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Abstract. Linear transformations are applied to the white-box crypto-
graphic implementation for the diffusion effect to prevent key-dependent
intermediate values from being analyzed. However, it has been shown
that there still exists a correlation before and after the linear transfor-
mation, and thus this is not enough to protect the key against statistical
analysis. So far, the Hamming weight of rows in the invertible matrix
has been considered the main cause of the key leakage from the linear
transformation. In this study, we present an in-depth analysis of the
distribution of intermediate values and the characteristics of block in-
vertible binary matrices. Our mathematical analysis and experimental
results show that the balanced distribution of the key-dependent inter-
mediate value is the main cause of the key leakage.

Keywords: White-box cryptography, linear transformation, key leakage.

1 Introduction

From a secret key point of view, a block cipher can be seen as a secret bijection
between a plaintext set and a ciphertext set. One of the easy ways to imple-
ment this bijection is a lookup table mapping a plaintext to its corresponding
ciphertext. Since implementing a block cipher as one lookup table is impractical
because of its huge size, it is usually implemented as a series of lookup tables.
White-box cryptography adapts this table-based implementation on a crypto-
graphic algorithm and applies linear and nonlinear transformations to obfuscate
inputs and outputs of each table thereby protecting the key.

There are various techniques to extract the key hidden in white-box crypto-
graphic implementations of standard block ciphers such as DES and AES. Above
all, a number of practical cryptanalysis techniques [3, 9, 13, 16–18, 23] on the
white-box DES (WB-DES), AES (WB-AES) and their variants [6, 11, 12, 14, 25]
have been introduced. In addition, Differential Fault Analysis (DFA) [20] on
white-box cryptography has been demonstrated, where an attacker is able to
inject faults at a precise location in memory. Note that these white-box attacks
rely on an in-depth understanding of a target implementation so that an attacker
is able to access precise internal states during the execution. Thus commercial
white-box cryptography [2, 8, 10, 22] focuses on making a barrier to the full
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control of an attacker by adapting additional techniques such as obfuscation,
enveloping, hardware ID binding, and anti-debug protections.

In contrast, Differential Computation Analysis (DCA) [4] adapts a statis-
tical technique of Correlation Power Analysis (CPA) [5] but uses computation
traces (a.k.a software execution traces) consisting of internal information such
as noise-free intermediate values and memory accesses, instead of classical power
traces. Our work is motivated by the fact that white-box cryptography can be
easily broken by simple statistical analysis [4, 21] without having to perform
cryptanalysis. Along this paper, we use the term key leakage to mean that the
key is recovered by some technique of the attack. Then we can say that the
linear and nonlinear transformations of white-box cryptography cannot prevent
the key leakage from statistical analysis. In case of linear transformations, it was
recently analyzed that if the invertible matrix used for the linear transformation
has rows of HW 1, then the key leakage will happen with overwhelming prob-
ability; otherwise, the correct key is supposed to be indistinguishable from the
wrong key hypothesis [1, 19].

Importantly, it was recommended in white-box cryptography to choose a
block invertible binary matrix consisting of full-rank submatrices for carrying
maximum information and maximizing information diffusion [7]. If the previous
analysis is true, the linear transformation using block invertible binary matrices
is supposed to prevent the key leakage because there is no such matrix contain-
ing a row of HW 1 by the definition of a block invertible matrix. In addition,
a white-box cryptographic implementation made up of tables generated using
block invertible matrices should not cause a key leakage.

In this paper, we demonstrate that the linear transformation still causes the
key leakage even in the case of block invertible matrices. Additionally, we find
out that the key leakage is largely due to the balanced distribution of intermedi-
ate values, and we provide a simple proof and demonstrations using the Walsh
transform. To enhance our analysis, we insert a random byte in the intermedi-
ate value before the linear transformation making an unbalanced distribution
and show a reduced correlation to the key. The rest of this paper is organized
as follows. Section 2 reviews DCA and the Walsh transform used to compute
a correlation, and revisits the key leakage issue in white-box cryptography. In
Section 3, we provide our analysis of the main reason behind the key leakage in
the presence of linear transformations. Section 4 concludes this paper.

