
Combining Private Set-Intersection with

Secure Two-Party Computation

Michele Ciampi

University of Edinburgh

UK

mciampi@ed.ac.uk

Claudio Orlandi

Aarhus University

Denmark

orlandi@cs.au.dk

Abstract

Private Set-Intersection (PSI) is one of the most popular and practically relevant secure
two-party computation (2PC) tasks. Therefore, designing special-purpose PSI protocols (which
are more efficient than generic 2PC solutions) is a very active line of research. In particular, a
recent line of work has proposed PSI protocols based on oblivious transfer (OT) which, thanks
to recent advances in OT-extension techniques, is nowadays a very cheap cryptographic building
block.

Unfortunately, these protocols cannot be plugged into larger 2PC applications since in these
protocols one party (by design) learns the output of the intersection. Therefore, it is not possible
to perform secure post-processing of the output of the PSI protocol.

In this paper we propose a novel and efficient OT-based PSI protocol that produces an
“encrypted” output that can therefore be later used as an input to other 2PC protocols. In
particular, the protocol can be used in combination with all common approaches to 2PC includ-
ing garbled circuits, secret sharing and homomorphic encryption. Thus, our protocol can be
combined with the right 2PC techniques to achieve more efficient protocols for computations of
the form z = f(X ∩ Y) for arbitrary functions f .

1 Introduction

Private Set-Intersection (PSI) is one of the most practically relevant secure two-party computation
(2PC) tasks. In PSI two parties hold two sets of strings X and Y , respectively. At the end of the
protocol one (or both) party should learn the intersection of the two sets Z = X ∩ Y and nothing
else about the input of the other party.

There are many real-world applications in which PSI is required. As an example, when mobile
users install messaging apps, they need to discover whom among their contacts (from their address
book) is also using the app, in order to be able to start communicating seamlessly with them. Doing
so requires users to learn the intersection of their contact list with the list of registered users of
the service which is stored at the server side. This is typically done by having users send their
contact list to the server that can then compute the intersection and return the result to the user.
Unfortunately this solution is very problematic not only for the privacy of the user, but for the
privacy of the users’ contacts as well! In particular, some of the people in the contact list might
not want their phone number being transferred and potentially stored by the server, but they have

1

no control over this.1 Note that this is not just a theoretically interesting problem and that Sig-
nal (one of the most popular end-to-end encrypted messaging app) has recently recognized this
as being a real problem and offered partial solutions to it.2 PSI has many other applications, in-
cluding computing intersections of suspect lists, private matchmaking (comparing interests), testing
human genome [BBC+11], privacy-preserving ride-sharing [HOS17], botnet detection [NMH+10],
advertisment conversion rate [IKN+17] and many more.

From a feasibility point of view, PSI is just a special case of 2PC and therefore any generic
2PC protocol (such as [Yao82, GMW87]) could be used to securely evaluate PSI instances as well.
However, since PSI is a natural functionality that can be applied in numerous real-world applications,
many efficient protocols for this specific functionality have been proposed, with early results dating
back to the 80s [Sha80, Mea86]. The problem was formally defined in [FNP04] and follow up
work increased the efficiency of PSI protocols to have complexity only linear in the inputs of the
parties [JL10, CT10]. A very recent work shows how to obtain a protocol where communication
complexity is linear in the size of the smaller set and logarithmic in the larger set [CLR17].

However, these protocols still require performing expensive public-key operations (e.g., exponen-
tiations) for every element in the input sets. As public-key operations are orders of magnitudes more
expensive than symmetric key operations, these protocols are not practically efficient for large input
sets. In the meanwhile, generic techniques for 2PC had improved by several orders of magnitude and
the question of whether special purpose protocols or generic protocols were most efficient has been
debated in [HEK12, CT12]. Due to its practical relevance, PSI protocols in the server-aided model
have been proposed as well [KMRS14]. Independent and concurrent works [PSWW18, FNO18]
(which were not publicly available at time we first posted our paper on ePrint) consider the prob-
lem of using a PSI protocol to construct more complex functionality in an efficient way. More
specifically, [PSWW18] provides a way to securely compute many variants of the set intersection
functionality using a clever combination of Cuckoo hashing and garbled circuit. The work of Falk
et al. [FNO18] focuses on obtaining a PSI protocol that is efficient in terms of communication. In
addition, the authors of [FNO18] propose a PSI protocol where the output can be secret shared
that has communication complexity of O(mλ log logm), where λ is the bit-length of the elements
and m is the set-size.

The techniques used in our paper significantly differ from the techniques used in [PSWW18,
FNO18]. Our solution avoids the use of garbled circuits and rely on the security and the efficiency
of OT and symmetric key encryption schemes.

1.1 OT-based PSI

The most efficient PSI protocols today are those following the approach of PSZ [PSSZ15, PSZ14].
These protocols make extensive use of a cryptographic primitive known as oblivious transfer (OT).
While OT provably requires expensive public-key operation, OT can be “extended” as shown
by [IKNP03, ALSZ13, KK13] i.e., the few necessary expensive public-key operations can be amor-
tized over a very large number of OT instances, and the marginal cost of OT is only a few (faster)

1Some apps do not transfer the contact list in cleartext, but a hashed version instead. However, since the domain
space of phone numbers is small enough to allow for brute forcing of the hashes, this does not guarantee any real
privacy guarantee.

2Unfortunately, the Signal team has concluded that current PSI protocols are too inefficient for
their application scenario and relied on trusted-hardware instead, in the style of [TLP+17]. See
https://signal.org/blog/private-contact-discovery/ for more details on this.

2

https://signal.org/blog/private-contact-discovery/

symmetric key operations instead. In particular, improvements in OT-extension techniques directly
imply improvements to PSI protocols as shown by e.g., [KKRT16, OOS17].

In a nutshell, the PSZ protocol introduced two important novel ideas to the state of the art
of PSI. First, they give an efficient instantiation of the private set membership protocol (PSM)
introduced in [FIPR05] based on OT. Second, they show how to efficiently implement PSI from
PSM using hashing techniques. (An overview of their techniques is given below).

1.2 Our contribution

The main contribution of this paper is to give an efficient instantiation of PSM that provides output
in encrypted format and can therefore be combined with further 2PC protocols. Our PSM protocol
can be naturally combined with the hashing approach of PSZ to give a PSI protocol with encrypted
output achieving the same favourable complexity in the input sizes. This enables the combination
the efficiency of modern PSI techniques with the potentials of general 2PC. Combining our protocols
with the right 2PC post-processing allows more efficient evaluation of functionalities of the form
Z = f(X ∩ Y) for any function f . Like in PSZ we only focus on semi-honest security. Using the
protocol together with an actively secure OT-extension protocol such as [ALSZ15, KOS15] would
result in a protocol with privacy but not correctness (i.e., the view of the protocol without the output
can be efficiently simulated), which is a meaningful notion of security in some settings. PSI protocols
with security against malicious adversaries have been proposed in e.g., [HL08, RR17a, RR17b]. It
is an interesting open problem to design efficient protocols which are both secure against active (or
covert) adversaries and that produce encrypted output. Also, like in PSZ, we only focus on the
two-party setting. The recent result of [HV17] has shown that multiparty set-intersection can be
computed efficiently. Extending our result to the multiparty case is an interesting future research
direction.

We also compare the computation complexity of our scheme for PSM with all the circuit-based
PSI approaches (which can be combined with further postprocessing) proposed in [PSZ16]. More
precisely, in Table 1 we compare our protocol with the protocols of [PSZ16] in terms of number of
symmetric key operations, and bits exchanged between the parties. The result of this comparison
is that our protocol has better performance, in terms of computational complexity, than all the
circuit-based PSI approaches considered for our comparison3. We refer the reader to App. A for
more details about this comparison.

1.3 Improving the efficiency of smart contract protocols

Most of the cryptocurrency systems are built on top of blockchain technologies where miners run
distributed consensus whose security is ensured as long as the adversary controls only a minority
of the miners. Some cryptocurrency systems allow to run complex programs and decentralized
applications on the blockchain. In Ethereum4 those programs are called smart contracts. Roughly
speaking, the aim of a smart contract is to run a protocol and start a transaction to pay a user of
the cryptocurrency systems according to the output of the protocol execution. Unfortunately, this

3The complexity of the protocols proposed in [PSZ16] depends upon parameters that are also related to the used
hash function. In order to make our comparison fair, we have set these parameters as showed in the first column in
Table 10 of [PSZ16]. More precisely, the authors of [PSZ16] show in that table which parameters are adopted for
their empirical efficiency comparison for the case where one set is much greater than the other set (which is exactly
the case of PSM).

4http://www.ethereum.org.

