’

Our proof strategy. To analyze our scheme in (2), we follow a very simple and natural proof strategy: we
would “undo” the substitutions described in (*) to recover ciphertext and keys similar to those in the LOSTW
KP-ABE, upon which we could apply the analysis for the bounded setting from the prior works. That is, we
want to computationally replace each wy + j - w; with a fresh u;:

sw+sj(wo+j-wy) _sj Sw+sjuj _sj
gf’ {gl 7 ! ’ glj}je[n] hopNefully gf’ {gl ! ]» glj}je[n] (3)
aj+rjw i o rj(we+j-wr) e aj+rjw ,rj 4 TjUj
{hlj ! ’ hljr hlj ¢ ' }]E[n] {hlj ! ’ hljr hlj ]}]E[}’l]

Unfortunately, once we give out glw o glw ! in mpk, the above distributions are trivially distinguishable by

using the relation e(g, h;j (wo+ 'wl)) = e(glw 0t s h{j ). Furthermore, the above statement does not yield a
scheme similar to LOSTW when applied to our scheme in (2); for that, we would need to also replace w on
the RHS in (3) with fresh v; as described by

SWHS; aj+rjw SUjtsjuj  aj+rivj

(g, " T = (g, Ry
in order to match up with the LOSTW KP-ABE in (1).

7 Attrapadung’s unbounded KP-ABE does have the advantage that there is no read-once restriction on the span programs, but
even with the read-once restriction, the proof still requires g-type assumptions.



1.2 Bilinear entropy expansion

The core of our analysis is a (bilinear) entropy expansion lemma [17] that captures the spirit of the above
statement in (3), namely, it allows us to generate fresh independent randomness starting from the correlated
randomness, albeit in a new subgroup of order p, generated by g, h».

More formally, given public parameters (g1, 8", 8;"°, 8, " h1, b, h", hy""), we show that

sw+sj(wo+j-wy) S Svi+siuj S;
gf) {gl ! ’ glj}jE[n] N ggy {gz o ]’ gzl}je[n] (4)
rjw o1 o rj(we+j-wp) T Tivj 4 Tj 5 TjUj
{hlj ’ hlj, hlj o }]E[n] {hzj ]r hzjy hzj ]}jE[l’l]
where “—” is short-hand for duplicating the terms on the LHS, so that the g;, h;-components remain

unchanged. That is, starting with the LHS, we replaced (i) wo + j - w; with fresh u;, and (ii) w with fresh
vj, both in the p,-subgroup. We also omitted the a ;’s from (3). We clarify that the trivial distinguisher on (3)
fails here because e(g, h2) = 1.

Prior work. We clarify that the name “bilinear entropy expansion” was introduced in the prior work of
Kowalczyk and Lewko (KL) [17], which also proved a statement similar to (3), with three notable differences:
(i) our entropy expansion lemma starts with 3 units of entropy (w, wy, w;) whereas KL uses O(logn) units
of entropy; (ii) the KL statement does not account for the public parameters, and therefore (unlike our
lemma) cannot serve as an immediate bridge from the unbounded ABE to the bounded variant; (iii) our
entropy expansion lemma admits an analogue in prime-order groups, which in turn yields an unbounded
ABE scheme in prime-order groups, whereas the composite-order ABE scheme in KL does not have an
analogue in prime-order setting (an earlier prime-order construction was retracted on June 1, 2016). In fact,
the “consistent randomness amplification” techniques used in the unbounded ABE schemes of Okamoto
and Takashima (OT) [23] also seem to yield an entropy expansion lemma with O(1) units of entropy in
prime-order groups. As noted earlier in the introduction, our approach is also different from both KL and
OT in the sense that we only need to invoke our entropy expansion lemma once when proving security of
the unbounded ABE.

Proof overview. We provide a proof overview of our entropy expansion lemma in (4). The proof proceeds in
two steps: (i) replacing wy + j - wy with fresh u, and then (ii) replacing w with fresh v;.

(i) We replace wy + j - w; with fresh u;; that is,

si(wo+j-wy) S Sillj Si

{glj ) glj}jE[n] - {g?_] ]y gzj}je[n] (5)
T ri(wo+j-wy) TeT T riuj

thy?, R re i, {hy', by’ '} jemn)

where we suppressed the terms involving w; moreover, this holds even given gl,glw °,g1w '. Our first
observation is that we can easily adapt the proof of Lewko-Waters IBE [20, 8] to show that for each i € [n],

Si(wo+i-wn) S; SilU; N

g g ~ 8 8 ©)
rj o rj(wo+j-wn) Te T LTl

{hljy hll ’ ' }];ﬁl {hzj) hzj ]}j#i

The idea is that the first term on the LHS corresponds to an encryption for the identity i, and the next
n—1 terms correspond to secret keys for identities j # i; on the right, we have the corresponding “semi-

functional entities”. At this point, we can easily handle (hli, h;i(w0+i’ w‘)) via a statistical argument, thanks
to the entropy in wq + i - w; mod p,. Next, we need to get from a single (gf"(w"”'w”, g;") on the LHS in

(6) to n such terms on the LHS in (5). This requires a delicate “two slot” hybrid argument over i € [n] and



the use of an additional subgroup; similar arguments also appeared in [23, 14]. This is where we used the
fact that N is a product of three primes, whereas the Lewko-Waters IBE and the statement in (6) works
with two primes in the asymmetric setting.

(ii) Next, we replace w with fresh v;; that s,

SWw+sjuj SUjtSiuj

g 18 , &' }jen) g 18 , &' }jen)

riw 1 T ¢ rjvj JTj 4 TjUj
{hzj ’ h2]) h2] ]}]E[n] {hzj ]y hzjy h2] ]}]E[n]

Intuitively, this should follow from the DDH assumption in the p,-subgroup, which says that (hg w, h;j ) =

(h;j I, h;j ). The actual proof is more delicate since w also appears on the other side of the pairing as
sw+sj Uuj

A ; fortunately, we can treat u; as a one-time pad that masks w.

Completing the proof of unbounded ABE. We return to a proof sketch of our unbounded ABE in (2). Let us
start with the simpler setting where the adversary makes only a single key query. Upon applying our entropy
expansion lemma®, we have that the ciphertext/key pair (cty,sky) satisfies

s sw+sj(wo+j-wi) Sj s Svjtsju; Sj
gly{gl ) gl }ijI N gz;{gl ) gz }ijI
. ~c ¢
aj+riw o rj rj(w0+]-w1) ) aj+rjvi o1 Tjlj,
{hl rhl ’hl }]E[n] {hz ;hz ’h2 }]E[}’l]

with e(gy, h1)*® - m omitted. Note that the boxed term on the RHS is exactly the LOSTW KP-ABE ciphertex-
t/key pair in (1) over the pz-subgroup, once we strip away the terms involving uj, s;.

Finally, to handle the general setting where the ABE adversary makes Q key queries, we simply observe
that thanks to self-reducibility, our entropy expansion lemma extends to a Q-fold setting (with Q copies of
{rj}je(n)) without any additional security loss:

sw+sj(wo+j-wy) _s; svjtsjuj Sj
gigy {gl ! ’ glj}jE[I’l] o~ ggy {gz Y j’ gzj}jE[n]
TixW 5 Tix 5 Tjx(Wo+j-wr) ¢ TixVj 1. Tix . TjxUj
{hlj ) hlj l} hlj 0 ! }jE[n],KE[Q] {hzj ]y hzj ’ hzj ]}jE[n],KE[Q]

At this point, we can rely on the (adaptive) security for the LOSTW KP-ABE for the setting with a single
challenge ciphertext and Q key queries.

1.3 Our prime-order scheme

To obtain prime-order analogues of our composite-order schemes, we build upon and extend the previous
framework of Chen et al. [6, 11] for simulating composite-order groups in prime-order ones. Along the way,
we present a more general framework that provides prime-order analogues of the static assumptions used
in the security proof for our composite-order ABE. Moreover, we show that these prime-order analogues
follow from the standard k-Linear assumption (and more generally, the MDDH assumption [9]) in prime-
order bilinear groups.

Our KP-ABE. Let (G1,G2,Gr) be a bilinear group of prime order p. Following [6, 11], we start with our
composite-order KP-ABE scheme in (2), sample A} — ka“) xk ,B —x Zggk“)Xk , and carry out the following

. . aj,
8 and a subgroup assumption to introduce the h, s,



substitutions:

g — Al hy — [Bl,

a —ke Z%kﬂ w, wy, wy — W, Wy, Wj € ng“)x(k“)

S;Sjv—>S,Sj€Z];, Ij »—»rjezllg @)
g —IsTAll, h? — [Brjl,

g — [sTAJWl;, k"7 — [WBrjl,

where [], [-]2 correspond respectively to exponentiations in the prime-order groups Gy, G». This yields the
following prime-order KP-ABE scheme for monotone span programs:

mpk := ([A] 1, [A{ W11, [A{ Wol1, [A] W11y, e([A{ 11, [K]2)),
ctx = ([sTA{ 11, {IsTA{ W+s]A] Wo+j - W1, [s] Al Ii}x=1, e(sT AT 11, [K]2) - m)
sky := ({[kj + WBr;l2, [Br ]2, [(Wo + j - W1)Br;l2} jen )

where k; is the j'th share of k. Decryption proceeds as before by first computing {e([s"A{ 11, [k;]2)} ;=1 and
relies on the associativity relations A] W-B = A| -WB (ditto Wy + j - W) [7].

Dimensions of A;,B. It is helpful to compare the dimensions of A;,B to those of the CGW prime-order
analogue of LOSTW in [6]; once we fix the dimensions of A}, B, the dimensions of W, Wy, W, are also fixed. In
all of these constructions, the width of A;, B is always k, for constructions based on the k-linear assumption.
CGW uses a shorter A; of dimensions (k + 1) x k, and a B of the same dimensions (k + 1) x k. Roughly
speaking, increasing the height of A; by k plays the role of adding a subgroup in our composite-order
scheme; in particular, the LOSTW KP-ABE uses a group of order p; p» in the asymmetric setting, whereas
our unbounded ABE uses a group of order p; p2 ps.

We note that the direct adaptation of the prior techniques in [11] would yield A; of height 3k and B
of height k + 1, and reducing the height of A; down to 2k + 1 is the key to our efficiency improvements
over the prime-order unbounded KP-ABE scheme in [23]. To accomplish this, we need to optimize on the
static assumptions used in the composite-order bilinear entropy expansion lemma, and thereafter, carefully
transfer these optimizations to the prime-order setting, building upon and extending the recent prime-
order IBE schemes in [11].

Bilinear entropy expansion lemma. In the rest of this overview, we motivate the prime-order analogue of
our bilinear entropy expansion lemma in (4), and defer a more accurate treatment to Section 5. Upon our
substitutions in (7), we expect to prove a statement of the form:

[sTA[ 11, {[sTA]W+s AT (Wo + j-Wi)l1, [$]A] i} jern) -
{{WBr;l2, [Br;jl2, [(Wo+ j-W1)Brjlo}jein

roughly 8TA; 11, {8TAJV; +87AJU I, [87A] 11} jeqn

{[V;Brjl2, [0]2, [U;Br;l2} jein

=c

given also the public parameters [AlT]l, [AlTVVh, [AITWO]l, [A1TW1]1. Here, Ay <5 ngﬂ)xk is an additional
matrix that plays the role of g», whereas U;,V; play the roles of the fresh entropy uj, v;. Note that we do
not introduce additional terms that correspond to those involving hy on the RHS, and can therefore keep
B of dimensions (k + 1) x k. To prevent a trivial distinguishing attack based on the associativity relation



AITW- B= AlT -WB, we need to sample random U, V; subject to the constraints AITUj = AlTVj = 0. In the
proof of the entropy expansion lemma, we will show that the k-Lin assumption implies

(A1,A] W, {[WBr 12, [Brjla} jern) =c (A1, A] W, {[(W +| U Br;l2, [Br;la} jein).

To complete the proof of the unbounded ABE, we proceed as before in the composite-order setting, and
observe that the boxed term in (8) above (once we strip away the terms involving U; and §;) correspond to
the prime-order variant of the LOSTW KP-ABE in CGW, as given by:

cty = (18TA7 11, {18TA Vjli}y,=1,e(8T A 11, (Kl2) - m)
skm := ({lk; +V;Br/lz, [Brjl2} je(n )

As in the composite-order setting, we need to first extend our bilinear entropy expansion lemma to a Q-fold
setting via random self-reducibility. We may then carry out the analysis in CGW to complete the proof of our
unbounded ABE.

1.4 Extensions

We briefly sketch two extensions: CP-ABE for monotone span programs, and KP-ABE for arithmetic span
programs.

CP-ABE. Here, we start with the LOSTW CP-ABE for monotone span programs [19], which basically reverses
the structures of the ciphertexts and keys. This means that we will need a variant of our entropy expansion
lemma that accommodates a similar reversal. The statement adapts naturally to this setting, and so does
the proof, except we need to make some changes to step two, which requires that we start with a taller
A€ Zg’“ k_This gives rise to the following prime-order CP-ABE:

mpk := ([A] 11, [A] W1y, [A] Wol1, [A] Wil1, [A] Ugly e([A] 11, [Kl2)),

ctw := ([sTA{ 11, {leg ; +8] AT W1y, [s] AJ 11, [8] A] (Wo + j - W1 }jegn), e(lsT A 11, [Kl) - m)

skx := ([k+UoBrly, [Brlz, { [WBr+ (Wo + j - W1)Brjlz, [Brjls }x;=1)

where ¢y ; is the j’'th share of ¢y := sTAlTUO w.r.t. M. Decryption proceeds by first computing {e([cg j] 1 [Brl2)}x=1
and then e([c] 1, [Br],).

Arithmetic span programs. In arithmetic span programs, the attributes x come from Z} instead of {0,1}",
which enable richer and more expressive arithmetic computation. The analogue of the LOSTW KP-ABE for
arithmetic span programs [6, 15] will then have ciphertexts:

(vi+x;v')s
ctx:= (ghig, | T Ve e(gr, h)® - m).

. ivjs oy WExv)s . .
That is, we replaced gf YIS in (1) with g 777 In the unbounded setting, we will need to generate {v;} je(n
and {v}} jetn Vvia two different pairwise-independent hash functions, given by wy + jw; and wy + jw|
respectively. Our entropy expansion lemma generalizes naturally to this setting.

2 Preliminaries

Notation. We denote by s —; S the fact that s is picked uniformly at random from a finite set S. By
PPT, we denote a probabilistic polynomial-time algorithm. Throughout this paper, we use 1* as the
security parameter. We use lower case boldface to denote (column) vectors and upper case boldcase to
denote matrices. We use = to denote two distributions being identically distributed, and = to denote two



distributions being computationally indistinguishable. For any two finite sets (also including spaces and
groups) S; and Sy, the notation “S; =, S»” means the uniform distributions over them are computationally
indistinguishable.

2.1 Monotone span programs

We define (monotone) span programs [16].

Definition 1 (span programs [4, 16]). A (monotone) span program for attribute universe [n] is a pair (M, p)
whereM is a ¢ x ¢' matrix over Zy andp: €] — [n]. Givenx = (xy,...,X,) € {0, 1}, we say that

x satisfies (M, p) iff 1 € span{My),

Here, 1:= (1,0,...,0)T € 7z is a row vector; My denotes the collection of vectors {M; : x,(j) = 1} where M
denotes the j'th row of M; and span refers to linear span of collection of (row) vectors over Z .

That is, x satisfies (M, p) iff there exists constants w;,...,w¢ € Z, such that

X wM;=1 )
JXp(p=1
Observe that the constants {w j} can be computed in time polynomial in the size of the matrix M via Gaussian
elimination. Like in [19, 6], we need to impose a one-use restriction, that is, p is a permutation and ¢ = n.
By re-ordering the rows of M, we may assume WLOG that p is the identity map, which we omit in the rest of
this section.

Lemma 1 (statistical lemma [6, Appendix A.6]). For anyx that does not satisfy M, the distributions
(v} jux;=1, M (§) + 7505, 7} jern)

perfectly hide a, where the randomness is taken over vj —g Zp,u < Zf;’_l, and for any fixedr; # 0.

2.2 Attribute-based encryption

An attribute-based encryption (ABE) scheme for a predicate P(-, -) consists of four algorithms (Setup, Enc,
KeyGen, Dec):

Setup(14,X,Y, M) — (mpk, msk). The setup algorithm gets as input the security parameter A, the attribute
universe X, the predicate universe Y, the message space M and outputs the public parameter mpk, and
the master key msk.

Enc(mpk, x, m) — ct,. The encryption algorithm gets as input mpk, an attribute x € X and a message m €
M. Tt outputs a ciphertext ct,. Note that x is public given cty.

KeyGen(mpk, msk, y) — sk,. The key generation algorithm gets as input msk and a value y € Y. It outputs a
secret key sk,. Note that y is public given sk,.

Dec(mpk, sky, ctx) — m. The decryption algorithm gets as input sk, and ct, such that P(x, y) = 1. It outputs
a message m.

Correctness. We require that for all (x, y) € X x Y such that P(x, y) =1 and all me M,
Pr[Dec(mpk,sky, Enc(mpk, x,m)) = m] = 1,

where the probability is taken over (mpk, msk) — Setup(l’l,x,‘é,M), sk, «— KeyGen(mpk, msk, y), and the
coins of Enc.



Security definition. For a stateful adversary A, we define the advantage function

(mpk, msk) — Setup(1*, X, Y, M);

AdVAPE(A) = Pr | b= b : (x*, mg, my) — AKeyGen(msk,.)(mpk); 1
A W= =D
b —¢ {0,1}; ¢ty — Enc(mpk, x*, my);

by — AKeyGen(msk,~) (Ctx* )

with the restriction that all queries y that A makes to KeyGen(msk, ) satisfies P(x*, y) = 0 (that is, sk, does
not decrypt ct,+). An ABE scheme is adaptively secure if for all PPT adversaries A, the advantage AdvﬁBE(M
is a negligible function in A.

Unbounded ABE. An ABE scheme is unbounded [21] if the running time of Setup only depends on A;
otherwise, we say that it is bounded.

3 Bilinear Entropy Expansion, Revisited

In this section, we present our (bilinear) entropy expansion lemma in composite-order groups.

3.1 Composite-order bilinear groups and computational assumptions

A generator § takes as input a security parameter A and outputs G := (Gy, Hy, G, €), where N is product of
three primes p;, p2, ps of ©(1) bits, Gy, Hy and Gr are cyclic groups of order N and e: Gy x Hy — Gr
is a non-degenerate bilinear map. We require that the group operations in Gy, Hy and Gt as well the
bilinear map e are computable in deterministic polynomial time with respect to 1. We assume that a
random generator g (resp. h) of Gy (resp. Hy) is always contained in the description of bilinear groups.
For every divisor n of N, we denote by G, the subgroup of Gy of order n. We use g1, g2, g3 to denote
random generators of the subgroups Gy, Gp,, Gp, respectively. We define hy, hy, hz random generators of
the subgroups Hy,, Hy,, Hp, analogously.

Computational assumptions. We review two static computational assumptions in the composite-order
group, used e.g. in [20, 8].

Assumption 1 (SDgfL, mp.) Wesay that (py — p1p2)-subgroup decision assumption, denoted by SDgfL pLp2?
holds if for all PPT adversaries A, the following advantage function is negligible in A.

Gn
Adv', "7 (1) = [ PrLAGG, D, To) = 1] - PrA(G, D, T1) = 11|

where

D:=(g1,82,83 h1,h3,h12), hiz —x Hp,p,

Assumption 2 (DDH;IIN ) We say that p; -subgroup Diffie-Hellman assumption, denoted by DDH;IIN , holds if
for all PPT adversaries A, the following advantage function is negligible in A.

DDHIN

AdVA p1 (/’L) = |Pr[A(G,D, To) =1] —Pr[A(G,D, TI) =1] |

10



where

D:= (gl’gz’g:‘}v hl’ hz» h3)’

To:= (h{, h),| Y ), T = (hF, 0], h7 5D, x,y,2 < Zn.

