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Abstract. During the last decade, the blockchain space has exploded
with a plethora of new cryptocurrencies, covering a wide array of dif-
ferent features, performance and security characteristics. Nevertheless,
each of these coins functions in a stand-alone manner, independently.
Sidechains have been envisioned as a mechanism to allow blockchains
to communicate with one another and, among other applications, al-
low the transfer of value from one chain to another, but so far there
have been no decentralized constructions. In this paper, we put forth the
first sidechains construction that allows communication between proof-
of-work blockchains without trusted intermediaries. Our construction is
generic in that it allows the passing of any information between block-
chains. It gives rise to two illustrative examples: the “remote ICO,” in
which an investor pays in currency on one blockchain to receive tokens
in another, and the “two-way peg,” in which an asset can be trans-
ferred from one chain to another and back. We pinpoint the features
needed for two chains to communicate: On the source side, a proof-of-
work blockchain that has been interlinked, potentially with a velvet fork;
on the destination side, a blockchain with any consensus mechanism that
has sufficient expressibility to implement verification. We model our con-
struction mathematically and give a formal proof of security. In the heart
of our construction, we use a recently introduced cryptographic primi-
tive, Non-Interactive Proofs of Proof-of-Work (NIPoPoWs). Our security
proof uses a standard reduction from our new proof-of-work sidechains
protocol to the security of NIPoPoWs, which has, in turn, been shown to
be secure in previous work. Our working assumption is honest majority
in each of the communicating chains. We demonstrate the feasibility of
our construction by providing a pseudocode implementation in the form
of a Solidity smart contract.

1 Introduction

Bitcoin [Nak08] is the first and most successful cryptocurrency to date.
Its core protocol introduced the concept of a blockchain, a type of crypto-
graphic consensus protocol in which transactions are organized into blocks
which are then put in a mutually agreed sequence despite the presence
of adversarial nodes. Consensus is achieved via a proof-of-work [DN93]
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which is the precondition for a block to be valid. Transactions moving
value within such blockchains have been proven to be secure in that con-
sensus is eventually achieved, cf. [GKL15,PSS17,GKL17], thus providing
a way for reaching consensus in a setting where neither reliable point-to-
point channels exists nor a public-key infrastructure.

Ethereum [B+14] extends Bitcoin’s functionality introducing the abil-
ity to write arbitrary Turing-complete smart contracts in programming
languages such as Solidity running on top of the Ethereum Virtual Ma-
chine [Woo14]. These contracts execute autonomously. The smart con-
tracts are confined to access data only within the blockchain itself, such
as previous transactions and blocks. Access to external world data re-
quires some trusted third party or group of third parties to vouch for the
validity of the data [ZCC+16].

Sidechains [BCD+14] are a mechanism for cross-chain communication
in blockchains. They allow the smart contracts on one blockchain to re-
ceive and react to events that take place on another blockchain without
the need of a trusted third party. Despite the widely agreed usefulness
of the primitive there exist no constructions that are decentralised and
efficient at the same time.
Our contributions. In this paper, we introduce the first trustless con-
struction for proof-of-work sidechains. We describe how to build generic
communication between blockchains. As one application, we give the
construction of a two-way pegged asset which can be moved from one
blockchain to another while retaining its nature. We provide a high-level
construction in Solidity. Our construction works across a broad range
of blockchains requiring only two underlying properties. First, that the
source blockchain is a proof-of-work blockchain supporting Non-Interactive
Proofs of Proof-of-Work (NIPoPoWs), a cryptographic primitive which al-
lows constructing succinct proofs about events which occur in a proof-of-
work blockchain and which was recently introduced in [KMZ17]. Support
for NIPoPoWs can be introduced to practically any work-based cryp-
tocurrency such as Bitcoin, Ethereum, Bitcoin Cash, Litecoin or Monero
without a hard or soft fork. Second, that the target blockchain is able
to validate such proofs by, for instance, being Turing-complete, such as,
e.g., Ethereum or Ethereum Classic. Any blockchain supporting advanced
smart contracts is sufficient. In the appendix, we give a formal proof of se-
curity of our construction via reduction to NiPoPoW security under the
assumption that the interoperating blockchains are secure individually.
To our knowledge, we are the first to provide such a construction in full
and prove its security.
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Related work. Sidechains were introduced as a Bitcoin upgrade mech-
anism by Back et al. [BCD+14]. They proposed introducing a new child
blockchain which implements a new protocol version, with which assets
are 2-way pegged. The firewall property was articulated. No security def-
initions nor a complete construction of the protocol were given. Their
paper hints at the need for “efficient SPV proofs” (Appendix B) in future
work, which we implemented here. We use the term sidechains in a more
general notion than in their work. Our sidechains allow communication
between stand alone blockchains and also convey any information, not
just transfers of value. In our work, a blockchain is a sidechain of another
chain if it can react to events on that chain, and so the relationship can
be symmetric.

