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Abstract—This work studies the problem of automatically
penalizing intentional or unintentional data breach (APB) by
a receiver/custodian receiving confidential data from a sender.
We solve this problem for multimedia data by augmenting a
blockchain on-chain smart contract between the sender and
receiver with an off-chain cryptographic protocol, such that any
significant data breach from the receiver is penalized through a
monetary loss. Towards achieving the goal, we develop a natural
extension of oblivious transfer called doubly oblivious transfer
(DOT) which, when combined with robust watermarking and
a claim-or-refund blockchain contract provides the necessary
framework to realize the APB protocol in a provably secure
manner. In our APB protocol, a public data breach by the
receiver leads to her Bitcoin (or other blockchain) private
signing key getting revealed to the sender, which allows him
to penalize the receiver by claiming the deposit from the claim-
or-refund contract. Interestingly, the protocol also ensures that
the malicious sender cannot steal the deposit, even as he knows
the original multimedia document or releases it in any form.
We implement our APB protocol, develop the required smart
contract for Bitcoin and observe our system to be efficient and
easy to deploy in practice for multimedia documents. We analyze
our DOT-based design against partial adversarial leakages and
observe it to be robust against even small leakages.

I. INTRODUCTION

Data breach attacks on cloud hosts are increasing every
year [1], [2], [3], [4], the reasons for which vary from
compromises of ill-maintained data servers to careless data
custodians. Although it has been observed and reported that
90% of these data breaches can be avoided with good security
practices on the custodian’s infrastructure [5], there is no
evident decrease in the number. In these cases, taking legal
actions is not only expensive and time consuming but it is also
difficult to establish the responsibility in today’s geo-politically
distributed data flows.

This work aims at raising the bar for the data receivers/cus-
todians by introducing a complementary security mechanism
that is inexpensive, automated, and is not restricted by the
geo-political boundaries. In particular, our goal is to make
the data custodians more accountable through automatically
enforceable monetary penalties resulting in immediate loss
of funds, and we call the associated contract the automated
penalization of breach (APB) contract. Applicability scenarios
for APB contracts range from industrial media custodianship,
leaking privately shared personal data (pictures and other me-
dia files) of others on social media and even to non-disclosure
agreements between mutually distrusting entities [6].

Example Scenario 1 - Data Custodianship: Data Cus-
todianship refers to the responsibility of safe storage and
custody of the data [7]. A serious breach of the storage
typically results in criminal litigation against the custodian.
APB can be useful when legal action is undesirable due to
the uncertainty of recovering the payment (which increases
if the winning party is owed court costs in addition to the
actual remedy) [8]. We assume that the data owner/sender
and the custodian/receiver agree on an amount of money that
will be awarded to the owner should specified documents be
demonstrably leaked by the custodian. Towards automatically
ensuring that the owner will receive the funds, this amount
could take the form of a surety bond that is held in trust
by a Bitcoin or other permission-less/permissioned blockchain
based cryptocurrency smart contract.

Example Scenario 2 - Media Download: In the case of a
users downloading paid media that should not be publicly
shared on online platforms, the downloaders make a timed
deposit along with the actual payment, for a agreed upon time
and value for the download. The deposit can be forfeited by
the media provider upon dishonest sharing of the content, in
case of no such incident it will be returned to the download-
er/customer.

APB does not preclude the use of the court system, it simply
complements it, or shifts the responsibility of bringing legal
action to the entity seeking to recover their bond. Allowing
an escalation to court is important as some disclosures are
in the public interest (whistle-blowing) [9]. In fact, in certain
cases, a third party might pay the value of the bond for the
information (news media, crowdfunding, etc.). We expect that
the proposed mechanism encourages the parties involved to
follow better security practices and the proposed APB protocol
is a step in that direction.

Contributions. In the form of APB, we formalize the prob-
lem of automatically settling intentional or unintentional data
breaches with a Bitcoin (or other blockchain) smart contract,
eschewing the traditional recourse of costly legal action. Our
APB protocol is a crypto-augmented smart contract system
to obtain an arbitrator-free settlement. It consists of four
main components: a claim-or-refund smart contract, a robust
watermarking scheme, a natural oblivious-transfer extension
called Doubly Oblivious Transfer (DOT), and a non-interactive
zero knowledge (NIZK) proof for mutually distrusting parties.



In our core protocol, the sender and receiver create a claim-
or-refund transaction on Bitcoin [10], [11], [12] where an
amount is deposited that can be spent at any time with a jointly
signed transaction, or spent after a period of time by an sender-
only signed transaction. The document provided to the receiver
has the receiver’s signing (private) key embedded in it with a
robust binary watermarking scheme that cannot be removed
(or retrieved) by anyone except the embedding party. The
challenging aspects of the APB protocol involve arranging for
the signing key to be embedded such that (1) the sender does
not learn the value of the key at the time of embedding, (2) the
receiver does not learn the document contents until the key is
embedded, and (3) the sender is convinced the embedded key
is the receiver’s correct signing key. Within these constraints,
to perform the embedding the parties must jointly perform
a two-party computation with their respective private inputs.
Our novel DOT and committed receiver oblivious transfer
(CROT) protocols, securely realize this two-party computation
to ensure that the sender can retrieve the receiver’s embedded
key from the document if it leaks (widely enough to reach the
sender) and spend the deposited cryptocurrency.

We have implemented the APB system using the Relic
library for the cryptographic primitives, a robust image wa-
termarking scheme and claim-or-refund contract for Bitcoin.
Given the prevalence of robust watermarking in the multimedia
industry [13], [14], we find our APB system to be easy to
deploy. Our single-threaded implementation takes on average
1.73 seconds when an 1.3MB image is used as data for the
transfer when the 256-bit key is embedded once.

Given the inherent non-cryptographic robustness guarantees
of the robust watermarking system, we also analyse partial
data disclosures. In particular, even when the receiver decides
to reveal the document partially, our proposed DOT protocol
ensures that the embedding party or the sender can retrieve
significantly more number of bits than when the standard
oblivious transfer is used for the transfer. For example, when
the receiver’s 256-bit signing key is embedded 16 times in
the multimedia document, even a 15% leakage of document
blocks reveals roughly 235 bits of receiver’s key to the sender
with DOT as opposed to roughly only 50 bits that are revealed
when oblivious transfer is employed.

II. AN OVERVIEW OF APB

Problem Definition. We consider a setting where a sender
wishes to disclose a multimedia document M to a receiver.
The receiver is expected to hold a public key-secret key pair
(pk, sk), where the key sk is a signing key of a (say) Bitcoin
wallet corresponding to pk. Instead of the sender directly
sending M to the receiver, we expect the sender and receiver
to jointly compute a function f((M,pk), sk) which should
provide the receiver a version Msk of M that has been tagged
(or robustly watermarked) with the key sk. The protocol
should abort (or not produce a meaningful Msk) if sk from the
receiver and pk from the sender are not a matching key pair.
At the end of the protocol, the sender does not learn sk or Msk

and the receiver does not learn any further information about
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Fig. 1: APB Protocol: High-level View

M . The receiver’s Bitcoin wallet holds the escrow deposit for
accountability.