By symmetry, one may permute the indices for subgroups and/or exchange the roles of Gy and Hy, and

G G H H H H
define SDpf‘Lplm, SDp;V_,psz, SDplAL,plpz, SDmNleps and DDszN,DDHmN analogously.

3.2 Lemma in Composite-order groups

We state our entropy expansion lemma in composite-order groups as follows.

P . Hy Hy Gn Hy
Lelgmaz (Bilinear en(t;ropy expansion lemma). Under the SDy., ,,, SDp"}, p,, SDpL.}, p,, DDH,Y,
SDpf‘L, pLps’ DDH;ZN , SD,[,;V_,,[,3 P2 assumptions, we have
w w
aUXCgl,g{",g{”‘),g{“ aux;gl’glw’gl O’gll
+si(wo+j-wy) : sw+s;i(wo+j-wy) SUj+SiU;j Sj Sj
ct: gf, {glsw Sttt gf]}je[n] =c{ ct: gf-, g 7 & g & bem
Cariw o rp o ri(wojw) e T | iV Ty | T | g T Wot W) | iy
sk:{h)", b/, by’ Yietn) sk:{h)" - h)"|, hy’-| b, |, by 1 hy T e
where
W, Wo, W1 —r LN, Vj,Uj —r LN, $,Sj —r LN, Tj —r ZN.
Concretely, the distinguishing advantage Adv;*"""™ (1) is ar most
sDflv. sDfv, SDSN. Spiv, DDH¥
AdVB pP1—p1p2 (A)+AdVB, P1—p1ps3 (1)+Advg”m pP1p2 (A)‘FACIV%,,,M pP1p3 (A)+Advgo p2 (A)
SDSV DDHIV SDSV DDHIV SDSV, DDHIV
+n-(Advy, ") +Adv,, 7 (D) +Advy, PP (A +Adv,, P (D) +Adv, PP () +Adv,, (D)
Bl Bz B4 Be B7 38

where Time(B), Time(B’), Time(B"), Time(B""), Time(By), Time(B1), Time(Bs), Time(Bs), Time(Bg),
Time(B7), Time(Bg) = Time(A).

We will prove the lemma in two steps via the following two lemmas.

Lemma 3 (Bilinear entropy expansion lemma (step one)). Under the DDHZN , SDgf’_, pLpa? DDHZN , SDg;V_, Psps
assumptions, we have
. Wy w
aux: 81,8, 8" & aux: g1,8, ", 8" &2
sj(wo+j-wi) _s; N L Sjlwo+j-wy) Sjuj S S
ct: {glj 0 b glj}je[n] = ct: {gl’ : gzj T glj' gzj }jelnl
T ri(wo+j-wr) rj T ri(wo+j-w) iU
skithyzg hizg O jein sk fhyge| By by By e

where
wo, W, —r LN, Uj —rZN, Sj —rZN, Tj —r ZN.-

Concretely, the distinguishing advantage Adv5"™ (1) is at most

Gn

Hy G GN
Advy " )+ - (Advy,?

Hy N Hy
TP Q)+ Advi. D)+ Advy TP () + Adv () +Advy, P (1)
where Time(By), Time(B1), Time(B,), Time(By), Time(Bg), Time(B7) = Time(A).

Note that sk in the LHS of this lemma has an extra hy3-component, which we may introduce using the
SD?{L pp. and SDI;IL’L p1ps assumption. The proof of this lemma is fairly involved, and we defer the proof to
Section 3.3.

11



Lemma4 (Bilinear entropy expansion lemma (step two)). Under the DDHS{ZN assumption, we have

aux: g1,8{, h1, hy’ aux: g1, 8¢, h1, hy’
N Si SU; Sl S:
ct: g5, (8" 8 ' & Yjem (=) ct:8&{|& ['& & tem
rjw L, rj o, Tjuj rjvj rj 4 Tjlj
sk: {hzj » hzjy hz] ]}]E[n] sk: { hzj ! ) h2j) hzj J}]E[n]

where
W—rZN, Vj,Uj —rZN, $Sj —rZLN, Tj —r ZN-
DDHIV ) .
Concretely, the distinguishing advantage Adv;m’2 (A) is at mostAdv88 P2 (1) where Time(Bg) = Time(A).

Proof. This follows from the DDH;‘L’V assumption, which tells us that

Tjvj

T TiWw ri
{hzjyhzj }je[n] =c {hzj, h2 }je[n]-

The adversary Bg on input {h;j » Tj} jern) along with g1, g2, hy, hp, samples i, s, s, iij < Zy (and implicitly
sets uj = sij(ﬂj — sw)), then runs A on input

aux: g1,8", b, hy’

Ui Si
ct: gzsr {gzj» gzj }je[n]

s

, A 5
Sk: {T]y h;]) (hgj) - T] ! }]E[I’l]

By the Chinese Remainder Theorem, we have (g\*, h’, g, hi’) = (g%, hi’, g%, hl), where w, W — Zy. Next,
observe that
- When T; = g"/" and if we write rju; =r;- % +rjw-(—7), then &i; = sw+ s;ju; and the distribution we
] ]
feed to A is exactly that of the left distribution.
- When T; = g’/"/ and if we write rju; =r;- L:—]’ +rjvj- (—Sij), then #&i; = sv; + s;u; and the distribution we
feed to A is exactly that of the right distribution.

This completes the proof. |
We may now complete the proof of Lemma 2 using Lemmas 3 and 4.

Proof (of Lemma 2). The statement follows readily from the following hybrid argument:

12 w
aux: 81,81, 8 -8 '
sw+s;j(wo+j-wr)

1 ct:gl g , &)} jen LHS in Lemma 2

rj(wo+j-wr)

sk: {h", b, hy Vet

w w
aux: 81,81, 8 -8 '
pr—p1p2p3 swtsj(wo+j-wy) _s;
F . oS j j
=c 1 ct: gl’ {gl ’ gl }]E[n]

: {’ hi2s ‘rjw, ‘ hi23 ‘rj, ‘ hi23 ‘rj(w0+j-w1)}j€[n]

x~

S

w w
aux: 81,81, 8 & '

pr—pip2 s s sjtwo+j-wr) s
=c 3 Ct:gig‘, {gfw"glj rglj}jE[n]

. rjw rj rj(w0+j~w1) .
sk {hypg, Nyags Bypg }jeln)

12



aux: 81,8, 8", 8"
Lemma 3 si(wo+j-w) Silj S Si
e { ct:gi-g g 8" g 18"} &' | & e
rjw rjw T T ri(wo+j-wi) Tilj
skithyy | by ) e By ) by B e
aux: 81,8, 8", 8"
Pr—pips sj(wo+j-wy)  _sjuj s; _Sj
~; < ct: giS ‘gg, {gi?w .gzsw ‘glj .ng ]’ glf ,ng}]E[n] >
W riw rioor ri(wotj-w1) | oriu;
aux: 81,8, 8", 8"
Lemma 4 Sv; sj(wo+j-wn) _sjuj Sj S; :
=c { ct:gi-g gV g |8’ -8 ', 8/ & }Vjern ¢ RHSinLemma 2
riw Tjvj rj . rj S rj(wetj-wy) ,riuj
sk: {hlj . hzj J A hlj 'hzj’ hlj 0 1 'hzj j}je[n]

It is direct to justify every transitions as follows:

The first transition follows from

T T .
{h}jetm =c thygs} jern given g1
Hy
pP1—=p1p2

SD;IIN_, 1D assumption. In the reduction, we sample w, wy, w, < Zx and simulate aux, ct honestly.
Gn

The second transition is ensured by the SD,, 7., ,,,

where h; and hjp3 are random generators of Hy, and Hy, which is implied by the SD and

assumption which tells us that

81 =c & & given g

where g1 and g, are random generators of G, and Gp,. In the reduction, we sample w, wo, wy < Zn
and simulate aux and sk honestly.

The third transition follows from Lemma 3. In the reduction, we sample w < Zy and simulate g{* in aux
honestly. We ghuejn use generators g1 and g to simulate (g7 - g5,87" - &5) in ct and use h;fzg (or h% . hgj)
to simulate h,, in sk.

The fourth transition follows from the SDZY

p1—Pp1ps assumption asserting

(1} jetn ~e (i3} jern given g1, g2, hz

where hy and h;3 are random generators of Hy, and Hj, p,. In the reduction, we sample w, wy, wy < Zn
and uj, vj < Zy, and simulate aux using g and ct from g, g».
The final transition follows from Lemma 4. In the reduction, we sample wy, w; < Zx and simulate

g, and g in aux honestly. By g1,8%, h1, h%, we can simulate all g;-components in ct (i.e., g and
{ngHj(woﬂ’wl), g,'} jeiny) and all iy -components in sk (i.e., {h)'", Y, h;’(woﬂ'wl)}je[n]). O

3.3 Entropy expansion lemma: Step one

Proof overview. First, we note that we can adapt the proof of the Lewko-Waters IBE [20, 8] to show that

under SD,?{L p1ps and DDH;QN assumptions, we have that for each i € [n]:
aux: g1,8.", 8" aux: 81,8, " 8"
i 2 i i(wo+i- iU i i
ct: (gt gy med ot (gt gliti | oS gy
LT g ri(wetjown) T T ri(wo+j-wi) TiUj
sk: {hlé’ hli’; }je[n] sk: {hlj : hgj ) I’llj : hgj ! }je[n]

9 with two main differences: (i) we are in the selective setting which allows for a much simpler proof, (ii) we allow j = i in sk.
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We can then use the SD%¥

pap ps @SSUMption to argue that

Silli

(gSi,ggiui) ~, (ggsi . gzsi ’gg

Silj )

.g2

Roughly speaking, we will then repeat the above argument »n times for each i € [n] (see Sub-Game; ; through
Sub-Game; 4 below). Here, there is an additional complication arising from the fact that in order to invoke

the SDg{L pLps @ssumption, we need to simulate sk given only hy, h13, h2. To do this, we need to switch sk
rj(wo+j-wr)

back to {hg, hy; } jetn), which we do in Sub-Game; 5 through Sub-Game; 7.
At this point, we are almost done, except we still need to introduce a (h;j , h;j i )-component into sk.
We will handle this at the very beginning of the proof (cf. Gamey). Fortunately, we can carry out the above

argument even with the extra (1, h,’*/)-component in sk.

Actual proof. We prove step one of the entropy expansion lemma in Lemma 3 via the following game
sequence, which is summarized in Fig 4. By ct; (resp. sk;), we denote the j’th tuple of ct (resp. sk).

Gamey. This is the left distribution in Lemma 3:

w w
aux: glygl O)gl l’g?_

sj(wo+j-wr)

S
ct: {gl » glj}je[n]

LT 1j(wo+j-wr)
sk: {hyps, Ry bjetn

v~

Gamey. We modify sk as follows:

T T ri(wo+j-wy) riuj
sk:fhyh [y L by T R e

where u;,..., u, < Zyn. We claim that Gameg =, Gamey . This follows from the DDHgZN assumption, which
tells us that

ri T W ri .
{hzj’hzj 0}]€[n] =c {hzj’ hz }]E[I’l] given gl)gZ)hl3

where u; —r Zn and we will then implicitly set u; = u; + j-w, for all j € [n]. In the security reduction, we
use the fact that aux, ct leak no information about wy mod p,. See Lemma 22 for details.

Game; (i=1,...,n+1). We modify ct as follows:

sj(wo+j-w) Silj Sj Sj
ct: {g]] ’ e gzj ! )y glj' 82] }j<i
si(wo+j-wn) Sj
{glj 0 ' ’ glj }jZi

where u,...,u;_; are defined as in Gamey. It is easy to see that Gamey = Game;. To show that Game; =,
Game;, 1, we will require another sequence of sub-games.

Sub-Game;;. Identical to Game; except that we modify ct; as follows:

si(wo+i-wy) si(wo+i-wy)

cti: g & 81|85 ]

Gy

We claim that Game; = Sub-Game; ;. This follows from the SD ;. , ,,, assumption, which tells us that

Si Si Si .
8, =c & | & |given g1,82, s, ho

In the reduction, we will sample wo, w1, uj < Zy and use g1, &> to simulate aux,{ct;}jz; and his, hy to
simulate sk. See Lemma 23 for details.

14



Sub-Game; . We modify the distribution of sk; for all j # i (while keeping sk; unchanged):

PPV R RS I ri(wotj-wy) ,riju;j riuj
skj (j#1) :hy'-hy) - hy' | hy “hy’"" | hy

We claim that Sub-Game; ; =, Sub-Game; . This follows from the DDHf,‘;N assumption, which tells us that

1!
riu;

thy! g™V jzi = thy! [ by | i given g1, 82, g3, b, hz, hs.

where u; g Zp. In the reduction, we will program wy := Wy — i - w; mod p3 with Wy —5 Z so that we can

simulate ggf"(woJri'wl) in ct;, and then implicitly set u; = o + (j — i) - u; mod ps for all j # i. See Lemma 24

for details.

Sub-Game; 3. We modify the distribution of ct; and sk; simultaneously:

Si(wo+i-wy) SiUj

Si Si
ct;: 8 83 » 81 " 83

ot gt T gy ri(Woti-wn) | priv | g Tl
Skl.h1 h2 h3,h1 h2 h3

We claim that Sub-Game; » = Sub-Game; 3. This follows from the fact that for all j # i, the quantity wy + j -
w1 mod pj3 leaked in sk; is masked by u; and therefore {wg + i - w; mod ps} = {u; mod ps3}. See Lemma 25
for details.

Sub-Game; 4. We modify the distribution of ct; as follows:

Silj Silj

. Ssi(wo+i-wy) Si Si Si
ctirgy Vg & 8|8 | 8

Gn

We claim that Sub-Game; 3 =, Sub-Game; 4. This follows from the SD o pspo

assumption, which tells us that

Si Si Si .
8 ~c|&' | & given gi1,8, h, hos.

In the reduction, we will sample wy, w1, uj <y Zy and use g1, g2 to simulate aux, {ct;} j»;. In addition, we
Tj
3 )

will use generator h,3 to sample {h;j -h h;j . h;f " } jern) in sk. See Lemma 26 for details.

Sub-Game; 5. We modify the distribution of ct; and sk;:

Si(wo+i-wy) Sil; si(wo+i-wy)

cti: g 8" & .88 8y

ol gl gt plilweriwy) priug | ri(woti-wn)
ski: hy'-hy -hy', by h, hy

We claim that Sub-Game; 4 = Sub-Game; 5. The proof is completely analogous to that of Sub-Game;, =
Sub-Game; 3. See Lemma 27 for details.

Sub-Game; g. We modify the distribution of sk; for all j # i:

skj (j#i) thy by | hy |, h

rj(wo+j-wn)
1

il
h,

rj(wo+j-wr)

hy

We claim that Sub-Game; 5 =, Sub-Game; . The proof is completely analogous to that of Sub-Game;; =,
Sub-Game; ». See Lemma 28 for details.

Sub-Game; ;. We modify the distribution of ct;:
. si(wo+i-wy) SilU; si(wo+L S; S;
ctizg)" 8 M 81 '8 ,g’sv
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We claim that Sub-Game;g =, Sub-Game; 7. The proof is completely analogous to that of Game; =,
Sub-Game; ;. See Lemma 29 for details. Furthermore, observe that Sub-Game;; is actually identical to

Game;j.

Game; 1. In Game,,;1, we have:

w, w
aux: g1,8; & &

. s]-(w0+j~w1) Sjuj S Sih .
ct: {g1 | 8o b 81 7| 82 }]E[n]
. ri g rj(w0+j~w1) riuj |
sk:{hg-| hy | hyj L hy e
This is exactly the right distribution of Lemma 3.
Game |CT j<i i j>i | SK J#I i Remark & Aux
Si rj rj rj
gll . 7 (hll . h2] . h3])
sjlwotj-wi) hrj(w0+jl”1) 2
1 o 1 o
0 1 Left distribution
1 h;j(u)0+j~w1) . h;j(wo+j-w1)
H YR, [T
o 1 DDszNt {]’lzj,hzj O}je[n] = {hzjyhzj j}je[n]
rjuj rj(wo+j-wr) ) ’
1 hy “hy define u; from u i
i gzsj 1 1 Game; = Gamey
o 1 1 B e Game; 17 = Game;
i1 Sj Si 1 SDGN oS~ oS oSi
L 82 83 pi—pips- 81 Fc 81 "83
Sjuj i i- rjuj o rj(wo+j-wy) .
gzl J gg (wo+i-wy) 1 hzj i, hsj 0 1 given g1, g2, hiz, ho
. Sj i Hy . .7j 3. Tiwt - rj o Tt
i2 gy g 1 DDH,,N : {hy, by Y jpi e thy! by 'Yy
g ggi(“"’”'”’l) 1 By h;j Y ngi -h;"(“m“"”’l) given wo + i - wi, define u; from u
i,3 g;j g§" 1 statistical argument: for fixed {sk jrCjtjzi
g;]'uj g;iui 1 h;_,‘uj . h;_fﬂj h;iui . hgi”i {wo + i - w; mod p3} = {u; mod p3}
: Sj Si Si G oS~ oS S
i,4 8 8 |'8s 1 SD e psps 185 =c 85 83
Sjuj i Ui iU Tjuj o Tjuj iU iU :
g ’gzsu g 1 hy " n" Ryt gt given g1, g2, I, has
i,5 g’ g g 1 statistical argument
g;fuj ggi”i . g::;i(W0+i'W1) 1 h;j”j . h;f”f h;i“i . h;i(woﬂ"wl) analogous to Sub-Game; 3
i Sj Si | oSi Hy
0,6 8 82 "83 1 DDHy,
g;i”j ggi”i ,ggi(wwiw]) 1 h;j uj h;j(wo+]'wl) analogous to Sub-Game; »
. Sj S G
0,7 L3 8> ;2/ 1 SDppips
g gt gl " h;j(w‘)ﬂ'wl) analogous to Sub-Game; ;

Fig. 4. Game sequence for our proof of Lemma 3 (Bilinear entropy expansion lemma (step one)).

16



4 Simulating Composite-Order Groups in Prime-Order Groups

We build upon and extend the previous framework of Chen et al. [6, 11] for simulating composite-order
groups in prime-order ones. We provide prime-order analogues of the static assumptions SDgf’_, pLD2? DDH;IIN
used in the previous sections. Moreover, we show that these prime-order analogues follow from the standard

k-Linear assumption (and more generally, the MDDH assumption [9]) in prime-order bilinear groups.

Additional notation. Let A be a matrix over Z,. We use span(A) to denote the column span of A, and we use
span’(A) to denote matrices of width ¢ where each column lies in span(A); this means M — span’(A) is a
random matrix of width ¢ where each column is chosen uniformly from span(A). We use basis(A) to denote a
basis of span(A), and we use (A; | A2) to denote the concatenation of matrices Aj,Ay. If A is a m-by-n matrix
with m > n, we use A to denote the sub-matrix consisting of the first n rows and A the sub-matrix with
remaining m — n rows. We let I, be the n-by-n identity matrix and 0 be a zero matrix whose size will be clear
from the context.

4.1 Prime-order groups and matrix Diffie-Hellman assumptions

A generator G takes as input a security parameter A and outputs a description G := (p, Gy, G2, G, €), where p
is a prime of ©(A) bits, G, G2 and Gr are cyclic groups of order p, and e: G; x G» — G7 is a non-degenerate
bilinear map. We require that the group operations in G;, G, and G7 as well the bilinear map e are
computable in deterministic polynomial time with respect to A. Let g € Gy, g2 € G2 and gr = e(g1,82) € Gr
be the respective generators. We employ the implicit representation of group elements: for a matrix M over
Zp, we define [M]; := gllw, M], := gévl, M]r := gl}’[, where exponentiation is carried out component-wise.
Also, given [A]}, [B]», we let e([Al;, [B]2) = [AB] 7.
We define the matrix Diffie-Hellman (MDDH) assumption on G; [9]:

Assumption 3 (MDDH,T[ Assumption) Let?¢ >k =1andm = 1. Wesay that the MDDHkm[ assumption holds
if for all PPT adversaries A, the following advantage function is negligible in A.