Polkadot [Woo16], Tendermint, Cosmos [Buc16], Liquid and Inter-
ledger [Gro] also build cross-chain transfers. Their validation relies on a
trusted committees, federations or is left unspecified. Drivechains are a
sidechain proposal which requires miners of both chains to be aware of
both networks. In our scheme, miners remain agnostic to the existence of
other chains and connect only to one network. BTCRelay is a trustless
mechanism relaying information one-way from Bitcoin to Ethereum, in
which miners are connected to their network only. BTCRelay requires the
transmission of the entirety of the source blockchain headers into the tar-
get blockchain. Our proposal only requires data logarithmic in size of the
source blockchain. This stems from the succinctness property of the NI-
PoPoW scheme. None of the aforementioned constructions include proofs
of security. Other related work includes Plasma [PB17], XCLAIM [ZHL+],
PeaceRelay, COMIT [HHK17], and NOCUST [KG18] and Dogethereum.

2 Overview

We wish to transfer assets from one blockchain to another and then back.
When assets can be transferred from one blockchain to another but not
back, we call it a one-way peg. If assets can also be moved back, we call it
a two-way peg. In each individual transfer of an asset, we have a particular
source blockchain, from which the asset is moved, and a particular target
blockchain, to which the asset is moved. In a sidechain setting of two
blockchains that are two-way pegged, both blockchains can function as a
source and a target blockchain for different transfers.

While the motivation for the construction is to be able to move assets
from one blockchain to another, we generalize the notion of sidechains
from this strict setting. In general, we would like the target blockchain
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to be able to react to any event that occurs on the source blockchain.
Such events can be the fact that a transaction with a particular txid
took place, that a certain account was paid a certain amount of money,
or that a particular smart contract was instantiated. Our sidechain con-
struction allows the target blockchain to react to events that took place
on the source blockchain. This reaction can be implemented in its target
blockchain smart contracts. We describe our construction in pseudocode
similar to Ethereum’ Solidity. In Solidity, events can be fired arbitrarily
from within a smart contract and do not have a semantic interpretation.
In this setting, events are defined by Solidity using the event type and
have an event name, a contract address which fired them, as well as cer-
tain parameter values. A contract can elect to fire an event with any name
and any parameters of its choice by invoking the emit command.

Fig. 1. Basic information transfer between two blockchains
k1

k2

A high-level overview of cross-chain event transmission is shown in
Figure 1. The process is as follows. First, an event is fired in the source
blockchain, shown at the top. This could be any event that can be emitted
using Ethereum’s emit command. This event firing is caused by a cer-
tain transaction which is included at a certain block, indicated in black
at the top. This block is then buried under k1 subsequent blocks within
the source blockchain, where the k1 parameter is a security parameter
of the scheme depending on the specific parameters of the source block-
chain [GKL15]. As soon as this confirmation occurs, the target blockchain
can react to the event, shown at the bottom. This reaction occurs in a
transaction which is included in a block within the target blockchain, il-
lustrated in white. As usual, the block needs to be confirmed by waiting
for k2 blocks to be mined on top of it. It is possible that k1 6= k2 because
of different blockchain parameters such as a difference in block generation
time or network synchrony. In this figure, arrows between blocks of the
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same blockchain indicate authenticated ancestry. The arrow between the
two blockchains indicates the data transfer needed for the event.

Using this basic functionality of event information exchange between
blockchains, we can construct two-way pegged sidechains. In such a con-
struction, an asset that exists on one blockchain will gain the ability
to be moved to a different blockchain and back. We will use the exam-
ple of moving ether, the native asset of the Ethereum blockchain, from
the Ethereum blockchain into the Ethereum Classic blockchain and back.
Such an action is different from exchanging ether (ETH), the native token
of the Ethereum blockchain, with ether classic (ETC), the native token
of the Ethereum Classic blockchain. Instead, the asset retains its nature;
it maintains its price and its ability to be used for the same purposes,
while being governed by the rules of the new blockchain, such as differ-
ent performance, fees, features, or security guarantees. Furthermore, no
counterparty or market is required to perform the exchange; the transfer
is something a party can do on its own.