We consider the problem in a mutually distrustful setting,
and either the sender or the receiver can be malicious. A
malicious sender can try to learn the signing key of the
receiver so as to steal the deposit. When appropriate, he
can also make the document public and try to accuse the
receiver of dishonest disclosure. The malicious receiver, on
the other hand, can try to remove/replace the watermark from
the obtained document, and release the modified version to
the public without revealing her key. In such an adversarial
setting, we wish to satisfy the following privacy and integrity
goals:
- Sender Privacy: Before the transfer completes, no informa-
tion regarding the document is available to the receiver.
- Receiver Privacy: Before the disclosure of document by the
receiver, no information regarding the receiver’s signing key
is available to the sender.
- Sender Integrity: In case of false accusation by the sender,
no action is taken.
- Receiver Integrity (Revealing property): In case of disclosure
of the document by the receiver, the signing key of the receiver
is revealed to the sender.

We formalize these properties as an ideal functionality in
Figure 5 in Section V.

Solution Overview. We propose the APB protocol, depicted
in Figure 1 involving the two parties Sender and Receiver.
The sender has the multimedia document M and the receiver
has the signing key sk. The receiver initially makes a time-
locked bitcoin deposit of an agreed value of funds that can be
opened only if the signing-key of the receiver is available. The
sender divides the document into several blocks and creates
two watermarked versions (corresponding to 0 and 1) for each
block. The parties run multiple 1-out-of-2 Oblivious Transfer
(OT 2

1 ) protocol instances, one for transfer of each of the
document blocks. The sender uses the watermarked blocks as
inputs while the receiver uses each of the bits of his signing
key as choice bits for the OT 2

1 s and obtains one version of
each block i.e., for a 256-bit signing key of the receiver, the
sender (in the simplest case) divides the document into 256
blocks and creates two versions for each block using robust
watermarking. The sender and receiver then perform 256 OT 2

1

s, where the choice bit for each OT 2
1 is each of the bits of

256-bit key of the receiver. The receiver also proves to the
sender in zero knowledge that the signing key used for the



deposit is indeed formed of the bits used for OT 2
1 s.

As the document is transferred through oblivious transfer,
the sender can not gain any information about the signing-key
of the receiver. However, if the document is revealed/disclosed
before the time of expiry of the agreement, the sender learns
the signing key of the receiver from the watermark of the
revealed document. He can then proceed to penalize the
malicious receiver by transferring the funds to himself. The
multiple OT 2

1 s, one for each block, ensure that the watermark
embedded in the document corresponds to the signing-key bits.

To transfer the funds out of the deposit, the sender needs
both his and the receiver’s signature which can not be obtained
before the document is revealed to the public. Thus, he can
penalize the receiver only if she is dishonest. If the receiver
is honest, the agreement would expire after the agreed time
and the funds will be transferred back to her. The transactional
logic of the deposit is depicted as pseudo-code in Algorithm 1.

Algorithm 1 Claim-or-Refund contract logic

1: if Current time tnow ≥ t then
2: Direct the locked funds back to the contract creator
3: else
4: if Both the sender and receiver sign the transaction then
5: Direct the funds to the mentioned recipient
6: else
7: Transaction is invalid

The receiver instead of full disclosure, can disclose the
document partially to the public. She can reveal, say, half of
the total 256 blocks received, so that only half the number of
bits of her signing-key are revealed to the sender. However,
for a 256-bit key of the receiver, the sender can in-fact divide
the document into more numbers of blocks than just 256. This
way, he can embed the key multiple times in the document,
for example, the sender can divide it into 512 parts so that
the key gets embedded twice. The sender can perform 512
OT 2

1 s with the receiver using her 256-bit key twice for the
same. In such a scenario, the sender can extract more number
of bits upon partial disclosure. Also, the information in the
document may not be “uniform” throughout the document, so
the sender can also try to embed the key multiple times in a
document part where there is “more” information by dividing
it into more number of parts at those document locations.

The receiver understands that one bit of her signing key is
watermarked in each of document blocks received using that
bit in OT 2

1 . She also knows which particular bit is embedded
in a particular document block, this is because, the watermark
embedded in a block is same as the choice bit used for OT 2

1 in
obtaining a document block. Leveraging this knowledge, the
receiver can try to minimize the number of bits revealed to the
sender. For example, with the sender dividing the document
into 512 blocks and the receiver having a 256-bit signing-key,
the receiver can reveal 100 blocks of the received document
revealing only 50 bits to the sender. She can achieve this by
revealing two blocks received with each bit for 50 bits. To

prevent such an attack we propose a primitive called Doubly
Oblivious Transfer (DOT). DOT prevents the receiver from
learning which bit (index of the bit) of her key is watermarked
into a certain block.

In DOT the sender has two messages m0,m1 and the
receiver has two bits s0, s1 (refer Figure 8 in Appendix). The
sender has an extra choice bit c using which he transfers msc

(associated with the bit sc) to the receiver. At the end of DOT
instance, the receiver cannot determine the value of c and
m1−sc and the sender does not know the bit sc that has been
used in the transfer of msc .1 Refer Figure 8 in Appendix for
the pictorial depiction of the simplest form of DOT protocol.

For APB, the sender can use DOT to transfer the document
to the receiver such that she has no information about which
of her bits is embedded in a certain document block. As we
analyze in Section V-A, this greatly improves the expected
number of bits revealed to the sender in case of partial disclo-
sure. For example, with the sender dividing the document into
512 blocks and 256-bit key at the receiver, upon disclosure of
100 blocks, the expected number of bits that the sender can
extract is 90.3 instead of 50 while using just oblivious transfer.

Notice that our APB protocol augments cryptographic prim-
itive with a smart contract. Given the limited expressibility of
Bitcoin contracts our (off-chain) cryptographic solution seems
necessary but this may not be the case for turing-complete
systems like Ethereum [15]. However, defining the complete
solution as a smart contract will not be or may not remain
inexpensive enough. Further comments regarding the contracts
can be found in Appendix E .

III. FUNCTIONAL BLOCKS

Robust Bit Watermarking. Once the dishonest receiver
reveals the document, the sender learns the signing-key using
watermark of the revealed document. For watermarking doc-
ument blocks, we use a robust bit watermarking scheme with
the property that the watermarked bit 0 or 1 cannot be removed
without loss of significant information from the block. The
actual watermarking scheme used can vary based on the type
of the document being watermarked. We mostly follow the
definition of robust watermarking by Adelsbach et al. [16].

Let M denote the set of all documents, WM ⊆ {0, 1}
the set of two watermarks. K indicates the set of all keys
and λ indicates the security parameter. The watermarking
scheme is defined using three algorithms, one each for key
generation, embedding and detection of the watermark. Gen
(λ) is a probabilistic algorithm that outputs a key k ∈ K for
the given λ. Embed (M,w, k) takes the multimedia document
M , watermark w ∈WM and key k as inputs and generates a
watermarked document M ′ while Detect (M ′, k, w) takes the
watermarked document M ′, the key k and the watermark w as
input and outputs > if the watermark in M ′ matches w, else
outputs ⊥. For non-blind watermarking schemes, the detection
algorithm takes the original document M also as input.

1For s0 = s1 = b, the receiver knows that she received mb; however,
that does not constitute any privacy leakage in our application as c and m1−sc
remain private.