3

http://www.ethereum.org

interesting feature of the smart contracts does not come for free. Indeed, in order to execute a smart
contract, it is required to pay a gas fee that depends on the number of instructions of the protocol
to be executed. So, higher is the complexity of protocol, higher is the price to pay. In this context a
cryptographic protocol that outputs intermediate values in a secret shared way is particularly useful.
Suppose that two parties want to securely compute f(X ∩ Y) for arbitrary functions f , and reward
another party depending on the output of this computation. Instead of writing on a smart contract
the entire protocol to compute f(X ∩ Y), the two parties could run a sub-protocol Π to obtain
a secret share of χ = X ∩ Y without using a smart contract, and then run another sub-protocol
Π′ to compute f(χ), this time using a smart contract to enforce the reward policy. Following this
approach it is possible to move part of the computation off-chain, thus increasing the performance
and, at the same time, decreasing the costs required to execute the smart contract. Moreover, we
observe that χ can be reused to compute different functions f ′. The scenario described above is
particularly interesting if one of the party can be fully malicious, but in this work we will focus on
semi-honest security leaving the above as an open question.

of sym. key operations Communication [bits]

Yao SCS [HEK12] 12λM logM + 3λM 2λMs(1 + 3 logM)

GMW SCS [HEK12] 12λM logM 6λM(s+ 2) logM

Yao PWC [PSZ16] 4λM + 6393λ λ(M3s+ 3198s+ 15, 6)

GMW PWC [PSZ16] 6λM + 9594λ λ(M4 + 6396 + 2sM + 6396s)

This work 4λM + 3λ 2λMs+Ms
Table 1: Computation and communication complexity comparison for the PSM case. M represents the size
of the set, s is the security parameter and λ is the bit-length of each element.

2 Technical overview

2.1 Why PSZ and 2PC do not mix

We start with a quick overview of the PSM protocol in PSZ [PSSZ15, PSZ14], to explain why their
protocol inherently reveals the intersection to one of the parties. From a high-level point of view, the
protocol is conceptually similar to the PSM protocol from oblivious pseudorandom function (OPRF)
of [FIPR05], except that the OPRF is replaced with a similar functionality efficiently implemented
using OT. For simplicity, here we will use the OPRF abstraction.

The goal of a PSM protocol is the following: the receiver R has input x, and the sender S has
input a set Y ; at the end of the protocol the receiver learns whether x ∈ Y or not while the sender
learns nothing. The protocol starts by using the OPRF subprotocol, so that R learns x∗ = Fk(x)
(where k is known to S), whereas S learns nothing about x. Now S evaluates the PRF on her own
set and sends the set Y ∗ = {y∗ = Fk(y)|y ∈ Y } to R, who checks if x∗ ∈ Y ∗ and concludes that
x ∈ Y if this is the case. In other words, we map all inputs into pseudorandom strings and then let
one of the parties test for membership “in the clear”. Since the party performing the test doesn’t
have access to the mapping (e.g., the PRF key), this party can only check for the membership of x
and no other points (i.e., all elements in Y ∗ \ {x∗} are indistinguishable from random in R’s view).

From the above description, it should be clear that the PSZ PSM inherently reveals the output
to one of the parties. Turning this into a protocol which provides encrypted output is a challenging
task. Here is an attempt at a “strawman” solution: we change the protocol such that R still learns

4

the pseudorandom string x∗ = Fk(x) corresponding to x, but now S sends a value for every element
in the universe. Namely, for each i (in the domain of Y) S sends an encryption of whether i ∈ Y
“masked” using Fk(i) e.g., S sends ci = Fk(i)⊕E(i ∈ Y)5. Now R can compute cx⊕x∗ = E(x ∈ Y)
i.e., an encrypted version of whether x ∈ Y , which can be then used as input to the next protocol.

While this protocol produces the correct result, its complexity is exponential in the bit-length
of |x|, which is clearly not acceptable.

Intuitively, we know that only a polynomial number of ci’s will contain encryptions of 1, and
therefore we need to find a way to “compress” all the ci corresponding to i 6∈ Y into a single one,
to bring the complexity of the protocol back to O(|Y |). In the following, after defining some useful
notation, we give an intuitive explanation on how to do that.

2.2 Our protocol

We introduce some useful (and informal) notation in order to make easier to understand the ideas
behind our construction. We let Y = {y1, . . . , yM} be the input set of the sender S, and we assume
w.l.o.g., that |Y | = M = 2m.6 All strings have the same length e.g., |x| = |yi| = λ.7 We will use
a special symbol ⊥ such that x 6= ⊥ ∀x. We use a function Prefix(x, i) that outputs the i most
significant bits of x (Prefix(x, i) 6= Prefix(x, j) when i 6= j independently of the value of x) and for
simplicity we define Prefix(Y, i) to be the set constructed by taking the i most significant bits of
every element in Y .

The protocol uses a symmetric key encryption scheme Sym = (Gen,Enc,Dec) with the additional
property that given a key k ← Gen(1s) it is possible to efficiently verify if a given ciphertext is in
the range of k (see Sec. 3 for a formal definition).

Finally, the output of the protocol will be one of two strings γ0, γ1 chosen by S, respectively
denoting x 6∈ Y and x ∈ Y . The exact format of the two strings depends on the protocol used
for post-processing. For instance if the post-processing protocol is based on: 1) garbled circuits,
then γ0, γ1 will be the labels corresponding to some input wire; 2) homomorphic encryption, then
γb = Enc(pk, b) for some homomorphic encryption scheme Enc; 3) secret-sharing, then γb = s2 ⊕ b
where s2 is a uniformly random share chosen by S, so that if R defines its own share as s1 = γb
then it holds that s1 ⊕ s2 = b.8

In order to “compress” the elements of Y we start by considering an undirected graph with a level
structure of λ+1 levels. The vertices in the last level of this graph will correspond to the elements
of Y . More precisely, we associate the secret key kbλbλ−1...b1 of a symmetric key encryption scheme
Sym to each element y = bλbλ−1 . . . b1 ∈ Y . The main idea is to allow the receiver to obliviously
navigate this graph in order to get the key kbλbλ−1...b1 if x = y, for some y = bλbλ−1 . . . b1 ∈ Y , or a
special key k⋆ otherwise. Moreover we allow the receiver to navigate the graph efficiently, that is,
every level of the graph is visited only once.

5The exact format of the “encryption” E(·) would depend on the subsequent 2PC protocol and is irrelevant for
this high-level description.

6Sets can always be padded with dummy elements, but the complexity of the protocol can match M that in
practice can be M ≈ 2m−1.

7We can assume λ to be smaller than the (statistical) security parameter s and we will denote the bit decomposition
of x by x = xλ . . . x1.. Otherwise before running the protocol the parties can hash their input down and run the
protocol with inputs h(x) and h(Y) = {h(y1), . . . , h(yM)}. Clearly if x = yi then h(x) = h(yi), and for correctness
we need that Pr[h(x) ∈ h(Y) ∧ x 6∈ Y] < 2−s.

8Here we use ⊕-secret sharing without loss of generality. Any 2-out-2 secret sharing would work here.

5

Once a key k is obtained by the receiver, the sender sends O(|Y |) ciphertexts in a such a way
that the key obtained by the receiver can decrypt only one ciphertext. Moreover the plaintext of
this ciphertext will correspond to γ0 or γ1 depending on whether x ∈ Y or not.

2.2.1 First step: construct the graph G

Each graph level i ∈ {0, . . . , λ} has size at most |Prefix(Y, i)| + 1. More precisely, for every t =
bλbλ−1 . . . bλ−i ∈ Prefix(Y, i) there is a node in the level i of G that contains a key kbλbλ−1...bλ−i

. In
addition, in the level i there is a special node, called sink node that contains a key k⋆i (which we
refer to as sink key). The aim of k⋆i is to represent all the values that do not belong to Prefix(i, Y).

Let us now describe how the graph G is constructed. First, for i = 1, . . . , λ the key (for
a symmetric key encryption scheme) k⋆i is generated using the generation algorithm Gen(·). As
discussed earlier the aim of these keys is to represent the elements that do not belong to Y . More
precisely, the sink key k⋆i , with i ∈ {1, . . . , λ} represents all the values that do not belong to
Prefix(Y, i) and the key k⋆λ (the last sink key) will be used to encrypt the output γ0 corresponding
to non-membership in the last step of our protocol. Note that if Prefix(x, i) 6∈ Prefix(Y, i) then
Prefix(x, j) 6∈ Prefix(Y, j) for all j > i. Therefore, once entered in a sink node, the sink path is never
abandoned and thus the final sink key k⋆λ, will be retrieved (which allows recovery of γ0). Let us
now give a more formal idea of how G is constructed.

- The root of G is empty, and in the second level there are two vertices k0 and k1 where9, for
b = 0, 1

kb =

{

k ← Gen(1s), if b ∈ Prefix(Y, 1)

k⋆1, otherwise

- For each vertex kt in the level i ∈ {1, . . . , λ} and for b = 0, 1 create the node kt||b as follows
(if it does not exists) and connect kt to it.

kt||b =











k ← Gen(1s), if t||b ∈ Prefix(Y, i+ 1)

k⋆i+1, if t||b /∈ Prefix(Y, i+ 1)

k⋆i+1, if kt = k⋆i

We observe that a new node kt||b is generated only when t||b ∈ Prefix(Y, i). In the other cases
the sink node k⋆i+1 is used.

In Fig. 1 we show an example of what the graph G looks like for the set Y = {010, 011, 110}. In
this example it is possible to see how, in the 2nd level, all the elements that do not belong to
Prefix(Y, 2) are represented by the sink node k⋆2. Using this technique we have that in the last level
of G one node (k⋆3 in this example) is sufficient to represent all the elements that do not belong to
Y . Therefore, we have that the last level of G contains at most |Y |+ 1 elements. We also observe
that every level of G cannot contain more than |Y |+ 1 nodes.

9In abuse of notation we refer to a vertex using the key represented by the vertex itself.

6

k0 k1

k01 k⋆2 k11

k⋆3 k110k010 k011

0 1

01 0 1

1 0
0 1

Y = {010,011,110}

Figure 1: Example of how the graph G appears when the sender holds the set Y .

