
Strongly Unforgeable Signatures Resilient to
Polynomially Hard-to-Invert Leakage

under Standard Assumptions∗

Masahito Ishizaka and Kanta Matsuura

Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
{ishimasa, kanta}@iis.u-tokyo.ac.jp

Abstract. A signature scheme is said to be weakly unforgeable, if it is hard to
forge a signature on a message not signed before. A signature scheme is said to
be strongly unforgeable, if it is hard to forge a signature on any message. In some
applications, the weak unforgeability is not enough and the strong unforgeability
is required, e.g., the Canetti, Halevi and Katz transformation.
Leakage-resilience is a property which guarantees that even if secret informa-
tion such as the secret-key is partially leaked, the security is maintained. Some
security models with leakage-resilience have been proposed. The hard-to-invert
leakage model, a.k.a. auxiliary (input) leakage model, proposed by Dodis et al.
at STOC’09 is especially meaningful one, since the leakage caused by a function
which information-theoretically reveals the secret-key, e.g., one-way permuta-
tion, is considered.
In this work, we propose a generic construction of digital signature strongly un-
forgeable and resilient to polynomially hard-to-invert leakage which can be in-
stantiated under standard assumptions such as the decisional linear assumption.
We emphasize that our instantiated signature is not only the first one resilient to
polynomially hard-to-invert leakage under standard assumptions, but also the first
one which is strongly unforgeable and has hard-to-invert leakage-resilience.

Keywords: Digital signature, Strong existential unforgeability, Leakage-resilience, Hard-
to-invert leakage, Auxiliary(-input) leakage.

1 Introduction

Strongly Unforgeable Signature. We say that a signature scheme is weakly (existen-
tially) unforgeable if it is hard to forge a signature on a message not signed before.
We say that a signature scheme is strongly (existentially) unforgeable if it is hard to
forge a signature on any message which can be a message signed before. Since most of
the signature schemes generate a signature randomly, there is a gap between the weak
unforgeability and strong unforgeability. Moreover, in some applications, strongly un-
forgeable signature scheme is required, e.g., Canetti-Halevi-Katz transformation [13].

∗This is the full version of a short paper appeared in the proceedings for the 21st Information
Security Conference (ISC2018).

Leakage-Resilient Cryptography. Leakage-resilience is a property which guarantees
that even if secret information such as the secret key is partially leaked, the security
is maintained. Any scheme whose security has been proven only in a security model
without leakage-resilience is not guaranteed to be secure when some information about
the secret information such as the secret-key are leaked. There exist some side-channel
attacks which are real threats to us, e.g., cold-boot attack [21], so leakage-resilient cryp-
tographic schemes are practically desirable.

In the security model considering leakage-resilience, a side-channel attack caused
by an adversary is modeled as a polynomial time computable function f : {0, 1}|S ecret| →
{0, 1}∗ 1. The adversary is allowed to choose an arbitrary leakage function f , query it to
the leakage oracle, then learn f (S ecret). If we allow the adversary to choose the identity
map as f , the adversary acquires the secret key entirely and is able to break the security
model with no failures. Hence, we have to impose a restriction on f . Several security
models in which different restrictions are imposed on f have been proposed.

In bounded leakage (BL) model [1], the output bit-length of f is restricted. More
concretely, only f satisfying f : {0, 1}|S ecret| → {0, 1}l(k) such that l(k) < k can be
chosen2. To make the output bit-length of f unbounded, noisy leakage (NL) model
[28] was invented. In NL model, only f : {0, 1}|S ecret| → {0, 1}∗ such that, when we
observe f (S ecret), the minimum entropy of the secret key sk drops by at most l(k) < k
can be chosen. Any function which information-theoretically reveals the secret key sk
is excluded in each one of the two models. Thus, for instance, one-way permutation
cannot be chosen in each one of the models. To remove such a restriction, hard-to-
invert leakage (HL) model, a.k.a. auxiliary (input) leakage (AL) model, was invented
[16]. In HL model, the function f must be a hard-to-invert function. More concretely,
only f such that, given f (S ecret), no PPT algorithm can compute sk with a probability
larger than µ(k) can be chosen, where µ(·) is a negligible function such that µ(k) > 2−k.
The larger µ(k) is, the larger the function class of f is. HL model is a generalization of
BL and NL model, thus has a larger function class. Moreover, HL model is useful in the
context of the composition. There may be the case when we want to use the same pair
of public key and secret key of a hard-to-invert leakage-resilient cryptographic scheme
for multiple schemes. Their composition remains secure as long as each one of the other
schemes has been proven to be secure in the standard (non-leakage-resilient) security
model [32, 14].

Large number of cryptographic schemes with leakage-resilience have been pro-
posed. For instance, public-key encryption [1, 15, 5, 14], identity-based encrypiton [12,
26, 24, 32], attribute-based encrypiton [26, 35, 34, 36], identification [2, 15], and authen-
ticated key agreement [2, 15], have been proposed.

Related Works. Katz and Vaikuntanathan [25] defined that fully leakage-resilient (FLR)
signature is a signature resilient to not only the direct leakage from the secret-key,
but also the leakage from the randomness used to generate the secret-key and signa-

1S ecret denotes the secret information. |S ecret| denotes the bit-length of S ecret.
2k denotes the minimum entropy of the secret key sk. If the secret-key is generated uniformly

at random, k is equivalent to the bit-length of the secret-key |sk|.

2

tures generated by the signing oracle. FLR or non-FLR signature schemes secure in the
bounded-leakage model have been proposed in [2, 25, 27, 10].

The concept of the hard-to-invert leakage-resilience was presented by Dodis et al.
[16]. They proposed symmetric-key encryption schemes which is IND-CPA or IND-
CCA secure and resilient to exponentially hard-to-invert leakage. In a subsequent work,
Dodis et al. [14] started a research on public-key encryption with hard-to-invert leakage-
resilience. They defined two leakage-function classes. The classHow(ξ(λ)) (resp.Hpkow(ξ(λ)))
consists of every polynomial-time computable function f : {0, 1}|pk|+|sk| → {0, 1}∗ such
that any PPT algorithmAwhich is given f (pk, sk) (resp. (pk, f (pk, sk))) as input is able
to guess sk correctly only with a probability smaller than ξ(λ), where ξ(λ) > 2−k is a
negligible function and (pk, sk) is a randomly generated key-pair. They proved that the
BHHO encryption scheme [7] and a slightly modified version of the GPV encryption
scheme [18] are IND-CPA secure in HL model w.r.t. the function class How(1/µ1(λ)),
where µ1(λ) is a sub-exponential function. They also mentioned in Subsect. 1.2 of [14]
that a PKE scheme which is IND-CPA secure in HL model w.r.t.Hpkow(1/µ2(λ)), where
µ2(λ) is a polynomial function, is given in its full paper.

Faust et al. presented the first research result on digital signature with hard-to-invert
leakage-resilience [17]. To construct a signature scheme secure in HL model, there is an
obstacle whom we have to overcome. It is how to prevent from an adversary choosing
an algorithm generating a valid signature on a message as a leakage-function, then out-
put the pair of signature and message. Faust et al. proposed a signature scheme which
is wEUF-CMA (weakly existentially unforgeability under adaptively chosen messages
attack) secure in HL model w.r.t. the function class Hpkow(1/µ3(λ)), where µ3(λ) is an
exponential function. Their solution to overcome the obstacle explained earlier is to in-
clude a ciphertext of the secret-key sk in a signature. Specifically, their signature scheme
adopts the labeled public-key encryption (LPKE) as a building block, and includes a
ciphertext of the secret-key in a signature. Moreover, for their signature scheme, the
hardness parameter 1/µ3(λ) in the leakage function class is set as 1/µ3(λ) << 2−ldk ,
where ldk ∈ N denotes the bit-length of the decryption-key dk of the LPKE scheme.
This solution effectively works. The reason is as follows. Since any PPT algorithm is
able to guess the decryption-key dk correctly with probability 2−ldk , any PPT inverter
in the definition of the function class Hpkow(1/µ3(λ)) which is given a signature in-
cluding a ciphertext C of the secret-key sk is able to guess sk correctly with proba-
bility 2−ldk >> 1/µ3(λ) by guessing the decryption-key dk, then decrypting the cipher-
text C with the guessed dk. Hence, the signing algorithm is excluded from the class
Hpkow(1/µ3(λ)). By the way, they showed that their signature scheme can be instanti-
ated under standard assumptions such as the DLIN assumption [4].

Independently of Faust et al. [17], Yuen et al. [33] also presented a research result
on signature secure in HL model. To overcome the obstacle to construct a signature with
hard-to-invert leakage resilience, Yuen et al. proposed an original security model, which
is named selective auxiliary input model. In the security model, the adversary is allowed
to choose as the leakage-functions only functions which are independent of the public-
key. They proposed a signature scheme secure in the security model. Their signature
scheme is FLR and resilient to polynomially hard-to-invert leakage. Here, their defini-
tion of leakage function f being resilient to polynomially hard-to-invert leakage is as

3

follows: any PPT algorithm which is given (pk, S , f (state)) is able to guess sk correctly
only with a negligible probability, where (pk, sk) is a randomly generated key-pair, S is
a set of randomly generated signatures on the messages queried to the signing oracle,
and state is a set of randomnesses used to generate sk and the signatures S . Their def-
inition of leakage-function is undesirable since it depends on the signatures generated
on the signing oracle.