3 Construction

Cross-chain certificates

For our construction, we use a primitive called Non-Interactive Proofs
of Proof-of-Work recently introduced in [KMZ17]. Non-Interactive Proofs
of Proofs-of-Work are cryptographic protocols which implement a prover
and a verifier. The prover is a full node on the source blockchain. The ver-
ifier does not have access to that blockchain, but knows its genesis block
G. The prover wants to convince the verifier that an event took place in
the source blockchain; for instance, a smart contract method was called
with certain parameters or that a payment was made into a particular
address. Whether such an event took place can easily be determined if
one inspects the whole blockchain. However, the prover wishes to convince
the verifier by only sending a succinct proof, a short string which does not
grow linearly with the size of the blockchain, but, rather, polylogarithmi-
cally. The verifier must not be fooled by adversarial provers who provide
incorrect proofs claiming that an event happened while in fact it didn’t,
or that it didn’t while in fact it did. To withstand such attacks, the veri-
fier accepts multiple proofs, at least one of which is assumed to have been
honestly generated (this assumption is necessary in standard blockchain
protocols in general [HKZG15,WG16]). Comparing these proofs against
each other, the verifier extracts a reliable truth value corresponding to
the same value it would deduce if it were to be running a full node on
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the blockchain itself. This property is the security of NIPoPoWs proven
in [KMZ17].

The NIPoPoWs construction talks about predicates evaluated on block-
chains, but we are interested in events. We can translate from events to
predicates provable with NIPoPoWs. Specifically, given a genesis block
G, a smart contract address addr, an event name Event, and a series of
event parameter values (param1, param2, · · · , paramn), the predicate e we
wish to check for truth is the following: Has the event named Event been
fired with parameters (param1, param2, · · · , paramn) by the smart contract
residing in address addr on the blockchain with genesis block G at least k
blocks ago? This predicate is (1) monotonic, meaning that it starts with
the value false and, if it ever becomes true, it cannot ever change its value
back as the blockchain grows; (2) infix-sensitive, meaning that its truth
value can be deduced by inspecting a constant number of blocks on the
blockchain (one block, within which the event firing was confirmed); and
(3) stable, meaning that, if one party deduces that its value is true, then
soon enough all parties will deduce that its value is true. This last prop-
erty stems from the requirement that the event be buried under k blocks
ensuring a blockchain reorganization up to k blocks ago cannot affect the
predicate’s value.

In order to determine whether an event took place, the NIPoPoW
verifier function verifyG,e

k,m(P) accepts the event description in the form
of a blockchain predicate e, which we gave above, the genesis block of
the remote chain G, as well as two security parameters k and m. These
security parameters can be constants specified when the sidechain system
is created (concrete values for these are given in [KMZ17]). Subsequently,
the NIPoPoW verifier accepts a set of proofs P = {π1, π2, · · · , πn} which
it compares and extracts a truth value for the predicate: Whether the
event has taken place in the remote blockchain or not. As long as at least
one honestly generated proof πi is provided, the verifier’s security ensures
that the output will correspond to whether the event actually occurred.

Our protocol works as follows. Whenever an event of interest occurs
on the source blockchain, the occurence of this event is observed by a
source blockchain honest node, who generates a NIPoPoW about it. The
target blockchain contains a smart contract with a method to accept and
verify the veracity of this proof. The node can then submit the proof to the
smart contract by broadcasting a transaction on the target blockchain. As
soon as the proof is validated by the smart contract, the target blockchain
can elect to react to the event as desired.
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Adoption considerations. Our construction has certain prerequisites
for both the source and the target blockchain before it can be adopted.
In the case of bidirectionally connected blockchains, both of them must
satisfy the source and the target blockchain prerequisites.

– The source blockchain needs to support proofs about it, which
requires augmenting it with an interlink vector, the details of which
can be found in [KLS16]. This interlink vector can be added to a
blockchain using a user-activated velvet fork [KMZ17,ZSJ+18], which
is performed without miner awareness and does not require a hard or
soft fork. However, only events occuring after the velvet fork can be
proven. New blockchains can adopt this from genesis.

– The target blockchain needs to be able to run the above verify func-
tion. This function can be programmed in a Turing-complete language
such as Solidity. If the source blockchain proof-of-work hash function
is available as an opcode or pre-compiled smart contract within the
target blockchain’s VM the way, e.g., Bitcoin’s SHA256 hash function
is available in Solidity, the implementation can be more gas-efficient.