MDDH”"
Adv ““(A) := | Pr[A(G, [M]y, [MS]y) = 1] - Pr[A(G, [M]y, [U]y) = 1]|
whereM —x Zf;"k, S —x Z’,f,"m and U «—x Z{;"m.

The MDDH assumption on G, can be defined in an analogous way. Escala et al. [9] showed that

k-Lin=MDDH, ,,, = MDDH}", V¢ >k m=>1

1

with a tight security reduction. Henceforth, we will use MDDH to denote MDDH . ,.

4.2 Basis structure

We want to simulate composite-order groups whose order is the product of three primes. Fix parameters
l1,05,03,0y = 1. Pick random

€><€3

294 294
A ‘_RZp 1)1&2‘_Rzp ZrA?)‘_RZp

where ¢ := 01+ ¢, + ¢3. Let (Ag | Ag | AL,'))T denote the inverse of (A; | A2 | Ag), so that Al.TA‘l.| =1 (known as
non-degeneracy) and Al.TAljl. =0if i # j (known as orthogonality), as depicted in Fig 5. This generalizes the
constructions in [10, 11] where ¢} = ¢, = {3 = k.
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1 3

Ay Ay A3

Fig. 5. Basis relations. Solid lines mean orthogonal, dashed lines mean non-degeneracy. Similar relations hold in composite-order
groups with (g1, g2, g3) in place of (A1,A2,A3) and (hy, hy, h3) in place of (A|| ,Ag,Ag).

Correspondence. We have the following correspondence with composite-order groups:

g — [Ailh, g; — [Aish
weZy—Wezb v, gy — [ATW]

The following statistical lemma is analogous to the Chinese Remainder Theorem, which tells us that w mod
p2 is uniformly random given g{’, g;°, where w < Zy:

Lemma5 (statistical lemma). With probability1—-1/p overAl,Ag,Ag,Aq,Ag,Ag, the following two distribu-
tions are statistically identical.

{A]W,A;W,[W|} and {A[W,A]W, }

where W —y Zf,ng andU® —, span[W(Ag).

Proof. For any (A; ,A2,A3,A!,AQ,A£) satisfying the basis relations (shown in Fig 5), we may alternatively pick
W=W+W? where W—, nggw’ W® — spanf™ (Ag).
This does not change the two distributions, but they now become

(ATW,ATW,W+ W? ]} and {AITW,AETW,\KH}.

Because the boxed terms have the same distribution, these two distributions are statistically identical. O

4.3 Prime-order Subgroup Decision Assumptions

We first describe the prime-order (A; — A}, Az)-subgroup decision assumption, denoted by SDZL AA,- Lhis
Gn

is analogous to the subgroup decision assumption in composite-order groups SD, ., ,,, which asserts that
Gp, =c Gp, p, given hy, h3, hy» along with g1, g2, g3. By symmetry, we can permute the indices for A, Az, As.

Lemma6 (MDDH/ /¢ .., = SDgllH A A2). Under the MDDHy, ¢, ¢, assumption in G, there exists an efficient
sampler outputting random ([A1]1,[A2]1,[A3]1) (as described in Section 4.2) along with base basis(A!),
basis(Ag), basis(A!,Ag) (of arbitrary choice) such that the following advantage function is negligible in .

G1

s
Adv', M8 (1) = | PELAD, [to]1) = 1] = PrLA(D, [ta]1) = 1]
where
D:= ([A1]1, [A2]1, [As]y, basis(A]), basis(Al), basis(a!,Al)),

top —rspan(Aj), t; <—gspan(A,Ap).

Similar statements were also implicit in [10, 11].

18



Proof. We prove the lemma from MDDHy, ¢, .¢, assumption: for all PPT adversaries A, we construct an
algorithm B such that

Gy

Ar1—A1 Az A) < Adv MDDH[1

Adv>”

0144,
A A).

The adversary B gets as input [M]; € Gwﬁmxi1 and [u]; € G‘%”2 either u = Ms for s — Z, % oru — R ZIIM2

and proceeds as follows:

Programming A, ,A2,A3,Aq ,Ag,Ag. Pick A —r GL¢(Zp) and define

M MHT - HT™T
(A1 A2 |Ag) =AM 1, and (@AlAljal):=@HT 1,
I, Iy,
Observe that B can simulate [A;,A2,A3]; since it knows A and [M];.
Simulating basis(Aﬂ), basis(Ag), basis(Aﬂ,Ag). B can readily compute
_ 0
basis(Ag) =@NHT ( )
I,
from A. Observe that we can define
—T
I, M M| _ | P,
basis(Al):=Al M' = @1)T ( ) and basisal,Al):= @l Al) ( = ) -@NT ( v 2)
0 Ip, 0

since M is full-rank with overwhelming probability, and B can also compute them from A.
Simulating the challenge. B outputs the challenge as
u
0

Observe that if u = Ms for s — Zf;l, then the output challenge will be uniformly distributed over

A

1

[span(A;)];; and if u —y Zf;”[z, then the output challenge will be a random element from [span(A;,A2)];.

The lemma then follows readily. O

4.4 Prime-order Subgroup Diffie-Hellman assumptions

We then formalize the prime-order A;-subgroup Diffie-Hellman assumption, denoted by DDHEIZ. This
is analogous to the subgroup Diffie-Hellman assumption in the composite-order group DDHglN which

ensures that {h,", 1’} jejq) =c thy" - hy’,hi'}jeiq) given g1,82,83 M, ha, hs for Q = poly(1). One can
permute the indices for A}, Az, As.

Lemma 7 (MDDH 0= DDHG‘) Fix Q = poly(A) with Q > ¢y = 1. Under the MDDH[ . assumption in
G, the following advantage functzon is negligible in A

AdvoPPA

4 (A):=|PrlA(D, To) = 1] - PrlA(D, Ty) = 1]|
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where

D:=(A;,Az,A3,A! Al Al ATW,ATW), W 2570w,

Ty:= ((WDly, [DI2), Ty := (WD +RW,, [Dl2), D« Z5" % RM - span?(al).

0
[WVQ

(D12, [SD]2) = ([D]2, [SD + U]>)

Proof. We prove the lemma from MDDH assumption which says that

where D — Zf,WXQ, S — Zilxzw and U — Z?XQ. Concretely, for all PPT adversaries A, we construct an

algorithm B such that

0y

Gz MDDH
Ady- P (D) < Advy wQR).

A

On input ([D]y, [T]»), algorithm B samples A1,A2,A3,Aq,Ag,Ag, pick w “—r Zf,xiw and implicitly set W :=

W +Als. output
AI,AZ,A?,,AQ,AQ,A:!; A;—W’A:;FW’
[WD +Al Tz, [D],.

Observe that when T = SD, the output is identical to (D, Ty); and when T = SD + U and we set RY .= A!U,
the output is identical to (D, T1). This readily proves the lemma. O

5 Bilinear Entropy Expansion in Prime-Order Groups

In this section, we present our (bilinear) entropy expansion lemma in prime-order groups.

Entropy expansion lemma. We start by sampling A1,A2,A3,A¥,A2,Ag as in Section 4.2. Our prime-order
entropy expansion lemma is as follows:

Lemma 8 (prime-order entropy expansion lemma). Suppose ¢1,¢3,¢w = k. Then, under the MDDH],
assumption, we have

aux: [A] ]y, [A] W1y, [A] Woly, [A] Wi

4 ct: [CT]ly {[CTW+C}—(WO+]"W1)]I) [c}—]l}jE[n]

sk: {(WD;l2, [Djl2, [(Wo+j-WD)Djlo} ;e

aux: [A] 11, [A] W1y, [A] Woly, [A] Wi
[e]’ "W+ VO ) +lei [T Wo+ Wi+ UP D1y, e 1}
t[e] 1, {l[c] W+|V; ot j-Wi+ /U7, 1 jein]

sk: {[(W-+|VZ )D;l, DIz, (Wo+ j- W1+ UP DDz},

—+

U

cy ©

where W,Wy,W; —, ngéw’VE;)’U;z) —r span”W(Ag),Dj —r Ziwxéw, and c,cj — span(A;) in the left
distribution while c,cj < span(Ay,Ap) in the right distribution. Concretely, the distinguishing advantage
AdvEPEEM Q) is ar most

spé DDH$
Adv, MM () + Advg ™ (A)
G

Gy Go Gz
SO )+ Adv;?f‘l”“m )+ Ade?HAZ A)

G G
- (Advy, )+ Advy. )+ Advy, AR (1) +Adv,,

6

where Time(B), Time(By), Time(B1), Time(B,), Time(By), Time(Bg), Time(B7), Time(Bg) = Time(A).
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Remark 1 (Differences from overview in Section 1.3). We stated our prime-order expansion lemma for
general ¢1, ¢, ¢3; for our KP-ABE, it suffices to set (¢1, 4>, ¢3) = (k, 1, k). Compared to the informal statement
(8) in Section 1.3, we use A, € Z‘;‘,k“ instead of A, € Z;,Zk“)xk, and we introduced extra Ap-components
corresponding to A, W,A; (Wy + j -W}) in ct on the RHS. We have D; in place of Br; in the above statement,
though we will introduce B later on in Lemma 12. We also picked D to be square matrices to enable random
self-reducibility of the sk-terms. Finally, VS.Z),US.Z) correspond to V;,U; in the informal statement, and in

particular, we have AITV;Z) = AlTUg.Z) =0.
Analogous to the composite-order setting, we prove the lemma in two steps via the following two lemmas.
Lemma9 (prime-order entropy expansion lemma (step one)). Suppose ¢1,¢3,¢yw = k. Then, under the

MDDHj. assumption, we have

aux: [A] 11, [A] Woly, AT Wiy, [A] T aux: [A]11,[A] Woly, [A] Wiy, (A ]

. . nl ;| 2) nll
ct: {[CJT(W0+]-W1)]1, [C]T-h}je[n] meq ot {[ Wo+7-Wi+ U7 )h, [ ]l}je[n]
sk: {[Djl2, [(Wo+j-W)Djl,} sk: {[Dl2, [(Wo+j-Wi+{U? )Djla} e

Jjeln]

whereWy, Wy — ngxgw,U;z) “—nr span‘*”W(Ag),Dj “—nr Zingw, andcj —yg span(Ay) in the left distribution while

¢;j <rspan(Ay,Ay) in the right distribution. Concretely, the distinguishing advantage AdviTEPl (A) is at most

G Gi DD G1 DD Gi

Gy Ga
Adv s A +n- (Adv;?“‘”‘“ M)+ Adv T )+ Adv;?““‘“‘z (M) +Advy, i A) + Adv;?“l““l M)

By
where Time(By), Time(B1), Time(B,), Time(By), Time(Bg), Time(B7) = Time(A).

Lemma 10 (prime-order entropy expansion lemma (step two)). Suppose v = k. Then, under the MDDH],
assumption, we have

aux: [A] ]y, [A] W], aux: [A]1,[A{ Wy

- cre@T T ) @ T @ T
~c ct: [C ]1){[0 (w+ V] )+C] U] ]l) [c] ]1}]€[n]

cre@T T @ T2 @T

sk: {WD;lz, [D;], [U?'D;1.} sk: {[W+| VP )D;lz, (D)1, [UPD;l2}

Jjeln] Jjeln]

where W —g Zf,xiw, VS.Z),U?) —g span‘w (Ag), D; — Zf,WXZW, and c(z),c§.2) —r span(Ay). Concretely, the
DDH$

distinguishing advantage AdvdsqTEPZ (A) is bounded by Ade8 % (1) where Time(Bg) =~ Time(A).

Proof. This follows from the DDHg’;2 assumption (with Q = n- ¢y), which asserts

Formally, the adversary Bg gets as input {[T jl2, [Djl2} jein along with Ay, A, Ag, AITW. Itsamples s —y Zf,z and
A; — 2% forall j € [n], and define sT =sTA ;. Pick U; — Z22*/" for all j € [n] and implicitly program
J p J j J J p J plicitly prog
@) ._ Al 1 15T
U =AN(T;- A7 A W),
and runs A on input
aux: [A] 11, [A] W]y
ct: [sTAJ 11, {IsTA;0; 1, [sTA A 11} ey

sk: {[T;l, [Djl2, [A}U;D; —AQA]—JAZTT]-]Z}].E[H]
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Observe that

- When T; = WD; and if we write U”D; = AJU;D; -~ AJA;'AJWD), then s"A;T; = (s"A;A))AIT)) =
sTA W+ (sTAHA) US.Z) and the distribution we feed to A is identical to the left distribution.

- WhenT; = WD;+R? and if we write U D; = AJU;D; ~AJAA] (WD +R?), thens"A;U; = sTA] (W+
RS.Z)D]TI) +(sTA j)AgUg.z) and the distribution we feed to A is identical to the right distribution when we
setV@ :=R@D!,

J T
This completes the proof. o

We may now complete the proof of Lemma 8 using Lemmas 9 and 10. The proof of Lemmas 9 is deferred
to Section 5.1.

Proof (of Lemma 8). The statement follows readily from the following hybrid argument:
aux: [A] ], [A] W], [A] Wol1, [A] Wiy

1 ctile'h, {[eTW+ef (Wo+j-Wly, [ej 11} e, ( LHSinLemmas

sk: {{WDjl2, [Djl2, [(Wo+ j-W)D;l2}

aux: [A{ 11, [A] W11, [A] Woly, [AT W11

Jjeln]

Re S ct:[E]T]l,{[E]TW+CJT(WO+]'-W1)]1,[c]T]l}jE[n] where | ¢ —g span(A;,Ay)

sk: {[WDjl,, [Djly, [(W0+j'W1)Dj]2}j€[n]
aux: [A] ], [A] W11, [A] Wol1, [A] Wiy
Lenénclag { ct:lc™]y, {[CTW+T(W0+j'W1 + ng) )11, [Th}je[n] where ’cj “—r span(Al,Ag)‘

sk: {WDlz, Djlo, [(Wo +j- Wi+ U )Dla}

aux: [A] 11, [A] W], [A] Wol1, [A] Wiy

Leménca 0 et ey, {lc" W+ V;-Z) )+C]T(W0+J"W1+U§~2))]1, [CJT-h}je[n] RHS in Lemma 8

sk: {[W+ V' )Djlz, [Djlo, [(Wo + j-Wi +UP)D 1o}

It is easy to check every transitions as follows:

— The first transition follows from the SD¢"

A1—A, A, aSSUMption asserting that

[c —gspan(A])]; = [c —g span(A],Ap)]; given [A;]1, [Az]].

In the reduction, we sample W, Wy, W} — ZéX[W and generate aux and sk honestly.

— The second transition follows from Lemma 9. In the reduction, we sample W —; Zf,X[W and simulate
[A1TW]1 in aux honestly. By [AlT]l and [Ag]l, we can simulate ([cT]l,[cTWh) honestly where ¢ «—
span(Aj,Az). The simulation of {{WD ]2} je[n) in sk is direct.

— The third transition follows from Lemma 10. In the reduction, we sample Wy, W; —3 Zéxzw. Then we
can simulate [A] Wyl; and [A] W1]; in aux, and {{(Wp + j - W1)D ]2} je() in sk from {[D;]2} je(n. As for

. T T T . T i
ct, we simulate {[c“) ]1,[c(1) W+c§.1) Wo +j ~W1)]1,[c§.1) ]1}j€[n] where c(l),cy) < span(Aj) using

(A] 11, [A] WIy). O

5.1 Entropy epansion lemma: Step one

We prove Lemma 9 via the following game sequence summarized in Fig 6. By ct; (resp. sk;), we denote the
j’th tuple of ct (resp. sk).
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Gamey. The adversary A is given the left distribution in Lemma 9.

aux: [A] 11, [A] Woly, [AT Wiy, [AS ]
ct: {[C]T(Wo +j-Wpli, [C]Th}jem]

sk: {[D;l2, [(Wo +j'W1)Dj]2}j€[n]

Gamey. We modify the distribution of sk as follows:

sk:{[Djlo, (Wo+j-Wi+{UP Do}

where U(lz), ... ,Ugf) “—x span[W(Ag). We claim that Gameg =, Gameg. This follows from DDHIC:Z2 assumption
which tells us that

{[Djl2, (WoDjl2} jern = {[Djl2, (Wo + USZ))Dj]Z}je[n]

given A],A] Wy. See Lemma 30 for details.

Game; (i =1,...,n+1). We change the distribution of ct:

ct: {[[e;] Wo+j- Wi+ U Dy, e h}

{[CJT(w0+j~W1)]1, [C}—]l}jzi

where | ¢; < span(Aj,Ap) ‘forj <1iand cj < span(A;) for all remaining j = i. It is easy to see that Gamey =

Game;. To show that Game; =, Game;,1, we will require another sequence of sub-games.

Sub-Game; ;. Identical to Game; except that we modify ct; as follows:

ct;: [[ei] Wo+i-Wly, [€i ']

where | ¢; <z span(A;,As) | We claim that Game; =, Sub-Game; ;. This follows from SDI(\;II’_’AI As assumption,
which tells us that

[span(A})]; =¢ [span(A;,A3)]; given [A1,A2]1,basis(Ag).

In the reduction, we will sample Wy, W; — ngew and Uj.z) “—r spané W(Ag) using basis(Ag) , and simulate
aux, {ctj}jzi, sk honestly. See Lemma 31 for details.

Sub-Game; ». We modify the distributions of all sk; with j # i (while keeping sk; unchanged):

skj(j #1): [Djl2, [(w0+j-w1+U§.2’+ U;?” D12

where U®) —, spaneW(Ag). We claim that Sub-Game;; ~, Sub-Game;,. This follows from DDng, which
tells us that

{[Djl2, (W1Djlo} jzi =c {[Djl2, (W1 + ﬁ;-B))Dj]Z}j;éi given A1,A2,A3,AQ,A1TW1,A2TW1
where fj;s) —g spanfw (Ag). In the reduction, we will program Wy := W — i - W; with W < Zf,X[W so that we

can simulate Wy +i-Wj in ct;, and then implicitly set U3.3) =(j—-1) -l~15.3) forall j # i. See Lemma 32 for details.
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Sub-Game; 3. We modify the distributions of ct; and sk;:

cti:[e] Wo+i-Wy+/UP +U® 1y, (e[ 1

ski: [Djlz, [Wo+i-W; +UP +| U0 )D;1,

where UE.E‘) “—R span[W (Ag). We claim that Sub-Game;, = Sub-Game; 3. This follows from the following
statistical argument:

(A} Wo, A3 Wo, Wo, (Wo + U} 1) = (A] Wo, A Wo, Wo + UV | (Wo +U P} ).

Furthermore, ciTUE.Z) = 0 since c; € span(A;,As) and AlTAg = A;Ag =0, so the term U§2) in ct; is introduced
“for free”. See Lemma 33 for details.

Sub-Game; 4. We modify the distribution of ct;:

ct;: [@T(won-wl +U? +u¥))y, [@T]l where [ c; —g span(A1,Az,A3) |

We claim that Sub-Game; 3 =, Sub-Game; 4. This follows from SDf,ial_,As’A2 which tells us that
[span(As)]1 = [span(As,A2)]; given [Az,Asly,basis(Al,Al).

In the reduction, we sample Wy, W; and (U;Z) +U§.3)) —pg Spa nfw (A!,Ag) using basis(Ag,Ag) forall j € [n]. Then
aux, sk and {ct;} j#; can be simulated honestly. See Lemma 34 for details.

Sub-Game; 5. We change the distributions of ct; and sk;:

cti: [c] (Wo+i-W; +UP +9{?’f)]1, [c] ]
ski: D, [(Wo+i- Wy +UP + gD,

We claim that Sub-Game; 4, = Sub-Game; 5. The proof is completely analogous to that of Sub-Game;, =
Sub-Game; 3. See Lemma 35 for details.