2 Background

In this section, we explain the basic concepts of DCA and the Walsh transform
used to test the key leakage. Additionally, we demonstrate the key leakage using
the Walsh transform in the presence of linear and nonlinear transformations.

2.1 DCA

An explanation of successful DCA on white-box cryptography could be that the
correct hypothetical value is correlated to the target lookup value. After col-
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lecting the computation traces with random plaintexts, a DCA attacker adapts
CPA as a subroutine for calculating Pearson’s correlation coefficient between
each sample in the computation trace and the hypothetical value.

Given N power traces V1..N [1..κ] containing κ samples each, CPA estimates
the value at each point of each trace using attacker’s hypothetical intermediate
value. For K different key candidates, let En,k∗ (1 ≤ n ≤ N , 0 ≤ k∗ < K)
denote the estimate in the n-th trace with the hypothetical key k∗. To measure
a correlation between computation traces and hypothetical values, the estimator
r at the sample point j is defined as follows [15]:

rk∗,j =

∑N
n=1(En,k∗ − Ek∗) · (Vn[j]− V [j])√∑N

n=1(En,k∗ − Ek∗)2 ·
∑N
n=1(Vn[j]− V [j])2

,

where Ek∗ and V [j] are sample means of Ek∗ and V [j], respectively. If there
exists a correlation, a noticeable peak will be found in the correlation plot for
the correct key. Provided that one can know the intermediate value directly, the
computation traces are not necessary. Instead, we can apply the Walsh transform
consisting of simple operations to the intermediate value and the hypothetical
value.

2.2 Walsh Transform

Given a white-box implementation protected by linear and nonlinear transfor-
mations (often we use the term encoding), we can detect the existence of a
problematic correlation for the key leakage using the Walsh transform. In order
to explain how the Walsh transform can be used to compute a correlation we
use the following definitions from [21].

Definition 1. Let x = 〈x1, . . ., xn〉, ω = 〈ω1, . . ., ωn〉 be elements of {0, 1}n
and x ·ω = x1ω1⊕. . .⊕xnωn. Let f(x) be a Boolean function of n variables. Then
the Walsh transform of the function f(x) is a real valued function over {0, 1}n
that can be defined as Wf (ω) = Σx∈{0,1}n(−1)f(x)⊕x·ω.

Definition 2. Iff the Walsh transform Wf of a Boolean function f(x1, . . . , xn)
satisfies Wf (ω) = 0, for 0 ≤ HW (ω) ≤ d, it is called a balanced d-th order
correlation immune function or an d-resilient function.

By Definition 1 and 2, Wf (ω) quantifies the imbalances in the encoding, and the
large absolute value of Wf (ω) means the strong correlation between f(x) and
x · ω. By utilizing this property, we calculate the correlation between the table
lookup values f(x) and hypothetical values x · ω, where ω selects a particular
bit of x. Here it is important to notice that f(x) plays the similar role as the
computation trace of DCA because it represents the real intermediate value. For
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this reason, when the lookup value can be exactly accessed, the Walsh transform
can be used to detect the key leakage like CPA in the DCA attack as follows.

Here is a demonstration of the key leakage in Chow’s WB-AES implementa-
tion with a 128-bit key [7]. To do so, we assume that the attacker’s hypothetical
value is the SubBytes output in the first round and the target lookup table is
generated by the composition of SubBytes, AddRoundKey and MixColumns.
We denote the initial round key and the plaintext by K (= k0k1 . . . k15) and P
(= p0p1 . . . p15), respectively. Then we let xi = S(pi ⊕ ki), where S means the
S-box of AES. To decompose the MixColumns operation with a column vector
[x0 x1 x2 x3]T , let us denote MCi the i-th column vector of the MixColumns
matrix. Then we have:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0
x1
x2
x3