Subsequently, Wang et al. [30] proposed a signature scheme secure in the selective
auxiliary input model. Their signature scheme is FLR and resilient to polynomially
hard-to-invert leakage. Their definition for a function to be resilient to polynomially
hard-to-invert leakage is not the same as the one by Yuen et al. [33]. It is improved
as follows: any PPT algorithm which is given f (sk) is able to identify sk only with a
negligible probability. However, their scheme needs differing input obfuscator (diO),
indistinguishable obfuscator (iO), and point-function obfuscator with auxiliary input
(AIPO), each one of which has been constructed only under strong assumptions.

Note that each one of the signature schemes with auxiliary leakage resilience by
Faust et al., Yuen et al., and Wang et al., is not strongly existentially unforgeable, but
weakly existentially unforgeable.

Boneh et al. [9] proposed a method to transform a weakly unforgeable signature
scheme into a strongly unforgeable one. However, their transformation can be applied
to partitioned signatures only. In a subsequent work, Steinfeld et al. [29] proposed a
method to transform any weakly unforgeable signature into a strongly unforgeable one.
Note that each transformation by Boneh et al. and Steinfeld et al. has a common prop-
erty such that each one of the public-key, secret-key and signature of the strongly un-
forgeable signature scheme becomes each one of the public-key, secret-key and sig-
nature of the weakly unforgeable signature whom some new elements are added to.
Huang et al. [22] proposed a transformation which no new elements are added to the
public-key, secret-key and signature.

Wang et al. [31] modified the transformation by Steinfeld et al. [29] to get a trans-
formation from a signature weakly existentially unforgeable and FLR in the bounded
leakage model to a strongly unforgeable one. The transformation by Steinfeld et al. uti-
lizes two chameleon hash functions (with no leakage-resilience). In the transformation
by Wang et al., one of the chameleon hash functions is assumed to satisfy a property
such that any PPT algorithm cannot find a strong collision even if the algorithm is given
a length-bounded information about the secret-key.

The transformation by Wang et al. needs to add some new elements to both the
key-pair and signature. Huang et al. [20] modifies the transformation by Huang et al.
[22] to get a method to transform a signature weakly existentially unforgeable and FLR
in the BL model into a strongly unforgeable one which no elements are added to the
signature3.

Our Results. We propose a generic construction of signature scheme strongly which is
unforgeable and resilient to polynomially hard-to-invert leakage and can be instantiated
under standard assumptions. Specifically, we give an example of its instantiation under

3By the transformation in [20], some new elements are added to the public-key and secret-
key.

4

the decisional linear (DLIN) assumption [4]. Our security model is not the selective
auxiliary leakage model [33], so the leakage-function can be dependent on the public-
key.

Our result is a desirable one because of the following two independent points.
Firstly, our signature instantiation is the first one which is resilient to polynomially hard-
to-invert leakage under standard assumptions. Secondly, our signature instantiation is
the first one which is strongly unforgeable and has hard-to-invert leakage-resilience.

Our Approach. Our result is obtained by modifying the one by Faust et al. [17]. Before
explaining how the modification is done, we explain the result by Faust et al. in detail.

Faust et al. proposed a generic construction of a signature scheme secure in the
wEUF-CMA security model w.r.t. the function class Hpkow(ξ(λ)). It consists of three
building blocks. They are second pre-image resistant hash function (SPRHF), labeled
PKE (LPKE) whose decryption-key dk has bit-size ldk ∈ N, and non-interactive zero-
knowledge proof (NIZK) whose trapdoor td has bit-size ltd ∈ N. The hardness parame-
ter of the leakage function class is set as ξ(λ) = 2−(λ+ldk+ltd). A signature σ on a message
m consists of an LPKE ciphertext c and an NIZK proof π. Concretely, the ciphertext c
is an LPKE ciphertext encrypting the secret-key sk under the label m, and the proof π is
an NIZK proof which proves that there exists a secret-key sk′ such that the ciphertext
c is a ciphertext of sk′ on the label m and the hashed value of sk′ is equivalent to the
hashed value of the real secret-key sk which is included in the public-key pk.

Intuitively speaking, the security proof for the signature by Faust et al. is done as
follows. By modifying the initial security game several times, we get the final game
Game f inal . In Game f inal, for a signature σ = (c, π) on the signing oracle, the ciphertext
c is generated by encrypting 0|sk| instead of sk, and the proof π is generated by using
the trapdoor td instead of sk. In addition, the adversary is considered to win the game,
if he successfully outputs a signature σ∗ = (c∗, π∗) and a message m∗ such that c∗ is a
valid ciphertext of sk∗ on label m∗, and π∗ is a valid proof. We prove that every PPT
A wins the game only with a negligible probability by a reduction to the hard-to-invert
property of the leakage-function f ∈ Hpkow(2−(λ+ldk+ltd)). In the reduction, a simulator
S needs both td and dk to simulate Game f inal and decrypt the ciphertext c∗. However,
by the definition of the leakage function classHpkow(·), S is given neither td nor dk, so
S has to guess them, and the guess succeeds with probability 2−(ldk+ltd). By the above
reason, the hardness parameter for Faust et al.’s signature scheme becomes 2−(λ+ldk+ltd).

The above is the result by Faust et al. We modify the result with three steps.
In the first step, we generalize the second pre-image resistance (SPR) property of the

SPRHF, which is one of the building blocks. Intuitively, the SPR property is a property
such that no PPTA given a key-pair (pk, sk) is able to find a secret-key sk∗ which is not
sk, but has a hashed value equivalent to the hashed value of sk with a non-negligible
probability. We generalize it to a property such that no PPTA given (pk, sk) is able to
find a secret-key sk∗ such that a relation holds between sk∗ and sk and another relation
also holds between sk∗ and pk with a non-negligible probability.

The second step is to modify the definition of the leakage-function class Hpkow(·).
In the modified definition of the function class, the PPT algorithm (or inverter) A is
given not only the public-key of the key-pair (pk, sk), but also some variables which are
generated during generation of the key-pair and are not directly included in either pk or

5

sk. Specifically, for our signature scheme, the variables are the decryption-key dk and
the trapdoor td. If the definition of the leakage-function class is modified to such one,
the simulator in the proof for Game f inal is not forced to guess dk and td with probability
2−(ldk+ltd), so the polynomially hard-to-invert leakage-resilience security is achieved. In-
stantiating the generic construction of the signature scheme, we can concretely generate
the first signature scheme (weakly unforgeable and) resilient to polynomially hard-to-
invert leakage under standard assumptions such as the DLIN assumption.

In the third step, we apply a methodology which is invented by modifying the one
by Wang et al. [31] to the weakly unforgeable signature scheme in the second step,
then get a strongly unforgeable one. Note that unlike Wang et al., we do not propose a
generic transformation from a weakly unforgeable and resilient to hard-to-invert leak-
age to a strongly unforgeable one. In the transformation by Wang et al., a chameleon
hash function with strong collision-resistance in the bounded leakage model (BLR-
CHF) was used. We use a CHF with strong collision-resistance in HL model (HLR-
CHF). Moreover, the secret-key of the strongly unforgeable signature scheme obtained
by the transformation by Wang et al. includes not only the original secret-key, i.e., the
secret-key of the weakly unforgeable signature, but also the secret-key of the BLR-
CHF. However, the secret-key of our strongly unforgeable signature includes only the
secret-key of the HLR-CHF. By instantiating the signature scheme, we obtain the first
concrete construction of digital signature strongly unforgeable and resilient to polyno-
mially hard-to-invert leakage under standard assumptions such as the DLIN assumption.

Paper Organization. This paper is organized as follows. In Sect. 2, we give basic nota-
tions and the syntax and the definition of security or property of labeled public-key en-
cryption, non-interactive zero-knowledge proof and chameleon hash function. In Sect.
3, we give the syntax and the definition of strong unforgeability in HL model of digital
signature. In Sect. 4, our generic construction of signature and its security proof are
given. In Sect. 5, we show that the generic construction of signature in Sect. 4 can be
instantiated under the DLIN assumption.

2 Preliminaries

Notation. For a, b ∈ N, [a, b] denotes {x ∈ N | a ≤ x ≤ b}. For λ ∈ N, 1λ denotes a
security parameter. We say that a function h : N → R is negligible if for every c ∈ N,
there exists x0 ∈ N such that h(x) ≤ x−c for every x ≥ x0. G is a function which takes 1λ

as input, and randomly outputs (p,G, g), where p is a prime number whose bit-size is
λ, G is a multiplicative cyclic group whose order is p, and g is a generator of G. PPTA
means probabilistic polynomial time algorithm.

2.1 Hardness Assumptions

Discrete Logarithm (DL) Assumption. For λ ∈ N, let (p,G, g) ← G(1λ). DL assump-

tion holds, if for every PPTA A, the probability Pr[x ← A(p,G, g, gx) | x
U←− Zp] is

negligible in λ.

6

Decisional Linear (DLIN) Assumption [4]. For λ ∈ N, let (p,G, g) ← G(1λ). DLIN
assumption holds, if for every PPTAA,∣∣∣∣∣Pr[1← A(p,G, g1, g2, g3, g

r1
1 , g

r2
2 , g

r1+r2
3) | g1, g2, g3

U←− G, r1, r2
U←− Zp]

−Pr[1← A(p,G, g1, g2, g3, g
r1
1 , g

r2
2 , g

u
3) | g1, g2, g3

U←− G, r1, r2, u
U←− Zp]

∣∣∣∣∣
is negligible in λ.