We require the watermarking scheme to satisfy the three
properties of Effectiveness, Robustness and a weaker version
of imperceptibility (as in [16]) called Bit-imperceptibility.
Effectiveness indicates that a key k used to embed a watermark
should also detect the watermark i.e., ∀M ∈ M,∀k ∈
K and ∀w ∈ WM, if Embed(M,w, k) → M ′, then
Detect(M ′, k, w) = >. Robustness states that no proba-
bilistic polynomial-time (PPT) adversary should be able to
effectively change or remove the watermark in the water-
marked document without leaving the document itself unus-
able. Bit-imperceptibility indicates that the knowledge of the
watermarked document with some unknown watermark bit
w ∈ WM should not reveal any additional information on
the watermark bit that can be feasibly extracted. We discuss
the robust watermarking algorithms in Section VI.

Oblivious Transfer. 1-out-of-2 oblivious transfer (OT 2
1 ) is a

two-party (a sender and a receiver) computation mechanism,
where the sender has two messages M0 and M1 and the
receiver has a bit b ∈ {0, 1}. The goal is to transfer Mb to
the receiver and at the end of the protocol, the receiver should
not learn any information about M1−b and the sender should
not learn b. We consider the oblivious transfer protocol, called
the Verified Simplest OT by Doerner et al. [17] which is an
extended version of OT protocol by Chou et.al. [18], recalled
in Appendix A along with Figure 7. The multiplicative group
G used for the protocol is Gap-DH [19] and the additional
verification step forces the receiver to make oracle queries
before receiving the encryptions from the sender, there by
making the protocol UC-Secure.

Bitcoin Claim-or-Refund Contract. Bitcoin [20] is a peer-to-
peer decentralized network where participants are represented
by a public and private key pair. The hash of the public key
serves as the user’s address and the private key is used to sign
and authorize transactions. Script in Bitcoin is a stack-based
language simulating a Push Down Automata and is used to
write a smart contract. Spending funds typically involves exe-
cuting/running two scripts on the spender’s machine. The first
is scriptPubKey which is embedded in the input transaction
under the script field. It entails the conditions that must be
met to spend the unspent transaction outputs (UTXO). The
second one is scriptSig which is an unlocking script provided
by the user who wants to spend the UTXO. When scriptSig
and scriptPubKey are executed in sequence, the user gets to
know if the transaction is valid. Bitcoin offers both sender and
receiver of the funds an aspect of privacy until the funds in
the deposit are directed to a recipient i.e., in our case, after
the documents become public and the key gets revealed to
the sender. Such privacy is not observable in any other non-
blockchain financial system.

Time-Locked Compensation Deposits: We construct
scriptPubKey with two prominent Bitcoin scripting
language operators: OP CHECKLOCKTIMEVERIFY
and OP CHECKMULTISIGVERIFY.

OP CHECKLOCKTIMEVERIFY allows users to create
transactions whose outputs can only be spent in the future.

OP MULTISIGVERIFY allows the creation of transactions
which need multiple signatures. In our case, the receiver
creates a deposit which is locked till a future time t. The funds
of the deposit can be transferred only if both the signatures of
sender and the receiver are submitted before the time t. After
time t, the unspent funds are transferred back to the receiver.
Embedding such instructions into the funds is commonly
referred to as a smart contract. Our smart contract automates
the claim-or-refund functionality. The funds are transferred
either when the time of the agreement expires or when the
signatures of both sender and receiver are available.

The scriptPubKey that receiver uses in the contract is

IF
OP CHECKLOCKTIMEVERIFY OP DROP
pkR OP CHECKSIGVERIFY
ELSE
OP 2 pkR pkS OP 2 OP CHECKMULTISIGVERIFY
ENDIF

IV. DOUBLY OBLIVIOUS TRANSFER — DOT

In our solution, the receiver obtains the document blocks
by running OT 2

1 multiple times with her signing key bits as
the choice bits. However, while running OT 2

1 , the receiver
understands that each of the message that is received by using
choice bit is indeed affected by the choice bit i.e., the receiver
knows the index of the bit embedded through watermark in
a received message/document block. To overcome this, we
propose a primitive, in which the receiver, after giving multiple
bits as input, receives several messages corresponding to the
input bits, but the receiver does not have any information
about which bit was used as choice bit for choosing a certain
message. In the simplest case the sender has two messages
along with a choice bit and the receiver has two bits. The
sender chooses one of the indices of the bits of the receiver
and the receiver receives the message corresponding to the bit
of the chosen index. Here, the sender does not know which
message has been received by the receiver and the receiver
does not know which of her two bits is chosen as the choice
bit to choose the messages. Hence we call it Doubly Oblivious
Transfer (DOT) Protocol.

Ideal functionality FDOT interacts with sender S and receiver R.
- Upon receiving the input (s0, s1), s0, s1 ∈ {0, 1} from R, store
both (s0, s1).
- Upon receiving the input (M0,M1) with M0,M1 ∈ {0, 1}∗ and
the choice bit c ∈ {0, 1} from S, store (M0,M1, c).
- After receiving all the inputs, check if s0, s1, c ∈ {0, 1},M0,M1 ∈
{0, 1}∗, if yes, forward Msc to R, else abort.

Fig. 2: Ideal Functionality FDOT of DOT

Figure 2 represents the ideal functionality2 of the DOT
protocol. Recall that DOT hides the index c and m1−sc from

2What is presented is a simplified ideal functionality with the communi-
cation setup including public headers and private payloads along with session
ids being assumed in the background as has been suggested in the work
[21]. This simplified template is followed for all the ideal functionalities in
the paper.



Sender Receiver
Message blocks: M0 and M1, Choice bit: c Bits: s0, s1

Setup
Multiplicative (Public) Group G, Generator g

(pkS , skS) (pkR, skR)
pk = pkS ∗ pkR

For all i : 0 ≤ i ≤ 1, execute the steps below

Symmetric encryption of Message Blocks
g0, g1 ←R G
Enc0 = EH(g0)(M0), Enc1 = EH(g1)(M1)

Ênci = π1(Enci), for permutation π1
Ênci−−−→

El-Gamal encryption of group elements
Set gc,0 = g0, gc,1 = g1
g1−c,0, g1−c,1 ←R G
ui,0 = Epk(gi,0), ui,1 = Epk(gi,1)

Oblivious Transfer [17]
Run OT 2

1 for i
Input ui,0, ui,1 Input si

Output ui,si
Re-randomization, Forwarding and Decryption

vi,si = Rpk(ui,si)
vi,si←−−−

xi,si = DskS (vi,si)
xc,sc−−−→

gc,sc = DskR(xc,sc)

Decrypt Êncsc using H(gc,sc) appropriately

Fig. 3: Doubly Oblivious Transfer (DOT) Protocol

the receiver, but it need not essentially hide the value sc itself.
For s0 = s1 = b, the receiver knows the value b but not c.

Construction. We provide a construction which realizes the
ideal functionality of DOT with two messages M0,M1 and a
choice bit c at the sender and two bits s0, s1 at the receiver
as given in the Figure 2. Both the parties possess public key-
secret key pairs (refer Figure 3) and pk = pkS ∗ pkR where
pkS , pkR are public keys of sender and receiver. The sender
samples two elements from the group (can be points from
the elliptic curve), encrypts the two messages using a sym-
metric encryption E(.)(.) with the keys obtained by hashing
the elements. These encryptions are randomly permuted and
forwarded to the receiver in the form of Ênci. This is the
first step in DOT . The sender then transfers the elements
to the receiver such that the receiver can only decrypt Msc .
The encryption and forwarding of messages prevents the need
to map random message strings onto group elements for the
ElGamal encryption in the next step.