2.2.2 Second step: oblivious navigation of G

Let x = xλxλ−1 . . . x1 be the receiver’s (R’s) private input and Y be the sender’s (S’s) private input.
After S constructs the graph G we need a way to allow R to obtain kxλxλ−1...x1

if x ∈ Y and the sink
key k⋆λ otherwise. All the computation has to be done in such a way that no other information about
the set Y is leaked to the receiver, and as well that no information about x is leaked to the sender.
In order to do so we use λ executions of 1-out-of-2 OT. The main idea is to allow the receiver to
select which branch to explore in G depending on the bits of x. More precisely, in the first execution
of OT, R will receive the key kxλ

iff there exists an element in Y with the most significant bit equal
to xλ, the sink key k⋆1 otherwise. In the second execution of OT, R uses xλ−1 as input and S uses
(c0, c1) where c0 is computed as follows:

- For each key in the second level of G that has the form kt||0, the key kt||0 is encrypted using
the key kt.

- For every node v in the first level that is connected to a sink node k⋆2 in the second level,
compute an encryption of k⋆2 using the key contained in v.

- Pad the input with random ciphertexts up to the upper bound for the size of this layer (more
details about this step are provided later).

- Randomly permute these ciphertexts.

The procedure to compute the input c1 is essentially the same (the only difference is that in this
case we consider every key with form kt||1 and encrypt it using kt).

Roughly speaking, in this step every key contained in a vertex u of the second level is encrypted
using the keys contained in the vertex v of the previous level that is connected to u. For example,
following the graph provided in Fig.1, c0 would be equal to {Enc(k0, k

⋆
2),Enc(k1, k

⋆
2)} and c1 to

{Enc(k0, k01),Enc(k1, k11)}.
Thus, after the second execution of OT R receives cxλ−1

that contains the ciphertexts described
above where only one of these can be decrypted using the key k obtained in the first execution
of OT. The obtained plaintext corresponds to the key kxλxλ−1

if Prefix(x, 2) ∈ Prefix(Y, 2), to the
sink key k⋆2 otherwise. The same process is iterated for all the levels of G. More generally, if
Prefix(x, j) ∈ Prefix(Y, j) then after the j−th execution of OT R can compute the key kxλxλ−1...xλ−j

using the key obtained in the previous phase. Conversely if Prefix(x, j) /∈ Prefix(Y, j) then the sink

7

key k⋆j is obtained by R. We observe that after every execution of OT R does not know which
ciphertext can be decrypted using the key obtained in the previous phase, therefore he will try
to decrypt all the ciphertext until the decryption procedure is successful. To avoid adding yet
more indexes to the (already heavy) notation of our protocol we deal with this using a private-key
encryption scheme with efficiently verifiable range. We note that this is not necessary and that
when implementing the protocol one can instead use the point-and-permute technique [BMR90].
This, and other optimisations and extensions of our protocol, are described in Section 5.

2.2.3 Third step: obtain the correct share

In this step S encrypts the output string γ0 using the key k⋆λ and uses all the other keys in the
last level of G to encrypt the output string γ1.

10 At this point the receiver can only decrypt either
the ciphertext that contains γ0 if x /∈ Y or one (and only one) of the ciphertexts that contain γ1
if x ∈ Y . In the protocol that we have described so far R does not know which ciphertext can be
decrypted using the key that he has obtained. Also in this case we can use a point-and-permute
technique to allow R to identify the only ciphertext that can be decrypted using his key.

On the need for padding As describe earlier, we might need to add some padding to the OT
sender’s inputs. To see why we need this we make the following observation. We recall that in
the i-th OT execution the sender computes an encryption of the keys in the level i of the artificial
graph G using the keys of the previous level (i − 1).11 As a result of this computation the sender
obtains the pair (ci0, c

i
1), that will be used as input of the i-th OT execution, where ci0 (as well as ci1)

contains a number of encryptions that depends upon the number of vertices on level (i − 1) of G.
We observe that this leaks information about the structure of G to the receiver, and therefore leaks
information about the elements that belong to Y . Considering the example in Fig. 1, if we allow
the receiver to learn that the 2nd level only contains 3 nodes, then the receiver would learn that all
the elements of Y have the two most significant bits equal to either t or t′ for some t, t′ ∈ {0, 1}2

(in Fig.1 for example we have t = 01 and t′ = 11; note however that the receiver would not learn
the actual values of t and t′).

We note that the technique described in this section can be seen as a special (and simpler)
example of securely evaluating a branching program. Secure evaluation of branching programs has
previously been considered in [IP07, MN12]: unfortunately these protocols cannot be instantiated
using OT-extension and therefore will not lead to practically efficient protocols (the security of
these protocols is based on strong OT which, in a nutshell, requires the extra property that when
executing several OTs in parallel, the receiver should not be able to correlate the answers with the
queries beyond correlations which follow from the output).

Finally, we note that the work of Chor et al. [CGN98] uses a data structure similar to the
one described here to achieve private information retrieval (PIR) based on keywords. The main
difference between keyword based PIR and PSM is that in PSM the receiver should not learn any
other information about the data stored by the sender, so their techniques cannot be directly applied
to our setting.

10The key k⋆
λ could not exists; e.g. if Y contains all the strings of λ bits.

11The only exception is the first OT execution where just two keys are used as input.

8

3 Definitions and tools

We denote the security parameter by s and use “ ||” as concatenation operator (i.e., if a and b are
two strings then by a||b we denote the concatenation of a and b). For a finite set Q, x← Q denotes
a sampling of x from Q with uniform distribution. We use the abbreviation ppt that stands for
probabilistic polynomial time. We use poly(·) to indicate a generic polynomial function. We assume
the reader to be familiar with standard notions such as computational indistinguishability and the
real world/ideal world security definition for secure two-party computation (see Appendix C for the
actual definitions).

3.1 Special private-key encryption

In our construction we use a private-key encryption scheme with two additional properties. The
first is that given the key k, it is possible to efficiently verify if a given ciphertext is in the range of
k. With the second property we require that an encryption under one key will fall in the range of
an encryption under another key with negligible probability

As discussed in [LP09], it is easy to obtain a private-key encryption scheme with the properties
that we require. According to [LP09, Definition 2] we give the following definition.

Definition 1. Let Sym = (Gen,Enc,Dec) be a private-key encryption scheme and denote the range
of a key in the scheme by Ranges(k) = {Enc(k, x)}x∈{0,1}s . Then

1. We say that Sym has an efficiently verifiable range if there exists a ppt algorithm M such that
M(1s, k, c) = 1 if and only if c ∈ Ranges(k). By convention, for every c /∈ Ranges(k), we have
that Dec(k, c) = ⊥.

2. We say that Sym has an elusive range if for every probabilistic polynomial-time machine A,
there exists a negligible function ν(·) such that Probk←Gen(1s)[A(1

s) ∈ Ranges(k)] < ν(s).

Most of the the well known techniques used to construct a private-key encryption scheme (e.g.
using a PRF) can be used to obtain a special private-key encryption scheme as well. The major
difference is that a special encryption scheme has (in general) ciphertexts longer than a standard
encryption scheme.

4 Our protocol Π∈

In this section we provide the formal description of our protocol Π∈ = (S,R) for the set-membership
functionality F∈ = (F∈S ,F

∈
R) where

F∈S :
(

{{0, 1}λ}M × (γ0, γ1)
)

× {0, 1}λ −→ ⊥ and

F∈R :
(

{{0, 1}λ}M × (γ0, γ1)
)

× {0, 1}λ −→ {γ0, γ1}

(

Y, (γ0, γ1), x
)

7−→

{

γ1 if x ∈ Y

γ0 otherwise

Where γ0 and γ1 are arbitrary strings and are part of the sender’s input. Therefore our scheme
protects both Y and γ1−b, when γb is received by R.

9

For the formal description of Π∈, we collapse the first and the second step showed in the infor-
mation description of Section 2 into a single one. That is, instead of constructing the graph G, the
sender only computes the keys at level i in order to feed the i-th OT execution with the correct
inputs. The way in which the keys are computed is the same as the vertices for G are computed,
we just do not need to physically construct G to allow S to efficiently compute the keys. In our
construction we make use of the following tools.

1. A protocol ΠOT = (SOT ,ROT) that securely (according to Definition 3) computes the following
functionality

FOT : ({0, 1}
⋆ × {0, 1}⋆)× {0, 1} −→ {⊥} × {0, 1}⋆

((c0, c1), b) 7−→ (⊥, cb).

2. A symmetric key encryption scheme Sym = (Gen,Enc,Dec) with efficiently verifiable and
elusive range.

3. In our construction we make use of the following function:

δ : N −→ N

i 7−→ min{2i, |Y |}.

This function computes the maximum number of vertices that can appear in the level i of the
graph G. As discussed before, the structure of G leaks information about Y . In order to avoid
this information leakage about Y , it is sufficient to add some padding to the OT sender’s input
so that the input size become |Y |. Indeed, as observed above, every level contains at most |Y |
vertices. Actually, it is easy to see that min{|Y |, 2i} represents a better upper bound on the number
of vertices that the i-th level can contain. Therefore, in order to compute the size of the padding
for the sender’s input we use the function δ.