Sub-Game; . We change the distributions of all sk; with j # i:

skj(j # )¢ [Djlz, (W + j- Wy + U +%%Djlz

We claim that Sub-Game; 5 =, Sub-Game; g. The proof is completely analogous to that of Sub-Game; ; =
Sub-Game; ». See Lemma 36 for details.

Sub-Game; ;. We change the distribution of ct;:

cti: (€] Wo +i-Wi + U, [ei]' T,

where ’ c; —gr span(A,Ap) ‘ We claim that Sub-Game; g = Sub-Game; 7. The proof is completely analogous
to that of Game; = Sub-Game; ;. See Lemma 37 for details. Furthermore, observe that Sub-Game; 7 is actually
identical to Game;4 1.
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Game; 1. In Game,,;1, we have:

aux: [A]11,[A] Woly, [A] Wiy, (A ]

ct: {[T(W0+j~W1 +

sk: {[D;ls, [(Wo+j-W; +

o)
J

2)
u;

) [T]l}je[n]

)Dj]z}jE[n]

where ¢; < span(Ap,Ap), Ug.z) «—pg Spa nfw (Ag) for all j € [n]. This is exactly the right distribution of Lemma 9.

Game | CT j<i i j>i SK J#i i Remark & aux
cj—r?
Wo+j-Wi+? Wo+j-Wi+?
0 span(A;)
0 0
o span(A) U —yspan’" (A}); DDHy?:
0 u? {IDj12, [WoD 12} jern =c {IDj12, [(Wo + UP)D;1a) jepn
i span(Aj,Az) span(A;) span(A;) Game; = Gameyy,
U;.Z) 0 0 U;.Z) UE,Z) Game; = Game;_17
i1 span(Ap,Az) span(Aj) SD.E]]'—'Al,A3 : [span(A1)] = [span(A1,A3)];
U 0 0 U U?  |given [A;,A.], basis(A})
02 span(A,A;)  span(A;,Az)  span(A;) U}S) —p span’" (A); DDHZ? : Given W +i - W,
u? 0 0 U+ U U? (D12, [WiDjla} i =c (D12, (W1 +T)D; 12} i
with Uf) =(j-1) .fJ;?]
i,3 span(Aj,Az) span(A1,As) span(A;) statistical lemma:
u? u® 0 u?P+uP uP +w (Wo, (Wo + U} ) = Wo + U, (Wo + U} 0)
i4 span(Ay,Ay) span(A;) SDY!_p, a, ¢ [5PAN(AS)]1 = [span(Az, Ag)]y
u? u?+u® 0 u?+0? U +U |given Az, ALy, basis(A],Al)
i,5 span(Aj,Az)  span(A;,Az,A3) span(A;p) statistical argument
U;.Z) U?) +}1§% 0 U;.z) + U;.S) U§2) +}1?{ analogous to Sub-Game; 3
i,6 span(A;,A;)  span(A;,Az,A3) span(A;) DDH§32
U;.z) Ug_z) 0 U;.z) +%.7{ UE.Z) analogous to Sub-Game; »
i,7 span(A;,A2)  span(Aj,Az,A4) span(A;) SD}C\’VIIHADA3
U;.Z) u® 0 U;,Z) UE.Z) analogous to Sub-Game; ;

1

Fig. 6. Game sequence for our proof of Lemma 9 (Bilinear entropy expansion lemma (step one)). There are two rows for each game:
The 1st one indicates where c; are sampled from; and the 2nd one indicates whether the hiding matrix U? (and UE;.) will appear.
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6 KP-ABE for Monotone Span Programs in Composite-Order Groups

In this section, we present our adaptively secure, unbounded KP-ABE for monotone span programs based
on static assumptions in composite-order groups (cf. Section 3.1).

6.1 Construction

Setup(14,1™): On input (14,17, sample G := (N = p1p2ps3,Gn, Hy, Gr,e) — G(11) and select random
generators g1, hy and hy23 of Gy,, Hp, and Hy, respectively. Pick

w, wo, W1 —r ZN, & —r ZN,
a pairwise independent hash function H : Gr — {0,1}*, and output the master public and secret key pair
mpk:= ((N,Gn, Hy,Gr,€); 81, 81'> 8" &', (g1, h123)% H)
and
msk := (hy23, by, a, w, wy, wy ).
Enc(mpk,x, m): On input an attribute vector x:= (xy,..., X,) € {0,1}" and m € {0, 1}’1, pick s, Sj—rZN for all
j € [n] and output

sw+sj(wo+j~w1)

cty:=(Co:=g;}, {Cy,j:= & , G o= glsj }ixj=1, C:=H(e(g1, h123)**) - m)e GIZV”H x {0, 1)1,

KeyGen(mpk, msk,M): On input a monotone span program M € Z}" ¢ pick u — Z%‘l and rj <y Z forall
j € [n], and output

L L M](a) riw A i rt(w0+j~w1) 3n
SkM = ({KO,]' = h123 u -hlj , Kl,j = I’le, Kz,j = hlj }je[n] ) € HN .

Dec(mpk, sky, cty): If x satisfies M, compute w1, ...,wy, € 7, such that

Z a)ij =1.

ij]' =
Then, compute

K— ] (e(COrKO,j)'e(Cl,j»Kl,j)_l'e(CZ,j»K2,j))wjy

Jixj=1

and recover the message as m — C/H(K) € {0, 1}*.

Correctness. For all M and x such that x satisfies M, we have

[T (e(Co,Koj)-e(Crj, Ky )™ -e(Coj, Ko, )™

J:xj=1
M; (¢ rjw sw+s;j(wo+j-wy) ,rj,— sj 4 rj(wo+j-w) @i
= [T e, hlzg(U)'hlj )e(gy ! 5o l'e(glj’hlj B
J:xj=1
S i1 WiM; a
=e(gi, hizs) =M () = e(g1, hi23)™.

This readily proves the correctness.

6.2 Proof of Security

We prove the following theorem:

26



Theorem 1. Under the subgroup decision assumptions and the subgroup Diffie-Hellman assumptions (cf.
Section 3.1), the unbounded KP-ABE scheme described in this section (cf. Section 6.1) is adaptively secure
(cf. Section 2.2).

Main technical lemma. We prove the following technical lemma. Our proof consists of two steps. We first
apply the entropy expansion lemma (see Lemma 2) and obtain a copy of the LOSTW KP-ABE (variant there-
of) in the p»-subgroup. We may then carry out the classic dual system methodology used for establishing
adaptive security of the LOSTW KP-ABE in the p»-subgroup with the p3-subgroup as the semi-functional
space.

Lemma 11. For any adversary A that makes at most Q key queries against the unbounded KP-ABE scheme,
there exist adversaries Bg, B1, B2, Bo such that:

ABE ExPLEM SDgévazm . SDSIZILPzps . SD;I;LPzPs
Adv7 () < /—\dvl;’0 )+ AdvBl AD+Q Adv%2 AM+Q Ade3 A)

where Time(By), Time(B1), Time(B,), Time(Bs) = Time(A). In particular, we achieve security loss O(n +

Hy Hy Gy Hy Gy Hy Gy Gn
Q) Ijmsed on the SD,, L., ,» SDplppyr SDpiepip,y DDHY)Y, SDp L., ., DDHYY, SDpl .y p,» SDpyep, s
N .
SDp,e p, py ASSUMPLIONS.

The proof follows a series of games based on the dual system methodology, and outlined in Fig. 7. We
first define the auxiliary distributions, upon which we can describe the games.

SK
Game CT Justification
K<Ii K=I K>1
0 Normal Normal real game
0’ | E-normal E-normal entropy expansion lemma, Lemma 2
i SF SF E-normal E-normal SDS;"_,pzm, Game; = Game;_; 3
. H
i1 — —  P-normal — SD p;\,’_, Paps
i,2 — — P-SF — statistical lemma, Lemma 1
. H,
5,3 _ _ SF _ SDPZAL’Pz ps3
Final [random m SF statistical hiding

Fig.7. Game sequence for proving the adaptive security of our composite-order unbounded KP-ABE.

Auxiliary distributions. We define various forms of a ciphertext (of message m under attribute vector x):

- Normal: Generated by Enc.
- E-normal: Same as a normal ciphertext except that a copy of normal ciphertext is created in G,, and
then we use the substitution:

w— vj mod p in j’th component and wq+ j-w;— uj mod p; (10

where v}, uj < Zy. Concretely, an E-normal ciphertext is of the form

sw+sj(wo+j-wr) SUi+SilU; Si Si
cte:= (g g 1&g g gl g 1=, Hielgs | g5 | o)) - m)
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where g is a random generator of G, and s,s; <5 Zx.

— SF: Same as E-normal ciphertext except that we copy all entropy from G, to G,,. Concretely, an SF
ciphertext is of the form

sw+sj(wo+j-wy) _Svj+siu;j SUj+SiU;j N Sj
ctx:=(gf-g5-,{g1 P g T g T g 8 | & }f:x,-:bH(e(gf-gS-,h‘f‘zg))-fnJ

where g3 is a random generator of Gy, and s,s; < Zn.

Then we pick & — Zx and define various forms of a key (for span program M):

- Normal: Generated by KeyGen.
— E-normal: Same as a normal key except that we make a copy of {h'", k), h}/"*** ™"

use the same substitution as in (10). Concretely, an E-normal key is of the form

) .
}jg[n] mn sz and

M;(&) rw [ o [ riwerjw) [y
skmi= ({hypg ™ By by By Ry T R e )

. ’_
where hi23, by and hy are respective random generators of Hy, Hy, and Hp,, u < Zﬁ, land Ij < rZN.

— P-normal: Same as E-normal key except that we make a copy of {h;j vi , h;j , h;j " }jetn) in Hp,. Concretely,
a P-normal key is of the form

L Mj(ﬁ) rjw rivj rjvj T T T rj(wo+j-wr) TjUj
skmi= (LR ™ -y g byl B Ry thy

Tjlj

h3 Yietn) )

where h3 is a random generator of Hp,, u Z]’(]‘l andrj —p Zy.
- P-SF: Same as P-normal key except that & is introduced in Hj,. Concretely, a P-SF key is of the form

Kr = hMj(ﬁ) th(g) R RTIVE R TIE pTE T Tl et e iy iy
SM'_({123'3 Ny Ny g, Ry Ny g, 1y '2'3}]€[nl)

!
where u — Z]’;,‘l andrj —gp Zn.

— SF: Same as P-SF key except that {hy "/, by, hy/"/} e is removed. Concretely, a SF key is of the form

L Mj(g) Mj(g) riw rjvj riYf I g T, ri(wo+j-wr) rjuj i
skm = ({75 - g Ty hy B by hy By “hy B et )
where u — Z%‘l and rj <y Zn.

Here E, P, SF means “expanded”, “pesudo”, “semi-functional”, respectively.

Games. We describe the game sequence in detail.
Gamey. The real security game (cf. Section 2.2) where all keys and ciphertext are normal.

Gamey,. Identical to Gamey except that all keys and the challenge ciphertext are E-normal. We claim that
Gamey =, Gamey. This follows from the entropy expansion lemma (see Lemma 2). In the reduction, on
input

aux: 81,81, 8", 8"

ct: Co, {Chj, Cojtjer (0

sk: {Ko,j, K1,j, K2,j} je(n)
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!
we select a random generator hj»3 of Hy, sample a —y Zp, uy —x Zi,_l

and simulate the game with

, Fjx —r Zn for j € [n] and x € [Q],

mpk: aux, e(gy, h123)"

ctx : {Co, Cujy Co,j}juxr=1,€(Co, i) - 1y

skt () e e gy
M 123 O,j ) lyj ’ 2’]' ]E[n]

See Lemma 38 for details.

Game;. Identical to Gamey except that the first i — 1 keys and the challenge ciphertext is SE We claim that

Gn

Gamey ~. Game;. This follows from the SD Do D23 assumption, which asserts that

(85, 18 }jerm) ~c (&3 &3} 182 | & byet) given g1, ki, ho.

In the reduction, we sample w, wy, w1, vj, uj <x Zn, h123 < Hy, @ < Zy and simulate mpk, sky; honestly.
See Lemma 39 for details. To show that Game; =, Game; 1, we will require another sequence of sub-games.

Game;,. Identical to Game; except that the i’th key is P-normal. We claim that Game; =, Game; ;. This

H
follows from SD ... ,, ,,,

assumption which asserts that
T ri 4 Tj .
{hy'} jetm =c {hy' - hy'} jen) given g1, 823, h1, ha, h3

In the reduction, we sample w, wy, w1, vj, uj, @, & <—¢ Zy and select a random generator hjp3 of Hy, and
simulate mpk, ct, {sk{{,[},(# i honestly. See Lemma 40 for details.

Game;,. Identical to Game; except that the i’th key is P-SE We claim that Game; ; = Game; ». This follows
from Lemma 1 in Section 2 which ensures that for any x that does not satisfy M,

A

x’'th sk, x # i SF ct P-normal i’th sk

-

~

; RIS ; ] ~ M (& U .
(h2y{h;]}j€[n],aya; {gz,g;’,gs,g;)]}j;xj:ﬁ {hlzg(“)'h;]v],h;]}je[n])

. R . . M (% M;( ¢ U .
= (hZ){h;}]}jE[n]ray a; {gZ’gzijgsrg;}]}j:ijI; {h12]3(U) ° h3 ](0) ‘h;]’/]»h;]}je[n])

P-SF i’th sk

where v; < Zy and u — Z%_l, and for all @, @, and r; # 0 mod ps. It is straight-forward to compute the
remaining terms in mpk, the challenge ciphertext and the Q secret keys by sampling g1, w, wo, w1, uj, s, S
ourselves. See Lemma 41 for details.

Game; 3. Identical to Game; except that the i’th key is SE We claim that Game; » =, Game; 3. The proof is
completely analogous to that of Game; =, Game; ;. See Lemma 42 for details. Furthermore, observe that
Game; 3 is actually identical to Game; .

Gamegina. Identical to Gameg,1 except that the challenge ciphertext is a SF one for a random message in
Gr. We claim that Gameg 1 = Gamegina. This follows from the fact that

mpk SF sk SFct
—_——

a a @ s a a a s a a
(e(81, hia3), Mizs- hy, e(81a3, Mips) ) = (€81, hips), Mias, €(81a3 Rias | I3 |))

where g123, h123 and h3 are respective random generators of Gy, Hy and H),, a, & < Zy. The message
my, is statistically hidden by e(g;,,, hg‘). See Lemma 43 for details. In Gamegjy,), the view of the adversary is
statistically independent of the challenge bit b. Hence, Advgina = 0.
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7 KP-ABE for Monotone Span Programs in Prime-Order Groups

In this section, we present our adaptively secure, unbounded KP-ABE for monotone span programs
programs based on the k-Lin assumption in prime-order groups.

7.1 Construction
Setup(1%,1™): On input (1*,1"), sample
Ap —¢ Z(l}2k+1)xk,B — Zg}k+1)xk, W, Wy, W, —p Z;}2k+1)x(k+1)’ K —p Z%kﬂ
and output the master public and secret key pair
mpk:= ([A],A] W,A{ Wo, AT W11y, e([A] ]1, [kl2) ) € G0 s (G 1)3 x GE,
and
msk = (k, B, W, W(), W1 ) .

Enc(mpk,x, m): On input an attribute vector x:= (x1,..., x,) € {0,1}" and m € Gr, pick ¢,c; < span(A;) for

all j € [n] and output

ctx:=(Cor=[e'N, {Cr,j:=[e"W+e; Wo+ j- W11, Ca,j 1= €1 }ixy=1, C:= e(le" 1, [Kl2) - m)

€ G%k-'—l x (G{C+l % G%k+l)n x GT-

KeyGen(mpk, msk,M): On input a monotone span program M € Z”;w, pick K' Z;,Zk“)x([/_l), dj —
span(B) for all j € [n], and output
skm := (Ko j := [(KIK)M] +Wd;l2, Ki ;= [d}l2, Kp,j = [(Wo + j - W1)d;l2}jeim )

€ (G§k+1 x G£C+1 V G§k+1)n.

Dec(mpk, sky, ctx): If x satisfies M, compute w;,...,w, € Zj, such that

Z a)ij =1.

Jixj=1
Then, compute

K< [ (e(Co Ko, j)-e(Cy,j,Ki,j) - e(Coj, Ko, ),

Jixj=1

and recover the message as m — C/K € Gr.

Correctness. For all M and x such that x satisfies M, we have
e(Co, Ko, ) e(C1,j,K1,)) " - e(Cp, j, Ko, )
=e(lc 11, [(KIK)M; +Wd;12)-e(lc"W+cj (Wo + j-Wl1, [d;12) " -e(le] 11, [(Wo + j - W1)d,12)
=[c" (KIK)M] +¢"Wd; —c"Wd; —c; (Wo + j-Wp)d; +¢] (Wo + j-Wpd;lr
=[c" (IKM; 7
for each j € [n] and
K= ] (e(Co,Ko)-e(C1,Ki, )" e(Caj Ka, )™

Jixj=1
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= ] lwjc" KMz =lc"®IK)- Y o;Mjlr=[c"&IK) 7 =(c"klr=e(c], k).

Jixj=1 Jixj=1

This readily proves correctness.

7.2 Bilinear entropy expansion lemma, revisited

With the additional basis B € Z;,k“)xk, we need a variant of the entropy expansion lemma in Lemma 8
with (£1,£>,03,¢0w) = (k,1,k, k + 1) where the columns of D; are drawn from span(B) instead of Z’;“ (see
Lemma 12), which we may deduce readily from Lemma 8, thanks to the MDDH} assumption.

Lemma 12 (prime-order entropy expansion lemma, revisited). Pick basis (A1, a3,A3) —p ng“)x(k“) x
Z‘;‘,k“ x ka”)x(’”l) and define its dual (A!,ag,Ag) as in Section 4.2. With B —x Z(pkH)xk, we have

aux: [A]]1, [A] W]y, [A] Wol1, [A] Wiy
1 ctilell, {leTW+ef (Wo+ j- Wiy, [€f 11} ¢y
sk: {[WD;l2, [Djlo, [(Wo+j-WiD;l2} ;e

aux: [A] ]y, [A] W]y, [A] Woly, [AT W]y
: [T]ly {[T(W+ V;.z) )+T(W0+j-W1 + USZ) D11, [T]l}jg[n]

sk: {[(W+ V;m )Djl2, (Djl2, [(Wo+j-W;+ Ug-Z) D12} e

—+

;4 C

where W,Wy, W; — ng“)x(k“),Vf),U}m —x spank“(ag),DJ- —rspan**1(B), and c,c; —g span(Ay) in the

left distribution while c,cj —x span(Ay,a) in the right distribution. We let AdvElXP LEMREV Ay denote the
distinguishing advantage.

We claim that the lemma follows from the basic entropy expansion lemma (Lemma 8) and the MDDH.
assumption, which tells us that
{Dj — ZED* E D)} iy = (1D —g span® B)]2} jern.-
Concretely, for all A, we can construct By and B; with Time(By), Time(B;) = Time(A) such that

MDDH} ¢
AdVIFPEMREY (1) < Advig M () +2- Advy T Q).

The proof is straight-forward by demonstrating that the left (resp. right) distributions in Lemma 8 and
Lemma 12 are indistinguishable under the MDDH assumption and then applying Lemma 8. In the
reduction, we sample W, Wy, W; — ngﬂ)x(kﬂ) (and V;.Z),US.Z) “—x spankJrl (ag) for the right distributions)
and simulate aux, ct honestly.

7.3 Proof of Security
We prove the following theorem:
Theorem 2. Under the MDDH}. assumption in prime-order groups (cf. Section 4.1), the unbounded KP-

ABE scheme for monotone span programs described in this Section (cf. Section 7.1) is adaptively secure
(cf. Section 2.2).
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Main technical lemma. We prove the following technical lemma. As with the composite-order scheme in
Section 6, we first apply the new entropy expansion lemma in Lemma 12 and obtain a copy of the CGW
KP-ABE (variant-thereof) in the a,-subspace. We may then carry out the classic dual system methodology
used for establishing adaptive security of the CGW KP-ABE.