The sender samples two more elements, populates gi,j ,
i, j ∈ {0, 1} as shown in Figure 3 and encrypts all gi,j
to the public key pk using Epk(.) - a Re-randomizable en-
cryption like ElGamal encryption to obtain ui,j . Now two
OT 2

1 instances are run, one for each i with ui,j as inputs.
The receiver inputs si as the choice bit for the instance i
of OT 2

1 . The encryption of the elements to the key pk later

helps the receiver to hide which keys have been obtained by
her through OT 2

1 and helps the sender to hide the order in
which the keys have been forwarded. Hiding the order implies
hiding the mapping between bits si and elements obtained
by the receiver through OT 2

1 . The receiver after receiving the
different ui,si through OT 2

1 proceeds by applying Rpk(.), a re-
randomization operation to obtain vi,si . These re-randomized
encryptions of obtained encrypted elements are now forwarded
back to the sender. If there was no re-randomization step, the
sender would know what elements have been obtained by the
receiver and so will know what version of the message was
taken by the receiver. Hence we use the re-randomization step
to hide from the sender, information regarding which messages
have been obtained by the receiver through OT 2

1 . The sender
from vi,si , decrypts his layer of ElGamal encryption using the
decryption operation DskS (.) to obtain xi,si . He then drops
x1−c,si and forwards only the element xc,sc to the receiver.
The element xc,sc (which at this point is only encrypted to the
receiver’s public key) is then decrypted by the receiver using
her private key using DskR(.) to obtain the element gc,sc . The
key obtained as hash of gc,sc is used to decrypt the initially
obtained random permutation of messages. Only one of them
gets decrypted correctly. The receiver, while decrypting the
encrypted messages, would not know which message is the
correct encryption using the obtained key, she tries to decrypt



each of the messages. For the receiver to be able to recognize
the correct message for the key, we need a mechanism.

To achieve the decryption and identification of the correct
message block by the receiver, the sender initially appends
each of the messages with a string which is obtained as a
certain public function f̂(.) of key (like hash of the key) used
to encrypt the message before the encryption process. After
decrypting each block with the key, the receiver matches the
appended string with the locally calculated string using f̂(.)
of the key. Whichever message has the correct match, is the
correct message. Thus the receiver decrypts Msc .

Imagine the case when the initial encryptions are not
permuted, then the receiver knows that the the encryptions
received correspond to bit indices 0 and 1 in that order, so
she can try to attack the system by setting one of the bits, say
s0 = 0 and the other s1 = 1, then which ever encryption gets
decrypted, will reveal which of the two sis has been chosen by
the sender. To prevent such a scenario, the initial permutation
of the encryptions is necessary.

For a construction of the DOT protocol for a general case
where the receiver has κ bits (of signing key) and the sender
has 2κ messages, refer Appendix B.

Theorem 1: The DOT protocol securely implements the
functionality FDOT under the following conditions:
Corruption Model: Static corruption (the sender or receiver
is corrupted at the beginning of the protocol).
Hybrid Functionalities: H is modelled as a random oracle
and secure channels between the parties are assumed.
Computational Assumption: The encryption scheme used in
the initial step is symmetric, non-committing and robust [18].
Group used for OT 2

1 module G is a Gap-DH group.
Owing to space constraints proofs of all the theorems proving
the security have been provided in Appendix D.

A. Committed Receiver Oblivious Transfer

Oblivious Transfer is used to transfer one message Mb

where b ∈ {0, 1} of the two messages M0 and M1 from
sender to the receiver with bit b. However in our APB protocol
which uses DOT (which in-turn uses OT 2

1 ) we further require
the bit b to be a bit of the signing-key of the receiver. With a
simple OT 2

1 , the sender can not be sure if that is the case. To
overcome this, we propose the committed receiver oblivious
transfer (CROT) primitive. In CROT , the receiver forwards a
non-interactive zero knowledge (NIZK) proof of knowledge
to prove that the bit inputs from the receiver are in fact bits
of the signing key. The functionality of the protocol CROT is
presented in the Figure 4. We depict the construction of the
protocol in Figure 10 in the Appendix C.

Theorem 2: The CROT protocol securely implements the
ideal functionality FCROT under the following assumptions:
Corruption Model: static corruption
Hybrid Functionalities: H is modeled as a random oracle and
authenticated channels between users are assumed.
Computational Assumptions: G is Gap-DH. The symmetric
encryption used is non-committing and robust.

Ideal functionality FCROT interacts with sender S and receiver R.
- R generates the key pair (sk, pk) and forwards the bits si ∈
{0, 1}, i ∈ [0, · · · , κ − 1] and the κ bit signing-key sk to FCROT
which stores them.
- S forwards the messages Mi,0,Mi,1; i ∈ [0, · · · , κ− 1] to FCROT
which stores them.
- After receiving the inputs from both S and R, FCROT verifies if the
bits of sk are the bits si and (pk, sk) are a key pair. If the verification
succeeds, it forwards the messages Mi,si , i ∈ [0, · · · , κ − 1] to the
receiver, else, aborts.

Fig. 4: Ideal Functionality FCROT of CROT .

V. THE APB PROTOCOL

Here, we detail the steps of the APB protocol which uses
DOT with CROT . The watermarking and the DOT protocol
are the off-chain cryptographic components while the smart-
contract and the deposit are the on-chain parts.

1) NetworkSetup: The sender and receiver setup their
Bitcoin identities by generating secret key-public key pairs;
the sender has the document M .

2) DepositSetup(sk, t, V alue): A time-locked bitcoin de-
posit is created by the receiver with the signing key sk for
a time t and for a amount of V alue. The deposit is a 2-of-2
multisig deposit requiring the secret keys of both the sender
and the receiver to transfer the funds.

3) WaterMark(M): The document M is broken into κ
blocks Mi, 0 ≤ i ≤ κ− 1 for a κ-bit long sk and each block
Mi is watermarked to generate two versions Mi,0,Mi,1. Any
watermarking scheme which satisfies the previously mentioned
properties (refer section III) can be used.

4) DOT with CROT(Mi,0,Mi,1, sk): The Doubly Oblivious
Transfer protocol, used to transfer the document, takes the
watermarked blocks as input. In APB, the DOT protocol
instead of using OT 2

1 , uses CROT . The protocol is same as
the general case of DOT (as shown in Figure 9 of Appendix)
but uses CROT instead of OT 2

1 . The sender watermarks
the document blocks to obtain Mi,j , generates keys from
sampled group elements and forwards the permuted symmetric
encrypted versions of the blocks to the receiver. He then
encrypts the group elements using El-Gamal encryption to the
key pk = pkS ∗ pkR where pkS , pkR are the public keys
of sender and receiver. The sender inputs encrypted elements
in a permuted order to the CROT protocol. The receiver after
proving in zero knowledge that the input to the protocol is her
signing key sk, receives a set of encrypted elements which
she re-randomizes and sends back. The sender, decrypts his
layer of encryption, inverts the applied permutation to obtain
the elements in their original order and forwards them to the
receiver who will be able to decrypt them. The appropriately
decrypted symmetrically encrypted blocks are then joined
together to form the receiver’s version of the document Msk.

5) Penalize(Msk, skS): Upon revelation of the document,
the receiver’s secret key sk is extracted from the document
Msk and is used with the sender’s secret key skS to transfer
the deposited funds to the sender to penalize the receiver.