= x0

 02
01
01
03

⊕ x1
 03

02
01
01

⊕ x2
 01

03
02
01

⊕ x3
 01

01
03
02


= x0 ·MC0 ⊕ x1 ·MC1 ⊕ x2 ·MC2 ⊕ x3 ·MC3,

Now let yi(xi) = xi ·MCi on the right-hand side. For simplicity, we abuse the
notation by skipping the subscript 0 to x and y by letting y(x) = y0(x0). If we let
f(x) = ε(y(x)), where ε implies the linear and nonlinear transformations, f(x) is
then the encoded lookup values for the MixColumns multiplication when the in-
put is the first subbyte of the plaintext. For 32 Boolean functions fi∈{1,...,32}(x):
{0, 1}8 → {0, 1}, we calculate the Walsh transforms Wfi and sum all the imbal-
ances for each key candidate and ω such that HW(ω) = 1 in order to recover
the target subkey k0 = 0x88 as follows:

∆f
k∈{0,1}8 =

∑
ω=1,2,4,...,128

∑
i=1,...,32

|Wfi(ω)|.

Here, we only select ω of HW(ω) = 1 because the HW-based key leakage model is
not effective to detect the correlation before and after the both transformations.

The Walsh transforms and their sum of all imbalances are plotted in Fig. 1.
As shown in Fig. 1a, the Walsh transforms with ω = 4 of the correct subkey
(0x88) produce 0 except two points; the Wf14 and Wf16 of the correct subkey
are -128, and their absolute value (128) is the most highest value. In contrast,
the maximum and the average values of |Wfi(ω)| of wrong key candidates are 56
and about 13.13 (the standard deviation is about 9.35), respectively. This gives
us that f14(·) and f16(·) cause the key leakages and thus the statistical analysis
using the third bit (the LSB is the first bit) can be successful.
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(a) Walsh transforms for fi∈{1,··· ,32}(·) with ω = 4
for all key candidates. Gray: wrong key candidates;
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(b) Sum of all imbalances for all key candidates.
∆f

k=0x88 = 256 (|−128| + |−128| ).

Fig. 1: Key leakage detection using the Walsh transforms.

3 Analysis of Linear Transformations

As mentioned, the previous work [1, 19] on linear transformations analyzed that
rows of HW 1 in the invertible matrix cause the key leakage. In addition, it was
reportedly possible to recover the key in the presence of a matrix without iden-
tity row by calculating all of the 28 linear combinations of the bits in the target
intermediate value [1]. Before going on, we note that a 32×32 linear transfor-
mation is applied to the SubBytes output multiplied with MCi in the typical
WB-AES implementation [7], instead of applying an 8×8 linear transformation
to the SubBytes output (an 8×8 linear transformation is usually applied to the
round output). In this case, it becomes very complex, unlike their analysis, to
carry out an attack on all possible combinations. In the following, we present our
mathematical analysis and experimental results showing that the main cause of
the key leakage is related to the distribution of the intermediate values rather
than some characteristic of the matrix.
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3.1 Analysis of Key-dependent Intermediate Values

The following proof explains why the distribution of key-dependent intermediate
values leads to Wfi(ω) = 256 after the linear transformation. By Definition 1,
this is the maximum value of Wfi(ω) for x ∈ GF (28) and thus certainly causes
the key leakage.

Lemma 1. Assume that a 256×8 binary matrix H is defined as

H =

 h1,1 h1,2 . . .
...

. . .

h256,1 h256,8

 ,
where the i-th row vector hi,∗ = 〈hi,1, hi,2, . . . , hi,8〉 is an element of GF (28) and
hi,∗ 6= hj,∗ for all i 6= j. Then the HW of XORs of arbitrary chosen column
vectors from H is 0 or 128. In other words, HW (h∗,j1 ⊕ h∗,j2 ⊕ · · · ⊕ h∗,jn) =
0 or 128, where n is a random positive integer and ji ∈ {1, 2, . . . , 8}.

Proof : Let J be a set of randomly chosen indices from {1, 2, . . . , 8}. Note that
for any duplicated indices α and α′ in J , i.e. α = α′, removing the duplicated
indices from J makes no change to the result HW.