Blockchain agnosticism. We underline the remarkable property that
miners and full nodes of the target blockchain do not need to be aware
of the source blockchain at all. To them, all information about the source
blockchain is simply a string which is passed as a parameter to a smart
contract and can remain agnostic to its semantics as a proof. Additionally,
miners and full nodes of the source blockchain do not need to be aware
of the target blockchain. Only the parties interested in facilitating cross-
chain events must be aware of both. Those untrusted facilitators need to
maintain an SPV node on the source blockchain with which they generate
their NIPoPoW. To broadcast their proof on the target blockchain, they
connect to target blockchain nodes and send the transaction containing
the NIPoPoW. Blockchain agnosticism allows users to initiate cross-chain
relationships between different blockchains dynamically, as long as the
blockchains in question satisfy the above prerequisites.
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Algorithm 1 The smart contract skeleton that enables checking cross-
chain proofs about events.
1: contract crosschaink,m,z

2: internal function initialize(Gremote)
3: G ← Gremote
4: end function
5: payable function submit-event-proof(π, e)
6: if msg.value < z then . Ensure sufficient collateral
7: return ⊥
8: end if
9: if events[e] = ⊥ ∧ verifye,G

k,m({π}) then
10: events[e]← {expire: block.number + k, proof: π, author: msg.sender}
11: end if
12: end function
13: function finalize-event(e)
14: if events[e] = ⊥ ∨ block.number < events[e].expire then
15: return ⊥
16: end if
17: finalized-events← finalized-events ∪ {e}
18: author← events[e].author
19: events[e]← ⊥
20: author.send(z) . Return collateral
21: end function
22: function submit-contesting-proof(π∗, e)
23: if events[e] = ⊥ ∨ block.number ≥ events[e].expire then
24: return ⊥
25: end if
26: if ¬verifye,G

k,m({events[e].proof, π∗}) then . Original proof was fraudulent
27: events[e]← ⊥
28: msg.sender.send(z) . Pay collateral to contester
29: end if
30: end function
31: function event-exists(e)
32: return e ∈ finalized-events
33: end function
34: end contract

Cross-chain events

We give our crosschain construction in Algorithm 1. Initially, our com-
munication will be unidirectional. In the next section, we use two unidi-
rectional channels to establish bidirectional communication. This smart
contract runs on the target blockchain and informs it about events that
took place in the source blockchain. It is parameterized by three param-
eters: k and m are the underlying security parameters of the NIPoPoW
protocol. The value z is a collateral parameter, denominated in ether (or
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the native currency of the blockchain in which the execution takes place)
and is used to incentivize honest participants to intervene in cases of false
claims. The contract utilizes the NIPoPoW verify function parameterized
by the event e, the remote genesis block G and the security parameters k
and m. We do not give an explicit implementation of verify, as it can be
implemented in a straightforward manner by translating the pseudocode
listing of [KMZ17]. For our purposes, it suffices to treat it as a black box
which, given a set of proofs, at least one of which is honestly generated,
returns the truth value of the respective predicate.

The contract allows detecting remote blockchain events can be inher-
ited by other contracts that wish to adopt its functionality. It works as
follows. First, the initialize method is called exactly once to configure the
contract, passing the hash of the genesis block of the remote chain which
this contract will handle. This method is internal and can only be called
by the contract inheriting from it. Users of the contract can check it has
been configured with the correct genesis block prior to using it. We note
that, while our algorithm does not reflect this to keep complexity low,
it is possible to have a contract interact with multiple remote chains by
extending it to include multiple geneses.

Fig. 2. A sequence diagram showing the actions of the untrusted SPV node when
communicating with both blockchain networks and the lifecycle of an event submission

block headers
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The lifecycle of an event submission is illustrated in Figure 2. When
an event has taken place in the source blockchain, any source blockchain
SPV node, the author, can inform the crosschain contract about this fact
by generating a NIPoPoW π claiming that the event took place based on
their current view of the source blockchain. This proof can then be sub-
mitted to the target blockchain by calling the submit-event-proof function
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and passing it the proof π and the event predicate e. The submission is
accompanied by a collateral payment z. If the author is honest, this col-
lateral will be returned to her later. The submit-event-proof function runs
the NIPoPoW verify algorithm to check that the proof π is well-formed
and that it claims that the predicate is true. It then stores the proof for
later use. It also stores the address of the author and an expiration block
number.