Utilizing Bitcoin. Before the APB protocol begins, after
the two parties agree on the APB process, the sender shares
his/her public key pkS with the receiver to create a deposit.
The sender will assert that the receiver creates a transaction
TX that is valid for a mutually agreed upon time t, and can
be redeemed by the sender instantly with the signing keys
of the sender (skS) and the receiver(skR). Here, the deposit
should hold the funds equal to an agreed upon value V alue.
VerifyDeposit(TX) at the sender verifies the above mentioned
criterion. This algorithm receives the hash of the transaction
as an input and verifies that the transaction meets the above
mentioned criteria, i.e. it is a valid deposit that directs V alue
to the sender if the sender has both the signing/private keys.
Earlier versions of Bitcoin allowed senders to broadcast time
locked transactions and these transactions would be in the
unverified transactions pool until the time lock expired or
an unlocking scriptSig was provided by the spender of TX .
However, current (as of February 2019) Bitcoin transaction
does not permit nodes to propagate transactions that have an
active time lock. Therefore, the receiver sends TX over any
secure communication channel so that the sender can verify
and sign the transaction. Once the document becomes public,
we are assured from the watermarking scheme that the leaked
copy of the document will have the receiver’s signing key.
Using the extraction algorithm Extract(M , Msk) the sender
can reconstruct the signing key sk. Once the sender has sk,
he can sign the transaction TX with the Sign(TX , sk) and
broadcast the signed transaction directing the funds in TX to
his Bitcoin address.

Analysis. Figure 5 presents the ideal functionality FAPB
for APB, while Theorem 3 proves its security. Here we
show that the functionality achieves the desirable properties
discussed in Section II. The properties of sender and receiver
privacy are trivially satisfied by the functionality as it does not
reveal any information except transferring the corresponding
watermarked blocks to the receiver. If the receiver discloses
the document, the sender can extract the embedded watermark
bits and hence the signing key of the receiver, thus satisfying
the revealing property. If the sender tries to falsely accuse the
receiver by revealing the document in any form, the receiver
does not lose the deposit as the sender does not have the
receiver’s key without disclosure, this achieves the sender
integrity property. Though the penalization is shown as a step
of APB, as it takes place outside of the transfer mechanism
after the data breach in a non-interactive way, it is not included
in the ideal functionality of the APB protocol.

Theorem 3: The APB protocol securely implements the ideal
functionality FAPB under the following assumptions:
Corruption Model: static corruption
Hybrid Functionalities: H is modeled as a random oracle and
authenticated channels between users are assumed.
Computational Assumptions: CDH and DDH are assumed
to be hard in G, G is Gap-DH. The symmetric encryption used
is non-committing and robust.

Ideal functionality FAPB interacts with sender S and receiver R.
- The receiver R generates the key pair (sk, pk), forwards the bits
si ∈ {0, 1}, i ∈ [0, · · · , κ− 1] of the κ bit signing-key sk and sk to
the functionality which stores the received input.
- The sender S forwards the watermarked document blocks
Mi,0,Mi,1 ∈ {0, 1}∗, i ∈ [0, · · · , γ − 1] to the functionality which
stores the received input.
- The functionality verifies if the bits of sk are the bits si, if the
verification succeeds, it forwards the message blocks Mi,l where
l = sπ(i) to R, else, it aborts.

Fig. 5: Ideal Functionality FAPB of APB

A. Illustration

We illustrate the utility of APB with DOT using CROT with
an example. The sender can break the document down into
more than κ blocks, say 2κ, to perform CROT twice, there by
embedding the receiver’s key two times. The finer he breaks
the document, the more number of times he will be able to
embed the receiver’s key and so can extract more number of
bits upon partial disclosure. For a receiver with 256 bit key,
the sender for embedding the key twice divides the document
into 512 blocks and creates two watermarked versions for each
of the 512 blocks and wishes to transfer 512 messages.

The receiver wishes to selectively reveal parts of the doc-
ument to the public while not revealing too much of her key
bits to the sender. It is understood that the receiver reveals
at least enough number of blocks (not too few) to carry
useful/sufficient information. Let us assume she wishes to
reveal 100 document blocks. We wish to compare how many
bits she will actually reveal to the sender when she reveals 100
document blocks when APB with DOT is used, to a scenario
where just OT 2

1 is used to transfer the messages instead of
DOT .

If the sender uses just OT 2
1 for the message transfer, he

inputs one pair of messages for each OT 2
1 and performs 512

such OT 2
1 instances to transfer the 512 messages. In this case,

the receiver knows which document block has been obtained
using a particular key bit and so knows which two blocks have
a certain key bit embedded in them. As she knows which two
blocks have the same bit embedded in them, she will reveal
50 such pairs (with the same key bit) to the public so that the
sender can learn only 50 of her signing key bits .

However, if the sender uses DOT with CROT to transfer
the document and the receiver decides to reveal 100 document
blocks, as she does not know which key bit is embedded in
a certain document block, she randomly picks 100 document
blocks and reveals to the public. The expected number of key
bits revealed to the sender in such a scenario would be 90.3
for 100 blocks as opposed to 50 bits with just OT 2

1 . Following
[22], [23], the expected number of bits revealed to the sender
when m blocks of the document are released with κ -bit key

being watermarked over ` times in the document is κ
[
1 −[(

(κ−1)∗`
m

)
/
(
κ∗`
m

)]]
.



Figure 6 indicates the number of bits revealed to the sender
against the percentage of blocks revealed to the public when
the signing-key is watermarked ` times with ` ∈ {2, 4, 8, 16}.
When the key is embedded 8 times, a leakage of 20% of the
document/file can leak up to 211 bits of the key whereas, when
it is embedded 16 times, even a 15% leak reveals as many
as 235 bits. This scenario is particularly useful with larger
files like video files, where the key can be embedded many
number of times such that even a minor clip of the video can
reveal close to the whole of the signing key. The plot in the
Figure 6 compares the number of signing-key bits revealed to
the sender when APB uses DOT and OT. It clearly indicates
that higher the number of times the key is embedded, higher
are the number of bits revealed to the sender upon leakage.
However, one has to note that the maximum number of times
a key can be embedded by dividing the document depends on
the document and its entropy.

Computation and Communication Overhead. For the
transfer protocol, the number of exponentiations at the sender
and receiver is linear in `. When DOT uses CROT, the number
of exponentiations performed by the sender would be 11`κ+`
and by the receiver would be 7`κ. The communication in
the DOT protocol involves forwarding two versions of AES
encrypted blocks, messages of CROT and forwarding of κ
ElGamal encrypted points by the receiver and the sender. In
CROT, the sender forwards 2κ ElGamal encrypted elements
while the receiver forwards 3κ elements including the proof
of knowledge messages.

VI. IMPLEMENTATION AND ANALYSIS

We have implemented the APB protocol as a single-threaded
program and analyzed its performance on a MacOS machine
with 3.1 GHz Intel Core i7 and 16 GB RAM. Our implemen-
tation involves the DOT protocol with robust watermarked
images and a claim-or-refund contract as a Bitcoin script
and as a Hyperledger chain-code. An execution run involves
the transfer of an image to the receiver, and we examine
the execution times for the different involved modules. The
receiver’s key is 256-bit long and the sender breaks the
document into blocks before proceeding with the protocol.