2.2 Labeled Public Key Encryption

Syntax. Labeled public key encryption (LPKE) consists of three polynomial time algo-
rithms {Gen,Enc,Dec}. Gen and Enc are probabilistic. Dec is deterministic.

Gen(1λ)→ (ek, dk). The key generation algorithm takes 1λ as input, and outputs an
encryption key ek, and a decryption key dk. Plaintext spaceM, ciphetext space C,
and label space L are uniquely determined by ek.

Enc(ek,m, L)→ C. The encryption algorithm takes the encryption key ek, a plaintext
M ∈ M, and a label L ∈ L as inputs, and outpus a ciphertext C.

Dec(dk,C, L)→ M / ⊥. The decryption algorithm4 takes the decryption key dk, a ci-
phetext C ∈ C, and a label L ∈ L as inputs, and outputs a plaintext M or ⊥.

A LPKE scheme must be correct. LPKE scheme ΣLPKE = {Gen,Enc,Dec} is correct,
if for every λ ∈ N, every (ek, dk) ← Gen(1λ), every M ∈ M, every L ∈ L, and every
C ← Enc(ek,M, L), it holds that M ← Dec(dk,C, L).

2.2.1 Ciphertext Indistinguishability To define weak ciphertext indistinguishabil-
ity against adaptively chosen label and ciphertexts attacks (IND-wLCCA) for a LPKE
scheme ΣLPKE = {Gen,Enc,Dec}, we use the following game which is played between
an adversaryA and challenger CH .

Key-Generation. CH runs (ek, dk)← Gen(1λ), and sends ek toA.
Query. A is allowed to use the decryption oracle Dec adaptively.
Dec(C, L): A queries a ciphertext C ∈ C and a label L ∈ L. CH returns M / ⊥ ←

Dec(dk,C, L).
Challenge(M0,M1, L∗). A sends two plaintexts M0,M1 ∈ M, and a label L∗ ∈ L.

CH sets b
U←− {0, 1}, then returns C∗ ← Enc(ek,Mb, L∗).

Query 2. A is allowed to use the decryption oracle Dec adaptively.
Dec(C, L): A queries a ciphertext C ∈ C and a label L ∈ L such that L , L∗. CH

returns M / ⊥ ← Dec(dk,C, L).
Guess(b′). A sends b′ ∈ {0, 1} to CH .

Definition 1. LPKE scheme ΣLPKE is IND-wLCCA secure if for any PPT adversaryA,
AdvIND-wLCCAA,ΣLPKE

(λ) = |2 · Pr[b′ = b] − 1| is negligible.
4Although Dec needs the encryption-key ek as an input since ek includes information such

as the prime p , the group G, and etc., we often omit ek as the input.

7

2.3 Non-Interactive Zero-Knowledge Proof

Syntax. Non-interactive zero-knowledge proof (NIZK) ΠNIZK for a language L con-
sists of three polynomial time algorithms {Gen,Pro,Ver}. Each one of Gen and Pro is
probabilistic. Ver is deterministic. RL denotes the witness relation.

Gen(1λ)→ crs. The key-generation algorithm takes 1λ as an input, and outputs a com-
mon reference string (CRS) crs.

Pro(crs, x,w)→ π. The proof-generation algorithm takes the CRS crs, a statement x,
and a witness w as inputs, and outputs a proof π.

Ver(crs, x, π)→ 1 / 0. The proof-verification algorithm takes the CRS crs, a statement
x, and a proof π as inputs, and outputs 1 or 0.

A NIZK scheme must be correct. A NIZK scheme ΣNIZK = {Gen,Pro,Ver} is correct
if for every λ ∈ N, every crs ← Gen(1λ), every (x,w) such that (x,w) ∈ RL, and every
π← Pro(crs, x,w), it holds that 1← Ver(crs, x, π).

We give the definitions of soundness and zero-knowledge for a NIZK scheme.

Definition 2. A NIZK scheme ΣNIZK = {Gen,Pro,Ver} is sound if for every λ ∈ N,
every crs← Gen(1λ), and every PPTA,

Pr [A(crs)→ (x, π) s.t. [Ver(crs, x, π)→ 1] ∧ [x < L]]

is negligible.

Definition 3. A NIZK scheme ΣNIZK = {Gen,Pro,Ver} is zero-knowledge if for every
λ ∈ N and every PPTA, there exists a PPT S = (S1,S2) such that∣∣∣∣Pr

[
AOcrs

0 (x,w)(crs)→ 1 | Gen(1λ)→ crs
]
−

Pr
[
AO

crs,td
1 (x,w)(crs)→ 1 | S 1(1λ)→ (crs, td)

]∣∣∣∣∣
is negligible, where Ocrs

0 (x,w) returns Pro(crs, x,w) (resp. ⊥), if (x,w) ∈ RL (resp. (x,
w) < RL), and Ocrs,td

1 (x,w) returns S2(crs, x, td) (resp. ⊥), if (x,w) ∈ RL (resp. (x,
w) < RL).

2.4 Chameleon Hash Function

Syntax. A chameleon hash function (CHF) scheme consists of the polynomial time
algorithms {Gen,Eval,TC,SKVer,SKVer2}. Gen and TC are probabilistic, and Eval,
SKVer and SKVer2 are deterministic.

Gen(1λ)→ (pk, sk). The key-generation algorithm takes a security parameter 1λ, where
λ ∈ N, as an input, and outputs a public-key pk and a secret-key (or trapdoor) sk.
The message spaceM, randomness spaceR and hashed value spaceH are uniquely
determined by pk.

Eval(pk,m; r)→ h. The evaluation algorithm takes the public-key pk and a message
m ∈ M as inputs, and outputs the hashed value h ∈ H which was calculated under
a randomness r ∈ R.

8

TC(pk, sk, (m1, r1),m2)→ r2. The trapdoor collision finder algorithm takes the public-
key pk, the secret-key sk, a pair of a message and randomness (m1, r1) ∈ M × R,
and a message m2 ∈ M as inputs, and outputs a randomness r2 ∈ R.

SKVer(pk, sk′)→ 1 / 0. The first secret-key-verification algorithm takes the public-
key pk and a secret-key sk′ as inputs, and outputs 1 or 0.

SKVer2(pk, sk′, sk†)→ 1 / 0. The second secret-key-verification algorithm takes the
public-key pk, a secret-key sk′, and a secret-key sk† as inputs, and outputs 1 or 0.
Even if the two secret-keys are inputted in the reversed order, the output is required
to be equivalent. Thus, for any λ ∈ N, any (pk, sk) ← Gen(1λ), and any two valid
secret-keys sk′ and sk†, it holds that SKVer2(pk, sk′, sk†) = SKVer2(pk, sk†, sk′).

A CHF scheme must be correct. A CHF scheme ΣCHF = {Gen,Eval,TC,SKVer,SKVer2}
is correct, if for every λ ∈ N, every (pk, sk) ← Gen(1λ), every m ∈ M, every m′ ∈ M,
every r ∈ R, and every r′ B TC(pk, sk, (m, r),m′), it holds that [Eval(pk,m; r) =
Eval(pk,m′; r′)] ∧ [1← SKVer(pk, sk)] ∧ [1← SKVer2(pk, sk, sk)].

We give the definitions of two standard properties for the CHF scheme. They are
strong collision-resistance and random trapdoor collision.

Definition 4. A CHF scheme ΣCHF = {Gen,Eval,TC,SKVer,SKVer2} is strongly collision-
resistant, if for every λ ∈ N and every PPTA, it holds that

Pr[A(pk)→ ((m1, r1), (m2, r2)) s.t. [(m1, r1) , (m2, r2)]
∧[Eval(pk,m1; r1) = Eval(pk,m2; r2)]]

is negligible, where (pk, sk)
R←− Gen(1λ).

Definition 5. A CHF scheme ΣCHF = {Gen,Eval,TC,SKVer,SKVer2} is said to have
the property of random trapdoor collision, if for any λ ∈ N, any (pk, sk) ← Gen(1λ)
and any two messages m1,m2 ∈ M, a randomness r1 chosen uniformly at random from
R distributes identically with r2 B TC(pk, (m1, r1),m2).

We give the definition of an original property for a CHF scheme. The property is hard-
to-compute-secret-key (HtC-SK).

Definition 6. ΣCHF = {Gen,Eval,TC,SKVer,SKVer2} is said to have the property of
HtC-SK, if for every λ ∈ N, and every PPTA, it holds that

Pr
[A (pk, sk)→ sk∗ s.t.

[
1← SKVer(pk, sk∗)

] ∧ [0← SKVer2(pk, sk∗, sk)
]]

is negligible, where (pk, sk)
R←− Gen(1λ).

Remark. The property is related to the second pre-image resistance (SPR) [15, 17]. The
algorithm SKVer given pk and sk as inputs is an algorithm which verifies whether or not
a relation holds between pk and sk. The algorithm SKVer2 given two secret-keys sk and
sk† can be defined as the algorithm outputting 1 iff the two keys are equivalent. Thus,
the HtC-SK property can be the SPR property. We can say that the HtC-SK property is
a generalization of the SPR property.

9

3 Digital Signature

Syntax. Digital signature consists of the polynomial time algorithms {Gen,Sig,Ver}.
Gen and Sig are probabilistic, and Ver is deterministic.

Gen(1λ)→ (pk, sk). The key-generation algorithm takes 1λ, where λ ∈ N, as an input,
and outputs a public-key pk and a secret-key sk. The message spaceM is uniquely
determined by pk.

Sig(pk,m, sk)→ σ. The signing algorithm takes the public-key pk, a message m ∈ M,
and the secret-key sk as inputs, and outputs a signature σ.