⊕j∈Jh∗,j =
(
⊕j∈J−{α,α′} h∗,j

)
⊕ h∗,α ⊕ h∗,α′

=
(
⊕j∈J−{α,α′} h∗,j

)
⊕ 0 = ⊕j∈J−{α,α′}h∗,j .

Therefore without loss of generality we can assume that J contains no duplicated
indices and moreover

∣∣J ∣∣ = n ≤ 8.
Now we can define following partitions of indices:

Ib1,b2,...,bn = {` ∈ I|h`,ji = bi for all ji ∈ J },

where I = {1, 2, . . . , 256}, and bi ∈ {0, 1}. Here all Ib1,b2,...,bn are disjoint to the
others and ∪Ib1,b2,...,bn = I. To complete the proof, we need that for any choice
of bi’s,

∣∣Ib1,b2,...,bn ∣∣ = 256/2n = 28−n. This can be shown easily as followings.

Suppose that
∣∣Ib1,b2,...,bn ∣∣ = t > 28−n. It means that there are t row vectors in H

satisfying the condition ji-th bit of the vector equals to bi. In other words, n bits
are determined by choice of bi’s and only 8−n bits are remained free. From the
condition of t is larger than 28−n and the pigeon hole principle in mathematics,
there must exist at least two indices ` and `′ in Ib1,b2,...,bn , where all bits of
h`,∗ are completely same to the bits of h`′,∗. It contradicts to the assumption
hi,∗ 6= hj,∗ for any i 6= j.

From the definition of HW, we can deduce HW (⊕j∈Jh∗,j) is summation of∣∣Ib1,b2,...,bn ∣∣ where ⊕i=1,...,nbi = 1.

HW (⊕j∈Jh∗,j) = Σ⊕i=1,...,nbi=1

∣∣Ib1,b2,...,bn ∣∣
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= Σ⊕i=1,...,nbi=128−n = Σ2n−128−n

= 2n−1 · 28−n = 27 = 128.

Note that if J is empty after de-duplication then the final HW becomes 0. It
concludes the proof of lemma.

Note thatWfi(ω) is defined as
∑
x∈GF (28)(−1)fi(x)⊕x·ω =

∑
x∈GF (28)(−1)Mi,∗·y(x)⊕x·ω,

where Mi,∗ is the i-th row of the matrix M . If we define Y(x) as a 32 × 256
matrix [2 ·H H H 3 ·H]T , where the H is the matrix defined in the Lemma 1,
it is easy to show that each column vector of 2 ·H or 3 ·H can be defined with
XORs of some column vectors of H based on the property of GF (28). Then the
above equation can be re-written as:∑

j={1,2,...256}

(−1)Bj(Mi,∗·Y(x)⊕(w·HT )),

where Bj(v) means the j-th bit of the vector v. Since the exponents of the
equation can have only two values 0 or 1, the summation over {1, 2, . . . , 256}
can be re-written with the number of exponents which are 1.

Wfi(w) = 256− (2×HW (Mi,∗ ·Y(x)⊕ (w ·HT )))

All row vectors of the matrix Y(x) can be represented by XORing of column
vectors of H. Therefore Mi,∗ ·Y(x)⊕ (w ·HT ) can be also represented by XOR-
ing of column vectors of H. From the Lemma 1, it deduces that the HW of
Mi,∗ · Y(x) ⊕ (w · HT ) is 0 or 128. Finally, Wfi(w) = 256 − (2 × HW (Mi,∗ ·
Y(x)⊕ (w ·HT ))) becomes 256 or 0. What is remarkable point over here is that
the probability of Wfi(w) = 256 is very small but not zero. Specifically, it hap-
pens when all column indices of H are canceled each other when the summation
is computed with the randomly chosen matrix M . Whenever this happens, there
will definitely be the key leakage because fi(x) is most correlated to x · ω.

To demonstrate the experimental results for the lemma above for all yi∈{0,1,2,3},
we let

f i(x) = M · yi(xi)i∈{0,1,2,3},

where M is a (32, 2) block invertible square binary matrix defined in [24] as
follows.