Upon submission of a proof to the submit-event-proof function, the
event is tentatively accepted for a contestation period of k blocks, during
which any other party, the contester, can provide a counter-proof showing
that the original proof was fraudulent. The contester can call the submit-
contesting-proof function passing it the contesting proof π∗ and the event
predicate e. The function runs the NIPoPoW verify algorithm to compare
the original proof events[e].proof against the contesting proof π∗. If the
verification algorithm concludes that the original proof was fraudulent,
the tentatively accepted event is abandoned and the collateral is paid to
the contester.

Otherwise, when the contestation period has expired without any valid
contestations, the author can call the finalize-event function. This func-
tion changes the acceptance of the event from tentative to permanent by
including it in the finalized-events set and returns the collateral to the
author. Finally, the event-exists function can be used by the inheriting
contract to check if an event has been permanently accepted. The target
blockchain state during this execution is shown in Figure 3. The source
blockchain’s event included in the black box, upon sufficient confirma-
tion by k1 blocks (not shown), is transmitted to the target blockchain
at the bottom. The target blockchain includes the event tentatively in
block 1 until a contestation period of k2 has passed; the event is included
permanently in block 2; subsequently, permanent inclusion needs to be
confirmed with k2 further blocks.

Fig. 3. The target blockchain state during event submission

k2 k2

1 2
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Two-way pegged sidechains

Having created the generic crosschain contract, we now build two-way
pegged sidechains on top. For concreteness, we use the example of trans-
ferring ether (ETH), the native currency of the Ethereum blockchain, to
the Ethereum Classic blockchain, and back. We note that this example is
arbitrary and for illustration. Our construction can be used between any
work-based blockchains satisfying the prerequisites detailed above.

When ether is moved to the Ethereum Classic blockchain, it will be
represented as an ERC20 token3 within Ethereum Classic. Let this custom
token be called ETH20. The asset retains its nature as it moves from one
blockchain to another if it is always possible to move ETH into ETH20
and back at a one-to-one rate. The economic reason is that the price
of ETH and ETH20 on the market will necessarily be the same. If the
price of ETH were to ever be significantly above the price of ETH20 in
the market, then a rational participant would exchange their ETH20 for
ETH using sidechains and sell their ETH on the market instead, and vice
versa. There can be a small discrepancy in the two prices which stems
from two different factors: First, the fees needed for a cross-chain transfer;
and second, the temporary market fluctuations that can occur during the
limited time needed to perform the cross chain transfer (k1 + 2k2). If we
assume the price fluctuation (of ETH20 denominated in ETH) per unit
of time is bounded, then the market price difference between ETH and
ETH20 at any moment in time can be bounded by the sum of these two
factors.

The sidechain smart contracts are presented in Algorithm 2. These
smart contracts both extend the crosschain smart contract of Algorithm 1.
Furthermore, sidechain2 also inherits basic ERC20 functionality which al-
lows token owners to transfer the token [SCS17a]. The sidechain1 con-
tract will be instantiated on Ethereum, while the sidechain2 contract will
be instantiated on Ethereum Classic. Suppose the genesis block hash of
Ethereum is G1 and of Ethereum Classic is G2. We will use the genesis
block hash of each blockchain as its unique identifier.

The two smart contracts both contain an initialize method which ac-
cepts the hash of the remote blockchain as well as the address of the
remote smart contract it will interface with. Note that, while the two
genesis hashes can be hard-coded into the respective smart contract code
itself, the remote contract address cannot be built-in as a constant into

3 The ERC20 standard [VB15] defines an interface implementable by smart contracts
that enables holding and transferring custom fungible tokens such as ICO tokens.
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the smart contract, but must be later specified by calling the initialize
function. The reason is that, if sidechain1 were to be created on G1, it
would require the address of sidechain2 to exist prior to its creation, and
vice versa in a circular dependency. Therefore, the two contracts must
first be created on their respective blockchain to obtain addresses, and
then their initialize methods can be called to inform each contract about
the address of the other. Specifically, first the contract sidechain1 is cre-
ated on G1 to obtain its instance address which we also denote sidechain1.
Then the second contract, sidechain2 is created on G2 to obtain its address
sidechain2. Then, the initialize function of sidechain1 is called, passing it G2
and the address sidechain2. Finally, initialize is called on sidechain2, pass-
ing it G1 and the address sidechain1. These initialization parameters are
stored by the respective smart contracts for future use. As the crosschain
contract requires, the initialize method can only be called once. Any user
wishing to utilize this sidechain is expected to validate that the contracts
have been set up correctly and that initialize has been called with the
appropriate parameters.

sidechain1 contains a deposit function which is payable in the native as-
set of Ethereum, ETH. When a user pays ETH into the deposit function,
the funds are held by the smart contract and can later be used to pay
parties who wish to withdraw, an operation performed by calling the with-
draw function. sidechain2 contains similar deposit and withdraw functions
which, however, do not pay in the native currency of Ethereum Classic,
but instead maintain a balance mapping akin to a typical ERC20 imple-
mentation. The balance is updated when a user deposits or withdraws.