Ver(pk,m, σ)→ 1 / 0. The signature-verification algorithm takes the public-key pk, a
message m ∈ M, and a signature σ as inputs, and outputs 1 or 0.

A signature scheme must be correct. A signature scheme ΣSIG = {Gen,Sig,Ver,SKVer,
SKVer2} is correct if for every (pk, sk) ← Gen(1λ), every m ∈ M, and every σ ←
Sig(pk,m, sk), it holds that [1← Ver(pk,m, σ)].

3.1 Strong Existential Unforgeability in HL Model

We define the strong existential unfrogeability in HL model for a signature scheme.
Specifically, we define the strong existential unforgeability against adaptively chosen
messages attacks in hard-to-invert leakage model (HL-sEUF-CMA) for a signature
scheme ΣSIG = {Gen,Sig,Ver}.

At first, we define a game which is played between an adversary A and challenger
CH as follows. Note that a leakage function f : {0, 1}|pk|+|sk| → {0, 1}∗ whose random-
ness space is denoted by R is included in a class FΣSIG (λ), i.e., f ∈ FΣSIG (λ) 5.

Key-Generation. CH runs (pk, sk)← SIG.Gen(1λ). CH chooses r
R←− R, then com-

putes f (pk, sk; r). CH sends (pk, f (pk, sk; r)) toA. CH initializes the listLS as an
empty set ∅.

Query. A is allowed to use the signing oracle Sign, adaptively.
Sign(m ∈ M): CH generates σ ← SIG.Sig(pk,m, sk), then sends σ to A. After

that, CH sets LS B LS ∪ {(m, σ)}.
Forgery(m∗, σ∗). CH receives (m∗, σ∗) sent byA.

In the above game,A is said to win the game if [1← SIG.Ver(pk,m∗, σ∗)]∧[(m∗, σ∗) <
LS]. The advantage AdvF (λ)−HL−sEUF−CMA

ΣSIG,A (λ) is defined as the probability Pr[A wins.].

Definition 7. ΣSIG is HL-sEUF-CMA-secure with respect to the leakage-function class
FΣSIG (λ), if for every PPT A and every function f ∈ FΣSIG (λ), AdvF (λ)−HL−sEUF−CMA

ΣSIG,A (λ)
is negligible.

Remark. Weak existential unforgeability is defined in the same manner as the strong
existential unforgeability except for the winning condition by the adversary A in the
security game. The adversary is said to win the game if the signature σ∗ is a valid
signature on the message m∗, i.e., [1 ← SIG.Ver(pk,m∗, σ∗)], and the message m∗ has
not been queried to the signing oracle Sign.

5In this paper, the function class FΣSIG (λ) can be simply written as F (λ), if it is obvious that
the function class is for the signature scheme ΣSIG.

10

4 Signature Strongly Existentially Unforgeable and Resilient to
Polynomially Hard-to-Invert Leakage

In Subsect. 4.1, the generic construction of our signature scheme is given. In Subsect.
4.2, the signature scheme is proven to be strongly existentially unforgeable and resilient
to polynomially hard-to-invert leakage. In the next section, i.e., Section 5, we show that
the signature scheme can be instantiated under the DLIN assumption.

4.1 Construction

Our generic construction of signature scheme ΣSIG = {SIG.Gen,SIG.Sig,SIG.Ver} has
the following 4 building blocks: An LPKE scheme ΣLPKE = {LPKE.Gen,LPKE.Enc,
LPKE.Dec}, an NIZK scheme ΣNIZK = {NIZK.Gen,NIZK.Pro,NIZK.Ver}, a CHF
scheme ΣCHF = {CHF.Gen,CHF.Eval,CHF.TC,CHF.SKVer,CHF.SKVer2} and a CHF
scheme ΣCHF2 = {CHF2.Gen,CHF2.Eval,CHF2.TC}.

The signature scheme ΣSIG is generically constructed as follows.

SIG.Gen(1λ): Run (ek, dk)← LPKE.Gen(1λ), (pk1, sk1)← CHF.Gen(1λ) and (pk2, sk2)
← CHF2.Gen(1λ). Run (crs, td) ← S1(1λ), where S1 is the first simulator in the
definition of zero-knowledge for ΣNIZK.
RE and RE2 denote the randomness space of CHF.Eval and CHF2.Eval, respec-
tively. M̃, M̄, C, P and K1 denote the message space of ΣCHF, the label space
of ΣLPKE (or the hashed value space of ΣCHF2), the ciphertext space of ΣLPKE, the
proof space of ΣNIZK, and the secret-key space of ΣCHF, respectively.M is a space
satisfying M̃ =M||C||P.
Verification-key and signing-key are set as pk B (pk1, pk2, ek, crs) and sk B sk1,
respectively. Return (pk, sk). We define language L as

L B
{
(c, m̄) ∈ C × M̄ | ∃sk1 ∈ K1 s.t. [c← LPKE.Enc(ek, sk1, m̄)]

∧ [1← CHF.SKVer(pk1, sk1)
]}
. (1)

SIG.Sig(pk,m ∈ M, sk): pk is parsed as (pk1, pk2, ek, crs). sk is written as sk1. Do as
follows in order.

– r′E
U←− RE , rE2

U←− RE2, m′
U←−M, c′

U←− C, π′
U←− P, σ′ B (c′, π′).

– h B CHF.Eval(pk1,m′||σ′; r′E), m̄ B CHF2.Eval(pk2, h; rE2).
– c B LPKE.Enc(ek, sk1, m̄), x B (c, m̄), w B sk1, π B NIZK.Pro(crs, x,w).
– σ B (c, π), rE B CHF.TC(pk1, sk1, (m′||σ′, r′E),m||σ).
Return σ† B (σ, rE , rE2) = (c, π, rE , rE2).

SIG.Ver(pk,m ∈ M, σ†): pk is parsed as (pk1, pk2, ek, crs).σ† is parsed as (c, π, rE , rE2).
h B CHF.Eval(pk1,m||σ; rE). m̄ B CHF2.Eval(pk2, h; rE2). x B (c, m̄). Return
NIZK.Ver(crs, x, π).

4.2 Proof of Strong Unforgeability in Polynomially Hard-to-Invert Leakage
Model

Before giving the theorem for the strong unforgeability in the hard-to-invert leakage
model of the signature scheme ΣSIG, we give the definitions of the leakage-function

11

class F HtI
ΣSIG

(λ) for the signature scheme and the strong collision-resistance in HL model
w.r.t. the function class F HtI

ΣSIG
(λ) for the chameleon hash function ΣCHF.

Definition 8. Function class F HtI
ΣSIG

(λ) consists of every polynomial-time computable
probabilistic (or deterministic) function f : {0, 1}|pk1 |+|pk2 |+|ek|+|crs|+|sk1 | → {0, 1}∗ which
has a randomness space R and satisfies the following condition: for every PPT B,

Pr
[B (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r))→ sk∗1

s.t.
[
1← CHF.SKVer

(
pk1, sk∗1

)] ∧ [1← CHF.SKVer2
(
pk1, sk∗1, sk1

)]]
(2)

is negligible, where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←−

LPKE.Gen(1λ), (crs, td)
R←− S1(1λ) and r

R←− R.

Remark. If the chameleon hash function ΣCHF is a CHF with the second pre-image
resistance [15, 17], the algorithm CHF.SKVer2 is defined as the equality-checking al-
gorithm, and the secret-key sk∗1 which satisfies [1 ← CHF.SKVer(pk1, sk∗1)] ∧ [1 ←
CHF.SKVer2(pk1, sk∗1, sk1)] is the original secret-key sk1 only. So, the probability (2) is
simply written as Pr[B(pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r))→ sk1].

Definition 9. CHF scheme ΣCHF = {CHF.Gen,CHF.Eval,CHF.TC,CHF.SKVer,CHF.SKVer2}
is said to be strongly collision-resistant in HL model with respect to the function class
F HtI
ΣSIG

(λ), if for every PPT A and every function f : {0, 1}|pk1 |+|pk2 |+|ek|+|crs|+|sk1 | → {0, 1}∗
which is included in the function class F HtI

ΣSIG
(λ) and has a randomness space R,

Pr
[A (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r))→ ((m1, r1) , (m2, r2))

s.t. [(m1, r1) , (m2, r2)] ∧ [CHF.Eval(pk1,m1; r1) = CHF.Eval(pk1,m2; r2)
]]

is negligible, where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←−

LPKE.Gen(1λ), (crs, td)
R←− S1(1λ) and r

R←− R.

The strong unforgeability in HL model of the signature scheme ΣSIG is guaranteed
by the following theorem.

Theorem 1. ΣSIG is HL-sEUF-CMA w.r.t. the function class F HtI
ΣSIG

(λ), if

– ΣLPKE is IND-wLCCA,
– ΣNIZK is sound and zero-knowledge,
– ΣCHF is strongly collision-resistant in HL model w.r.t. the function class F HtI

ΣSIG
(λ),

random trapdoor collision, and HtC-SK, and
– ΣCHF2 is strongly collision-resistant and random trapdoor collision.

Proof of Theorem 1. Hereafter, qs ∈ N denotes the number of times that PPT adversary
A uses the signing oracle Sign. To prove Theorem 1, we use multiple games Gamei,
where i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 7|1, · · · , 7|qs}.

The first game Game0 is the normal AL-sEUF-CMA game w.r.t. the signature scheme
ΣSIG and the function class F HtI

ΣSIG
(λ). Specifically, Game0 is the following game.