Definition 3. If all the blocks Bi,j in a block matrix n
mM [pB] are invertible,

matrix M is called an (m, n, p) block invertible matrix. Furthermore, if m = n,
and M is invertible then M is called an (m, p) block invertible square matrix,
where n

mM [pB] denotes an n ×m matrix M with nm/p2 blocks (submatrices),
and Bi,j denotes the block in row i and column j of blocks.
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Importantly, it is recommended by the author of [7] to choose a non-singular
matrix consisting of full-rank submatrices for the following reasons. First, this
ensures that the encoded components will carry maximum information and max-
imizing information diffusion. Second, a large block invertible matrix can be ef-
ficiently generated by using the technique explained in [24]. Here we note that
block invertible matrices have no row of HW 1. Thus, the frequent key leakage
from the linear transformations using block invertible matrices is contradict to
the previous analysis of the leakage cause [1, 19].

For f ij , 0 ≤ i ≤ 3 and 1 ≤ j ≤ 32, the statistical analysis with the SubBytes
output in the first round can be performed by the Walsh transforms. By comput-
ing 1,024 (= 4 × 32 × 8) Walsh transforms with f i(·) one can analyze the key
leakage with respect to the four subkeys involved in the linear transformations
by M . In this experiment, the four subkeys are k0 = 0x88, k1 = 0x99, k2 =
0xAA and k3 = 0xBB.

The crucial observation of the Walsh transforms plotted in Fig. 2 is that
there still exists a problematic probability of key leakage from linear transfor-
mations using the block invertible matrix. Unlike the case of the key leakage from
the linear and nonlinear transformations shown in Fig. 1, this result shows the
key leakage from only linear transformations without nonlinear transformations.
Hereafter, we abuse the notation by skipping the superscript of f i by letting
f = f i. We can see that linear transformations with M hide three subkeys k0, k2
and k3 with the Walsh transforms score 0, but expose k1(0x99) from y1(x) with
the Walsh transforms score 256. According to Lemma 1, 256 is the only non-
zero value that the Walsh transform can take from the correct subkey and the
maximum value that the Walsh transform can take. This gives us that linear
transformations produce well-balanced outputs with an overwhelming probabil-
ity, but this is not always guarantee a reliable protection on the key.

We have repeated the above experiment using 1,000 randomly generated (32,
2) matrices. For HW(ω) = 1, the correct subkey gives us that Pr[Wfi(ω) = 0]
≈ 0.997 and Pr[Wfi(ω) = 256] ≈ 0.003; the average of |Wfi(ω)| is approxi-
mately 0.7 as shown in Table 1. Although the probability of Wfi(ω) = 256 is
small, 1,024 Walsh transforms probably produce three peaks of the correct sub-
key distinguishable from wrong key candidates, and the three peaks can reveal
at most three subkeys. Fig. 3 depicts our experimental result that 1 to 3 out
of four subkeys are exposed in most cases. Only 51 of 1,000 matrices did not
leak any subkey. Consequently, this demonstrates Lemma 1 and explains why
the linear transformation cannot guarantee the protection of key in white-box
cryptography.

3.2 Analysis of Block Invertible Square Matrix

To enhance our analysis on the key leakage, we have performed additional exper-
iments to check if the HW of (32, 2) matrices causes the key leakage. Generating
(n, 2) block invertible square matrices begins with a (2, 2) block invertible square
matrix and extends by (4, 2), (6, 2), . . ., and repeats it (n−2)/2 times [24]. Note
that every 2×2 submatrix in a (n, 2) block invertible square matrix should be



9

0

1000

2000

3000

4000

0 50 100 150 200 250

∆

k

(a) On M · y0(x)

0

1000

2000

3000

4000

0 50 100 150 200 250

∆

k

(b) On M · y1(x)

0

1000

2000

3000

4000

0 50 100 150 200 250

∆

k

(c) On M · y2(x)

0

1000

2000

3000

4000

0 50 100 150 200 250

∆

k

(d) On M · y3(x)