Moving funds from the Ethereum blockchain into the Ethereum Clas-
sic blockchain works as follows. First, the user pays with ETH to call the
deposit function of sidechain1 which resides on G1, passing the target pa-
rameter which indicates their address in the Ethereum Classic blockchain
that they wish to receive the money into. This call emits an event, De-
posited1 which contains the necessary data: the target, the amount paid, as
well as a nonce ctr to allow for future payments of the same amount to the
same target. When the event has been emitted and buried under k1 blocks
within the Ethereum blockchain, the user produces an Ethereum NIPo-
PoW π1 about the predicate e1 which claims that the event Deposited1
has been emitted in blockchain G1 with the particular parameters by the
contract at address sidechain1.
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Algorithm 2 An asset transferring contract between G1 and G2
1: contract sidechain1 extends crosschaink,m,z

2: initialized← false; ctr← 0
3: function initialize(G2, sidechain2)
4: if ¬initialized then
5: crosschain.initialize(G2) . Initialize with the remote chain genesis block
6: initialized← true
7: this.sidechain2 ← sidechain2
8: end if
9: end function
10: payable function deposit(target)
11: . Emit an event to be picked up by remote contract
12: ctr += 1
13: emit Deposited1(target, msg.value, ctr)
14: end function
15: function withdraw(amount, target, ctr)
16: . Validate that event took place on remote chain
17: if ¬event-exists((sidechain2,Deposited2, (amount, target, ctr))) then
18: return ⊥
19: end if
20: msg.sender.send(amount)
21: end function
22: end contract
23: contract sidechain2 extends crosschaink,m,z; ERC20
24: mapping(address ⇒ int) balances
25: initialized← false; ctr← 0
26: function initialize(G1, sidechain1)
27: if ¬initialized then
28: crosschain.initialize(G1)
29: initialized← true
30: this.sidechain1 ← sidechain1
31: end if
32: end function
33: function deposit(target, amount)
34: if balances[msg.sender] < amount then
35: return ⊥
36: end if
37: balances[msg.sender] −= amount . Charge account of sender
38: ctr += 1
39: emit Deposited2(target, amount, ctr)
40: end function
41: function withdraw(amount, target, ctr)
42: if ¬event-exists((sidechain1,Deposited1, (amount, target, ctr))) then
43: return ⊥
44: end if
45: balances[target] += amount . Credit target account
46: end function
47: end contract
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Subsequently, the user calls the submit-event-proof function of sidechain2
(which is inherited from the crosschain contract), passing the NIPoPoW
π1 and the event predicate e1 and paying collateral z, which registers
e1 on sidechain2 as tentative. Because the user is honest, no adversary
can produce a π′1 which disproves their claim during the dispute period,
and therefore the user waits for k2 blocks for the contestation period to
expire without any successful contestations. She then calls the finalize-
event function for e1 and receives back the collateral z, marking the event
permanent. Finally, she calls the function withdraw of sidechain2, passing
it the same parameters that e1 was issued with. The withdraw function
checks that e1 exists using the event-exists method, which will return true.
The user is then credited with amount in their ETH20 balance stored in
balances[target]. This increment in balance creates brand new ETH20 to-
kens.

The user can then transfer their ETH20 tokens by utilizing the func-
tionality inherited from the ERC20 contract. When some (not necessarily
the same) user is ready to move some (not necessarily the same) amount
of ETH20 from the Ethereum Classic blockchain back into ETH on the
Ethereum blockchain, they follow the reverse procedure. Specifically, they
call the withdraw function of sidechain2 which ensures their ERC20 bal-
ance is sufficient, deduces the requested amount, and fires an event e2
as before. At this point, these particular ETH20 tokens are destroyed by
the balance deduction. Once e2 is confirmed in G2, the user produces the
NIPoPoW π2 about e2 which claims that a payment was made within G2.
That proof is then submitted to sidechain1 by calling the submit-event-
proof and finalize-event functions as before. Last, the user calls the with-
draw function of sidechain1, which uses the event-exists function which
will return true, finally paying back the user the respective amount of
ETH. Because the only way to create ETH20 tokens in sidechain2 is by
depositing ETH into sidechain1, there will always exist a sufficient balance
of ETH owned by the sidechains1 smart contract to pay for any requested
withdrawals.