4.1 Formal description

Common input: security parameter s and λ.
S’s input: a set Y of size M , γ0 ∈ {0, 1}s and γ1 ∈ {0, 1}s.
R’s input: an element x ∈ {0, 1}λ.
First stage

1. For i=1, . . . , λ, S computes the sink key k⋆i ← Gen(1s).

2. S computes k0 ← Gen(1s), k1 ← Gen(1s). For b = 0, 1, if b /∈ Prefix(Y, 1) then set kb = k⋆1
12.

Set (c10, c
1
1) = (k0, k1).

3. S and R execute ΠOT , where S acts as the sender SOT using (c10, c
1
1) as input and R acts as

the receiver ROT using xλ as input. When the execution of ΠOT ends R obtains κ1 := c1xλ
.

Second stage For i = 2, . . . , λ:

1. S executes the following steps.

12We observe that if Y is not empty (like in our case) then there exists at most one bit b s.t. b ∈ Prefix(Y, 1).

10

1.1. Define the empty list ci0 and for all t ∈ Prefix(Y, i− 1) execute the following steps.

If t||0 ∈ Prefix(Y, i) then compute kt||0 ← Gen(1s) and add Enc(kt, kt||0) to the list
ci0. Otherwise, if t||0 /∈ Prefix(Y, i) then compute and add Enc(kt, k

⋆
i) to the list ci0.

1.2. If |ci0| < δ(i− 1) then execute the following steps.

- Compute and add Enc(k⋆i−1, k
⋆
i) to the list ci0.

- For j = 1, . . . , δ(i− 1)− |ci0| compute and add Enc(Gen(1s), 0) to ci0.
13

1.3. Permute the elements inside ci0.

1.4. Define the empty14 list ci1 and for all t ∈ Prefix(Y, i− 1) execute the following step.

If t||1 ∈ Prefix(Y, i) then compute kt||1 ← Gen(1s) and add Enc(kt, kt||1) to the list
ci1. Otherwise, if t||1 /∈ Prefix(Y, i) compute and add Enc(kt, k

⋆
i) to the list ci1.

1.5. If |ci1| < δ(i− 1) then execute the following steps.

- Compute and add Enc(k⋆i−1, k
⋆
i) to the list ci1.

- For j = 1, . . . , δ(i− 1)− |ci1| compute and add Enc(Gen(1s), 0) to ci1.

1.6. Permute the elements inside ci1.

2. S and R execute ΠOT , where S acts as the sender SOT using (ci0, c
i
1) as input and R acts as

the receiver ROT using xλ−i+1 as input. When the execution of ΠOT ends, R obtains cixλ−i+1
.

Third stage

1. S executes the following steps.

1.1. Define the empty list l.

1.2. For every t ∈ Prefix(Y, λ) compute and add Enc(kt, γ
1) to l.

1.3. If |l| < 2λ then compute and add Enc(k⋆λ, γ
0) to l.

1.4. Permute the elements inside l and send l to R.

2. R, upon receiving l acts as follows.

2.1. For i = 2, . . . , λ execute the following steps.

For every element t in the list cixλ−i+1
compute κ← Dec(κi−1, t). If κ 6= ⊥ then set

κi = κ.

2.2. For all e ∈ l compute out← Dec(κλ, e) and output out if and only if out 6= ⊥.

Theorem 1. Suppose ΠOT securely computes the 1-out-of-2 OT functionality FOT and Sym is a
symmetric key encryption scheme with efficiently verifiable range and elusive range, then Π∈ securely
computes the functionality F∈.

We refer the reader to App. B for the formal proof of this theorem.

13In this step, as well as in the step 1.e of this stage, the function δ is used to compute the right amount of fake
encryption to be added to the list that will we used as input of ROT . The fake encryptions encrypts the value 0, but
of course any other value could be used.

14The following three steps are equal to the previous three steps (1.a, 1,b and 1.c), the only difference is that t||1
is considered instead of t||0.

11

4.2 Round complexity: parallelizability of our scheme

In the description of our protocol in Sec 4.1 we have the sender and the receiver engaging λ sequential
OT executions. We now show that this is not necessary since the OT executions can be easily
parallelized, given that each execution is independent from the other. That is, the output of a
former OT execution is not used in a latter execution. For simplicity, we assume that ΠOT consists
of just two rounds, where the first round goes from the receiver to the sender, and the second goes
in the opposite direction. We modify the description of the protocol of Sec 4.1 as follows.

- Step 3 of the first stage and step 2 of the second stage are moved to the beginning of the third
stage.

- When S sends the last round of ΠOT , he also performs the step 1 of the third stage. Therefore
the list l is sent together with the last rounds of the λ ΠOT executions.

Roughly speaking, in this new protocol S first computes all the inputs (k0, k1, c
1
0, c

1
1, . . . , c

λ
0 , c

λ
1) for

the OTs. Then, upon receiving the λ first rounds of ΠOT computed by R using as input the bits
of x, S sends λ second round of ΠOT together with the list l. We observe that in this case the S’s
inputs to the λ executions of ΠOT can be pre-computed before any interaction with R begins.

5 Optimisations and extensions

5.1 Point and permute

In our protocol the receiver must decrypt every ciphertext at every layer to identify the correct one.
This is suboptimal both because of the number of decryptions and because encryptions that have
efficiently verifiable range necessarily have longer ciphertexts. This overhead can be removed using
the standard point-and-permute technique [BMR90] which was introduced in the context of garbled
circuits. Using this technique we can add to each key in each layer a pointer to the ciphertext in
the next layer which can be decrypted using this key. This has no impact on security.

5.2 One-time pad

It is possible to reduce the communication complexity of our protocol by using one-time pad encryp-
tion in the last log s layers of the graph, in the setting where the output values γ0, γ1 are such that
|γb| < s. For instance, if the output values are bits (in case we combine our PSM with a GMW-style
protocol), then the keys (and therefore the ciphertexts) used in the last layer of the graph only need
to be 1 bit long. Unfortunately, since the keys in the second to last layer are used to mask up to
two keys in the last layer, the keys in the second to last layer must be of length 2 and so on, which
is why this optimisation only gives benefits in the last log s layer of the graph.

5.3 PSM with secret shared input

Our PSM protocol produces an output which can be post-processed using other 2PC protocols. It is
natural to ask whether it is possible to design efficient PSM protocols that also work on encrypted
or secret-shared inputs. We note here that our protocol can also be used in the setting in which the
input string x is bit-wise secret-shared between the sender and the receiver i.e., the receiver knows
a share r and the sender knows a share s s.t., r ⊕ s = x. The protocol does not change for the

12

receiver, who now inputs the bits of r = rλ, . . . , r1 to the λ one-out-of-two OTs (instead of the bits
of x as in the original protocol). The sender, at each layer i, will follow the protocol as described
above if si = 0 and instead swap the inputs to the OT if si = 1. It can be easily verified that the
protocol still produces the correct result and does not leak any extra information.

5.4 Keyword search

Our PSM protocol outputs an encryption of a bit indicating whether x ∈ Y or not. The protocol
can be easily modified to output a value dependent on x itself and therefore implement “encrypted
keyword search”. That is, instead of having only two output strings γ1, γ0 representing membership
and non-membership respectively, we can have |Y |+1 different output strings (one for each element
y ∈ Y and one for non-membership). This can be used for instance in the context where Y is a
database containing id’s y and corresponding values v(y), and the output of the protocol should
be an encryption of the value v(x) if x ∈ Y or a standard value v(⊥) if x 6∈ Y . The modification
is straightforward: instead of using all the keys in the last layer of the graph to encrypt the same
value γ1, use each key ky to encrypt the corresponding value v(y) and the sink key (which is used
to encrypt γ0 in our protocol) to encrypt the value v(⊥).

5.5 PSI from PSM

We can follow the same approach of PSZ [PSSZ15, PSZ14] to turn our PSM protocol into a protocol
for PSI. Given a receiver with input X and a sender with input Y the trivial way to construct PSI
from PSM is to run |X| copies of PSM, where in each execution the receiver inputs a different x
from X and where the sender always inputs her entire set Y . As described above, the complexity
of our protocol (as the complexity of the PSM protocol of PSZ) is proportional in the size of |Y |, so
this naïve approach leads to quadratic complexity O(|X| · |Y |). PSZ deals with this using hashing
i.e., by letting the sender and the receiver locally preprocess their inputs X,Y before engaging in
the PSM protocols. The different hashing techniques are explained and analysed in [PSZ16, Section
3]. We present the intuitive idea and refer to their paper for details: in PSZ the receiver uses Cuckoo
hashing to map X into a vector X ′ of size ℓ = O(|X|) such that all elements of X are present in X ′

and such that every x′i ∈ X ′ is either an element of X or a special ⊥ symbol. The sender instead
maps her set Y into ℓ = |X ′| small buckets Y ′1 , . . . , Y

′
ℓ such that every element y ∈ Y is mapped

into the “right bucket” i.e., the hashing has the property that if y = x′i for some i then y will end up
in bucket Y ′i (and potentially in a few other buckets). Now PSZ uses the underlying PSM protocol
to check whether x′i is a member of Y ′i (for all i’s), thus producing the desired result. The overall

protocol complexity is now O(
∑l

i=1 |X
′| · |Y ′i |) which (by careful choice of the hashing parameters)

can be made sub-quadratic. In particular, if one is willing to accept a small (but not negligible)
failure probability, the overall complexity becomes only linear in the input size. Since this technique
is agnostic of the underlying PSM protocol, we can apply the same technique to our PSM protocol
to achieve a PSI protocol that produces encrypted output.