Watermarking. The sender, after creating the document
blocks, watermarks each block with 0 and 1 to generate two
versions. We employ the watermarking system by Meerwald
[24] which implements the Cox algorithm [25] of robust
watermarking for the image blocks. The Cox algorithm is well-
studied and benchmarked against several attacks [26]. In our
scheme, we watermark the image document by embedding
the key multiple times, Table I indicates the watermarking
time taken where the 256-bit is embedded for ` = 1, 4
and 16 indicating embedding once, 4 and 16 times. For
` = 1, 4 the document in divided into 256 and 1024 blocks
respectively which are transferred using the DOT protocol to
the receiver who reconstructs the image from the received
blocks. For demonstrative purposes, the original image before
watermarking and the image reconstructed at the receiver for

` = 1 are available in Figure 11 in Appendix. While we
use the Cox algorithm which is not proven to be robust,
we reiterate that depending on the data type and application,
any robust watermarking scheme can be used in our protocol
for that specific application. Works such as [27], [28], [29]
present different audio watermarking schemes while works
like [30], [31] deal with robust video watermarking. For
software watermarking, schemes suggested in [32], [33] can
be considered.
Cryptographic Module - DOT. For the cryptographic part,
we used the RELIC library [34]. The receiver’s key is 256-
bit long. The sender breaks the document into blocks, en-
crypts each of the watermarked document and forwards the
blocks to the receiver in the first step of DOT protocol. The
encryption used to for this step is AES in the counter mode.
The sender generates group elements while participating in
the DOT protocol to transfer the blocks which are ElGamal
encrypted, which are later re-randomized by the receiver. The
receiver decrypts the AES encrypted document blocks with the
keys obtained through the ElGamal encryption and oblivious
transfer.

Table I provides the computation timing details for the
complete protocol i.e., the time including breaking the doc-
ument into blocks to the point where the receiver reconstructs
the document from received watermarked blocks. It presents
the statistics of execution times taken over 100 runs of the
experiment. Notice that the timing values reported are when
the process is running in a single-thread. With multi-threading
and pre-processing ElGamal encryption exponentiation, we
expect significant improvement in performance and reduction
in timing. To simulate the dishonest breach and eventual
procurement of the leaked document by the receiver, the
reconstructed image is sent to the sender of the document. The
sender runs the key-extraction algorithm on the obtained image
and extracts the receiver’s key to perform the penalization.

For further discussion on the scenario where the document
is transferred to multiple receivers, contracts used for penaliza-
tion, fairness of the scheme in a failed transfer scenario and
the case in which the receiver happens to be a miner, refer
Appendix E.

VII. RELATED WORK AND FURTHER DISCUSSION

We are unaware of any academic research into
cryptographically-enforceable automated penalization of
a data breach. A closely related subject, one that is well-
studied, is traitor tracing [35], [36]. In a traitor tracing scheme,
decryption boxes with unique private keys (for a common
public key) are distributed to a number of subscribers. If a
device is reverse engineered and the key is leaked, the device
it came from can be determined by the service provider. A
recent proposal by Kiayias and Tang [37] adds a Bitcoin
smart contract to hold a bond that is recoverable. This body
of work has limited applicability to our APB problem for
three main reasons: (1) we want to detect leaked documents
that have been meaningfully written, not keys which are
arbitrary, random values; (2) we want the entity distributing



Watermarking Full protocol
` = 1 0.357 ± 0.009 1.737 ± 0.226
` = 4 1.346 ± 0.213 16.067 ± 0.638
` = 16 1.643 ± 0.283 83.101 ± 1.623

TABLE I: Time (mean ± standard deviation) taken (in sec-
onds) for steps of the protocol when signing key is embedded
for ` = 1, 4 and 16
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Fig. 6: Number of bits revealed to sender upon dishonest
disclosure by receiver when APDB is employed with OT 2

1

and DOT with 256-bit signing key

the values to not learn the value until it is leaked; and (3)
unlike in the smart contract variant [37], we cannot have
the provider provision the signing key for use by both
parties. For these reasons, we do not build our solution from
traitor tracing schemes. In another line of work, Nasir et
al. build a seller-buyer watermarking scheme in [38] where
the watermark embedded in the document is not known to
seller/sender but can identify the buyer once the document
is distributed. The main drawback of their scheme is the
requirement of a third trusted authority for providing the
watermark for the buyer, also the sender needs to go through
the legal procedure and prove to the judge that the buyer is
indeed the one who leaked and the penalization is through
court system. In [39] Andre et al. propose a zero-knowledge
proof based protocol for providing proof of ownership of the
document but does not involve proving that a certain party is
the leaker or a way to penalize the leak.

Using bitcoin contracts for collatorizing the fair and correct
execution of cryptographic protocols has been explored ear-
lier [10], [11], [40]. Our bitcoin contract is a standard claim-
or-refund transaction common in this literature. The main
difference is that one party must prove that the singing key
used in this transaction is consistent with the one taken as
input to a private computation.

VIII. CONCLUSION

In this work, we devise and implement the APB proto-
col that disincentives intentional or unintentional multimedia
breach through automated penalization. Our aim here is to
raise the bar for the data receivers/custodians by introducing
a complementary security mechanism that is inexpensive, au-
tomated, and is not restricted by the geo-political boundaries.

To realize our protocol, we have employed robust water-
marking and a claim-of-refund smart contract, and proposed a
new primitive called Doubly Oblivious Transfer (DOT). DOT
along with committed receiver oblivious transfer (CROT) not
only ensures that the signing key used by the receiver for the
deposit is same as the one used to obtain the document, but
also provides no information to the receiver about which of her
signing key bits has been embedded in a certain document part.

We have implemented the complete smart-contract protocol,
and observed it to be practical and easy to deploy.
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Fig. 8: Doubly Oblivious Transfer Primitive

APPENDIX A
1-OUT-OF-2 VERIFIED SIMPLEST OBLIVIOUS TRANSFER:

Sender Receiver
Messages M0,M1 choice bit b

a←R Zq
h=ga−−−→ r ←R Zq
c=grhb

←−−−−−
k0 = H(ca)
k1 = H((c/h)a)

p = H(H(k0))⊕H(H(k1)
p−→ kb = H(hr)

Verify p′ = H(H(k0))
p′←− p′ = H(kb)⊕ pb

C0 = Ek0(M
0)

C1 = Ek1(M
1)

C0,C1−−−−→
Decrypt Cb

Fig. 7: 1-out-of-2 Oblivious Transfer [17]

In this protocol, by Doerner et.al. [17] (an augmented
version of Oblivious Transfer by Chou et al. [18]), given a
multiplicative group G and its generator g, the sender initially
chooses a random value a ←R Zq and the receiver chooses
a random value r ←R Zq . The sender transmits h = ga to
the receiver who computes c = gab+r and transmits to the
sender. The sender then computes two keys k0 and k1 as
k0 = H(ca) and k1 = H(ch−1)a and computes a challenge
p = H(H(k0)) ⊕ H(H(k1) and forwards it to the receiver.
The receiver computes the key kb = H(hr) and returns
p′ = H(kb)⊕pb. After verifying if p′ = H(H(k)), the sender
encrypts M0 and M1 using these two keys generating C0 and
C1 which are then forwarded to the receiver. The receiver
decrypts the message Mb using the key kc = hr. Depending
on b, only one of k0 and k1 would be equal to gar computed by
the receiver. The other key gar−r

2

can not be computed by the
receiver and hence learns no information about Mb−1. As the
sender just encrypts and forwards the two messages, learns no
information about the bit b. Figure 7 provides the depiction of
the protocol. The advantage of adding the verification step is
that it forces the receiver to compute the keys before receiving
the encryptions and makes the protocol (UC)secure in the real-
world ideal paradigm.
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APPENDIX B
GENERALIZATION OF DOT PROTOCOL

The DOT protocol can be easily extended to work with
multiple messages at the sender and κ-bit signing key of the
receiver as shown in Figure 9. In the general case, the sender
has a total of 2κ messages Mi,j , for 0 ≤ i ≤ κ−1, j ∈ {0, 1}
and the receiver has bits sn, 0 ≤ n ≤ κ−1. After participating
in the protocol, the receiver receives Mi,l, l = sπ(i) for a
permutation π of set of indices i chosen at the sender. The
permutation of indices is the general case equivalent of the
choice bit c of the two bit case.