12

Key-Generation. CH runs (pk1, sk1)← CHF.Gen(1λ), (pk2, sk2)← CHF2.Gen(1λ),
(ek, dk) ← LPKE.Gen(1λ), and (crs, td) ← S1(1λ). pk and sk are set as pk B
(pk1, pk2, ek, crs) and sk B sk1, respectively. For a function f ∈ F HtI

ΣSIG
(λ), CH

chooses r
R←− R, then computes f (pk, sk; r). CH sends (pk, f (pk, sk; r)) to A. LS

is set to ∅.
Query. When A issues a message m ∈ M as a query to the signing oracle Sign, CH

generates a signature (c, π, rE , rE2) on the message as follows.

– r′E
U←− RE , rE2

U←− RE2, m′
U←−M, c′

U←− C, π′
U←− P, σ′ B (c′, π′).

– h B CHF.Eval(pk1,m′||σ′; r′E), m̄ B CHF2.Eval(pk2, h; rE2).
– c B LPKE.Enc(ek, sk1, m̄), x B (c, m̄), w B sk1, π B NIZK.Pro(crs, x,w).
– σ B (c, π), rE B CHF.TC(pk1, sk1, (m′||σ′, r′E),m||σ).
CH returns a signature (c, π, rE , rE2) toA. CH sets LS B LS ∪ {(m, c, π, rE , rE2)}.

Forgery(m∗, (c∗, π∗, r∗E , r
∗
E2)). CH is given a message m∗ ∈ M and a signature (c∗, π∗, r∗E , r

∗
E2).

A wins the game, if [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E , r
∗
E2) < LS], where

h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2, h∗; r∗E2) and x∗ B (c∗, m̄∗).
We define the games Gamei, where i ∈ {1, 2, 3, 4, 5, 6, 7, 7|1, · · · , 7|qs}, as follows.

Game1. Game1 is the same as Game0 except that CH generates a common reference
string crs by running crs← NIZK.Gen(1λ) in Key-Generation.

Game2. Game2 is the same as Game1 except that A’s winning condition is changed to
the following one, where sk∗1 B LPKE.Dec(dk, c∗, m̄∗): [1 ← NIZK.Ver(crs, x∗,
π∗)] ∧ [(m∗, c∗, π∗, r∗E , r

∗
E2) < LS] ∧ [1← CHF.SKVer(pk1, sk∗1)].

Game3. Game3 is the same as Game2 except that A’s winning condition is changed to
the following one: [1← NIZK.Ver(crs, x∗, π∗)]∧ [(m∗, c∗, π∗, r∗E , r

∗
E2) < LS]∧ [1←

CHF.SKVer(pk1, sk∗1)] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)].
Game4: Game4 is the same as Game3 except that A’s winning condition is changed to

the following one: [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E , r
∗
E2) < LS] ∧

[1 ← CHF.SKVer(pk1, sk∗1)] ∧ [1 ← CHF.SKVer2(pk1, sk∗1, sk1)] ∧ [[m̄∗ < {m̄1,
· · · , m̄qs }] ∨ [∃i ∈ [1, qs] s.t. [m̄∗ = m̄i] ∧ [(h∗, r∗E2) = (hi, rE2,i)] ∧ [(m∗, c∗, π∗, r∗E) ,
(mi, ci, πi, rE,i)]]], where, for i ∈ [1, qs], each one of m̄i, hi, rE2,i, ci, πi and rE,i is the
element which was generated when computing the reply to the i-th signing oracle
query.

Game5 Game5 is the same as Game4 except that when A issues a message m ∈ M as
a query to the signing oracle Sign, CH generates a signature (c, π, rE , rE2) on the
message as follows.

– rE , r′E
U←− RE , r′E2

U←− RE2, m′
U←−M, c′

U←− C, π′
U←− P, σ′ B (c′, π′).

– h′ B CHF.Eval(pk1,m′||σ′; r′E), m̄ B CHF2.Eval(pk2, h′; r′E2).
– c B LPKE.Enc(ek, sk1, m̄), x B (c, m̄), w B sk1, π B NIZK.Pro(crs, x,w).
– σ B (c, π), h B CHF.Eval(pk1,m||σ; rE).
– rE2 B CHF2.TC(pk2, sk2, (h′, r′E2), h).

Game6. Game6 is the same as Game5 except that the following two points. Firstly, CH
generates a common reference string crs by running (crs, td)← S1(1λ) in Key-Generation.
Secondly, when replying to a query to Sign in Query, CH generates a proof π by
using S2, instead of NIZK.Pro, where S2 denotes the second simulator in the defi-
nition of zero-knowledge for ΣNIZK.

13

Game7(= Game7|0). Game7 is the same as Game6 except that A’s winning condition is
changed to the following one: [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E , r

∗
E2)

< LS] ∧ [1 ← CHF.SKVer(pk1, sk∗1)] ∧ [1 ← CHF.SKVer2(pk1, sk∗1, sk1)] ∧ [m̄∗

< {m̄1, · · · , m̄qs }].
Game7|1, · · · , Game7|qs . Game7|i, where i ∈ [1, qs], is the same as Game7|0 except that

when replying to the j-th signing oracle query, where j ≤ i, CH generates the
ciphertext c j by running c j ← LPKE.Enc(ek, 0|sk1 |, m̄ j), where 0|sk1 | denotes the
bitstring of |sk1| number of 0.

Hereafter, Wi, where i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 7|1, · · · , 7|qs}, denotes the event that A
wins the game Gamei. It holds obviously that

Adv
F HtI
ΣSIG

(λ)−HL−sEUF−CMA

ΣSIG,A (λ) = Pr [W0]

≤
7∑

i=1

|Pr [Wi−1] − Pr [Wi]| +
qs∑

i=1

∣∣∣Pr
[
W7|i−1

] − Pr
[
W7|i
]∣∣∣ + Pr

[
W7|qs

]
.

Theorem 1 is proven by the above inequality and the following all lemmas.

Lemma 1. |Pr[W0] − Pr[W1]| is negligible if ΣNIZK is zero-knowledge.

Lemma 2. |Pr[W1] − Pr[W2]| is negligible if ΣNIZK is sound.

Lemma 3. |Pr[W2] − Pr[W3]| is negligible if ΣCHF is HtC-SK.

Lemma 4. |Pr[W3] − Pr[W4]| is negligible if ΣCHF2 is strongly collision-resistant.

Lemma 5. |Pr[W4] − Pr[W5]| is negligible if each one of ΣCHF and ΣCHF2 is random
trapdoor collision.

Lemma 6. |Pr[W5] − Pr[W6]| is negligible if ΣNIZK is zero-knowledge.

Lemma 7. |Pr[W6]−Pr[W7|0]| is negligible if ΣCHF is strongly collision-resistant in HL
model w.r.t. the function class F HtI

ΣSIG
(λ).

Lemma 8. For any i ∈ [1, qs], |Pr[W7|i−1] − Pr[W7|i]| is negligible if ΣLPKE is IND-
wLCCA.

Lemma 9. Pr[W7|qs] is negligible.

Proof of each lemma is given in Sect. A. ⊓⊔

5 Instantiation under the DLIN assumption

As a concrete construction for the chameleon hash function ΣCHF, we adopt the chameleon
hash function ΠCHF,n given in Fig. 1. For ΠCHF,n, we obtain Theorem 2, Theorem 3, and
Theorem 4, whose proofs are given in A.10, A.11 and A.12, respectively.

Theorem 2. For any n ∈ N, ΠCHF,n is HtC-SK under the DL assumption.

14

CHF.Gen(1λ, 1n) :

(p,G, g)← G(1λ). x1, · · · , xn, a1, · · · , an
U←− Zp. g1 B ga1 , · · · , gn B gan .y B

∏n
i=1 gxi

i .
Return pk B (p,G, g1, · · · , gn, y) and sk B (x1, · · · , xn).

CHF.Eval(pk,m; r) :

r
U←− Zn

p, where r is parsed as (r1, · · · , rn). Return
(
y · Πn

i=1gri
i

)J(m)
.

CHF.TC(pk, sk, (m, r),m′) :
sk ∈ Zn

p is parsed as (x1, · · · , xn). r ∈ Zn
p is parsed as (r1, · · · , rn).

For i ∈ [1, n], r′i B J(m)(xi − ri)/J(m′) − xi. Return r′ B (r′1, · · · , r′n).
CHF.SKVer(pk, sk∗) :

sk∗ ∈ Zn
p is parsed as (x∗1, · · · , x∗n). Return 1, if

[
y =
∏n

i=1 g
x∗i
i

]
. Return 0, otherwise;

CHF.SKVer2(pk, sk∗, sk′) :
sk∗ ∈ Zn

p is parsed as (x∗1, · · · , x∗n). sk′ ∈ Zn
p is parsed as (x′1, · · · , x′n).

Return 1, if
[∧n

i=1

[
x∗i = x′i

]]
. Return 0, otherwise;

Fig. 1. Construction of CHF Scheme ΠCHF,n, where J : {0, 1}∗ → Zp \ {0} is a collision-resistant
hash function.

Theorem 3. For any n ∈ N, ΠCHF,n is random trapdoor collision.

Theorem 4. For any chameleon hash function ΠCHF2, any LPKE scheme ΠLPKE, any
NIZK scheme ΠNIZK, and any integer n ∈ N, ΠCHF,n is strongly collision-resistant in HL
model w.r.t. the function class F HtI

ΠSIG
(λ) under the collision-resistance of the hash func-

tion J : {0, 1}∗ → Zp \ {0} and the DL assumption, where ΠSIG denotes the instantiation
of the signature scheme ΣSIG by ΠCHF, ΠCHF2, ΠLPKE and ΠNIZK.