6 Applications

The major advantage provided by Π∈ is that the output of the receiver can be an arbitrary value
chosen by the sender as a function of x for each value x ∈ Y ∪{⊥}. This is in contrast with most of
the approaches for set membership, where the value obtained by the receiver is a fixed value (e.g. 0)

13

when x ∈ Y , or some random value otherwise. We now provide two examples of how our protocol
can be used to implement more complex secure set operations. The examples show some guiding
principles that can be used to design other applications based on our protocol.

Without loss of generality in the following applications only the receiver will learn the output
of the computation. Moreover we assume that the size of X and Y is equal to the same value M .15

Also for simplicity we will describe our application using the naïve PSI from PSM construction
with quadratic complexity, but using the PSZ approach, as described in Sec. 5, it is possible to
achieve linear complexity using hashing techniques. Finally, in both our applications we exploit
the fact that additions can be performed locally (and for free) using secret-sharing based 2PC. In
applications in which round complexity is critical, the protocols can be redesigned using garbled
circuits computing the same functionality, since the garbled circuit can be sent from the sender to
the other messages of the protocol. However in this case additions have to be performed inside the
garbled circuit.

6.1 Computing statistics of the private intersection

Here we want to construct a protocol where sender and receiver have as input two sets, X and Y
respectively, and want to compute some statistics on the intersections of their sets. For instance
the receiver has a list of id’s X and that the sender has a list of of id’s Y and some corresponding
values v(Y) (thus we use the variant of our protocol for keyword search described in Section 5). At
the end of the protocol the receiver should learn the average of v(X ∩ Y) (and not |X ∩ Y |).

The main idea is the following: the sender and the receiver run M executions of our protocol
where the receiver inputs a different xi from X in each execution. The sender always inputs the same
set Y , and chooses the |Y |+1 outputs γyi for all y ∈ Y ∪{⊥} for all i = 1, . . . ,M in the following way:
γyi is going to contain two parts, namely an arithmetic secret sharing of the bit indicating whether
xi ∈ Y and an arithmetic secret sharing of the value v(y). The arithmetic secret sharing will be
performed using a modulo N large enough such that N > M and N > M ·V where V is some upper
bound on v(y) so to be sure that no modular reduction will happen when performing the addition
of the resulting shares. Concretely the sender sets γyi = (−u2i + 1 mod N,−v2i + v(y) mod N) for
all y ∈ Y and γ⊥i = (−u2i mod N,−v2i mod N). After the protocol the receiver defines her shares
u1i , v

1
i to be the shares contained in her output of the PSM protocol, and then both parties add their

shares locally to obtain secret sharing of the size of the intersection and of the sum of the values
i.e., U1 =

∑

i u
1
i , V

1 =
∑

i v
1
i , U

2 =
∑

i u
2
i , and V 2 =

∑

i v
2
i . Now the parties check if (U1, U2) is a

sharing of 0 and, if not, they compute and reveal the result of the computation V 1+V 2

U1+U2 . Both these
operations can be performed using efficient two-party protocols for comparison and division such as
the one in [T+07, DNT12].

6.2 Threshold PSI

In this example we design a protocol Πt = (P t
1, P

t
2) that securely computes the functionality F t =

(F t
P t
1

,F t
P t
2

) where

F t
P t
1

: {{0, 1}λ}M × {{0, 1}λ}M −→ ⊥

15We assume this only to simplify the protocol description, indeed our protocol can be easily instantiated when
the two sets have different size.

14

and

F t
P t
2

: {{0, 1}λ}M × {{0, 1}λ}M −→ {{0, 1}λ}⋆

(S1, S2) 7−→

{

S1 ∩ S2 if |S1 ∩ S2| ≥ t

⊥ otherwise

That is, the sender and the receiver have on input two sets, S1 and S2 respectively, and the
receiver should only learn the intersection between these two sets if the size of the intersection is
greater or equal than a fixed (public) threshold value t. In the case that the size of the intersection
is smaller that t, then no information about S1 is leaked to P t

2 and no information about S2 is
leaked to P t

1. (This notion was recently considered in [HOS17] in the context of privacy-preserving
ride-sharing).

As in the previous example, the sender and the receiver run M executions of our protocol where
the receiver inputs a different xi from S2 in each execution. The sender always inputs the same
set S1, and chooses the two outputs γ0i , γ

1
i in the following way: γbi is going to contain two parts,

namely an arithmetic secret sharing of 1 if xi ∈ Y or 0 otherwise, as well as encryption of the same
bit using a key k. The arithmetic secret sharing will be performed using a modulus larger than
M , so that the arithmetic secret sharings can be added to compute a secret-sharing of the value
|S1 ∩ S2| with the guarantee that no overflow will occur. Then, the sender and the receiver engage
in a secure-two party computation of a function that outputs the key k to the receiver if and only
if |S1 ∩ S2| > t. Therefore, if the intersection is larger than the threshold now the receiver can
decrypt the ciphertext part of the γ values and learn which elements belong to the intersection.
The required 2PC is a simple comparison with a known value (the threshold is public) which can
be efficiently performed using protocols such as [GSV07, LT13].

7 Acknowledgments

This research received funding from: COST Action IC1306; the Danish Independent Research
Council under Grant-ID DFF-6108-00169 (FoCC); the European Union’s Horizon 2020 research and
innovation programme under grant agreements No 731583 (SODA) and No 780477 (PRIViLEDGE);
“GNCS - INdAM”. The work of 1st author has been done in part while visiting Aarhus University,
Denmark.

15

A Complexity analysis

We focus our analysis of the protocol described in Sec 4.1 without taking into account the many
possible optimisations showed in Sec. 5. In Π∈, sender and receiver run λ executions of a 1-out-of-2
OT; in addition, they perform some symmetric key operations. More precisely, in order to compute
the inputs for the i-th OT executions, with i ∈ {2, . . . , λ}, S computes 2 ·min{2i−1, |Y |} encryptions
using the private-key encryption scheme Sym. We now observe that each encryption could contain
a different key, and that this key needs to be generated by running Gen(·).16 This means that
4M represents an upper bound on the number of symmetric key operations performed by S to
compute the input of one OT execution. Moreover, in the last interaction with R, S computes
M encryptions. Therefore, an upper bound on the number symmetric key operations performed
by S is (λ − 1) · 4M + M + 2 ≈ λ · 4M , where 2 represents the cost of running Gen(·) twice in
order to compute the two keys required to feed the first OT execution17. In every OT execution
i, with i ∈ {2, . . . , λ}, R receives min{2i−1, |Y |} encryptions, and tries to decrypt all of them.
Moreover, in the last interaction with S, R receives M encryptions and tries to decrypt all of them
as well. This means that the upper bound on the number of symmetric key operations made by R

is (λ − 1) ·M + M = λ ·M . Following [PSZ16] we assume that 3 symmetric key operations are
required for one OT execution. Therefore the total amount of symmetric key operations is λM4+3λ
for the sender and λM + 3λ for the receiver. In order to compare the efficiency of our protocol
with the PSI protocols provided in [PSZ16] and to be consistent with their complexity analysis,
we consider only the computation complexity for the party with the majority of the workload in
the comparison. In Table 1 of Sec. 1 we have compared the computation (and the communication)
complexity of our protocol with the circuit-based PSI approaches (which can be combined with
further postprocessing) considered in [PSZ16]. More precisely, we compare the sort-compare-shuffle
(SCS) circuit of [HEK12] and the pairwise-comparison (PWC) circuit proposed in [PSZ16] with our
approach for PSM.

As showed in Table 1, our protocol has better performance than all the circuit-based PSI ap-
proaches (which can be combined with further postprocessing) considered in [PSZ16]. We note that,
as described in Sec. 4.4 of [PSZ16], the approach based on evaluating the OPRF inside circuit is
faster than any other PSI protocols if one set is much smaller than the other (like in the case of
PSM), but in this case the output will necessarily leak to the receiver, which prevents composition
with further 2PC protocol. We refer the reader to Table 7 of [PSZ16] for a detailed efficiency com-
parison between different PSI protocols. Finally, we observe that the complexities analysis proposed
in [PSZ16] is related to PSI protocols, while in this section we have only compared the efficiency of
the PSM subprotocol.

A.1 Communication complexity

The communication complexity of our protocol is dominated by the communication complexity of
the underlying OT protocol ΠOT = (SOT ,ROT). Let sOT(D) be the amount of data exchanged
between SOT and ROT when SOT uses an input of size D, and let sSYM(A) be the size of a
ciphertext for the encryption scheme Sym when a plaintex of size A is used. Then the communication

16We recall that |Y | = M and that λ is the bit size of a set element.
17In this section, without loss of generality, we assume that to encrypt a message of size λ it is sufficient to run the

encryption algorithm Enc only once.

16

complexity of our protocol is

λ · sOT(2 ·M · sSYM(λ)) +M · sSYM(λ)

where 2 ·M is the number of ciphertexts used as input of OT and M is the amount of ciphertexts
that are sent in the last interaction between S and R. If we assume that a chipertext for Sym is
roughly of size s, and that ΠOT has a communication complexity that is approximately close to
the size of the input used18, we obtain that the overall communication complexity of our protocol
is well approximated by λMs2 +Ms, that is comparable to the communication complexity of the
approaches proposed in [PSZ16].