Fig. 2: Sum of the imbalance of Wfi(ω) for all subkey candidates on linearly
transformed yi∈{0,1,2,3}(x).

invertible by the definition and all 2×2 invertible matrices in GF(2) are as fol-
lows: ∣∣∣∣1 0

0 1

∣∣∣∣ ∣∣∣∣1 1
1 0

∣∣∣∣ ∣∣∣∣0 1
1 1

∣∣∣∣ ∣∣∣∣0 1
1 0

∣∣∣∣ ∣∣∣∣1 1
0 1

∣∣∣∣ ∣∣∣∣1 0
1 1

∣∣∣∣
At a glance, the number of 1s in the 4 out of 6 matrices is greater than 0s. By
the principle of constructing a block invertible square matrix, the HW of each
row and column in an (n, 2) block invertible matrix will be greater than n/2.
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To be linearly transformed
y0 y1 y2 y3

Number of
Wf i(ω) = 0 255,206 255,205 255,309 255,203
Wf i(ω) = 256 794 795 691 797

Table 1: Statistic of Wf i scores calculated with 1,000 randomly generated (32,
2) matrices.
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Fig. 3: The number of block invertible matrices (y-axis) vs. the number of ex-
posed subkeys from M · yi∈{0,1,2,3} for each block invertible matrix M (x-axis).

For example, consider a (4, 2) matrix initialized with∣∣∣∣1 0
0 1

∣∣∣∣ ,
then its resulting matrix will be ∣∣∣∣∣∣∣∣

1 0 1 0
0 1 0 1
1 0 1 1
0 1 1 0

∣∣∣∣∣∣∣∣ .
If it is initialized with ∣∣∣∣0 1

1 0

∣∣∣∣ ,
we have ∣∣∣∣∣∣∣∣

0 1 0 1
1 0 1 0
0 1 1 0
1 0 1 1

∣∣∣∣∣∣∣∣ .
When generating a (32, 2) matrix through this process, 1s appear more fre-
quently. Based on this fact, we have performed the following experiment to test
whether or not this overweight HW of the block invertible matrix is one of the
causes of the key leakage. We have randomly generated a balanced non-invertible
(singular) 32×32 matrix M b, such that f(x) = M b · yi∈{0,1,2,3}(x), where M b

has the HW of 16 for each row and column, and used it to compute the sum of
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imbalances. As shown in Fig. 4, there still exist key leakages from y1 and y2 with
the Walsh transform score 256. This shows us that the heavy HW of matrices is
not the cause of the key leakage from linear transformations.
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Fig. 4: Sum of the imbalance for all key candidates on each yi∈{0,1,2,3}(x) multi-

plied with a balanced matrix M b.

3.3 Effect of Unbalanced Intermediate Values

So far, we have analyzed the balanced distribution of the key-dependent inter-
mediate values as the main cause of the key leakage. In the connection with this,
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we demonstrate the effect of unbalanced distribution of intermediate values by
inserting random bytes in the intermediate values before linear transformations.

Let’s begin with an analysis of the inserting position. We have inserted
a random byte at a particular position in the four-byte intermediate value
yi∈{0,1,2,3}(x) and then performed a linear transformation with a (40, 2) block
invertible matrix M∗ to check if any key leakage occurs. Among the five inserting
positions ρ1 - ρ5 of y0, for example,[

ρ1 2 · x ρ2 x ρ3 x ρ4 3 · x ρ5
]T

we have selected ρi, where i ∈ [1, 5], and then inserted different γ ∈R GF(28) at
ρi for each x ∈ GF(28). Let y∗0(x) denote y0(x) after the random byte insertion,
and f∗(x) = M∗ · y∗0(x). Then we can define the Walsh transforms with respect
to f∗:

Wf∗i
(ω) = Σx∈{0,1}8(−1)f

∗
i (x)⊕x·ω

for 40 Boolean functions

f∗i∈{1,...,40}(x) : {0, 1}8 → {0, 1}.