Suppose now that an adversarial user makes a false claim that an event
e took place in G1 and posts a relevant NIPoPoW π in G2. If an honest
party is monitoring the chain G2 for the appearance of NIPoPoWs and the
chain G1 for the firing of events, the fraudulence of π will be immediately
obvious to them. They can subsequently generate a contesting NIPoPoW
π∗ providing a counter-claim that e did not occur. The honest party will
broadcast this transaction at the beginning of the contestation period.
Due to the chain quality of G2, the honest party will manage to include
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this transaction into G2 within one of the blocks before the end of the
contestation period. The collateral z must be sufficient to incentivize an
honest party to monitor G1 and G2 simultaneously, pay for transaction
fees and ensure the time needed to generate a NIPoPoW π∗ is small as
compared to block generation time. The argument for G2 is analogous.
We make this security argument formal in the appendix.

4 Applications

We give two futher applications of sidechains beyond the two-way peg.
Remote ICOs. A group wants to fund raise by performing an ICO
[TBB17] on a certain feature-rich target blockchain such as Ethereum.
Investors who wish to purchase tokens are holding their cryptocurrency
they wish to pay with on a different source blockchain with lower volatility
such as Bitcoin. In this context, instead of trading Bitcoin for Ethereum,
the investors can directly pay in Bitcoin and receive their ICO tokens
on the Ethereum blockchain. Furthermore, the value of tokens can be
denominated in Bitcoin.

The course of action is as follows: Initially, the fundraising entity cre-
ates a fund raiser address on the source blockchain, in our example the
Bitcoin blockchain. The fundraising entity also creates a token gener-
ator [SCS17b] smart contract on the target blockchain, in our example
the Ethereum blockchain. The token generator contract is initialized with
the source blockchain genesis hash and the fund raiser address. The token
generator contract contains a withdraw method which allows receiving the
ICO tokens. The fundraising entity then advertises both the address and
the smart contracts and allows investors to inspect them. An investor
subsequently deposits bitcoin into the fund raiser address. The investor
subsequently generates a NIPoPoW π for the deposit and submits it to
the withdraw method of the token generator function. Upon verification
of π, the investor receives their ICO tokens. This application is a special
case of a one-way peg with extra rules such as a limited timeframe or
dynamic pricing.
Atomic swaps. Two mutually distrusting parties wish to exchange coins
between two different chains, for example ETH for ETC, without using a
centralized exchange. Alice wants to pay Bob in ETH and Bob wants
to pay Alice in ETC. While atomic swaps are already possible using
hash locks [Nol13,Her18], our construction provides an alternative possi-
bility: One contract is created on the target blockchain, in our example
Ethereum, and is made aware of the remote genesis block as well as an

15



address on the source blockchain, in our case Alice’s Ethereum Classic
address. Then, Alice deposits ether into the deposit function of the con-
tract that sits on the target blockchain. The ether remains locked for a
designated period of time. In the meantime, Bob pays Alice in Ethereum
Classic by creating a regular transaction on the Ethereum Classic block-
chain. He then generates a proof π that this transaction took place and
is paying into Alice’s account. By submitting π into the withdraw func-
tion of the contract that sits on the target blockchain, Bob receive his
ether payment, contingent on the fact that he has paid Alice. In case Bob
aborts the protocol, Alice is able to withdraw her money from the source
blockchain contract by calling an abort function, which is only callable as
soon as a sufficient number of blocks have passed. As long as Bob cooper-
ates in a timely manner, Alice is unable to call abort due to the timelock,
and hence the protocol is atomic.

Appendix

A Security analysis

We now formalize our protocol and provide a cryptographic analysis of its
security. As NIPoPoWs security is modelled in the Bitcoin Backbone Pro-
tocol [GKL15], we work in the same model (and note that the same math-
ematical model also captures Ethereum). We assume that the standard re-
sults of the backbone protocol are attained, namely blockchain persistence
and liveness. Persistence and liveness can be proved to hold with over-
whelming probability under the honest mining majority assumption. For
the details of that result, consult the Bitcoin Backbone paper [GKL15].

We adopt the sidechains security definition from related work on
proof-of-stake sidechains [GKZ18].

We will show that proving, to the maintainers of a chain G2, that an
event e took place in chain G1 without it actually happening, can only
occur if the underlying NIPoPoWs protocol is insecure. Therefore, our
proof strategy follows the standard form of a cryptographic computational
reduction. In our assumptions, we will make use of the persistence and
liveness of G2, but only the persistence of G1.