B Security proof of Theorem 1

Proof. In order to prove the security of Π∈, according to Def. 3 we need show two probabilistic
polynomial-time algorithms SS and SR called simulators, such that the following two conditions
hold:

{(SS(1
s, Y, γ0, γ1,F∈S (Y, γ

0, γ1, x)),F∈(Y, γ0, γ1, x))}{Y,x,s} ≈

{viewΠ∈

S (1s, Y, γ0, γ1, x), outputΠ
∈

(1s, Y, γ0, γ1, x)}{Y,x,s}
(1)

{(SR(1
s, x,F∈R (Y, γ

0, γ1, x)),F∈(Y, γ0, γ1, x))}{Y,x,s} ≈

{viewΠ∈

R (1s, Y, γ0, γ1, x), outputΠ
∈

(1s, Y, γ0, γ1, x)}{Y,x,s}
(2)

where Y ∈ {{0, 1}⋆}⋆, x ∈ {0, 1}⋆, and s ∈ N.
Therefore we divide our proof in two parts. In the former we show a ppt algorithm SS that

satisfies the property of the first point, and then a ppt algorithm SR that satisfies the requirement
of the second point. Moreover, in order to make the security proof of our scheme easier, without loss
of generality we assume Sym to be secure in the setting where the challenge messages m0 and m1

are lists of λ values. That is m0 = {m1
0, . . . ,m

λ
0} and m1 = {m1

1, . . . ,m
λ
1}. The challenger, upon

receiving these lists picks b← {0, 1}, defines an empty list cx and for i = 1, . . . λ acts as follows:

1. computes ki ← Gen(1s);

2. computes Enc(ki,m
i
b) and adds it to cx.

The aim of the adversary is to guess the bit b having on input just m0, m1, cx and an auxiliary
input z.

B.1 SS description and proof of indistinguishability

SS runs S with some randomness r and the input Y . At this point SS needs a strategy to act as
a receiver of OT in all the λ OT executions (without the receiver’s input x). In order to do that,
SS runs the simulator of ΠOT , that we call SSOT

(and that exists by assumption), in every OT
execution. We observe that in order to run SSOT

in the i-th OT execution the inputs ci0 and ci1

18This is actually true for the most common implementations of OT (OT extension).

17

need to be known. Clearly those values can be efficiently computed since the randomness r and the
input Y used to run S are known.

We now show more formally how SS works. Let SSOT
be such that

{SSOT
(1s, (c0, c1),⊥),FOT ((c0, c1), b)}{c0,c1,b,s} ≈

{viewΠOT

SOT
(1s, (c0, c1), b), output

ΠOT (1s, (c0, c1), b)}{c0,c1,b,s}

where c0, c1 ∈ {0, 1}
⋆, b ∈ {0, 1}, and s ∈ N. SS, on input Y and 1s executes the following steps.

1. pick a r ← {0, 1}s and run S on input 1s, Y using r as a randomness.

2. For every OT execution i, with i = 1, . . . , λ, run SSOT
on input 1s, ci0 and ci1, where ci0 and

ci1 are computed using the same procedure that S uses.

3. Continue the execution against S as R would do.

In order to conclude this first part of the proof we just need to prove the following lemma.

Lemma 1.

{(SS(1
s, Y,F∈S (Y, γ

0, γ1, x)),F∈(Y, γ0, γ1, x))} ≈

{viewΠ∈

S (1s, Y, γ0, γ1, x), outputΠ
∈

(1s, Y, γ0, γ1, x)}

where Y ∈ {{0, 1}⋆}⋆, x ∈ {0, 1}⋆, and s ∈ N.19

Proof. The proof goes through hybrid arguments starting from the real execution of Π∈. We grad-
ually modify the execution until the input of R is not needed anymore in such a way that the
final hybrid represents the simulator SS. We denote with OUTHi

S (1s) the view of S in the hybrid
experiment Hi with i ∈ {0, . . . , λ}. The hybrid experiments that we consider are the following.

1. H0 is identical to the real execution of Π∈. More precisely H0 runs S using fresh randomness
and interacts with him as R would do on input x.

2. Hi proceeds according to H0 with the difference that in the first i OT executions SSOT
is

used.
Since F∈ is a deterministic function we have that

{viewΠ∈

S (1s, Y, γ0, γ1, x),F∈(Y, γ0, γ1, x))} ≡

{viewΠ∈

S (1s, Y, γ0, γ1, x), outputΠ
∈

(1s, Y, γ0, γ1, x)} .

Moreover we observe that

{OUTH0
(1s),F∈(Y, γ0, γ1, x)} =

{viewΠ∈

S (1s, Y, γ0, γ1, x),F∈(Y, γ0, γ1, x))}

and that

{OUTHλ
(1s),F∈(Y, γ0, γ1, x)} =

{(SS(1
s, Y, γ0, γ1,F∈S (Y, γ

0, γ1, x)),F∈(Y, γ0, γ1, x))} .

19To avoid overburdening the notation, here and in the rest of this paper, we omit to specify the inputs domain
when it is clear from the context.

18

Therefore the only thing that remains to argue is that

{OUTHi−1
(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTHi

(1s),F∈(Y, γ0, γ1, x)}

for i = 1, . . . , λ. We now show that if this statement does not hold then we can construct
an adversary ASOT that breaks the security of ΠOT against malicious sender. Let CSOT be the
challenger for the security game w.r.t. the security of ΠOT against malicious sender; the reduction
works as follows.

1. ASOT runs S with randomness r and interacts with him according to Hi−1 (Hi) until the i-th
OT execution.

2. At this point ASOT computes (ci0, c
i
1) and sends ((ci0, c

i
1), xλ−i+1) to CSOT .

3. ASOT then acts as a proxy between CSOT and S.

4. When the interaction between CSOT and S is over, A continues the execution with S according
to Hi−1 (Hi).

The security proof ends with the observation that if CSOT has used the simulator SSOT
then the

joint distribution of the view of S and F∈(Y, γ0, γ1, x) corresponds to {OUTR
Hi
(1s),F∈(Y, γ0, γ1, x)},

to {OUTR
Hi−1

(1s),F∈(Y, γ0, γ1, x)} otherwise.

B.2 SR description and proof of indistinguishability

At a very high level, SR runs R with some randomness r and the input x. SR then needs a strategy
to acts as a sender of OT in all the λ OT executions (without sender’s input Y). In order to do that,
SR runs the simulator of ΠOT , that we call SROT

in every OT execution20. Moreover we need to
feed the OT simulator with the correct input, depending on the value x. More precisely in the first
OT execution SROT

is run by using as input a key k1. In the i-th OT execution (for i = 2, . . . , λ)
the simulator will run using xλ−i+1 and ci. The ciphertext ci contains encryptions of a fixed value,
let us say 0, computed using a fresh secret key (different for every ciphertext) and one encryption of
the key ki using the key ki−1. After the λ OT executions SR sends to R M encryptions of 0 using a
randomly generated secret key (also in this case a different secret key is used for each encryption of
0) and the encryption of the message out = F∈S (Y, γ

0, γ1, x) using the key kλ. We now show more
formally how SR works. Let SROT

be such that

{SROT
(1s, b, cb),FOT ((c0, c1), b)}{c0,c1,b,s} ≈

{viewΠOT

ROT
(1s, (c0, c1), b), output

ΠOT (1s, (c0, c1), b)}{c0,c1,b,s}

where c0, c1 ∈ {0, 1}
⋆, b ∈ {0, 1}, and s ∈ N.

SR, on input x, out and 1s executes the following steps.

1. Compute k1 ← Gen(1s) and run SROT
on input (1s, xλ, k1).

20We recall that SROT
exists by assumption.

19

2. For i = 2, . . . , λ execute the following steps.

2.1. Define the empty list ci. For j = 1, . . . ,min{2i, |Y |}−1 compute and add Enc(Gen(1s), 0))
to ci.

2.2. Compute ki ← Gen(1s), and add Enc(ki−1, ki) to the list ci.

2.3. Permute the elements inside ci.

2.4. Run SROT
on input (1s, xλ−i+1, c

i).

3. Define an empty list l.

4. For i = 1, . . .M − 1 compute and add Enc(Gen(1s), 0) to l.

5. Add Enc(kλ, out) to l.

6. Permute the elements inside l and send it.

7. Continue the execution according to R’s description.

In order to conclude this latter part of the proof we need to prove the following lemma.

Lemma 2.

{(SR(1
s, x, out,F∈R (Y, γ

0, γ1, x)),F∈(Y, γ0, γ1, x))}{Y,x,s} ≈

{viewΠ∈

R (1s, Y, γ0, γ1, x), outputΠ
∈

(1s, Y, γ0, γ1, x)}{Y,x,s}

where Y ∈ {{0, 1}⋆}⋆, x ∈ {0, 1}⋆, and s ∈ N.

Proof. The proof goes trough hybrid arguments starting from the real execution of Π∈. We gradually
modify the execution until the input of S (Y) is not needed anymore such that the final hybrid would
represent the simulator SR. We denote with OUTR

Hi
(1s) the view of R in the hybrid experiment Hi

with i ∈ {0, . . . , λ}.

1. H0 is identical to the real execution of Π∈. More precisely H0 runs R using fresh randomness
and interacts with him as S would do on input Y .

2. H1 proceeds according to H0 with the difference that in the first OT executions SROT
is used

on input (1s, xλ, k1 ← Gen(1s)).

3. Hi proceeds according toH1 with the difference that in the j-th OT executions, with 2 ≤ j ≤ i,
SROT

is run on input (1s, xλ−j+1, c
j = cjxλ−j+1

).