Lemma 13. For any adversary A that makes at most Q key queries against the unbounded KP-ABE scheme,
there exist adversaries Bg, B1, B, such that:

AdViPF(A) < Advig VR () + Q- Adv;d?DHk'k*l D +Q- AdviszDH’“k“ (A)+0(1/p).

where Time(Bg), Time(B1), Time(B,) = Time(A). In particular, we achieve security loss O(n+ Q) based on the
MDDHj. assumption.

Game CT : S.K : Justification
K<i K=1i K>
0 Normal Normal real game
0’ | E-normal E-normal entropy expansion lemma (revisited), Lemma 12
i — SF E-normal E-normal|Game; = Game;_; 3
i1 — — P-normal — MDDH;,
i,2 — — P-SF — statistical lemma, Lemma 1
i,3 — — SF — MDDH.
Final [random m SF statistical hidding

Fig. 8. Game sequence for proving the adaptive security of our prime-order unbounded KP-ABE.

The proof follows a series of games based on the dual system methodology, and outlined in Fig. 8. We
first define the auxiliary distributions, from which we can describe the games. A notable difference from the
composite-order setting in Section 6 is that we do not define SF ciphertexts.

Auxiliary distributions. We define various forms of ciphertext (of message m under attribute vector x):

- Normal: Generated by Enc; in particular, ¢,¢; < span(A;).
- E-normal: Same as a normal ciphertext except that ¢,c; <5 span(Aj,a;) and we use the substitution:

W'—>\7]- ::W+V§.2) in j'th component and Wy+j-W;— flj =W+ j-W; +U§.2) (11)

k+l(a

where UE.Z),V;Z) —g span g). Concretely, an E-normal ciphertext is of the form

ctx:= ([T, {1e"|Vj|+¢j|Tjl,lc; 11 jix=1, e(le' 11, [K2) - m ) where

C,Cj —gspan(Aj,ay) |

Then we pick a < Z,, and define various forms of key (for span program M):

- Normal: Generated by KeyGen.
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E-normal: Same as a normal key except that we use the same substitution as in (11). Concretely, an
E-normal key is of the form

~

sk := ({[(KIK)M] +| V;|d;l2, [djl2, | U} |djl2}jern)  where dj —g span(B),K' «—y Z<D*(€D),

P-normal: Sample d; < Z”;“ in an E-normal key. Concretely, a P-normal key is of the form

skm := ({[IK)M] +V;d;lz, [djla, [0;d)]2}jerm)  where|d; —y ZE | K g z R0,

P-SF: Replace k with k + aag in a P-normal key. Concretely, a P-SF key is of the form

sku := ({[(k+| aa) ||K’)MJT+\7,-dj]2, [djl2, [0;djl2}jern) whered; — z’;“,K’ @Rzg’c“““"”.

SF: Sample d; < span(B) in a P-SF key. Concretely, a SF key is of the form

skm = ({ [+ aaﬂllK’)M]THAfjdj]z, [d}l2, (U;dj]2}jen) where|d;j < span(B) |K' — ng“)"w/‘l),

” «

Here E, B, SF means “expanded”, “pesudo”, “semi-functional”, respectively.

Games. We describe the game sequence in detail.
Gamey. The real security game (c.f. Section 2.2) where all keys and ciphertext are normal.

Gamey. Identical to Gamej except that all keys and the challenge ciphertext are E-normal. We claim that
Gamey =, Gamey . This follows from our new prime-order entropy expansion lemma (see Lemma 12). In the
reduction, on input

aux: [A] 11, [A] W], [A] Woly, [A] Wi
ct: [Col1, {[Cy,j]1, [Cz,jh}je[n] )

sk: {[Ko,jl2, [Ky,jl2, [Kz,j]Z}je[n]

we sample k Zi;k“, K — Z;,Zk“)xw -, Elj,,( —x Z”;“ for j € [n] and x € [Q], and simulate the game with

mpk: aux, e([A] 11, k)
ctyr @ [Coly, {[Cl,jh, [Cz,j]l}j:x;zl,e([COh,[k]z)-mﬁ

skyp: { [KIKOM | + Ko, jd 2, Ky, jdjad2, Ko, jdjad2 } ey

In both cases, we setd;x : =D d jxwhereD; <y spankJ“1 (B) as defined in the new entropy expansion lemma
(Lemma 12). Therefore all d; x are uniformly distributed over span(B) with high probability. See Lemma 44
for details.

Game;. Identical to Gamey except that the first i — 1 keys are SE It is easy to see that Gamey = Game;. To
show that Game; =, Game;,1, we will require another sequence of sub-games.

Game;,;. Identical to Game; except that the i’th key is P-normal. We claim that Game; =, Game; ;. This

follows from the MDDH}’ , | assumption asserting

{[d),; —rspan(B)la} jern ~c 1), —r Z5 o} jern-
In the reduction, on input [Bly, {[tj]2}je(n), We sample Ay, a, W,Wy, Wy, k and V;z),US.Z),a, and honestly

simulate mpk, ct and {sky;}x»;. The i’th key is created using {[t jil2}je(n)- See Lemma 45 for details.
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Game; . Identical to Game; except that the i’th key is P-SE We claim that Game; ; = Game; . This follows
from Lemma 1 in Section 2 which ensures that for any x that does not satisfy M,

x'thsk, x #1 E-normal ct P-normal i’th sk

1 @n. Q@ PR A
(k @, B,V B; {V 7} jix =15 {(KIK)M; +V7dj, dj} jein))

— 2. ny@ . I T (2)
= (kyayB»Vj B; {V] }j:x]‘:l! {(k+ aaz ”K,)M] +V] d])d]}]E[n])

P-SF i’th sk

—r spank“(ag), and for any k, @, B, and d; ¢ span(B). It is straight-forward
to compute the remaining terms in mpk, the challenge ciphertext and the Q secret keys by sampling
AW, WO,Wl,U;.Z),c, cj,d; ourselves. See Lemma 46 for details.

U
where K’ «—y ZF (71 v

Game; 3. Identical to Game; except that the i’th key is SE We claim that Game; » =, Game; 3. The proof is
completely analogous to that of Game; =, Game; ;. See Lemma 47 for details. Furthermore, observe that
Game; 3 is actually identical to Game; ;.

Gamegina. Identical to Gameg,1, except that the challenge ciphertext is a SF one for a random message in
Gr. We claim that Gameg41 = Gamegipa. This follows from the fact that
mpk SF sk Slict

—— — -
(e(TA1]y, IKI), k+aal, e((cT]y, (k) - mp) = (e([Ay]y, [Klo), K, e((e' 1y, lk+| aal 1),

where k — Z?,k“ and a <y Z,. The message my is statistically hidden by e([cT]l,[ag]g)“ since ¢ €
span(Aj,ay). See Lemma 48 for details. In Gamegipy), the view of the adversary is statistically independent
of the challenge bit b. Hence, Advgina = 0.

8 CP-ABE for Monotone Span Programs

In this section, we present our adaptively secure, unbounded CP-ABE for monotone span programs based
on the k-Lin assumption in prime-order groups.

8.1 Warm-up: a composite-order scheme

As before, we begin with a scheme in composite-order groups:

mpk = (g]ygilo’glwyglwoyg{}ul’e(glr h123)a) (12)
s(upWMT+s;w 5. si(wetj-wy)
ctm := (g},1g, gl g Y et e(g1, hiag) ™t - m)
+rj(wo+j-wr) j
Skx = (h?zg'hitor; i‘) {h;w r] o ] v y hi‘] }j:ijI)

s(uo,u)MIT r

Decryption proceeds by first computing {e(g1, h1) }j:x;=1 and then e(g1, h1)*™" and e(g1, h123)*".
Bilinear entropy expansion. To analyze this scheme, we would require the following variant of our entropy

expansion lemma where we basically swap ct and sk (on the LHS, instead of having g7, g% in ct, we have
hi, h{" in sk):

wy w . wy w
aux: g1,81,8,°, 8" aux: g1,8{",8; -8
: sjw s sj(wotjown) ~ . S| oS|GSV | o8| oS | S Wer W) | sju;
ct: g, 18" &' &’ Ve ((Fe) ct: g & 18 & & |& ) & 18 Byetm ¢ (13)
rw+rj(wo+j-wy) rj rw+rj(wo+j-wy) TUj+TjUj T T
sk: hf, (b R Vet sk: hi [ hg | {h)""" ARG S Ve .
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where
w, Wy, W1 <r ZNy Vj,Uj —r ZN! $,8j =R ZN) ILTrj<r ZN

This would in turn require the following change to step two (whereas step one remains intact).

aux: g1, 82,8, i, hi’ aux: g1,82, 81", h, hy’
Siw Si Sillj N4 Si Sillj
ct: {gzj l} gzjr 82] ]}]E[n] ~c ct: { 82] ! » gzj) gzj ]}](—:[n] (14)
sk: g, (R 1y, by Yjerm) sk g, (| |1y, ) Yyt

where
W g ZN) Vj’uj “R ZN) Sj “R ZN) r)rj “R ZN

We can justify (13) via a hybrid argument analogous to that shown in Section 3.2. See Appendix E for details.

8.2 Our Prime-order Scheme
Our prime-order construction is presented as follows:
Setup(1*,1™): On input (14,1"), sample
Al —p Z?;}kxk,B —_ Z(pk+1)><k, W, Wo, W, Ug —p Z.;;kx(k+1), K —p Z%k
and output the master public and secret key pair
mpk := ([A],A] W,A] Wo, A] W1, A] Ugly, e([A] 11, [K]2) ) € GE3F x (G Dyt GE
and

msk:= (k, B, W, Wy, W1, Up).

Enc(mpk,M, m): On input a monotone span program M € szﬁ’ and m € Gr, pick ¢,c; < span(A;) for all

j €nl, sample U — Z;fril)x(k“) and output

ctai=(Co:=[eTl1, {Crji= My (€00) + €T Wy, Coj 1= [e] 1, Cs,ji= [€] Wo + j- W)t }jegu, €= e(leT 11, [klo) - m)
€ Gﬁlik x (G{€+l x G:i‘)k % G{c+l)n x GT-

KeyGen(mpk, msk,x): On input an attribute vector x := (x1,...,X,) € {0,1}", pick d,d; < span(B) for all
j € [n], and output
sky 1= (Ko := [k+Uodl, K; := [dly, {Kp,j:= [Wd+ (W + j-W1)d;l2 K3, j := [d}l2}jx;=1)

3k k+1 3k k+1\n
er ><G2 ><(G2 ><G2 ).

Dec(mpk, sky, ctm): If x satisfies M, compute w;,...,w, € Zj, such that
Z wjM;=1.
jIJCjZ
Then, compute

K —e(Co,Ko)/ [] (e(Crj,K1)-e(Caj Ko, j) " - e(Cs,, K3, ),

Jixj=1

and recover the message as n — C/K € Gr.
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Correctness. For all M and x such that x satisfies M, we have
e(Cy,j, K1) - e(Cz,j»KZ,j)_l -e(Cs j,K3, )
=e((M; (¢ Y0] + ¢ Wiy, [dlo) - e([c] 11, [Wd + (Wo + j-W1)d;12) ™" - e((c] Wo + j- W]y, d 1)
=[M; (CTI}{i"d)]T
for all j € [n]. Then we have

ud ud
Jixj=1 Jixj=1

e(Co, Ko) [T M ()15 =(cThr- [T Uodlr/[ Y w;M; (€ U]y

=[c"Kkl7-[c"Updlr/[c"Updl 7 = [c K] 7.

This readily proves correctness.

8.3 Prime-order Bilinear Entropy Expansion for CP-ABE (for Monotone Span Program)

We prove the adaptive security using the following entropy expansion lemma. Let A} Zf,xgl,Ag —r
Ix0y Ixly [ Ix0y Al Ox0r pl Ox0y
Zp ,A3 “R Zp andAl “R ZP ,AZ “R Zp ,A3 ‘_RZ

p with the constraints described in Section 4.2.
Let ¢y € N.

Lemma 14 (prime-order entropy expansion lemma for CP-ABE). Suppose ¢1,¢,¢3 = k. Then, under the
MDDHj. assumption, we have

aux: [A] 11, [A] W1, [A] Woly, [A] Wi

 ctrleTh, {lej Wiy, [ejl, [e] (Wo+ - Wil }
sk: {[D]z, WD+ (Wo + j-W1)Djlz, [Djl}

Jjeln]

J€ln]
aux: [A] 1, [A] W], [A] Wol1, [A] Wiy

el e | W VE DI, e e Wo + - W+ UP DI}

sk: {[Dlz, [(W+\V )D+(Wo + j- Wi+ UP DDz, D2} e,y

—+

~.{ C

where W,Wy, W] —g Zf;x‘qw, V;Z),UE.Z) “—x span’W(Ag), D,D; — Zf,WX[W, and c,cj — span(A;) in the left
distribution while c,c; <y span(Ay,Ay) in the right distribution.

The lemma is proved in two steps via Lemma 9 and Lemma 15 described below. The new lemma for
the second step (i.e., Lemma 15) is adapted from Lemma 10 in an analogous way to the composite case. To
establish the lemma from MDDH}. assumption, we additionally require that ¢, = k.

Lemma 15 (prime-order entropy expansion lemma for CP-ABE (step two)). Suppose ¢, = k. Then, under
the MDDHj. assumption, we have

. T T T
aux: [A]11,[A; 11, [A] W], aux: [A]]1,[A, 11, [A; W]y
T T T fe@T @ T @ T2
ct: {[C;Z) W]l)[cs'Z) ]1,[C5-2) U§'2)]1}j€[n] = ct: {[C] (W+ V] )]ly[cj ]l;[cj U] ]1 }]E[n]
sk: {[Dl2, (WD +U'?D;l2 [Djla,} ey sk: {[Dlz, (W+ V? )D+UPD12 Djla,} e,y

234 2 2 Oy =l 2
where W — pr W,V; ),US.) —x span[W(Ag), D,D; — Z,[,WX w andcg.) —gr span(Ay).
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Proof. This follows from the MDDHY" assum tion, which tells us that
[g,n p
{18711, [8] Wigy 1} jerm ~c (8] 11, I8} Wizy + V)T } jegn

where s; —p Zf;z, Wi, V) — Zf,zxgw. On input {[s]T.], [t]T]}je[n], we select A1,A2,A3,A¥,AQ,A£, sample Wyj; g
Zf;l W Wig) g Zfﬁxf‘”’, and implicitly define W := AHWH} +AQW{2} +A£W{3}. We then sample U — Zf,MW
and D,D; Zf,wxiw for all j € [n], and output

aux: [A{11,[A] ], (Wl

. TAT T Tpp-1
ct: {[tjli,Is; Ay 11, 0s; Uj— ;DD 11 |

sk: {[D], [(Alwg, +Alwg)D +AlU;D;1, D1,,}

JEln]
Observe that
~ when t; =s;Wp; and let c;z) = Ags;j and AlU; = U;Z) +A£W{2}DD]‘.1, thens;U;—t;DD;! = szAzTUE.Z)
and the output is identical to the left distribution;
~ when t] =s] (Wi +V;) and let ¢ := Aps; and AJU; = U + A} (Wpy +V/)DD; !, then s U; —t/ DD’ ! =
s]TAZTU;.Z) and the output is identical to the right distribution where we define V;z) =Alv;.
This readily proves the lemma. O

It is easy to check that Lemma 14 is implied by Lemma 9 and Lemma 15 by the following hybrid
argument.

aux: [A] 11, [A] W1y, [A] Woly, [A] W11

 ct: ey, {[c]T.W]l, [ch]l, [c}T(w0 +j-WDh }je[n] LHS in Lemma 14

sk: {[Dlo, WD+ (Wo + j-W1Djl2, D12} ;1

aux: [A] 11, [A] W1y, [A] Woly, [A] Wi Ty

ct: [c]', {lcjWh, (e} 11, [c] Wo+ /W1 } ¢, ¢ Where| € —xspan(Ai,Az) | ¢j —y span(A)
sk: {[D]z, WD+ (Wp + j-W1)Djl>, [Dj]Z}je[n]

aux: [A] 11, [A] W1y, [A] Woly, [A] W11

c) cj “R Span(AI;AZ)

T T T .
RS L etrieTh, (e W e ], [ej]' Wo+j-Wi+{UP D }ic, ¢ where

sk: {[D]z, WD+ Wy + j- Wi+ UP )Djlz, D2} e,y

aux: [A] 11, [A] W]y, [A] Wol1, [A] Wi

emge 3 s (eT] {le] W+ VP D1, e, [e] Wo+ j-Wi+UP)} e, b RHS in Lemma 14

sk: {[Dlz, (W+V? )D+(Wo+ j- Wi +UP)D;l, (D12}

Jjeln]

8.4 Proof of Security

Theorem 3. Under the MDDH]). assumption in prime-order groups (cf. Section 4.1), the unbounded CP-ABE
scheme described in this section (cf. Section 8.2) is adaptively secure (cf. Section 2.2).

The proof is completely analogous to that of Theorem 2, using instead the entropy expansion lemma
(Lemma 14) in this section, and the following statistical lemma:
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Lemma 16 (statistical lemma [6, Appendix A.5]). For anyx that does not satisfy M, the distributions
(15, M (*50) +svj, 5} jern), 1@+ T1o, 1,7V} jix;=1)
perfectly hide a, where the randomness is taken over uy, v;, g Zp,u <y Zf;"l, and for any fixed s, sj,r # 0.
The proof follows the same series of games as described in Fig. 8, and we simply state the auxiliary

distributions here.

Auxiliary distributions and game sequence. We define various forms of ciphertext (for span program M
and message m):

- Normal: Generated by Enc; in particular, ¢, c i —rsSpan(Ay).
- E-normal: Same as a normal ciphertext except that ¢, c; <5 span(A,Az) and we use the substitution:

W'—>\7]- ::W+V§.2) in j'th component and Wy+j-W;— flj =W+ j-W; +U§.2) (15)

where U;Z),V;Z) —g spank+1 (Ag). Concretely, an E-normal ciphertext is of the form

cta= (e T, (M (€ 9%) +€T| U 1, (€] 11, (€] O 11 jegm, e(leT 1, [ldl2) - m)

where U —; Zg/_l)x(k“) and

C,Cj —grspan(Aj,Ag) |

Then we pick k® — span (Ag) and define various forms of key (for attribute vector x):

Normal: Generated by KeyGen.
E-normal: Same as a Normal key except that we use the same substitution as in (15). Concretely, an
E-normal key is of the form

-~

sk := ([k+Uodly, [dlz, {[|V;id+|U; d;l2[djl2}jx,=1) whered,d; —gspan(B).

P-normal: Sample d,d; —x Z’;*l in an E-normal key. Concretely, a P-normal key is of the form

sky := ([k+ Uodly, [dl2, {[V;d+T;d;]> [djl2}jix;=1) where|d,dj — ZIICJH i

P-SF: Replace k with k+ k® in a P-normal key. Concretely, a P-SF key is of the form

sky 1= ( [+ K |+ Ugdly, [dlz, {[V;d+0;d;l5 [d;]2}jx21)  whered,d; — 7.

SE: Sample d,d; < span(B) in a P-SF key. Concretely, a SF key is of the form

skx := [k +k® +Uodlz, [dlz, 11V;d+T;d;l2 [djl2}ix,-1)  where|d.d; —xspan(B) |

The game sequence and claims follow Section 7.3. We simply provide the proofs of the claims that
Gamey = Gamey and Game;; = Game;,: The first one follows from a revisited version of Lemma 14
(entropy expansion lemma for CP-ABE), which will change the distributions of D; (analogous to Lemma 12)
and employ parameter setting (¢1,4»,¢3,¢w) = (k,k, k, k +1). This can be established from the MDDH
assumption and Lemma 14; The second claim follows from Lemma 16 which ensures that for any x that
does not satisfy M,

mpk x’'thsk, x # i E-HOTlal ct P-normal i'th sk
R e — T Tv@ Ty .y P N
(A],A] Uo; k@, B,UoB, VB; (e, M, (%) +¢T VP, T} jen); k+ Uod, d, (VI -1 )

= (AT, AT Ug; ko k® B, UGB, VZB; (¢, M; (€90) + TV, €T} ey kot K2 |+ Upd, d, (VO d) 1)

P-SF i’th sk
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where Uy <z Z?,kx(kﬂ), V;Z) —gspank+l (Ag), U — Zg’_l)x(k“), and forany Ay, k, ¢, ¢;, k@, and d ¢ span(B).
It is straight-forward to compute the remaining terms in mpk, the challenge ciphertext and the Q secret keys
by sampling W, W, Wy, UE.Z) ,d; ourselves.