As a concrete construction for the chameleon hash function ΣCHF2, we adopt the
chameleon hash function ΠCHF,1 which is ΠCHF,n in Fig. 1 with n = 1. The following
corollary is obtained by Theorem 4, obviously.

Corollary 1. For any n ∈ N, ΠCHF,n is strongly collision-resistant under the collision-
resistance of the hash function J : {0, 1}∗ → Zp \ {0} and the DL assumption.

Thus, the random trapdoor collision and strong collision-resistance of the CHF scheme
ΠCHF,1 are guaranteed by Theorem 3 and Corollary 1, respectively.

As a concrete construction for the LPKE scheme ΣLPKE, we adopt ΠLPKE,l given
in Fig. 2. The LPKE scheme is a modification of the LPKE scheme by Camenisch et
al. [11] which is IND-LCCA secure6 under the DLIN assumption and the collision-
resistance of hash function. Faust et al. [17] modifies the scheme by Camenisch et al.
to get the LPKE scheme ΠLPKE,l which achieves a weaker security, i.e., IND-wLCCA,
but encrypts a plaintext of arbitrary length. Thus,

Theorem 5. For any l ∈ N, ΠLPKE,l is IND-wLCCA under the collision-resistance of
the hash function HCL : {0, 1}∗ → Zp and the DLIN assumption.

6IND-LCCA is stronger security notion than IND-wLCCA. For the details, refer to [17].

15

LPKE.Gen(1λ, 1l) :

(p,G, g)← G(1λ). a1, · · · , al, b1, b2
U←− Zp. ĝ0 B g, ĝ1 B gb1 , ĝ2 B gb2 , g1 B ga1 , · · · , gl B gal .

u1, u2, u3, v1, v2, v3,w1,w2,w3
U←− Zp. d1 B ĝu1

0 · ĝ
u2
1 , d2 B ĝu1

0 · ĝ
u3
2 ,

e1 B ĝv1
0 · ĝ

v2
1 , e2 B ĝv1

0 · ĝ
v3
2 , h1 B ĝw1

0 · ĝ
w2
1 , h2 B ĝw1

0 · ĝ
w3
2 .

ek B (p,G, ĝ0, ĝ1, ĝ2, g1, · · · , gl, d1, d2, e1, e2, h1, h2). dk B (u1, u2, u3, v1, v2, v3,w1,w2,w3).
Return(ek, dk).

LPKE.Enc(ek, x ∈ {0, 1}l, L ∈ {0, 1}∗) :
For i ∈ [1, l], the i-th bit of x ∈ {0, 1}l is denoted by xi ∈ {0, 1}.
For every i ∈ [1, l], do:

ri, si
U←− Zp. yi B (yi,1, yi,2, yi,3) B (ĝri+si

0 , ĝri
1 , ĝ

si
2). zi B hri

1 · h
si
2 · g

xi
i .

ci B (d1 · eti
1)ri · (d2 · eti

2)si , where ti B HCL(yi, zi, L). ci B (yi, zi, ci).
Return C B {ci}i∈[1,l].

LPKE.Dec(ek, dk,C, L) :
For every i ∈ [1, l], do:

c̃i B yu1+tiv1
i,1 · yu2+tiv2

i,2 · yu3+tiv3
i,3 , where ti B HCL(yi, zi, L).

If c̃i , ci, then return ⊥.
Else if zi/(y

w1
i,1 · y

w2
i,2 · y

w3
i,3) = gi, then x′i B 1. Else, then x′i B 0.

The i-th bit of x′ is set as x′i .
Return x′ ∈ {0, 1}l.

Fig. 2. Construction of LPKE Scheme ΠLPKE,l, where HCL : {0, 1}∗ → Zp is a collision-resistant
hash function.

As a concrete construction for the non-interactive zero-knowledge proof ΣNIZK, we
adopt the Groth-Sahai proof ΠNIZK in [19] whose soundness and zero-knowledge are
guaranteed under the DLIN assumption.

By the schemes ΠCHF,n, ΠCHF2, ΠNIZK and ΠLPKE,nλ, where λ denotes the integer in
the security parameter 1λ of ΠCHF,n, our concrete signature scheme ΠSIG is constructed.
Hereafter, for i ∈ [1, n] and j ∈ [1, λ], the j-th bit of xi ∈ Zp in ΠCHF,n is denoted by
xi j ∈ {0, 1}, and the prime and group in ΠLPKE,nλ are written as p̂ and Ĝ, respectively.
By the signing algorithm of ΠSIG, a ciphertext C and a proof π are generated as follows.

The ciphertext C is generated by running C ← LPKE.Enc(ek, (x1, · · · , xn), m̄),
where LPKE.Enc is the encryption algorithm ofΠLPKE,nλ. C is parsed as {ci j}i∈[1,n], j∈[1,λ].
ci j is parsed as (yi j, zi j ∈ Ĝ, ci j ∈ Ĝ). yi j is parsed as (yi j,1, yi j,2, yi j,3) ∈ Ĝ3.

By using the proof-generation algorithm of the NIZK scheme ΠNIZK, we generate
the proof π. Actually, the proof π is a proof which proves that

∃{ri j ∈ Zp̂, si j ∈ Zp̂, xi j ∈ {0, 1}}i∈[1,n], j∈[1,λ] such that n∏
i=1

λ∏
j=1

g2 j−1·xi j

i = y

 ∧
i∈[1,n], j∈[1,λ]

[[
ĝri j+si j

0 = yi j,1

]
∧
[
ĝri j

1 = yi j,2

]
∧
[
ĝsi j

2 = yi j,3

]
∧
[
hri j

1 · h
si j

2 · g
xi j

i j = zi j

]
∧
[
(d1 · eti j

1)ri j · (d2 · eti j

2)si j = ci j

]
∧
[
xi j(1 − xi j) = 0

]]
,

where y =
∏n

i=1 gxi
i ∈ G.

16

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Number JP17KT0081). This work
was also supported by JSPS and DST under the Japan-India Science Cooperative Pro-
gram.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V. :Simultaneous hardcore bits and cryptogra-
phy against memory attacks. In: TCC 2009, LNCS 5444, pp. 474-495, 2009.

2. Alwen, J., Dodis, Y., Wichs, D. :Leakage-resilient public-key cryptography in the bounded-
retrieval model. In: CRYPTO 2009, LNCS 5677, pp. 36-54, 2009.

3. Brands, S.A. :An efficient off-line electronic cash system based on the representation prob-
lem. Technical report, 1993.

4. Boneh, D., Boyen, X., Shacham, H. :Short group signatures. In: CRYPTO 2004, LNCS 3152,
pp.41-55, 2004.

5. Brakerski, Z., Goldwasser, S. :Circular and leakage resilient public-key encryption under
subgroup indistinguishability (or: quadratic residuosity strikes back). In: CRYPTO 2010,
LNCS 6223, pp. 1-10, 2010.

6. Bellare, M., Goldreich, O., Goldwasser, S. :Incremental cryptography: the case of hashing
and signing. In:CRYPTO 1994, LNCS 839, pp. 216-233, 1994.

7. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R. :Circular-secure encryption from decision
diffie-hellman. In: CRYPTO 2008, LNCS 5157, pp. 108-125, 2008.

8. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V. :Overcoming the hole in the bucket:
Public-key cryptography resilient to continual memory leakage. In: FOCS 2010, pp. 501-
510, 2010.

9. Boneh, D., Shen, E., Waters, B. :Strongly unforgeable signatures based on computational
diffie-hellman. In: PKC 2006, LNCS 3958, pp. 229-240, 2006.

10. Boyle, E., Segev, G., Wichs, D. :Fully leakage-resilient signatures. In: EUROCRYPT 2011,
LNCS 6632, pp. 89-108, 2011.

11. Camenisch, J., Chandran, N., Shoup, V. :A public key encryption scheme secure against key
dependent chosen plaintext and adaptive chosen ciphertext attacks. In: EUROCRYPT 2009,
LNCS 5479, pp. 351-368, 2009.

12. Chow, S.S.M, Dodis, Y., Rouselakis, Y., Waters, B. :Practical leakage-resilient identity-based
encryption from simple assumptions. In: ACMCCS 2010, pp. 152-161, 2010.

13. Canetti, R., Halevi, S., Katz, J. :Chosen-ciphertext security from identity-based encryption.
In: EUROCRYPT 2004, LNCS 3027, pp. 207-222, 2004.

14. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V. :Public-key encryption
with auxiliary inputs. In: TCC 2010, LNCS 5978, pp. 361-381, 2010.

15. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D. :Efficient public-key cryptography in
the presence of key leakage. In: ASIACRYPT 2010, LNCS 6477, pp. 613-631, 2010.

16. Dodis, Y., Kalai, Y.T., Lovett, S. :On Cryptography with auxiliary input. In: STOC 2009, pp.
621-630, 2009.

17. Faust, S., Haway, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A. :Signature schemes secure
against hard-to-invert leakage. In: ASIACRYPT 2012, LNCS 7658, pp.98-115, 2012.

18. Gentry, C., Peikert, C., Vaikuntanathan, V. :Trapdoors for hard lattices and new cryptographic
constructions. In: STOC 2008, pp. 197-206, 2008.