4. H⋆ proceeds according to Hλ with the difference that in each OT execution i, with 2 ≤ i ≤ λ,
the input ci for the simulator SROT

is computed as follows.

• For j = 1, . . . ,min{2i, |Y |} − 1 compute and add Enc(Gen(1s), 0) to ci.

• Compute ki ← Gen(1s), and add Enc(ki−1, ki) to the list ci.

• Permute the elements inside ci.

Moreover the first step of the third stage is performed as follows.

20

• Define an empty list l.

• For i = 1, . . .M − 1 compute and add Enc(Gen(1s), 0) to l.

• Add Enc(kλ, out) to l.

• Permute the element inside l and send it to R.

Since F∈ is deterministic we have that

{viewΠ∈

R (1s, Y, γ0, γ1, x),F∈(Y, γ0, γ1, x))} ≡

{viewΠ∈

R (1s, Y, γ0, γ1, x), outputΠ
∈

(1s, Y, γ0, γ1, x)} .

Moreover we observe that

{OUTR
H0

(1s),F∈(Y, γ0, γ1, x)} = {viewΠ∈

R (1s, Y, γ0, γ1, x),F∈(Y, γ0, γ1, x))}

and that

{OUTR
H⋆(1s),F∈(Y, γ0, γ1, x)} = {(SR(1

s, x, out,F∈R (Y, γ
0, γ1, x)),F∈(Y, γ0, γ1, x))} .

Therefore there are two things that remain to argue:

1. {OUTR
Hi−1

(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR
Hi
(1s),F∈(Y, γ0, γ1, x)} for i = 1, . . . , λ and

2. {OUTR
Hλ

(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR
H⋆(1s),F∈(Y, γ0, γ1, x)}.

We now start by showing that if the first statement does not hold for i = 1, then we can
construct a adversary ASOT that breaks the security of ΠOT against malicious receiver. Let CROT

be the challenger for the security game w.r.t. the security of ΠOT against malicious receiver. The
reduction works as follows.

1. AROT runs R with randomness r, computes k0 ← Gen(1s), k1 ← Gen(1s) and sends ((k0, k1), xλ)
to CROT .

2. AROT then acts as a proxy between CROT and R.

3. When the interaction between CSOT and R is over, AROT continues the execution with R

according to H0 (H1).

This part of the security proof ends with the observation that if CROT has used the simulator SROT

then the joint distribution of the view of R and F∈(Y, γ0, γ1, x) corresponds to {OUTR
H0

(1s),F∈(Y, γ0, γ1, x)}

, to {OUTR
H1

(1s),F∈(Y, γ0, γ1, x)} otherwise.
The proof that

{OUTR
Hi−1

(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR
Hi
(1s),F∈(Y, γ0, γ1, x)}

for i = 2, . . . , λ follows the same arguments.

21

In order to prove that

{OUTR
Hλ

(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR
H⋆(1s),F∈(Y, γ0, γ1, x)} ,

thus concluding the lemma’s security proof, we need to consider the following intermediate hybrid
experiment H⋆

y with y ∈ {1, . . . , λ}. The description of the hybrid experiment follows.

1. Compute k1 ← Gen(1s) and run SROT
on input (1s, xλ, k1).

2. For i = 2, . . . , y execute the following steps.

2.1. Define the empty list ci. For j = 1, . . . ,min{2i, |Y |}−1 compute and add Enc(Gen(1s), 0))
to ci.

2.2. Compute ki ← Gen(1s), and add Enc(ki−1, ki) to the list ci.

2.3. Permute the elements inside ci.

2.4. Run SROT
on input (1s, xλ−i+1, c

i).

3. For each t ∈ Prefix(Y, y)− {xλ . . . xλ−y+1} compute kt ← Gen(1s).
If xλ . . . xλ−y+1 ∈ Prefix(Y, y) then set kxλ...xλ−y+1

= ky, otherwise k⋆y = ky.

4. For i = y + 1, . . . , λ execute the following steps.

4.1. Define the empty list ci and for each t ∈ Prefix(Y, i− 1) execute the following steps.

If t||xλ−i+1 ∈ Prefix(Y, i) then compute kt||xλ−i+1
← Gen(1s) and add Enc(kt, kt||xλ−i+1

)

to the list ci. Otherwise, if t||xλ−i+1 /∈ Prefix(Y, i) then compute and add Enc(kt, k
⋆
i)

to the list ci.

4.2. If |ci| < δ(i− 1) then execute the following steps.

• Compute and add Enc(k⋆i−1, k
⋆
i) to the list ci.

• For i = 1, . . . , δ(i− 1)− |ci| compute and add Enc(Gen(1s), 0) to ci.

4.3. Permute the elements inside ci.

4.4. Run SROT
on input (1s, xλ−i+1, c

i).

5. For every t ∈ Prefix(Y, λ) compute and add Enc(kt, γ
1) to l.

6. If |l| < 2λ then compute and add Enc(k⋆λ, γ
0) to l.

7. Permute the elements inside l and send l to R.

We now prove that

{OUTR
H⋆

y−1
(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR

H⋆
y
(1s),F∈(Y, γ0, γ1, x)}

for y = 2, . . . , λ. The proof proceeds by contradiction. Suppose that there exists some y ∈ {2, . . . , λ}
such that

{OUTR
H⋆

y−1
(1s),F∈(Y, γ0, γ1, x)} ≈ {OUTR

H⋆
y
(1s),F∈(Y, γ0, γ1, x)}

then we can construct ad adversary ASym that breaks the security of the encryption scheme Sym. Let
CSym be the challenger for the security game w.r.t to Sym. Our adversary runs R with randomness
r and executes the following steps.

22

1. Compute k1 ← Gen(1s) and run SROT
on input (1s, xλ, k1).

2. For i = 2, . . . , y − 1 execute the following steps.

2.1. Define the empty list ci. For j = 1, . . . ,min{2i, |Y |}−1 compute and add Enc(Gen(1s), 0))
to ci.

2.2. Compute ki ← Gen(1s), and add Enc(ki−1, ki) to the list ci.

2.3. Permute the elements inside ci.

2.4. Run SROT
on input (1s, xλ−i+1, c

i).

3. Define two empty lists m0 and m1 that will represent the challenge messages to be sent to
CSym.

4. For each t ∈ Prefix(Y, y)− {xλ . . . xλ−y+1} compute kt ← Gen(1s) and add it to the list m0.

5. For j = 1, . . . , |Prefix(Y, y)− {xλ . . . xλ−y+1}| compute and add 0 to m1.

6. Send the challenge messages to CSym.

7. Upon receiving the challenge ciphertext cx, set cy = cx

8. For j = 1, . . . ,min{2i, |Y |} − |cx| − 1 compute and add Enc(Gen(1s), 0)) to ci.

9. Compute ky ← Gen(1s), and add Enc(ky−1, ky) to the list ci.

10. Permute the elements inside ci.

11. Run SROT
on input (1s, xλ−i+1, c

i).

12. If xλ . . . xλ−y+1 ∈ Prefix(Y, y) then set kxλ...xλ−y+1
= ky, otherwise set k⋆y = ky.

13. For i = y + 1, . . . , λ execute the following steps.

13.1. Define the empty list ci and for each t ∈ Prefix(Y, i− 1) execute the following steps.

If t||xλ−i+1 ∈ Prefix(Y, i) then compute kt||xλ−i+1
← Gen(1s) and add Enc(kt, kt||xλ−i+1

)

to the list ci. Otherwise, if t||xλ−i+1 /∈ Prefix(Y, i) then compute and add Enc(kt, k
⋆
i)

to the list ci.

13.2. If |ci| < δ(i− 1) then execute the following steps.

• Compute and add Enc(k⋆i−1, k
⋆
i) to the list ci.

• For i = 1, . . . , δ(i− 1)− |ci| compute and add Enc(Gen(1s), 0) to ci.

13.3. Permute the elements inside ci.

13.4. Run SROT
on input (1s, xλ−i+1, c

i).

14. For every t ∈ Prefix(Y, λ) compute and add Enc(kt, γ
1) to l.

15. If |l| < 2λ then compute and add Enc(k⋆λ, γ
0) to l.

16. Permute the elements inside l and send l to R.

23

This part of the security proof ends with the observation that if CSym has used m0 then the joint
distribution of the view of R and F∈(Y, γ0, γ1, x) corresponds to {OUTR

H⋆
y−1

(1s),F∈(Y, γ0, γ1, x)},

to {OUTR
H⋆

y
(1s),F∈(Y, γ0, γ1, x)} otherwise.

Since the following two distributions coincide

{OUTR
Hλ

(1s),F∈(Y, γ0, γ1, x)} = {OUTR
H⋆

1
(1s),F∈(Y, γ0, γ1, x)}

the to complete the entire security proof we just need to prove that {OUTR
H⋆

λ
(1s),F∈(Y, γ0, γ1, x)} ≈

{OUTR
H⋆(1s),F∈(Y, γ0, γ1, x)}. The indistinguishability between the two distributions can be proved

by using arguments similar to the one used lately. That is, by proceedings by contradiction and
constructing adversary that breaks the security of the encryption scheme Sym.