9 KP-ABE for Arithmetic Span Programs

In this section, we present our adaptively secure, unbounded KP-ABE for arithmetic span programs (ASPs)
based on the k-Lin assumption in prime-order groups. Arithmetic span programs capture both boolean as
well as arithmetic formula and branching programs [15].

9.1 Definitions

We define arithmetic span programs:

Definition 2 (arithmetic span program [15]). An arithmetic span program (V,p) is a collection of row
vectorsV = {(y;,z;): j€ {1} in Zf;' and p : [¢] — [n]. We say that

x € Z}; satisfies (V, p) iff 1 € span(y; + Xp(j)Z;),
where 1:=(1,0,...,0)T € Zf;’ and span refers to linear span of a collection of row vectors.

That is, x satisfies (V, p) iff there exists constants wy,...,wy € Z p such that

l
ij(yj+xp(j)zj) =1. (16)
=1

Like in prior works [6], we need to impose a one-use restriction, that is, p is a permutation and ¢ = n. By
re-ordering the coordinates in V, we may assume WLOG that p is the identity map, which we omit in the
rest of this section.

9.2 Warm-Up: a Composite-Order Scheme

As a warm-up, we begin with a composite-order candidate. We build upon the “bounded” KP-ABE scheme
for arithmetic span programs in [15, 6]. Roughly speaking, we start with our unbounded KP-ABE for
monotone span programs in Section 6 and perform the following substitutions “in the exponent”:

mpk : w, wo, wy — (w, w, wy), (W', wy, wy)
ct: xjsw»—>s(w+xjw')
. / . / ! . !
Sj, xjsj(wo + j-wy) — sj, S sj(wo+j-wy) +xjsj(w0+]-w1)
. (@ . (a . (@ !
sk M;(g)+rjw—y;(8)+rjw zj(§)+rjw

This yields the following scheme:

o wy wy
mpk = (81,818,881 8 & (g1, h123)?) (17)
s(w+x;w)+sj(wo+jw)+x; s (wo+jw)) 5 8
cty == (81,18 ' 58 & Ve e(g1, hizs) ™ - m)

a a / : (TR
Y riw 4 Zj riw' o rj 5 ri(we+jwy) , ri(wi+jwy)
sky 1= ({hlégu) . hlj , hllzgu) . hlj ’hlj’ hlj otJjW1 ’hIJ 0 1 }j(—:[n])

To analyze this scheme, we would require the following extension to our basic entropy expansion lemma,
Lemma 2 (cf. Section 3.2), which essentially involves two parallel instances in Lemma 2, with respect to

39



parameters (w, wo, wy) and (w’, w(’), wi) respectively, bound together via common random coins s, r;:

. w W Swi gw W0 Wi
aux: g81,81,8, 8 8 8 &
. ! / / ; ! !
s swtsj(wo+j-wy) s;  SWs(wytjwy) s
1 ct:g) (g 81 & ) 81 Yjen
rj(wy+j-w))

riw Jriw 1 o ri(we+jwr)
sk: {hlj ’ hlj ’ hljy hlj » hl }]E[n]
w w rowh w' (18)
aux: 81,818, 8 81 8 8
. ! / ! : / ! / !
- cos (o] (GSwHsjworjown) | svitsjuj | sj | sj | SWAESjwotjwy) | sviEs;up o sp | S
~c < Ct. gl .y {gl ° g2 ) gl * 82 i gl : g2 u g1 : g2 }]E[n]

. . . /! i ,, . . n 7. . . . /! i. /!
rjvj rjw r]V] T T r](w0+] wi) Tiuj r (w0+~] wl) )

sk {hy? | By L R R R By R 1 ny hy, 7 bien

where

/ / /
j»uj R ZNr S)Sjisj R ZN, Ij<=x ZN-

We can justify (18) following the hybrid arguement in Section 3.2. See Appendix F for details. However, we
will rely on a parallel version of Lemma 3 described as follows for step one:

! !/ !
w, wo, Wy, W', Wy, Wy g ZnN, Vj, Uj, U

. wo jun Wo W
aux: g1,8, -8 & 8 -8

. / ! i) /
sjwo+j-wn) s sj(w0+] wy) S

{ ct: g .8, 8 » &' Vjen
L S T
aux: g1,81",81", 81" 81" & (19
~.{ ct: {gfj(WO"'].'wl). gzsjuj , glsj' g;j , gf}(wéﬂ'wi)‘ g;}”; ’ gls} gzs} bictnl
sk : {h{é- h;j ’ h;,é(wo+j.w1)‘ h;,»uj , h;’;w(’ﬁj‘wi)- h;]u; bicn
where
wo, w, Wy, Wy —x Zn, uj,u;. —r ZN, sj,s} —rZN, Tj R ZN,
and a similar extension of Lemma 4 described as follows for step two:
aux: gl,glb",g{‘”,hl,hf",h{“’ aux: gl’glw’glwr’hl’hiu’hful
ct g5, g5 gy &) g5 ) g e 7oy ctigh (g e e g e g hjew | (20)

riw W r o riug o T -
sk: {hzj ,hzj ,I’lzj, hzj j, h2 j}je[n] sk: { h;!”] I h

riv, . us it
77 Tj g TjUj 7% .
2 i h2 ) h2 ) hz }]E[I’l]

where

!/ !/ !/ !/
W, W <x ZN) Ujvujyvjyuj “R ZN; S)Sj)sj “R ZN! rj R ZN'

9.3 Our Prime-Order Construction
We present our scheme in prime-order groups:
Setup(l/l, 1"): On input ar1m, sample
A1 —r Z(ka+1)Xk,B —r Z;gk+1)><k, W,WO,WI,W,,W, ,Wll —r ng+l)x(k+1)’ k —r Z%’C-Fl
and output the master public and secret key pair

mpk:= ([A],A] W,A] Wo, AT Wi, AT W, AT W), AT W/ 11, e(IA] 11, [K]p) ) € GF*¥®FHD 5 (GI* (D)6 GE

40



and

msk:= (k, B, W, Wy, W;, W', Wg, W, ).

Enc(mpk,x, m): On input an attribute vector x:= (x1,...,X,) € ZZ and m € G, pick ¢,c; < span(A;) for all
j € [n] and output

- G ji= [C]Th,
CO:: [CT]I, Cl,j = [CT(W+x]W’)+C]T(VV0+]W1)+x]C; (WE)+]W,1)]1)
Cty = Cy =1,

C:=e([c"]1,[klp) - m
€ G%k+1 x (G{C+1 x (G%k+1)2)n x GT-

KeyGen(mpk, msk,V): On input an arithmetic span program V = {(y;,Z;)} je(n), pick K’ — ng“)x(‘kl),

d; —g span(B) for all j € [n] and output

Ky, j:=1djl2,

) { Ko j = [(KIK)y] +Wd;2, K,j = [(Wo+ j-Wpd,l }
SKy =
Kp ;= [KIK)z] +W'd;l2, K = 1Wo+j-Wpdjl2 )

€ ((G§k+1)2 % G£C+1 x (G§k+1)2)n.

Dec(mpk, sky, cty): If x satisfies V, compute w1, ..., 0, € Zp, such that

Z wjlyj+xj-zj)=1.
Jeln]
Then, compute
o
K~ [T (e(Co, Ko,j- (K )™)-e(Cj, Ky, )™ -e(Ca jy Ko ) - €(Ch (K )],
Jeln]

and recover the message as m — C/K € Gr.

Correctness. For all V and x such that x satisfies V, we have
e(Co, Ko+ (Ky )*)-e(Cy,j, K1, )" - e(Ca, , Ko, j) - €(Cy j, (K )™)
=e(lc" 11, [(KIK)(y] +x;-2]) + (W+x;-W)d,])
e([c’ W+ x,--w’)+c]T(w0+j-w1) +xj-c;.T(w(,ﬂuj-w’l)]l,[dj]z)‘1
ce(lc] 11, (W + j-W1)d;l2) - e(lc) 11, [x; - (Wp + j-W))d,12)
! KIK)(y] +xj-z]) +¢c' (W+Xx;-W)d,
= | —cT(W+x;-W)dj —c] (Wo+ j-Wid; —x;-¢;, Wy + j-Wpd; | =le" KIK)y; +x;-2))7r
cf (Wo+j-Wid;+x;-¢;" (W +j-W)d; .
for each j € [n] and

IoNx; -1 ' 1oyxiy |2
K= [T (eCo,Ko,j- (k) )™ - e(Cu,j, Ki, )"+ e(Ca,j Ko, )+ e(Ch j, (K} )
Jj€ln]
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H [chT

Jj€ln]

IK)(y] +xj-2))]7

T T T
=lc (kIIK’)jEZm]wj(yj +xj-2)]7

=[c" kIK)N 17 =[c K7 = e([c' ]y, [Kl2).

This readily proves correctness.

9.4 Bilinear Entropy Expansion Lemma

To prove the adaptive security of our unbounded KP-ABE scheme for arithmetic span programs, we require
the following variant of Lemma 8, the prime-order entropy expansion lemma for our unbounded KP-ABE
for boolean span program (cf. Section 5).

Lemma 17 (entropy expansion lemma for ASPs). Define basesA;,A,As, Aq ,Ag,Ag as in Section 4.2. Suppose
l1,03,0w = k. Then, under the MDDHj. assumption, we have

ct

R

ct:

sk:

sk:

aux: [A] ], [A] W], [A] Wol1, [A] Wiy, [AT W, AT W, [AT W
7] [CTW+CJT-(W0+]"W1)]1, [C]T-h
1
Tyar! 1T xar! TV Al
[c W+cj (W()+] Wl)]ly [c] ]1 jeln] >
(WDj 12, [(Wo+j-W1)Djl2
jl2
W'D/, [(Wp+ j-W})Dj]2

aux: [A] 11, [A] W1y, [A] Wol1, [A] Wiy, [A] W', [A] W, [AT W

: [T]1,<

Jeln]

[e]" W+ V& )+ Wo+ j- Wi+ UP )11, [[6;]'Ty

T T
T 1(2) / . 1(2) !
(e W'+ VP D+ | Wy j Wi+ U1, e | ot

[(W+

VZhD;1,, [(Wo+j-W1 +| U DD,
(Djl2,

(W +

V@ )D;1,, (W) + j- W) +| U )D;l,

J J jeinl

Oxt 2) (12 /(2 2 Lyl
where W,Wo, W1, W', Wy, Wi —; Z,*, V2, 0% V& 0" — spanw A]), D —y Z,"*“, and c,c},¢; —x
span(A;) in the left distribution whilec,c j,c’j —r span(A1,Ay) in the right distribution.

One can prove Lemma 17 via a hybrid argument analogous to that in Section 5: the support of c is
changed from span(A;) to span(Aj,A), and then Lemma 18 (for step one) and Lemma 19 (for step two)
described as follows are applied successively.
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Lemma 18 (entropy expansion lemma for ASPs (step one)). Suppose ¢1,¢3 = k. Then, under the MDDH],

assumption, we have

e 4

aux

AL 11, [A] Woly, [A] Wiy, [A] Wiy, [A] W/ 11, [A] ]

] Wo+j-Wil1, e}

I

ct: - ]T
/ ! ] ! /
[cj (W0+]'W1)]1) [C] ]1 jelnl
[(Wo+j-Wp)Djl2
sk:q Dl T
(Wo+7-WiDjl2 ],

aux: [A] 11, [A] Woly, [A] Wiy, [A] W11, [A] W)p, [A]]

[c;]" Wo+j-Wi+[UP D, [[ej]'h
ct: < T -
[ Wy + /- W)+ U@y, [ I
Jjeln]
[(Wo+j- Wi+ U )D;l
sk: { [Djl2, ‘ =
[(Wo+j- W)+ U DDyl, |
Jjeln]

~~

Oxt 2 2 Ly %l .
where Wo, W1, Wy, W) «—g Z,"“", U;. )’U/j( ) span[W(Ag), D — Z,"*"", and cj,c'j —g span(Ay) in the left
distribution whilec j,c;. —g span(Ay,Ap) in the right distribution.

Lemma 19 (entropy expansion lemma for ASPs (step two)). Suppose ¢y = k. Then, under the MDDH],

assumption, we have

aux

+

C

aux

—+

c
4

sk:

sk:

:[A] 11, [A] W]y, [A] W]y

.
€@y,

(WD;]2,
(Djl2,

W'Dz,

(A, [A] Wy, [A] W]

T 2) T2 2T
[C(Z) W,+C’§.) U/]( )]17 [C,;) ]1

LA VP

T 2) T2 2T
(€@ W+c? UP, € 1

J

Jjeln]

0Dl

Jjeln]

-
(@' W+

@,

v@
J

(€@ (W' +

(2)
\f

V/(2)
J

[(W+| V) )Djz,

(W' + )Djl2,

V/.(Z)

J

J J J

Dj]zy

[U;Z’D il

LA VP
Jj€ln]

~~

29T 12 2T
)+ U, €

) +d@ @y, (@7

I
Jjeln]

whereW, W' — Z5*‘V, vg?’,uf),v’j@),u’j@ —gspan‘(Al), D; — 20", and c<2J,c§2),c’j@) —rspan(Ay).

Proving Lemma 18 and Lemma 19. Before we proceed, we develop a parallel variant of the DDHKL2

assumption (cf. Section 4), which is denoted by pDDHgIZ.

43



Lemma 20 (MDDHM1 w0 = pDDH, 2) Fix Q = poly(A) with Q > ¢y = 1. Under the MDDH2 ! assumptlon
in G, the following admnmge functlon is negligible in A

Gz

DDH
Adv, ™ (A):=Pr[A(D, To = 1] - PrlA(D, T1) = 1]|
where
D:= (A1, A2, Ag, A}, A}, AL; AJ W, AJW,AT W, AJ W), Wy 200,

Ty:= ((WDI2, [W'D]5[D]y), T := (WD + RV ], WD + RV}, [D]2), D Z5"¢ RO, R® — span@(al).
Proof. We prove the lemma from
([Dl2, [SDJ3, [S'Dly) = ([Dlz, [SD + Ulz, [S'D + U'])

where D — Z[WXQ S,§ — ?MW and U,U" — Z,, 12Q which is implied by the MDDH

On input ([D]y, [Tz, [T']2), algorlthrn B samples A1,A2,A3,A¥,AE,A” pleW W —, Zﬁ tw
w:=W+Als W:=W +Als" output

Q assumption.

, and implicitly set

A1,Az, A3, Al Al Al ATW ATW,ATW AT W,
[WD +A!T],, WD +AlT],, DI

Observe that when T = SD and T' = S'D, the output is identical to (D, Tp); and when T=SD+U and T' =
S'D + U/, the output is identical to (D, T}) if we set R : A“U and R'W : A|| U'. This readily proves the
lemma. m]

It is not hard to see that the proof of Lemma 19 is completely analogous to that of Lemma 10 using the
pDDHZZ assumption instead of the basic DDHgZ2 assumption, while Lemma 18 can be proved using the
following game sequence, which is analogous to that shown in Section 5.1 for proving Lemma 9.

Gamey. The adversary A is given the left distribution in Lemma 18.

aux: [A] 11, [A] Woly, [AT Wiy, [A] W11, [A] W), A ]
[c] Wo+j-Wl1, [ej]
ct: -
/ ! . !
4 [T (W +j-WDI1, €T e ;.
[(Wo+j-W1)Dj]o
sk: 4 [Djl2, R !
(Wo+7-WoDjl2 jeln)

Gamey. We modify the distribution of sk as follows:

[(Wo+ Wi+ U )D;l

sk: 4 [Djla,

(W) +j W) + U’]FZ) D1,

Jjeln]
where U(Z) U(nz),U'(Z),...,U'(Z) “—R span[ W(Ag). We claim that Gameg ~. Gamegy. This follows from the
pDDHG2 assumption which tells us that

{Djl2, WoDjl2, (WoDjl2 } 10y, e { [Djl2, [(Wo +UP)Djlz, [(Wy+ U ?)Djl; }jem]

given AlT,AlTWO,AlTW(). The proofis analogous to that of Lemma 30.
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Game; (i =1,...,n+1). We change the distribution of ct:

—T . @ —T .
. [ (Wo+j-Wp+ Uj D11, [ h [c]T(W0+]-W1)]1, [C]T]l
. T T )
;| Wy Wi U, e[| L e T w1 )
<t -
where c], —gspan(Aj,Ap) |for j < i and cj,c’]. —g span(A;) for all remaining j = i. It is easy to see that

Gamey = Ga me;. To show that Game; =, Game; 1, we will require another sequence of sub-games.

Sub-Game;;. Identical to Game; except that we modify ct; as follows:

(Wo+l Wi)l1, | ]1
Wi+ i wol [ ]

where ci,c’i —r span(Aj,As) | We claim that Game; =, Sub-Game; ;. This follows from

[c;,€; —x span(A1)]; = [c;, €} —y span(A;,A3)]; given [A1,A;];, basis(Al)
which is ensured by the SDgll_, A, A, AsSUMption. The proofis analogous to that of Lemma 31.

Sub-Game; . We modify the distributions of all sk ; with j # i (while keeping sk; unchanged):

[(Wo+ j-W, +U§.2) + Uf’) D12

skj(j#1): [Djla, @ por
(W + - W+ U + U )],

where U@,U;.(s) “—r span[W(Ag). We claim that Sub-Game;; =, Sub-Game; . This follows from pDDng,
which tells us that

{D}12, (WiD;l2, WiD;l2} ., = { D)o, (W1 +TE)D; 1, (W) + T D1, }j#

given Al,Az,Ag,Ag,AlTwl,AZT WI,AITW’I,AZT W, where fIS.3),I~J’j(3) —x span’ W(Ag). The proof is analogous to
that of Lemma 32.

Sub-Game; 3. We modify the distributions of ct; and sk;:

[c] Wo+i-Wi+UP+UP D), [e[h

ct;:

e Wy +i-W,+[ U@ +U® D)y, (e

[(Wo+i-W;+U% + /U D1,

1

Ski: [Di]Zr s /3
(W) +i-W, +U® + /0P )D;1,

1

where Ugs),U;(s) —g Spa nfw (Ag). We claim that Sub-Game; » = Sub-Game; 3. This follows from the following
statistical argument:

T T ©) T T ®3) ®)
AWy, ATWy Wo, {Wo+UP} _ [ ATWo.ATWo Wo+| U {wo+u}

T T 1(3) T T 1(3) 1(3)
ATW), AT W, W), {W(’)+U]. }#i ATW),AJW, W, +| U] ,{W6+Uj }#i

and ng), U'® in ct; are introduced “for free”. The proof is analogous to that of Lemma 33.
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Sub-Game; 4. We modify the distribution of ct;:

[@ Wo+i-Wi +UP + U], @ I

[ (W’+z W) +U(2)+U(3)) I, ]1

We claim that Sub-Game; 3 =, Sub-Game; 4. This follows from SDK;H AAs which tells us that

where |c¢;,¢; < span(A1,Az,A3) |

[ci,€; —r span(As)]1 = [c;, €} —r Span(As, Az)]; given [Ag,Aly, basis(Al,Al).

The proofis analogous to that of Lemma 34, where we independently sample (U;.Z) + U§3)) and (U’j(z) + U/j(3))

using basis(A”,Ag) forall j € [n].