Forwarding a random permuted order of encrypted messages
remains similar for the general case. When the elements are
sampled in the general case, sampling extra elements is not
necessary. The sender performs a permutation π on the rows
i of the elements gi,j to obtain ĝi,j which are encrypted
using Epk(.) as before. Now, ĝi,j are input to i instances of
OT 2

1 to which the receiver inputs si as the choice bits for
each instance i. The receiver obtains ui,si , re-randomizes the
encryption using Rpk(.) and sends back vi,si . After receiving
vi,si , the sender reverses the permutation order to obtain
wi,si = π−1(vi,si). He then decrypts his layer of encryption
using DskS (.) and forwards xi,si to the receiver who decrypts
her layer of decryption to obtain ĝi,si . These ĝi,si are hashed
to obtain the final keys which are then used to decrypt the
Ênci received in the first step. Note that if the number of
messages is not a multiple of 2κ, the sender can sample
extra elements and encrypt them to input them in OT 2

1 . After
receiving the encrypted elements from the receiver, he can
discard the elements at the indices where the extra elements
have been placed in the OT 2

1 step. Also, if the receiver tries
to attack the protocol by manipulating the cipher texts after
the re-randomization step, she will not be able to receive
meaningful keys for the correct decryption, she can gain no
information regarding the sender’s messages or permutation
applied on encrypted messages.

APPENDIX C
CROT CONSTRUCTION

The protocol construction for the ideal functionality FCROT

as given is the Figure 4 is presented here. The sender has
messages Mi,j for 0 ≤ i ≤ κ−1 and j ∈ {0, 1}. The receiver
has a signing key sk (si for 0 ≤ i ≤ κ − 1 are the bits of
sk). Given a multiplicative group G and its generator g, the
sender initially chooses a random value a← Zq and forwards
h = ga to the receiver. This would be the Setup phase. In the
next Commit and Prove phase, the receiver chooses random
ri ←R Zq and computes ci = grihsi for 0 ≤ i ≤ κ − 1.
The ci values are forwarded to the sender as commitments to
the bits si. The receiver also forwards r =

∑κ−1
i=0 2iri to the

sender. Along with these, for 0 ≤ i ≤ κ − 1, the receiver
forwards non-interactive zero knowledge (NIZK) proofs of
knowledge of exponents ri and si such that ci = gri+asi .
Each of these NIZK proofs is realized using the standard Fiat-
Shamir transformation [41] of an interactive sigma protocol for
Pedersen commitments in the random oracle model. Following

the formal symbolic notation introduced by Camenisch and
Stadler [42], each proof is depicted as PoK{(ri, si)|grihsi} in
Figure 10. This phase is used by the receiver to prove that the
bits si used for the transfer are indeed the bits of the signing
key sk. The sender verifies if c = grpka for the computed
c =

∏κ−1
i=0 c

(2i)
i . He also verifies the NIZK proof. If both

the verifications succeed, he proceeds with the protocol, else,
aborts. The verification would also fail if (pk, sk) are not a
key pair.

After successful verification the sender computes the keys
ki,j = H((ci · h−j)a) for each 0 ≤ i ≤ κ− 1 and j ∈ {0, 1}.
The sender verifies if the receiver computed the keys using
the verification step similar to Verified Simplest OT [17]. He
forwards the challenges pi = H(H(ki,0)) ⊕ H(H(ki,1)) for
each i and receives the responses in the form of p′i and the
sender verifies if p′i = H(H(ki,0)). The keys ki,j are used
to encrypt messages Mi,j respectively to obtain the cipher
texts Ci,j . The cipher texts Ci,j are forwarded to the receiver
who attempts to decrypt the blocks Ci,si using the keys ki,si
finishing the Transfer phase. The receiver can not compute
the keys ki,1−si (follows from Lemma 1 of [18]) and so can
not decrypt Ci,1−si . One can observe that the protocol does
not enforce the receiver to use “bits”, if the receiver uses any
other values other than bits in CROT , the receiver receives
encryptions which can not be decrypted.

The model for CROT includes static corruption of par-
ties, modelling H as random oracle and group G being
Gap-DH [19] while the encryption used is symmetric, non-
committing and robust [18].

APPENDIX D
FORWARDED PROOFS FOR DOT, CROT AND APB

Proof of security of DOT.
We prove the security of DOT by constructing a simulator

which generates an indistinguishable view in the real world -
ideal world paradigm for the adversary.

Corrupted Sender: At the beginning of the protocol, the
simulator answers all oracle queries randomly and stores the
query and reply pairs in the form of (qk, rk). At a later point
of time, it receives the encrypted messages Ênci, i ∈ {0, 1}
and participates in oblivious transfer for the next step. The
simulator sets bits si, i ∈ {0, 1} randomly with values from
{0, 1} as choice bits before participating in the protocol. For
OT 2

1 part of the protocol, the simulator invokes the simulator
of the Verified Simplest OT [17] (which is an extended version
of the oblivious transfer protocol and its simulator developed
by Chou et al. [18], [19]) for the corrupted sender case (we
call it, SOT ). Through OT 2

1 the simulator SDOT receives the
elements ui,si which it tries to decrypt (its layer of encryption,
the sender is expected to encrypt the messages with Epk(.)).
If any of the received elements results in an error during
decryption, it aborts. Else, it re-randomizes the encryption
using Rpk(.) to obtain vi,si and forwards them back to the
sender. It then receives an encrypted group element as xc,sc
which it tries to decrypt and hashes it to obtain the decryption



Sender Receiver
Setup

Multiplicative (Public Group) G, Generator g
(pkS , skS) (pkR, skR)

pk = pkS ∗ pkR

For all i : 0 ≤ i ≤ κ− 1, j ∈ {0, 1} execute the following steps

Message blocks: Mi,j Bits: sk for 0 ≤ k ≤ κ− 1
gi,j ←R G
Enci,j = EH(gi,j)(Mi,j)

Ênci,j = π1(Enci,j)
Ênci,j−−−−→

for permutation π1
El-Gamal encryption of group elements

For each j, ĝi,j = π(gi,j) for Permutation π
ui,j = Epk(ĝi,j)

Oblivious Transfer[17]
(Run OT 2

1 once for i)
Input ui,j Input si

Output ui,si
Re-randomization, Forwarding and Decryption

vi,si←−−− vi,si = Rpk(ui,si)
xi,si = DskS (vi,si)

wi,si = π−1(xi,si)
wi,si−−−→ ĝi,si = DskR(wi,si)