19. Groth, J., Sahai, A. :Efficient non-interactive proof systems for bilinear groups. In: EURO-
CRYPT 2008, LNCS 4965, pp. 415-432, 2008.

17

20. Huang, J., Huang, Q., Pan, C. :A black-box construction of strongly unforgeable signature
schemes in the bounded leakage model. In: ProvSec 2016, LNCS 10005, pp. 320-339, 2016.

21. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feld-
man, A.J., Appelbaum, J., Felten, E.W. :Lest we remember: cold boot attacks on encryption
keys. In: USENIX Security Symposium, pp. 45-60, 2008.

22. Huang, Q., Wong, D.S., Zhao, Y. :Generic transformation to strongly unforgeable signatures.
In: ACNS 2007, LNCS 4521, pp. 1-17, 2007.

23. Ishizaka, M., Matsuura, K. :Strongly unforgeable signature resilient to polynomially hard-
to-invert leakage under standard assumptions. In: ISC 2018, LNCS ????, pp. ???-???, 2018.

24. Kurosawa, K., Phong, L.T. :Leakage resilient IBE and IPE under the DLIN assumption. In:
ACNS 2013, LNCS 7954, pp. 487-501, 2013.

25. Katz, J., Vaikuntanathan, V. :Signature schemes with bounded leakage resilience. In: ASI-
ACRYPT 2009, LNCS 5912, pp. 703-720, 2009.

26. Lewko, A., Rouselakis, Y., Waters, B. :Achieving leakage resilience through dual system
encryption. In: TCC 2011, LNCS 6597, pp. 70-88, 2011.

27. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M. :Signatures resilient to continual leakage on
memory and computation. In: TCC 2011, LNCS 6597, pp. 89-108, 2011.

28. Naor, M., Segev, G. :Public-key cryptosystems resilient to key leakage. In: CRYPTO 2009,
LNCS 5677, pp. 18-35, 2009.

29. Steinfeld, R., Pieprzyk, J., Wang, H. :How to strengthen any weakly unforgeable signature
into a strongly unforgeable signature. In: CT-RSA 2007, LNCS 4377, pp. 357-371, 2007.

30. Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K. :Signatures resilient to uninvertible leakage.
In: SCN 2016, LNCS 9841, pp. 372-390, 2016.

31. Wang, Y., Tanaka, K. :Generic transformation to strongly existentially unforgeable signature
schemes with leakage resiliency. In: ProvSec 2014, LNCS 8782, pp. 117-129, 2014.

32. Yuen, T.H., Chow, S.S.M, Zhang, Y., Yiu, S.M. :Identity-based encryption resilient to con-
tinual auxiliary leakage. In: EUROCRYPT 2012, LNCS 7232, pp. 117-134, 2012.

33. Yuen, T.H., Yiu, S.M., Hui, L.C.K. :Fully leakage-resilient signatures with auxiliary inputs.
In: ACISP 2012, LNCS 7372, pp. 294-307, 2012.

34. Zhang, M. :New model and construction of ABE: achieving key resilient-leakage and at-
tribute direct-revocation. In: ACISP 2014, LNCS 8544, pp. 192-208, 2014.

35. Zhang, M., Shi, W., Wang, C., Chen, Z., Mu, Y. :Leakage-resilient attribute-based encryption
with fast decryption: models, analysis and constructions. In: ISPEC 2013, LNCS 7863, pp.
75-90, 2013.

36. Zhang, M., Wang, C., Takagi, T., Mu, Y.: Functional encryption resilient to hard-to-invert
leakage. In: The Computer Journal, doi:10.1093/comjnl/bxt105, 2013.

A Proofs of Some Theorems and Lemmas

A.1 Proof of Lemma 1

We prove that if we assume that there is a PPT adversary A which makes |Pr[W0] −
Pr[W1]| non-negligible, then we are able to construct a PPT algorithm which breaks the
zero-knowledge property for ΣNIZK.

We consider a PPT simulator S. On one hand, the simulator S is a PPT algorithm at-
tempting to break the zero-knowledge for ΣNIZK. On the other hand, S is the challenger
in Game0 or Game1. S is given a common reference string crs. If crs was generated by
(crs, td)← S1(1λ) (resp. crs← NIZK.Gen(1λ)), then S simulates Game0 (resp. Game1)
against the PPT adversaryA properly. The concrete behaviour by S is the following.

18

Key-Generation. S runs (pk1, sk1) ← CHF.Gen(1λ), (pk2, sk2) ← CHF2.Gen(1λ)
and (ek, dk)← LPKE.Gen(1λ). S is given a common reference string crs of ΣNIZK.
S sets pk and sk to pk B (pk1, pk2, ek, crs) and sk B sk1, respectively. S computes

f (pk, sk; r) where r
R←− R. S sends (pk, f (pk, sk; r)) toA. S sets LS to ∅.

Query. When A issues a message m ∈ M as a query to the signing oracle Sign, S
generates a signature (c, π, rE , rE2) on the message in the normal manner. S sets LS

to LS ∪ {(m, c, π, rE , rE2)}.
Forgery(m∗, c∗, π∗, r∗E , r

∗
E2). S outputs 1, if [1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗,

r∗E , r
∗
E2) < LS], where h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2,

h∗; r∗E2) and x∗ B (c∗, m̄∗). S outputs 0, otherwise.

It is obvious that if the common reference string is generated by (crs, td)← S1(1λ)
(resp. crs ← NIZK.Gen(1λ)), then S simulates the game Game0 (resp. Game1) against
A perfectly, and if and only if the event W0 (resp. W1) occurs, S outputs 1. Hence,
we obtain Pr[W0] = Pr[1 ← S(crs) | (crs, td) ← S1(1λ)] and Pr[W1] = Pr[1 ←
S(crs) | crs ← NIZK.Gen(1λ)]. Hence, |Pr[W0] − Pr[W1]| = |Pr[1 ← S(crs) | crs ←
NIZK.Gen(1λ)] − Pr[1← S(crs) | (crs, td)← S1(1λ)]|. ⊓⊔

A.2 Proof of Lemma 2

We prove that if we assume that there is a PPT adversary A which makes |Pr[W1] −
Pr[W2]| non-negligible, then we are able to construct a PPT algorithm which breaks the
soundness property for ΣNIZK.

We consider a PPT simulator S attempting to break the soundness of the NIZK
scheme ΣNIZK. Specifically, S behaves as follows.

Key-Generation. S runs (pk1, sk1) ← CHF.Gen(1λ), (pk2, sk2) ← CHF2.Gen(1λ)
and (ek, dk)← LPKE.Gen(1λ). S is given a common reference string crs of ΣNIZK.
S sets pk and sk to pk B (pk1, pk2, ek, crs) and sk B sk1, respectively. S computes

f (pk, sk; r) where r
R←− R, then sends (pk, f (pk, sk; r)) toA. S sets LS to ∅.

Query. When A issues a message m ∈ M as a query to the signing oracle Sign, S
generates a signature (c, π, rE , rE2) on the message in the normal manner. S sets LS

to LS ∪ {(m, c, π, rE , rE2)}.
Forgery(m∗, c∗, π∗, r∗E , r

∗
E2). S checks whether the following condition is satisfied or

not: [1← NIZK.Ver(crs, x∗, π∗)]∧[(m∗, c∗, π∗, r∗E , r
∗
E2) < LS]∧[0← CHF.SKVer(pk1,

sk∗1)], where h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2, h∗; r∗E2),
x∗ B (c∗, m̄∗) and sk∗1 B LPKE.Dec(dk, c∗, m̄∗).
If the condition is satisfied, then S outputs (x∗, π∗) = (c∗, m̄∗, π∗).

It is obvious that S simulates Game1 or Game2, perfectly.
By the way, the definitions of W1 and W2 gives us the following equations.

Pr [W1] = Pr
[[

1← NIZK.Ver(crs, x∗, π∗)
] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS

]]
(3)

Pr [W2] = Pr
[[

1← NIZK.Ver(crs, x∗, π∗)
] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

]]
(4)

19

Hence, we obtain

|Pr[W1] − Pr[W2]|
= Pr
[[

1← NIZK.Ver(crs, x∗, π∗)
] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS

]
∧ [0← CHF.SKVer(pk1, sk∗1)

]]
= Pr
[S(crs)→ (x∗, π∗) s.t.

[
1← NIZK.Ver(crs, x∗, π∗)

]
∧ [0← CHF.SKVer(pk1, sk∗1)

]]
. (5)

By the definition of the language L given in (1), the following statement is true:
for any (c, m̄) ∈ L, there exists sk1 such that [c ← LPKE.Enc(ek, sk1, m̄)] ∧ [1 ←
CHF.SKVer(pk1, sk1)].

By the above statement, the correctness of ΠLPKE, and the correctness of ΠCHF, the
following statement is true: for any (c, m̄) ∈ L, it holds that [1← CHF.SKVer(pk1, sk1)],
where sk1 B LPKE.Dec(dk, c, m̄).

The contraposition of the above statement is the following statement: for any c ∈ C
and any m̄ ∈ M̄, if [0 ← CHF.SKVer(pk1, sk1)], where sk1 B LPKE.Dec(dk, c, m̄),
then (c, m̄) < L.

By the above statement and the equation (5), we obtain

|Pr[W1] − Pr[W2]| = Pr
[S(crs)→ (x∗, π∗) s.t.

[
1← NIZK.Ver(crs, x∗, π∗)

] ∧ [x∗ < L
]]
.