C Standard definitions

C.1 Computational indistinguishability definition

Definition 2 (Computational indistinguishability). Let X = {Xs}s∈N and Y = {Ys}s∈N be ensem-
bles, where Xs and Ys are probability distribution over {0, 1}l, for some l = poly(s). We say that
X = {Xs}s∈N and Y = {Ys}s∈N are computationally indistinguishable, denote X ≈ Y , if for every
ppt distinguisher D there exists a negligible function ν such that for sufficiently large s ∈ N,

∣

∣

∣
Prob(t← Xs : D(1

s, t) = 1)− Prob(t← Ys : D(1
s, t) = 1)

∣

∣

∣
< ν(s).

We note that in the usual case where |Xs| = Ω(s) and s can be derived from a sample of Xs,
it is possible to omit the auxiliary input 1s. In this paper we also use the definition of Statistical
Indistinguishability. This definition is the same as Definition 2 with the only difference that the
distinguisher D is unbounded. In this case we use X ≡ Y to denote that two ensembles are
statistically indistinguishable.

C.2 Two party computation

A two-party protocol problem is cast by specifying a random process that maps pairs of inputs to
pairs of outputs (one for each party). We refer to such a process as a functionality and denote it as
F = (F1, F2). That is, for every pair of inputs x, y ∈ {0, 1}s, the output-pair is a random variable
(F1(x, y), F2(x, y)) ranging over pairs of strings. The first party (with input x) wishes to obtain
F1(x, y) and the second party (with input y) wishes to obtain F2(x, y). We often denote such a
functionality by (x, y)→ (F1(x, y), F2(x, y)).

Let F = (F1, F2) be a probabilistic polynomial-time functionality and let Π = (P1, P2) be a
two-party protocol for computing F where P1 and P2 denote the two parties. The view of the
party Pi (i ∈ {1, 2}) during an execution of Π on (x, y) and security parameter s is denoted by
viewΠ

Pi
(x, y, 1s).

The output of the party Pi (i ∈ {1, 2}) during an execution of Π on (x, y) and security parameter
s is denoted by outputΠPi

(1s, x, y) and can be computed from its own view of the execution. We denote

the joint output of both parties by outputΠ(1s, x, y) = (outputΠP1
(1s, x, y), outputΠP2

(1s, x, y)).

24

Definition 3 (Secure two-party computation [HL10]). Let F = (F1, F2) be a functionality. We
say that Π securely computes F in the presence of static semi-honest adversaries if there exist
probabilistic polynomial-time algorithms SP1

and SP2
called simulators, such that

{(SP1
(1s, x, F1(x, y)), F (x, y))}{x,y,s} ≈ {view

Π
P1
(1s, x, y), outputΠ(1sx, y)}{x,y,s}

and
{(SP2

(1s, y, F2(x, y)), F (x, y))}{x,y,s} ≈ {view
Π
P2
(1s, x, y), outputΠ(1s, x, y)}{x,y,s}

where x, y ∈ {0, 1}⋆ such that |x| = |y|, and s ∈ N.

25

References

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pages 535–548, 2013.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer extensions with security for malicious adversaries. In Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, pages 673–701, 2015.

[BBC+11] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Countering GATTACA: efficient and secure testing of fully-sequenced human genomes.
In Proceedings of the 18th ACM Conference on Computer and Communications Secu-
rity, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, pages 691–702, 2011.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–513,
1990.

[CGN98] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords.
IACR Cryptology ePrint Archive, 1998:3, 1998. Appeared in the THEORY OF CRYP-
TOGRAPHY LIBRARY.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homo-
morphic encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pages 1243–1255. ACM, 2017.

[CT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols
with linear complexity. In Financial Cryptography and Data Security, 14th International
Conference, FC 2010, Tenerife, Canary Islands, January 25-28, 2010, Revised Selected
Papers, pages 143–159, 2010.

[CT12] Emiliano De Cristofaro and Gene Tsudik. Experimenting with fast private set inter-
section. In Trust and Trustworthy Computing - 5th International Conference, TRUST
2012, Vienna, Austria, June 13-15, 2012. Proceedings, pages 55–73, 2012.

[DNT12] Morten Dahl, Chao Ning, and Tomas Toft. On secure two-party integer division. In
Financial Cryptography and Data Security - 16th International Conference, FC 2012,
Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers, pages 164–
178, 2012.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Theory of Cryptography, Second Theory of

26

Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005,
Proceedings, pages 303–324, 2005.

[FNO18] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set intersection
with linear communication from general assumptions. IACR Cryptology ePrint Archive,
2018:238, 2018.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, pages 1–19, 2004.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 218–229, 1987.

[GSV07] Juan A. Garay, Berry Schoenmakers, and José Villegas. Practical and secure solutions
for integer comparison. In Public Key Cryptography - PKC 2007, 10th International
Conference on Practice and Theory in Public-Key Cryptography, Beijing, China, April
16-20, 2007, Proceedings, pages 330–342, 2007.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California, USA, February 5-8, 2012,
2012.

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern
matching with security against malicious and covert adversaries. In Theory of Cryptog-
raphy, Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March
19-21, 2008., pages 155–175, 2008.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques
and Constructions. Information Security and Cryptography. Springer, 2010.

[HOS17] Per Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-preserving
ridesharing. In IEEE 30th Computer Security Foundations Symposium, CSF 2017,
Santa Barbara, CA, USA, August 21-25, 2017, pages 276–291, 2017.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-party
private set-intersection. In Public-Key Cryptography - PKC 2017 - 20th IACR Inter-
national Conference on Practice and Theory in Public-Key Cryptography, Amsterdam,
The Netherlands, March 28-31, 2017, Proceedings, Part I, pages 175–203, 2017.

[IKN+17] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
David Shanahan, and Moti Yung. Private intersection-sum protocol with applications
to attributing aggregate ad conversions. Cryptology ePrint Archive, Report 2017/738,
2017. http://eprint.iacr.org/2017/738.

27

http://eprint.iacr.org/2017/738

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious trans-
fers efficiently. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceed-
ings, pages 145–161, 2003.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amster-
dam, The Netherlands, February 21-24, 2007, Proceedings, pages 575–594, 2007.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In Secu-
rity and Cryptography for Networks, 7th International Conference, SCN 2010, Amalfi,
Italy, September 13-15, 2010. Proceedings, pages 418–435, 2010.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring
short secrets. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages
54–70, 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pages 818–829, 2016.

[KMRS14] Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed Sadeghian. Scal-
ing private set intersection to billion-element sets. In Financial Cryptography and Data
Security - 18th International Conference, FC 2014, Christ Church, Barbados, March
3-7, 2014, Revised Selected Papers, pages 195–215, 2014.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with
optimal overhead. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages
724–741, 2015.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

[LT13] Helger Lipmaa and Tomas Toft. Secure equality and greater-than tests with sublinear
online complexity. In Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, pages
645–656, 2013.

[Mea86] Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use
in the absence of a continuously available third party. In Proceedings of the 1986 IEEE
Symposium on Security and Privacy, Oakland, California, USA, April 7-9, 1986, pages
134–137, 1986.

[MN12] Payman Mohassel and Salman Niksefat. Oblivious decision programs from oblivious
transfer: Efficient reductions. In Financial Cryptography and Data Security - 16th
International Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March 2, 2012,
Revised Selected Papers, pages 269–284, 2012.

28

[NMH+10] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov.
Botgrep: Finding P2P bots with structured graph analysis. In 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings, pages 95–110,
2010.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n OT
extension with application to private set intersection. In Topics in Cryptology - CT-
RSA 2017 - The Cryptographers’ Track at the RSA Conference 2017, San Francisco,
CA, USA, February 14-17, 2017, Proceedings, pages 381–396, 2017.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set
intersection using permutation-based hashing. In 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015., pages 515–530,
2015.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-
based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April
29 - May 3, 2018 Proceedings, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 125–157. Springer, 2018.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 2014., pages 797–812, 2014.

[PSZ16] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set inter-
section based on ot extension. Cryptology ePrint Archive, Report 2016/930, 2016.
http://eprint.iacr.org/2016/930.

[RR17a] Peter Rindal and Mike Rosulek. Improved private set intersection against malicious
adversaries. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I, pages 235–259, 2017.

[RR17b] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual ex-
ecution. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 1229–1242. ACM, 2017.

[Sha80] Adi Shamir. On the power of commutativity in cryptography. In Automata, Lan-
guages and Programming, 7th Colloquium, Noordweijkerhout, The Netherland, July 14-
18, 1980, Proceedings, pages 582–595, 1980.

[T+07] Tomas Toft et al. Primitives and applications for multi-party computation. PhD Thesis,
University of Aarhus, Denmark, 2007.

29

http://eprint.iacr.org/2016/930

[TLP+17] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas, and
N. Asokan. The circle game: Scalable private membership test using trusted hardware.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages 31–
44, 2017.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 160–164, 1982.

30

	Introduction
	OT-based PSI
	Our contribution
	Improving the efficiency of smart contract protocols

	Technical overview
	Why PSZ and 2PC do not mix
	Our protocol
	First step: construct the graph G
	Second step: oblivious navigation of G
	Third step: obtain the correct share

	Definitions and tools
	Special private-key encryption

	Our protocol
	Formal description
	Round complexity: parallelizability of our scheme

	Optimisations and extensions
	Point and permute
	One-time pad
	PSM with secret shared input
	Keyword search
	PSI from PSM

	Applications
	Computing statistics of the private intersection
	Threshold PSI

	Acknowledgments
	Complexity analysis
	Communication complexity

	Security proof of Theorem 1
	SS description and proof of indistinguishability
	SR description and proof of indistinguishability

	Standard definitions
	Computational indistinguishability definition
	Two party computation