Sub-Game; 5. We change the distributions of ct; and sk;:

Cti:{ (] Wo+i- Wy +UP+ Y1, (] }

;T W)+ i Wy+ U2+ g, (e
. [(w0+i-w1+U§.2)+}[§”f)Di]2
SKj : il2,

(W) +i-W, + U + gDy,

We claim that Sub-Game; 4 = Sub-Game; 5. The proof is completely analogous to that of Sub-Game; »
Sub-Game; 3.

Sub-Game; . We change the distributions of all sk; with j # i:

[(Wo+j- Wy +UP + %D,}Z
[(Wo+ j- Wy + U7 +/"’f)D,12

We claim that Sub-Game; 5 =, Sub-Game; . The proof is completely analogous to that of Sub-Game;
Sub-Game; .

skj(j#1): [Djla,

Sub-Game; 7. We change the distribution of ct;:

[H [ci] Wo+i-Wi+UP)], [@ h

[ Wi W LU, ,[

where | ¢;,c; <z span(Aj,Ap) | We claim that Sub-Game; ¢ =, Sub-Game; 7. The proof is completely analo-
gous to that of Game; = Sub-Game; ;.

Game;41. In Game,,;1, we have:

aux: [A] 11, [A] Woly, [A] Wiy, [A] W11, [A] Wiy, [A]]
[ej]" Wo+j-Wi+ U, [[ej]'h
ct: < T T
. 2
< [ Wy + /- W)+ U2y, [ b
Jjeln]

[(Wo+j- Wi+ U )D;l

v~

sk: { [Djl2,

(W) +j-W, + | U? )D;],

jeln]
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where c;, c;. —r span(Aj,Ay) and US.Z),U’]_(Z) —r span’™ (A,) for all j € [n]. This is exactly the right distribution
of Lemma 18.

9.5 Proof of Security

Theorem 4. Under the MDDH,. assumption in prime-order groups (cf. Section 4.1), the unbounded KP-
ABE scheme for arithmetic span programs described in this section (cf. Section 9.3) is adaptively secure
(cf. Section 2.2).

The proof is completely analogous to that of Theorem 2, using instead the entropy expansion lemma
(Lemma 17) in this section, and the following statistical lemma:

Lemma 21 (statistical lemma [6, Appendix A.6]). For any x that does not satisfy V = {(yj,zj)}jein), the
distributions

/ /
({vj+x; Uj}je[n]’ {vi (&) +rjvp 2 (4)+ TjVjs rj}je[n])
perfectly hide a, where the randomness is taken over v, v;. —rZp, Uy Zf,l_l, and for any fixedr;j # 0.

The proof follows the same series of games as described in Fig. 8, and we simply state the auxiliary
distributions here.

Auxiliary distributions. We define various forms of ciphertext (of attribute vector x and message m):

- Normal: Generated by Enc; in particular, ¢, c i c’j —gspan(Aj).

- E-normal: Same as a normal ciphertext except that ¢, c;, c;. —gr Span(Aj,az) and we use the substitution:

W — V;:=W+V? Wo+j Wy — 0 :=Wy+j -W; +U%?
1(2) in j’th component and ](2) 2D
vV — d . ¥ ._ . !/
W — V=W V] Wi+ - Wi — U := Wy + j- W} + U

where U;Z),Vj.z) , U;.(Z),V;.(Z) —p spank+1 (ag). Concretely, an E-normal ciphertext is of the form

ctai=( (e, { 17| V; |+ xj-€T| V) | +¢] | 0 |+ x| O 1, [e] 1€ T} g el () - m

where c,cj,c’j —rspan(Aj,ay) |

Then we pick @ < Z,, and define various forms of key (for span program M):

- Normal: Generated by KeyGen.

- E-normal: Same as a normal key except that we use the same substitution as in (21). Concretely, a E-
normal key is of the form

D

(K] +|V; djl2, (U (dl2 ,
Sk’\? = J — [d]]Z) Whel‘e d] —g Span(B), K/ —r Z;Zlﬁl)x(f —1).
(KIK)z! +| V' d;l2, (0. dl,
J il Jjl jetnl

D

- P-normal: Sample d; < Zf,“ in an E-normal key. Concretely, a P-normal key is of the form

(KIK)y! +Vidla, [0;d;], ,
sky 1= y; 74 d;l;, A] J where|d; (_RZ;c)+1,K/<_RZ(p2k+l)x(i—l).

(KIK)z] +Vd;l2, [Ud;12

Jjelnl
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— P-SF: Replace k with k+ aag in a P-normal key. Concretely, a P-SF key is of the form

[(k+| aal IK)yT +V;d;12, [0,d;] :
sk = 2 i A] J [djlz, Aj j12 where dj — Z,’ZH»K, — Z§k+1)x(i -
[(k+| aa) [IK)z] +Vd, 1o, [0',d;12

Jjeln]

- SF: Sample d; < span(B) in a P-SF key. Concretely, a SF key is of the form

[0+ aal [KYy] +V;d;l2, [0;d;12

sky := (d;l2, where |d; — span(B) |, K' — ng“)x(’/‘l)_

e, T L X7 q. iV d.
[(k+ aa, IK)z; +V'd;l2, (Ud;l2 jetn

The game sequence and claims follow Section 7.3. We simply provide the proofs of the claims that
Gameg = Gamey and Game; ; = Game; »: The first one follows from a revisited version of Lemma 17 (entropy
expansion lemma for KP-ABE for ASPs), which will change the distributions of D; (analogous to Lemma 12)
and employ parameter setting (¢1,4»,¢3,¢w) = (k,k, k, k +1). This can be established from the MDDHj
assumption and Lemma 17; The second claim follows from Lemma 21 which ensures that for any x that
does not satisfy M,

x'thsk, x #1i E-normal ct P-normal i’th sk

(k a,B,V;Z)B,V’]FZ)B; {Vg?) +x; 'V'].(Z)} jetn, {KIK)Y ] +V;.2)d j» (KIK)z ] +V’].(2)d idj}jem)

= (k @, B,VPB V7B, (VP + x; -V} i, ((e+| aay IK)y] +VPd), e+ | aa) 1K)z + VP d;,djd jen )

P-SF i’th sk

k+l(

where K' —; ng“)xw _1),V;.2),V'j(2)

—g Span ag), and for any k,a,B and d; ¢ span(B). It is straight-

forward to compute the remaining terms in mpk, the challenge ciphertext and the Q secret keys by sampling

AI,W,WO,Wl,W’,W{),W’l,U;.Z),U'J.(Z),c,cj,c’j,dj ourselves.
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Appendix
A Additional claims for Section 3.3

Fixing an adversary .A, we use Adv,, to denote the advantage of A in Gamey.
Lemma 22 (Gameg ~, Gamey). There exists By with Time(A) =~ Time(By) such that
Hy
[Advo — Advo| < Advy 7 (1),

Proof. This follows from

T Tiw ri .
{hzj’hzj O}JE[n] =c {hzj) hz }]E[I’l] given gl)gZ)hl3

where u; —g Zy for all j € [n] and hy3 is a random generator of Hp, p,,, which is implied by the DDH;IZN

assumption. On input {h;j, Tj} jern along with g1, g2, hy3, algorithm By samples Wy, w; < Zy as well as
sj,Fj <r Zn, and outputs

117 w
aux: 81,8, -8 &
Sj(l]}o+j'wl

) S
ct: {gl ) glj}jE[n]

Fj rj 4 Fi(o+j-wn) Tjy i
sk {hph-hy', LT ()T e

By the Chinese Remainder Theorem, we have that

rj r

T rj o Tjw 7 Ty j g TjW
! ])hzj O}jE[n])E(g{A)O;{h13;hlg O}jE[n]){hzjrhzj 0}]6[71])

(glwoy {hlf_’)’ h{{gwo}]E[n] ) {hz

where rj, wo, j, Wy <—x Zn. Observe that when T; = h;j " the output is identical to Gameg; and when T =

riu
hzj Tandlet u i= u; + j - wy, the output is identical to Gamey. This readily proves the lemma. ]

Lemma 23 (Game; =, Sub-Game; ). There exists By with Time(A) = Time(B,) such that

SD

Gn
pP1—p1ps
5 (A).

|Adv; —Adv; 1| < Adv

Proof. Recall that the SDSV

p1—P1Ps assumption asserts that

SiN

8 =c &' | &' |given g1, g, hus, ho.

On input T along with g1, g2, h13, h2, algorithm B, samples wy, w1, uj < Zy for all j € [n] as well as s; <
Zy for j € [n] \ {i}, and outputs

. Wy w
3UX-glygl ’gl » 82
sj(w0+j~w1)_ Sjuj S

ct: {g 8 8 'gzsj}j<i
¥ {Tw0+i-w1’ T} >

sj(wo+j-wr)

{8 , &) i

rj o rj Jrilwetj-wi) ,rjuj
sk:{hyg-hy, hyy " by e

Observe that when T = glsi the output is identical to Game;; and when T = gfi -g3', the output is identical to
Sub-Game; ;. This readily proves the lemma. m]
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Lemma 24 (Sub-Game;; =, Sub-Game; ). There exists B, with Time(A) = Time(B,) such that

Hy
IAdvi; —Advial < Advy. ™ (1),

Proof. This follows from

!
r]uj

thy g™V i = thy! | by | i given g1, g2, g3, b, hz, b,

where u; —g Zp for all j € [n], which is implied by the DDHSZN assumption. On input {h;j , Tj}j#i, algorithm
B, samples iy, i1, uj,sj < Zy forall j € [n] and programs

wy := W mod pyp2, Wy := Wy —1i-w; mod ps,

and outputs

aux: 81,8, 8" &
$i(Wo+j-1n) Sillj Si S
ct:igy g 8 & j<i
s; (Wo+1-101) S; W, Si Si
gy g3 8 -85 )

sj(Wo+j-11)

s
{gl vglj}j>i
. . . (11 +'." . . 17 i1
ok {h;’ -h;’ ~h;’, h{,(wo J wl).h;u] 'h;,wo . T} l}j#

ri i i g li(Wo+i-y)  priu; 31l
{hl'hz'hs'hl 'hz 'hs }

By the Chinese Remainder Theorem, we have (g,", by, h"") = (g, h, hy™") where i1, wy < Zn. Observe

that when T} = g;j “! the output is identical to Sub-Game; ;; and when T = g;j “I and if we re-define u =
Wo+(j—1i)- u; mod ps for j # i, the output is identical Sub-Game; ». This readily proves the lemma. O

Lemma 25 (Sub-Game;, = Sub-Game; 3). Adv; 2 = Adv; 3.

Proof. Itis sufficient to prove that

ct

- % ~
aux sk

A

wy W Uj wo+i-wy rwo w uj uj w0+i~w;
(gl ;gl ;{gz }j<i;g3 ;hl ’hl »{hz }jE[n]y{hB }j#iyhg )

=(81", 815 (8 i 85 F B e, U | 1

where wy, wy, u;j < Z . Itis direct to see that this is implied by the following statement

(wo mod p1, wy mod p1,{u; mod p2} je(n), {j mod ps}jzi, wo +i-wy; mod p3)

=(wo mod py, w; mod py, {uj mod pa}jern, {uj mod PS}j;éi,)

where wo, wi, u; <y Zn, which follows from the Chinese Remainder Theorem and the fact that {wg + i -
wy mod ps} = {u; mod p3} when wy, wy, u; mod p3 are uniformly distributed over Z,,. This completes the
proof. |

Lemma 26 (Sub-Game;3 =, Sub-Game; 4). There exists B4 with Time(A) = Time(B4) such that
Gn

IAdvis — Advial < Advy, """ (A).

Proof. Recall that the SD%L psp, assumption asserts that

Si Si Si .
8 ~c|&' |8 given gi1,8, h, hos.
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On input T, algorithm B4 samples wy, wy, uj,rj—gZyforall j€[n], sjforall j € [n]\{i} and §; < Z, and
outputs

w w
aux: gl;gl o’gl lng

Si(wo+j-wy) Sillj Si Si
ct:{g) T g g g Y i
3 gt T, g Ty .

si(wo+j-w1) s
{glj 0 ! bl glj}j>i
r ri(wo+j-wy) ,rjuj
hlj 0 1 'hzi% ]}jE[n]

sk: {h, - hyj,

By the Chinese Remainder Theorem, we have (g}, g, ;') = g g5, g;") where s;,5; < Zy. Observe that
when T = g3’ the output is identical to Sub-Game; 3; and when T = g,’ - g;', the output is identical to
Sub-Game; 4. This readily proves the lemma. O

Lemma 27 (Sub-Game; 4 = Sub-Game;s). Adv; 4 = Adv; 5.
Proof. The proof is completely analogous to that of Lemma 25 (Sub-Game; » =, Sub-Game; 3).

Lemma 28 (Sub-Game; s =, Sub-Game;g). There exists B¢ with Time(A) = Time(Bg) such that

Hy
IAdvis —Advigl < Advy ™ (1),

Proof. The proof is completely analogous to that of Lemma 24 (Sub-Game;; =, Sub-Game; ), except we
simulate ct; as follows

. Ssi(Wo+i-y) Sil; NI S; Si Si
Ctl' . glt . gzt i .g3l , glt . g2l . ggz
where g, and u; are known to the simulator. ]

Lemma 29 (Sub-Game;g =, Sub-Game; 7). There exists B; with Time(A) = Time(B7) such that
SDSN.
|Adv;g—Adv; 7| < Adv37 PImRIPE Q).

Proof. The proof is completely analogous to that of Lemma 23 (Game; =, Sub-Game; ;), except we generate
ct; as follows

ct;: TWoti-wr gZSiui T gzsi

where g» and u; are known to the simulator and §; <y Zy. By the Chinese Remainder Theorem, we have
(88 &) =(g,,8,,8;) where s;,5; —y Zn. O

B Additional claims for Section 5.1

Fix an adversary A, we use Advy, to denote the advantage of A in Game,.

Lemma 30 (Gameg =, Gamey). There exists an adversary By with Time(A) = Time(By) such that
DDHS
|Advy — Advg| < Adv730 A Q).

Proof. This basically follows DDHE; assumption which asserts that

{WoD12, D12} jern) = {{(Wo +UP)D;12, D12} e given A, Az, A Wo
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where Wy < Z5 Y, D; —¢ zf,WX’W,Uf) —pspan’ (Al). Oninput {[T;1, D12} jer along with A;, Az, AT W,

algorithm B, samples Wy — Zf;xzw, Sj = Zf;l for all j € [n] and outputs

aux: [A]]1, [A] Woly, [A] Wiy, (A7 ]
ct: {[s] (AfWo + j-ATWI1, [sTA] 11} e,
sk: {[D;l, [T; +j'W1Dj]2}j<—:[n]

Observe that when T; = WD, the output is identical to Gamey; and when T; = (W + U;Z))D j» the output is
identical to Gamey . This readily proves the lemma. O

Lemma 31 (Game; = Sub-Game; ). For any adversary A, there exists an adversary B, with Time(A) =
Time(B;) such that

Gi

|Adv; — Advi, | < Aduy M (1),

Proof. Recall that the SDg"ll_, A, A, ASSUMption asserts
[t —rspan(A1)]1 = [t —y span(A1,As)]y given [A,A;ly,basis(A}).

On input [t]; along with [A},Az]q, basis(Ag), algorithm B, samples Wy, Wy —; Zf,xiw, D — Zf,WX[W for all
j€ln]and U;.Z) “—R span[W(Ag) for j € [n] using basis(Ag), and outputs

aux: [A] 11, [A] Woly, [A] W11y, [A] ]y

ct:{le] Wo+j-Wi+UP), [e]li};; € —nspan(Ai,Az)

j<i
1 {lt" Wo+i-Wply, [tT]h} \
{[C}—(W()'Fj'wl)]l, [c}—]l}]‘>i Cj “R Span(Al)

sk: {[Djl2, [(Wo+ j-W; + Ug-z))Dj]Z}

Jjeln]

Observe that when t —j span(A;) the output is identical to that in Game;; and when t <5 span(A;,As), the
output is identical to that in Sub-Game; ;. This readily proves the lemma. O

Lemma 32 (Sub-Game;; = Sub-Game; ). There exists an adversary B, with Time(A) = Time(B,) such that

Gz
IAdvi, — Advizl < Advy. ™ (D).

Proof. This follows the DDHgs2 assumption asserting that
{Djl2, (WD 12} ji ~c { D12, (W + U)Dj 12} i given Ar A, A, A}, A Wi, A7 Wy
where ﬁf’) “—r spanZW(Ag). On input {[D;]2,[T;]2}j#; along with A1,A2,A3,Ag,A1TW1,A2TW1, algorithm B,

~ N ¢ ¢ Cwxly @)
samples Wy and programs Wy := Wy — i - Wy, samples s ; < Zp‘, $2,j “r ZPZ, D; < ZpW w Uj “—r
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spanéW(Ag) for all j € [n], and outputs

aux: [A]11,[A] Wo —i-A{ W11, [A] W11, [A] ]

ct: {[c] (Wo + U;Z)) +( =) (s] ATWi+s; ATWDIL, [e] 11}, € i= Ausy,j +Ansyj

j<i
{lc] Wol1, [¢]11} Ci —rspan(A1,As)
{Is] ATWo +(j - )-s] A]WDI1, [e]]1}

sk: {[D;l2, [(Wo +U5~2))Dj +(j =D Tjlo}
{IDil, [(Wo+U)D;l2}

j>i cj:=Ajs1;

Observe that when T; = WD, the output is identical to Sub-Game; 1; and when T; = (W + flg.s))D j and let

Uf’) =(j-1) -ﬁf’), the output is identical to Sub-Game; ». This readily proves the lemma. O
Lemma 33 (Sub-Game;, = Sub-Game; 3). Adv; 2 = Adv; 3.
Proof. Ttis sufficient to prove that, for A1,A2,A3,AQ,AQ,AQ, we have

aux,{cti} iz {ski}izi
'{AJ}]#l LJ#’ ct;,sk;

~

.. <t
(A Wo, A3 Wo, (Wo + U} i, Wo ) = (A Wo, A] Wo, (Wo + U}, Wo +| U )

where Wy — ngg‘” and Uf’) —g spanfw (Ag) for all j € [n]. This is further implied by

(A{ Wo,A] Wo, W) = (A Wo,A] Wo, Wy +| UP )

which is described by the statistical lemma, Lemma 5. O

Lemma 34 (Sub-Game; 3 =, Sub-Game; 4). There exists an adversary B, with Time(B4) = Time(A) such that

G

S
[Advis —Advial < Advy SN (1),

Proof. Recall that the SDg;M A A, ASSUMPption asserts that

[t —x span(Ag)l; =~ [t — span(As,Az)]; given [Ag,Aq]y, basis(A},Al).
On input [t]; along with [A2,A;1];, basis(Ag,Ag), algorithm B4 samples Wy, W} — Zf,xgw and
2) 3) _ 23) _ Cw Al Al
(U]. +Uj =) U]. rspan~ " (A;,A3)
for j € [n] using basis(Ag,Ag), and outputs

aux: [A] ], [A] Woly, [A] W11y, [A) T

ct: { cj —rspan(Ap,Az)
'R
{

[c] (Wo+j-Wi +UP], [efh}
C

~~

[c] Wy +i-Wy +U%)]y, e/ 11} c; —p t+span(A;)

[C]T(W0+]"W1)]1, [C]T-h} cj —rspan(A;)

j>i

sk: {[Djlz, [(Wo+ j-W; +U§'23))D]']2}j€[n]

Observe that when t — span(A3) the output is identical to that in Sub-Game; 3; and when t —; span(Az,As),
the output is identical to that in Sub-Game; 4. This readily proves the lemma. O
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Lemma 35 (Sub-Game; 4 = Sub-Game;5). Adv; 4 = Adv;s.
Proof. The proofis completely analogous to that of Lemma 33 (Sub-Game; > =, Sub-Game; 3). O

Lemma 36 (Sub-Game;s =, Sub-Game; ). There exists an adversary B¢ with Time(A) = Time(Bg) such that
Ga
|[Adv; 5 —Adv; gl = AdvngA3 ).