With 1,000 randomly generated M∗, we have computed Wf∗i
(ω). As a result,

Table 2 gives us that the correct subkey has Pr[Wf∗i
(ω) = 0] ≈ 0.05 (The max

and average |Wf∗i
(ω)| are about 72 and 12.7, respectively). This is in contrast to

Pr[Wfi(ω) = 0] ≈ 0.997 and |Wfi(ω)| ≈ 0.7 without the random byte insertion.
This implies that the encoding imbalance increases in the linear transformation
with an unbalanced intermediate value by inserting a random byte.

To compare an effect of a random byte, we have conducted an additional
experiment with random vectors as follows.

1. Let yγ(x) = [γ1 γ2 γ3 γ4 γ5]T for each x ∈ GF(28). In other words, these
are five-byte random vectors.

2. fγ(x) = M∗ · yγ(x) .
3. Repeat step (1) - (2) with 1,000 random M∗ matrices, and accumulate the

number of occurrences of each value of Wfγi
(ω).

4. Compute % of Wfγi
(ω) = 0 and the average |Wfγi

(ω)|.
5. Compute the cosine similarity between the distributions of Wfγi

(ω) and
Wf∗i

(ω) for each ρi.

As a result, we have Pr[Wfγi
(ω) = 0] ≈ 0.05 (The max and average |Wfγi

(ω)|
are about 76 and 12.74, respectively) and the cosine similarity between their
distributions is always larger than 0.999. Note that a cosine similarity greater
than 0.99 indicates a very similar distribution, and the cosine similarity between
the distributions of Wfγi

(ω) and Wfi(ω) was just 0.25, approximately.
In order to visualize this effect of inserting a random byte, we have selected

ρ5 and calculated the sum of the imbalances of Wf∗i
(ω) for each key candidate

with ω such that HW(ω) = 1 as follows:

∆f∗

k∈{0,1}8 =
∑

ω=1,2,...,128

∑
i=1,...,40

|Wf∗i
(ω)|.
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ρ1 ρ2 ρ3 ρ4 ρ5

% of Wf∗i
(ω) = 0

5.05
(0.03)

5.06
(0.07)

4.93
(0.05)

5.0
(0.05)

5.04
(0.04)

Average |Wf∗i
(ω)| 12.73

(0.02)
12.75
(0.01)

12.76
(0.01)

12.73
(0.01)

12.76
(0.01)

Similarity with Wf
γ
i

> 0.999

Table 2: Wf∗i
after inserting a random byte at each inserting position (the stan-

dard deviation in parenthesis), and the cosine similarity of the distributions
between Wf∗i

and Wfγi
.

Fig. 5 shows ∆f∗

k∈{0,1}8 that the correct subkeys 0x88 - 0xBB are no longer

distinguishable from other candidates. In addition, it is noticeable that inserting
more than one random byte in the intermediate values does not increase the
imbalance; they show a similar level of the imbalance with the one-byte insertion.

4 Conclusion

Previous analysis has shown that rows of HW 1 in the invertible matrix are the
main cause of the key leakage from the linear transformation. Also, it has been
suggested to recover the key in the presence of such a matrix without identity
row by calculating all possible linear combinations of the bits in the target inter-
mediate value. In this paper, we pointed out that there is no such row of HW 1
if we choose a block invertible matrix with submatrices of full rank for maximiz-
ing information diffusion. Nevertheless, the key leakage is likely to happen from
the linear transformation regardless of the HW of block invertible matrices. In
addition, we pointed out that a typical WB-AES implementation uses a 32×32
linear transformation on the SubBytes output multiplied with the decomposed
MixColumns rather than an 8×8 linear transformation on the SubBytes output.
Thus, it is complicated for an attacker to analyze all possible linear combinations.
Our analysis and experimental results explained that the balanced distribution
of intermediate values causes the key leakage. In the connection with this, it was
demonstrated that the unbalanced distribution of the intermediate values can
be effective to reduce the probability of key leakage.
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Fig. 5: Sum of the imbalance of Wf∗i
(ω) for all key candidates. Red arrow: the

correct key.
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