Decrypt Ênci,si using H(ĝi,si) appropriately

Fig. 9: Doubly Oblivious Transfer Protocol (General Case)

key. It decrypts one of the received messages with the obtained
key. If it results in an error, it aborts.
The simulator decrypts the initial Ênci as follows: for
each i, k, from the initially stored pairs (qk, rk), it does
Decrk(Ênci). The first value that gets decrypted meaningfully
is set as Mi for any i. If no key rk decrypts meaningfully,
it sets Mi =⊥. Then the simulator obtains the choice bit
c of the sender as follows: during the OT 2

1 protocol, the
simulator SOT finds out message inputs from the sender side
[18] and forwards them to SDOT . For each OT 2

1 instance i,
SDOT receives two messages gi,0, gi,1 from SOT , the simulator
SDOT stores all the elements in the form of gi,j . For each i,
the simulator checks which of the elements gi,j , j ∈ {0, 1},
matches with the decrypted element (obtained from sender in
the last step of the protocol). Whenever a match is seen, c
is set to i. The simulator SDOT forwards the messages Mi,
i ∈ {0, 1} and choice bit c to the ideal functionality.

The adversary can not distinguish between a real world
view and simulated view owing to the following facts: the
simulator SOT is UC-Secure [17]; ElGamal encryption offers
semantic security when DDH is hard; the real world honest
receiver’s output will be different only if the simulator decrypts
the encryptions received to a different value apart from the

ones used by the sender, but this happens with a negligible
probability owing to the robustness of the encryption scheme.

Corrupted Receiver: The simulator initially generates two
strings C1 ← A1(1

λ) and C2 ← A1(1
λ) and forwards to the

receiver. It then samples four group elements gi,j for i, j ∈
{0, 1} and encrypts them using ElGamal encryption Epk(.)
to obtain ui,j . It performs two instances of OT 2

1 and uses
ui,j as inputs for instance i of OT 2

1 . The receiver inputs si
to the OT 2

1 instance i. For the OT 2
1 protocol, the simulator

invokes the simulator of Verified Simplest Oblivious Transfer
by Doerner et al. [17] for the corrupted receiver case (call
it SOT ). At a later point of time, it obtains an re-randomized
elements vi,si , decrypts its layer of encryption using DskS () to
obtain xi,si and forwards xc,sc for a randomly chosen bit c. It
then answers all oracle queries randomly except at the points
gi,j . When queried on any of the points gi,j , the simulator
sends the bits j, j to the functionality and obtains a message
m′. It then replies to the query with a key k ← A2(Cp,m)
where p is uniformly picked from {1, 2} for every instance of
the simulation.

The receiver can not distinguish the real and simulated view.
This is because: ElGamal encryption offers semantic security
when DDH is hard, OT 2

1 used is UC-secure [17] and the fact



Sender Receiver
Multiplicative (Public) Group G, generator g

pk = gsk sk ∈ {0, 1}κ
For all i : 0 ≤ i ≤ κ− 1

Message blocks: Mi,0 and Mi,1 Bit decomposition of sk: si
Challenge

a←R Zq
h=ga−−−→

Commit and Prove
For all i : 0 ≤ i ≤ κ− 1

ri ←R Zq
r =

∑κ−1
i=0 2iri

ci = grihsi
gr,ci,PoK{(ri,si)|grihsi}←−−−−−−−−−−−−−−−

c =
∏κ−1
i=0 c

(2i)
i

Abort if c 6= (grpka) or
if verfication of NIZK fails

Transfer
For all i : 0 ≤ i ≤ κ− 1 and j ∈ {0, 1}

ki,j = H((ci · h−j)a) ki,si = H(hri)

pi = H(H(ki,0))⊕H(H(ki,1))
pi−→ p′i = H(ki,si)⊕ pisi

Verify p′i = H(H(ki,0))
p′i←−

Ci,j = Eki,j (Mi,j)
Ci,j−−→ Decrypt Ci,si using ki,si

Fig. 10: Committed Receiver Oblivious Transfer (CROT) Protocol

that when the simulator does not abort, the indistinguishability
holds from non-committing property of the encryption scheme.

Proof Outline of CROT. The security of the protocol directly
follows from the fact that the OT 2

1 protocol [17] is UC-
secure under Gap-DH and ZK proof of knowledge of exponent
forwarded by the receiver does not leak any information
regarding si to the sender. Hence CROT is UC-secure. Let
the simulator which simulates the indistinguishable view for
adversary in the real world - ideal world paradigm for CROT
be SCROT.

Proof Outline of APDB. The simulator SAPB would simply
invoke the simulator SDOT while interacting with corrupt
sender and receiver. The protocol is secure as the simulator
SDOT which internally invokes SCROT (instead of SOT ), pro-
duces an indistinguishable view for the adversary in the real
world-ideal world paradigm.

APPENDIX E
DISCUSSION

Multiple Receivers. In a scenario involving multiple receivers
of the same document, the sender can embed the signing key
of a each receiver multiple times into each receiver’s version
of the document. He can do so by dividing the document
into higher number of parts compared to the receiver’s key
length. This ensures that, in case of collusion and each receiver
contributing a small portion of his document while colluding,

the sender can still extract considerable amounts of signing
keys from the revealed document.

Contracts. In Section III, we developed a penalization smart
contract for the Bitcoin scripting system, which intentionally
has a limited set of instructions. Systems like Ethereum [15]
expand this set of instructions into a fully-featured program-
ming language allowing it to perform much elaborate tasks
where it is easily possible to write our claim-or-refund con-
tract. However, despite the much better expressivity, it does
not seem to be possible to create an elaborate contact that
can efficiently substitute the required DOT protocol and robust
watermarking scheme.We implemented the penalizing claim-
or-refund smart contract as a Bitcoin smart contract as well as
a Hyperledger chaincode, as they allow the systems to be ex-
ecuted in a permissionless as well as permissioned blockchain
setting. In the future, it would be interesting to create similar
solutions using Solidity over the Ethereum network that can
at least partially reduce the required cryptographic tools.

Fairness. The receiver deposits the bitcoins before the com-
mencement of the protocol and so, if the document transfer
does not go through, his funds will be locked till the end of the
deposit time period. This is not ‘fair’ for the receiver. However,
in a more realistic setting, in such a scenario the parties would
just re-run the protocol and transfer the document.

Miner. The receiver can indeed be a miner in a Bitcoin
system. He can try to pre-mine transactions to escape penalty



(a) Original image before watermarking at the sender (b) Watermarked image reconstructed by the receiver

Fig. 11: Original and reconstructed images

incase of disclosure. This scenario can be prevented by the
approach taken in [12, Sec. 6]. In case the sender has the
knowledge only of the breach without having access to the
revealed document, he can choose to make the watermarking
algorithm’s private-key public to make the receiver lose her
deposit.
Data Custody. In case of storing data at a custodian, the user
should be retrieving or downloading the data after the end of
time period, this is because if the sender retrieves the data,
he can get a copy of the receiver’s data with receiver’s key
embedded in it, he may reveal it to the public and try to blame
the receiver for the leak. In such a scenario, the parties can
agree to retrieve the deposit and nullify the contract and when
the sender decides to store the data again, can perform the
protocol. Another way is to have a mechanism in which along
with the cooperation of the sender, the receiver can forward a
copy of the data with the watermark stripped, such an approach
can be looked at in the future.
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