Proof. The proof is completely analogous to that of Lemma 32 (Sub-Game;; =, Sub-Game; ») except that
we simulate

N 2
ski: [e] Wo+UP)Iy, [e] 1y
where ¢; — Zé and ng) are known to the simulator. O

Lemma 37 (Sub-Game; ¢ =, Sub-Game; 7). There exists an adversary B; with Time(A) = Time(B;) such that

Gy

[Advi g~ Advl < Adva VN (1),

Proof. The proof is completely analogous to that of Lemma 31 (Game; =, Sub-Game; ;) except that we
simulate

ski: [c] (Wo+i-Wi+UP)]y, [e] ]

where Wy, Wy, UgZ) are known to the simulator and c¢; < t+ span(Ay). m]

C Missing Lemmas for Section 6.2

Fix an adversary A that makes at most Q key queries, we use Advyy to denote the advantage of A in Game,.
Lemma 38 (Gameg =, Gamey). There exists an adversary By with Time(Bg) = Time(A) such that

|Advo — Advy| < Advi "M ().

Proof. This follows from the entropy expansion lemma (see Lemma 2). On input

aux: g1,8{", 8" 8"
ct: Co, {Cy,j, G jtjen ’
sk: {Ko,j, K1,j, K2, j} jein)
algorithm B, proceeds as follows:

Setup. Select a random generator h23 of Hy and sample a — Zy. Choose a pairwise independent hash
function H : G — {0, 1}* and output

mpk := (aux, e(g1, h123)%;H).
Key Queries. For each query M, sample u «— Z]{}_l and 7j < Z for j € [n], and output
M. a 7. F. 7.

Ciphertext. For challenge attribute vector x* = (x;,...,x;) and two equal-length messages my, m;, pick
b — {0,1} and output

Ctx+ 1= (CO) { Cl,j) CZ,j }j:x]*,:l»e(co, hixgs) *Mp ).
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Guess. When A halts with output b’, B, outputs 1 if b = b’ and 0 otherwise.

Observe that when the input is identical to the left distribution in Lemma 2, the output is identical to Gamey;
and when the input is identical to the right distribution in Lemma 2, the output is identical to Gamey. This
readily proves the lemma. O

Lemma 39 (Gamey =~ Game;). There exists an adversary B, with Time(B;) = Time(A) such that

Gn

|Advo — Advi] < Advy, "7 (1),

Proof. This follows from

(85,18, }jein) :c(g?f', 18 | & jern) given g, hy, ha.

which is implied by the SDgéV_, p2ps assumption. On input (T,{T} je(n)) along with g1, hy, hy, algorithm B

picks vj,uj <y Zy for all j € [n] and proceeds as follows:

Setup. Select a random generator hy,3 for Hy and sample a, w, wy, wy < Zn. Choose a pairwise indepen-
dent hash function H: Gy — {0, 1} and output
mpk:= (g1, g1°, &, &> e(g1, h23)%; H).

Key Queries. For each query M, sample u < Zﬁ’,‘l and rj <y Zy forall j € [n] and output

M a . LU . . . +7-
skt := (L gl @) 01 R, 3y, T

riuj
3 1 2 'hzj ! bjetn)-

Ciphertext. For challenge attribute vector x* = (x;,...,x;) and two equal-length messages my, my, pick
b —¢{0,1}, §,§; < Zy for all j € [n] and output

§w+§j(w0+j~w1) §

Ctx« 1= (glg T, {g1 TV T;tj, glsj : Tj }j:x;f:l» H(e(glg' T, hlleS)) "Mp )

Guess. When A halts with output b, B, outputs 1 if b = b’ and 0 otherwise.

Observe that when T = g5 and T} = gzsj , the output is identical to Gamey; and when T = g5 - g3 and T; =
g;,— . g;j , the output is identical to Game;. This readily proves the lemma. |

Lemma40 (Game; =, Game; ;). There exists an adversary B, with Time(B,) = Time(A) such that

SDY
|Adv; —Adv; | < Ade2 Pempeps ().
Proof. This follows from

1hy'Vjeim =c thy' -1} jerm given g1, 823, b, iz, hs

where g3 is a random generator of Gp,p;» Which is implied by SD,ISIZNsz Ps assumption. On input {Tj} je[n)

along with g1, go3, h1, ho, hs, algorithm B, samples Vj,uj,& —y¢ Z forall j € [n] and proceeds as follows:

Setup. Select a random generator hy23 of Hy and sample a, w, wy, wy, —x Zy. Choose a pairwise indepen-
dent hash function H: Gy — {0, 1}* and output

mpk:= (g1, 81, 8" &1 (g1, h123)%; H).

Key Queries. For the x’s query M, sample u «— Zﬁ}_l and Fj < Zy for all j € [n] and output

MY M(E) Fw R F R Fwtjw) . .
({hlzj(u)'h (0]‘}11 'hzj j’hlj'hzj’hlj o+] l_hzj ]}je[n]) ifx <i

3 3 1
a - - - .

sknp 1= Mj(u)_ Fjw vp o T Fiwetjown) g e

M ({hlzs(a) hy - T,7 by~ Ty, by T, Yjemn) ifxk=1i

M; Fow o Fvp o Fp o F o Fiwetjwy) ) Fiug . )

({hy™ -k -k by, by Ry Y eny) ifx>i
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Ciphertext. For challenge attribute vector x* = (xf ,...,X;) and two equal-length messages my, m;, pick
b <—g 10,1}, s,s; —g Z forall j € [n] and output

sw+sj(w0+j~w1). Svj+sju;

ctx = (8183 (& 823 882 Vjxs =1 H(e(g1 - 823, hiy3)) - mp ).

Guess. When A halts with output b’, B, outputs 1 if b = b’ and 0 otherwise.

Observe that when T = h;j , the output is identical to Game;; and when T = h;j . h;j, the output is identical
to Game; ;. This readily proves the lemma. |

Lemma41 (Game;; = Game;,). Adv; 1 =Adv; .

Proof. Fix generators g1, g2, g3, h123, h1, h2, h3, common parameters w, wo, w1, {uj}jen, and all random
coins except those for the i’th key. It is sufficient to prove that, for all @, & and all r; # 0 mod p3, we have

x'thsk, k #i SF ct P-normal i’th sk

A A e % N
Viv . oyl oVin. M) v
({hz }]E[n]; {gz ;g3 }]:xj:b {h123 'h3 rh3 }]E[n])

. . . M (&% M;( ¢ Ty .
= ({hy '} jetn); 1852 85 }jixy=15 {hlzj?,(u)' hy 18] " jern)

P-SF i’th sk

where vj <y Zyforall j € [n] and u < Zﬁ;_l, ifx = (x3,...,x,) does not satisfy M. By the Chinese Remainder
Theorem, it is implied by

(185" juy=1o 11y 1 jeim) = (183 jox=15 | g 13) " jern)

where vj —p Zy forall j € [n] and u Z]’C‘l. This follows from Lemma 1 and readily proves the lemma. O
Lemma 42 (Game; to Game; 3). There exists an adversary B, with Time(B4) = Time(A) such that
spiv
|Adv; 2 —Adv; 3| < Ade2 Pempaps (1),

Proof. The proof is completely analogous to that of Lemma 40 (Game; =, Game;,;) except that we generate
the «x’s key (for M) as

i Mj(a) M](g) fjw l/j fj fj(l,U()+j'LU1) Mj
sk = ({753 | g by T by Ty T Yjen)
where @ and h3 are known to the simulator. O

Lemma 43 (Gameg; = Gamegipal). Adv+1 = AdVEinal-

Proof. Sample w, wy, w1, vj,u; as usual. Let hi23 and h3 be random generators of Hy and Hp,,. We sample
@&, & —y Zy and define h{,, := h{,;/hg. Observe that this does not change the distribution of a conditioned
on @&. Therefore we can alternatively simulate Gameg. as follows:

Setup. Choose a pairwise independent hash function H : Gy — {0,1}* and output

mpk:= (g1, g/, glu/o, glwl’ e(g1,h?23); H).
This follows from the fact hat e(g, hg‘) =1.

Key Queries. For each query M, sample u «— Zi}‘l and rj < Zy forall j € [n] and output

skM::({hﬁj(g)h

rjw

rivi . rj 41 Tj(we+j-wy) rju;j
. 'hzj ],h1]~h2],h] 'hzj ]}je[n])

1
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Ciphertext. For challenge attribute vector x* = (xf ,...,X;) and two equal-length messages my, m;, pick
b <—g 10,1}, s,s; —g Z forall j € [n] and output

sw+sj(w0+j-w1). SUjtSju;

cte = (81823 1§ &3 &) &=t Helgy - 83, hs) | €83, 15 D) ) - my ).

Here we let go3:= g2 - g3.

Guess. When A halts with output &/, output 1 if b = b’ and 0 otherwise.

Observe that e(g3, hy %) has ©(ps)-bit leftover entropy conditioned on mpk and all sky. By the leftover
hash lemma, the last component of cty- is uniformly distributed over {0,1}* and the simulation is actually
identical Gamegj,. This proves the lemma. O

D Missing Lemmas for Section 7.3

Fix an adversary A that makes at most Q key queries, we use Adv . to denote the advantage of A in Gameyy.
Lemma 44 (Gameg =, Gamey). There exists an adversary By with Time(Bg) = Time(A) such that
|Advo — Advy| < Advig PR (R,

Proof. This follows from Lemma 12 (our new entropy expansion lemma). On input

aux: [A] ]y, [A] W1y, [A] Woly, [AT W]y
ct: [Col1, {[Cy,j]1, [Cz,j]l}jg[n] )
sk {[Ko,jl2, [Ki,jl2, [Kz,jl2} ey

algorithm B proceeds as follows:

Setup. Sample k — ZZ**! and output

mpk := (aux, e([A] 11, [kl2)).

Key Queries. For each query M, sample K’ ngﬂ)x(['_l) and aj R Z’;” for j € [n], and output

sk = ({ [(KIKYM] +Ko,jd;l2, [Ku,jd;]2, Kz, jdjl2 } ey, )-

Here we implicitly set d; := D jd; which is uniformly distributed over span(B).
Ciphertext. For challenge attribute vector x* = (x7,...,x;) and two equal-length messages my, m;, pick

b — {0,1} and output

ctye == ([Col1, {[Cy,j]1, [Cz,jh}j:x;:l,e([coh, [K]2) - mp).

Guess. When A halts with output b/, output 1 if b = b’ and 0 otherwise.

Observe that when By’s input is the left distribution in Lemma 12, the output is identical to Gamey; and
when it is the right distribution in Lemma 12, the output is identical to Gamey. This proves the lemma. O

Lemma 45 (Game; =, Game; ;). There exists an adversary B, with Time(B,) = Time(A) such that

MDDH,,
|Adv; — Advi’1| = AdVBz .

Proof. This follows from the MDDHZ) 41 Assumption asserting

([Bl2,{[d;,; <& span(B)lz}jerm ) =c (1Blz, {1d;i —r Z5 1} jerm)-
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On input [B]y, {[tj]2} je(n), algorithm B, samples Al,ag,ag as required and picks W, Wy, W; — Z;,Zkﬁ)x(k“),
and prepares V;.Z),UE.Z) —p spank+l (ag) and « < Z, and proceeds as follows.

Setup. Pick k — ZZ**! and output
mpk := ([A] 11, [A] W11, [A] Wolq, [A] Wiy, e([A] 11, [K2)).

Key Queries. For the «’th secret key query M, pick K’

—p ZEFD* D and output

{0+ aa)[KIM] + (W+VP)djlz, [djl2 [(Wo+j- Wi +U)d)lo e x<i

skat := 4 {IKIK)M] + W+ V1o, 812 [(Wo + /- Wi + U1z jepn k=i
(LKIK)OM] + W+ V)djl, [d)l2 [(Wo+ - Wi +UP)djl2} jerm K> i

where [d;] < [span(B)]; for all j € [n].

Ciphertext. For challenge attribute vector x* = (x7,...,x;) and two equal-length messages my, m;, pick
b —¢{0,1} and ¢,c; < span(Ay,ap) for all j € [n], and output

Ctxe = ([eT]1, (leT W+ V) +ef (Wo + /- Wi+ U1, [e] 11} s -1, elle 11, [kl2) - mp).

Guess. When A halts with output b’, output 1 if b = b’ and 0 otherwise.

Observe that when t; < span(B), the output is identical to that in Game;; and when t iR Zf,“, the output
is identical to that in Game; ;. This proves the lemma. O

Lemma46 (Game;; = Game; ). Adv; 1 =Adv; .

Proof. FixbasesAj,ay, ag, B, common parameters W,Wy, W1, k, a, and all random coins except those for the
i’th key. It is sufficient to prove that, for x does not satisfy M and all {d; ¢ span(B)} je[,), we have

x'thsk,x #i E-normal ct P-normal i’th sk P'SFith sk

e N

—N - ~ -~ ~
( VZB 5 V) jymr; (KIKIM] + VP d;,djh jer) = (VB3 (VP o1; (Gk+| @@l [IKOM] + VP dj, d ) jepn)

—x spank“(ag).

r_
Where K/ —r Z%k+l)x G 1),V;2)

Let bl be a (fixed) non-zero vector in Z,’;“ satisfying B" b/l = 0. It is direct to see that we can replace VE.Z)
with VE.Z) + ag v jb” where v; <y Z, for all j € [n] in both distributions without changing the distributions.

For all {V;z)} je[n) after substitution, it is sufficient to show that

({0} }jix;=1, 102y IKIM] +@vjrj, 1} jerm) = (10} jegy=1, (( @@y IK)M] +abvjrj, i} jem)

where K —; Zggzk“)xw_l), Vj <r Zp, and we let r;j := d"b!. We note that rj # 0 since d; ¢ span(B) for all
j € [n]. This is implied by Lemma 1 and we readily prove the lemma. O

Lemma 47 (Game;» =, Game; 3). There exists an adversary Bs with Time(B3) = Time(A) such that

MDDHZ k+1
|Adv;» —Adv; 3| < Adv%2 ).

Proof. The proof is completely analogous to that of Lemma 45 (Game; =, Game;;) except that we generate
the «’s key as

({[0+| aa) [IKIM] + (W +V)tla, (]2 [(Wo+ j- W1+ D)1 }jen)

where ag and a are known to the simulator. O
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Lemma48 (Gameg.1 = Gamegipal). Adv+1 = Advpinal.

Proof. Sample Al,ag,ag,B W, Wy, W; and V(.z) U(Z) as usual. We sample k —z sz+1 @ < Zp, and define

k:=k- aa” The joint distribution of (k, k+ aa =k) is the same as in Ga meg+1 and we can simulate the
game as follows

Setup. Output
mpk := ([A{ 11, [A] W1y, [A] Woly, [A] Wil1, e((A] ], [K]2)).
The simulation is correct here because e([A] 11, [kl2) = e([A] 11, [kl2).

2k+1)x (¢ -
— Z; )x(

Key Queries. For each key query M, pick K’ U d j <= span(B) for j € [n] and output

skn := ({[(KIKYM] + (W+V?)d;l2, [d)l2 [(Wo + - Wi +U)djl2 ) jepm)-

Ciphertext. Upon receiving a challenge attribute vector x* and two equal-length messages my, m;, pick
b —¢{0,1}, c,cj —g span(Aj,ay) for all j € [n] and output

txe = (€1, (eTW+VP) +¢] Wo+ j- Wy + U], (€]} juas =1, ele" 1, K2)/| elle Ty, [aallo) |- my).

Guess. When A halts with output b, B, outputs 1 if b = b’ and 0 otherwise.

Observe that the boxed term is uniformly distributed over Z, with high probability conditioned on other
part of the simulation. Hence it does not change the distribution if we replace m; with a random message
m which leads to Gameg;yg. O

E Hybrid Argument for Entropy Expansion in Section 8.1

To prove the entropy expansion statement in (13) for our composite-order unbounded CP-ABE, we employ
the following hybrid argument:

w, w
aux: gl,gl”’,g1 °,g1 !

sj(wo+j-wy)

y ct:gi, {g ,g1 ', 8 Yietn) LHS in (13)

rw+ri(we+j-wy) i
sk:hl, {h, Jrn » by e
aux: 81,81, 8", 8"
p1—=p1p2ps . sj(wo+j-wr)
e} ct:glig)" g, g bjetn)
rw+rj(wo+j-wp) i
sk [Inas [ [ s [ s Yew

wo

aux: gl,g1 ,g1 ,g1
pr—pip2 i (wo+ j-wy)
ey ctigy- , shigr " 8y, bjetn

T rw+r](w0+] wl) r,
sk hjps {hypg hyg3 Y jetnl

. w oW Wi
aux.gl,gl ’gl ’gl
Lemma 3 sjw | sjw| s Sj sj(wo+j-wr) Sjuj

R § ct: gf-gzs, {glj 182 81|82 8 18> b jen)
rw+rj(wy+ w) FW+rju;j rj rj
sk: hi,- , {hyy 7 fm Ly e By Y e
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12Y w
aux: 81,81, 8 -8 '

pr—pips . siw  sjw i Sj(wo+j-wr) sju;
~c ct: gf gg, {glj 'gzj ’ g1 gz ’ g ! gzj ]}]eln]
r rw+ri(Wo+j-w) L rw+riu; Tj 1)
sk: .hg,{ hy J’ h Y et

w w
aux: 81,81, 8 -8 '

(14) Siw Siv; i Si(wo+j-wy)  sju;j .
e § octighogs gl g b ey g g T g Y e ¢ RHSIn (13)
X rw+rj(wo+j- wl) rv; rjuj ,rj 7T
sk:h]-hy, {h, Jhy | hy T by Ry e

F Hybrid Argument for Entropy Expansion in Section 9.2

To prove the entropy expansion statement in (18) for our unbounded KP-ABE for arithmetic span program,
we employ the following hybrid argument:

!

!
. w SWo gwr jw Wo 1
aux: g81,8,,8, -8 & 8 8

ct: gt 1g] swHs;(wo+j-wy) gfj, glsw’+s}(wé+j-wi)’ gf}}jE[n] LHS in (18)
sk (R, B, T, R0 ety
aux: glrgl‘”.g{“".gi”lvgi”"gf‘/"giﬂi
pl’_’ZICPZPS ctigh Ig! swsj(wo+ j-wy) glsj, gi'w’+s}(wé+j~wi)y gl}}je[m
sk: {‘ h123 "jw "jw,.‘ hi23 ’jy‘ h123 ‘Ij(wwj.wn, 123 rj(werj.w{)}je[n]

. w w0 w1 jw' JWo Wi
aux: g1,8,,8, 8 8 8 8
!

p1—pip2 - si(wotj-wy) i / s (wp+jowy) s,
=~ . s sw j(Wwo+j-wi) J sw 70 1 iy,
c ct: gf-, {gf‘”--g1 &l g e g » &' Vjein

w ri
. J
sk: {hIZS , 123 » Bygs 1

rj(wo+j-wi)
123

rj(wy+j-w))
’ h123 0 ! }je[n]

w oW W gw W Wi
aUX.gl,gl.gl 'gl vg] vgl vgl

19) si(wo+j- U ) ] st (wh+j-wh) shu, s, s,
~ oS oS sw . gsw, o SiWotjwi) | sjuj Sj Sj sw' it 1 Y j il
¢ ct: 818 {g1 ‘8 8 ‘| 8 b 81 | 82 ’gl g 8 ‘| 82 b 81 | 82 }]€[ﬂ]
L Tiw rjw rjw' rjw' rj rj rj(wo+j-wr) rjuj 7 (wy+j-w}) rju;
sk: thyg | hy | hyg |y ) | hy' | g |y} g ’ v hy " e
. w oGwo Wi jw' JWo Wi
aux: g1,8,,8, -8 8 8 8
P1=p1ps3 . si(Wo+j-wy)  siu;i s swh+jowy) s s s
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