Theorem 1. Assume a secure NIPoPoWs construction. Then, under the
honest majority assumption for both G1 and G2, for all PPT adversaries
A and for all environments Z, the proof-of-work sidechains construction
between G1 and G2 with contestation period 2k is secure, except with neg-
ligible probability in k.
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Proof. Let A be an arbitrary PPT adversary against the proof-of-work
sidechains construction and Z be an arbitrary environment. We will con-
struct an adversary A∗ against NIPoPoWs and an environment Z∗ in
which it will operate.

Suppose, without loss of generality, that A can break the security
of proof-of-work sidechains during a cross-chain transfer from G1 to G2.
(Because the construction is symmetric, if the adversary is not able to do
that, then they will be able to break the security of a cross-chain transfer
from G2 to G1 and the proof follows in the same manner.)

Note that A works in an environment with two blockchains, G1 and
G2, while A∗ must work in the environment of one blockchain, namely G1.
A∗ works as follows. First, it simulates the execution of the block-

chain civilization G2. That is, it creates a new random oracle for G2 which
is independent of its external random oracle used with G1. For any ran-
dom oracle queries of A pertaining to G1, A∗ forwards the queries to its
external random oracle. For random oracles queries of A pertaining to
G2, A∗ answers its queries with its simulated and independent random
oracle. Because A is subject to honest majority limitations in both G1
and G2, it follows that A∗ will respect honest majority with regards to its
external random oracle. For any environment instructions requested by
Z pertaining to G1 (namely, the creation of new parties), the instructions
are mirrored by Z∗. Intructions of Z pertaining to G2 are simulated by
A∗. All diffusions of blocks in G1 by A are also diffused by A∗, while
diffusions in G2 by A are held private.
A∗ monitors the chains adopted by honest parties and for every round

r observes the state of all honest parties. A∗ looks for a round r, an event
e, a G1 maintainer p1 and a G2 maintainer p2 for which the following
properties hold:

1. p1 has not included e in their state
2. p2 has included e in their finalized-events state

Because of the construction of p2, finalized-events can contain e only
if an issuance of submit-event-proof is included at least 2k blocks deep
and contains the respective NIPoPoW π stored in events[e].proof. A∗ now
returns the proof π.

We will now analyze the probability of success of A. Consider the
following (probabilistic) events:

1. SC-Brk that A is successful
2. Cert-Brk that A∗ is successful
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3. Per1 that persistence is maintained in G1
4. Per2 that persistence is maintained in G2
5. Live2 that liveness is maintained in G2
6. BC the union of Per1 ∧Per2 ∧ Live2

From total probability we obtain:

Pr[SC-Brk] = Pr[SC-Brk|BC] Pr[BC] + Pr[SC-Brk|¬BC] Pr[¬BC]

From the honest majority assumption of G1, we deduce that Pr[¬Per1]
and Pr[¬Live1] are negligible, and similarly from the honest majority as-
sumption of G2 we deduce that Pr[¬Per2] is negligible, therefore Pr[¬BC]
is negligible. It now suffices to show that Pr[SC-Brk|BC] Pr[BC] is neg-
ligible.

Suppose that SC-Brk occurs. It follows that a (blockchain) event e
must have been adopted by p2 with some NIPoPoW π, but not by p1, as
detailed above. Suppose now that BC occurs.

Because of the persistence of G2, when π was burried under k blocks
in the adopted chain of p2, all honest parties in G2 must have seen π (this
warrants the oldest k of the 2k blocks in the contestation period). Because
of the liveness of G2, at least one honest block must have been included
in the last k blocks after π had been received by all honest parties (this
warrants the latest k of the 2k blocks in the contestation period).

Because of the persistence of G1, if e is not included in the state
of p1 at round r, then therefore it cannot have been included in the
state of any G1 party during round r − ηk. It follows that an honest
party will attempt and succeed in generating a G2 block containing a
contesting proof π∗ attesting to the fraudulence of event e by invoking
submit-contesting-proof(π∗, e) and this block will be adopted by p2. As p2
has finalized e, then therefore it must be such that verifye,G

k,m({π, π∗}), and
therefore Cert-Brk has occurred.

Putting the above together, we obtain that:

Pr[Cert-Brk] ≥ Pr[SC-Brk|BC] Pr[BC]
From the NIPoPoW security assumption, we have that Pr[Cert-Brk]

is negligible. Therefore, Pr[SC-Brk] is negligible.
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