⊓⊔

A.3 Proof of Lemma 3

We prove that if we assume that there is a PPT adversary A which makes |Pr[W2] −
Pr[W3]| non-negligible, then we are able to construct a PPT algorithm which breaks the
HtC-SK property for ΣCHF.

We consider a PPT simulator S who behaves as a PPT adversary trying to break the
property of HtC-SK for ΣCHF. The concrete behaviour by S is the following.

Key-Generation. S is given (pk1, sk1) of the keys of ΣCHF. S runs (pk2, sk2) ←
CHF2.Gen(1λ), (ek, dk) ← LPKE.Gen(1λ) and crs ← NIZK.Gen(1λ). S sets
pk and sk to pk B (pk1, pk2, ek, crs) and sk B sk1, respectively. S computes

f (pk, sk; r), where r
R←− R, then sends (pk, f (pk, sk; r)) toA. S sets LS to ∅.

Query. When A issues a message m ∈ M as a query to the signing oracle Sign, S
generates a signature (c, π, rE , rE2) on the message in the normal manner. S sets LS

to LS ∪ {(m, c, π, rE , rE2)}.
Forgery(m∗, c∗, π∗, r∗E , r

∗
E2). S checks whether the following condition is satisfied or

not: [1← NIZK.Ver(crs, x∗, π∗)]∧[(m∗, c∗, π∗, r∗E , r
∗
E2) < LS]∧[1← CHF.SKVer(pk1,

sk∗1)] ∧ [0 ← CHF.SKVer2(pk1, sk∗1, sk1)], where h∗ B CHF.Eval(pk1,m∗||(c∗, π∗);
r∗E), m̄∗ B CHF2.Eval(pk2, h∗; r∗E2), x∗ B (c∗, m̄∗) and sk∗1 B LPKE.Dec(dk, c∗,
m̄∗).
If the condition is satisfied, S outputs sk∗1.

20

It is obvious that S simulates Game2 or Game3 againstA perfectly.
By the definitions of W2 and W3, we obtain

Pr [W2] = Pr
[[

1← NIZK.Ver(crs, x∗, π∗)
] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

]]
Pr [W3] = Pr

[[
1← NIZK.Ver(crs, x∗, π∗)

] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS
]

∧ [1← CHF.SKVer(pk1, sk∗1)
] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)

]]
Hence, we obtain

|Pr[W2] − Pr[W3]| = Pr
[[

1← NIZK.Ver(crs, x∗, π∗)
] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [0← CHF.SKVer2(pk1, sk∗1, sk1)
]]
. (6)

The above probability is equal to the probability with whom S wins the HtC-SK prop-
erty game for ΠCHF. ⊓⊔

A.4 Proof of Lemma 4

We prove that if we assume that there is a PPT adversary A which makes |Pr[W3] −
Pr[W4]| non-negligible, then we are able to construct a PPT algorithm which breaks the
strong collision-resistance property for ΣCHF2.

We consider a PPT simulator S who behaves as a PPT adversary trying to break the
property of strong collision-resistance for ΣCHF2. The concrete behaviour by S is the
following.

Key-Generation. S is given a public key pk2 of ΣCHF2.S runs (pk1, sk1)← CHF.Gen(1λ),
(ek, dk) ← LPKE.Gen(1λ) and crs ← NIZK.Gen(1λ). S sets pk and sk to pk B

(pk1, pk2, ek, crs) and sk B sk1, respectively. S computes f (pk, sk; r), where r
R←−

R, then sends (pk, f (pk, sk; r)) toA. S sets LS and Lm̄ to ∅.
Query. WhenA issues a message mi ∈ M as the i-th query to the signing oracle Sign,
S generates a signature (ci, πi, rE,i, rE2,i) on the message as follows.

– r′E,i
U←− RE , rE2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

– hi B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, hi; rE2,i).
– ci B LPKE.Enc(ek, sk1, m̄i), xi B (ci, m̄i), w B sk1, πi B NIZK.Pro(crs, xi,w).
– σi B (ci, πi), rE,i B CHF.TC(pk1, sk1, (m′i ||σ′i , r′E,i),mi||σi).
S returns (ci, πi, rE2,i, rE,i) to A. LS is set to LS ∪ {(mi, ci, πi, rE2,i, rE,i)}. Lm̄ is set
to Lm̄ ∪ {m̄i}.

Forgery(m∗, c∗, π∗, r∗E , r
∗
E2). S sets h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E),

m̄∗ B CHF2.Eval(pk2, h∗; r∗E2), x∗ B (c∗, m̄∗) and sk∗1 B LPKE.Dec(dk, c∗, m̄∗). If
[1← NIZK.Ver(crs, x∗, π∗)]∧[(m∗, c∗, π∗, r∗E , r

∗
E2) < LS]∧[1← CHF.SKVer(pk1, sk∗1)]

∧ [1 ← CHF.SKVer2(pk1, sk∗1, sk1)] ∧ [∃i ∈ [1, qs] s.t. [m̄∗ = m̄i] ∧ [(h∗, r∗E2) ,
(hi, rE2,i)]], then S outputs ((h∗, r∗E2), (hi, rE2,i)).

21

It is obvious that S simulates Game3 or Game4 againstA perfectly. By the definitions
of W3 and W4, we obtain

Pr [W3] = Pr
[[

1← NIZK.Ver(crs, x∗, π∗)
] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]]

(7)
Pr [W4] = Pr

[[
1← NIZK.Ver(crs, x∗, π∗)

] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS
]

∧ [1← CHF.SKVer(pk1, sk∗1)
] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)

]
∧
[[

m̄∗ < Lm̄
] ∨ [∃i ∈ [1, qs] s.t.

[
m̄∗ = m̄i

] ∧ [(h∗, r∗E2) = (hi, rE2,i)
]

∧ [(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)
]]]]

(8)

By (7) and (8), we obtain

|Pr[W3] − Pr[W4]|
= Pr
[[

1← NIZK.Ver(crs, x∗, π∗)
] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]

∧
[
∃i ∈ [1, qs] s.t.

[
m̄∗ = m̄i

] ∧ [(h∗, r∗E2) , (hi, rE2,i)
]]]

The above probability is equal to the probability with whomSwins the strong collision-
resistance game for ΠCHF2. ⊓⊔

A.5 Proof of Lemma 5

For a message m̂ ∈ M queried to the signing oracle in Game4 (resp. Game5), P4(ĉ, π̂, r̂E , ˆrE2)
(resp. P5(ĉ, π̂, r̂E , ˆrE2)) denotes the probability that the signature (ĉ, π̂, r̂E , ˆrE2) ∈ C×P×
RE × RE2 is generated.

For the probability P4(ĉ, π̂, r̂E , ˆrE2), we obtain

P4 (ĉ, π̂, r̂E , ˆrE2) = Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]
∧ [r̂E = CHF.TC(pk1, sk1, (m′||(c′, π′), r′E), m̂||(ĉ, π̂))] ∧ [ˆrE2 = rE2]

| r′E
U←− RE , rE2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
(9)

= Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]

| r′E
U←− RE , rE2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
·Pr
[
r̂E = CHF.TC(pk1, sk1, (m′||(c′, π′), r′E), m̂||(ĉ, π̂))

| r′E
U←− RE ,m′

U←−M, c′ U←− C, π′ U←− P
]
· Pr
[

ˆrE2 = rE2 | rE2
U←− RE2

]
(10)

= Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]

| r′E
U←− RE , rE2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
· 1
|RE |

· 1
|RE2|

, (11)

where h′ B CHF.Eval(pk1,m′||(c′, π′); r′E), m̄ B CHF2.Eval(pk2, h′; rE2) and x B
(ĉ, m̄) (9) is the definition. The transformation from (9) to (10) is correct since each
event is independent. The transformation from (10) to (11) is correct since the CHF
scheme ΠCHF is random trapdoor collision.

22

On the other hand, for the probability P5 (ĉ, π̂, r̂E , ˆrE2), we obtain

P5 (ĉ, π̂, r̂E , ˆrE2) = Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]
∧ [r̂E = rE] ∧

[
ˆrE2 = CHF2.TC(pk2, sk2, (h′, r′E2), ĥ)

]
| rE , r′E

U←− RE , r′E2
U←− RE2,m′

U←−M, c′ U←− C, π′ U←− P
]

(12)

= Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]

| r′E
U←− RE , r′E2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
·Pr
[
r̂E = rE | rE

U←− RE

]
· Pr
[

ˆrE2 = CHF2.TC(pk2, sk2, (h′, r′E2), ĥ)

| rE , r′E
U←− RE , r′E2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
(13)

= Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]

| r′E
U←− RE , r′E2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
· 1
|RE |

· 1
|RE2|

, (14)

where h′ B CHF.Eval(pk1,m′||(c′, π′); r′E), m̄ B CHF2.Eval(pk2, h′; r′E2), x B (ĉ, m̄),
and ĥ B CHF.Eval(pk1, m̂||(ĉ, π̂); rE). (12) is the definition. The transformation from
(12) to (13) is correct since each event is independent. The transformation from (13) to
(14) is correct since the CHF scheme ΠCHF2 is random trapdoor collision.

By (11) and (14), P4(ĉ, π̂, r̂E , ˆrE2) = P5(ĉ, π̂, r̂E , ˆrE2). Thus, for any m̂ ∈ M and any
signature (ĉ, π̂, r̂E , ˆrE2) ∈ C × P × RE × RE2, the probability in Game4 that the signature
(ĉ, π̂, r̂E , ˆrE2) on the message m̂ is generated is equal to the one in Game5. ⊓⊔

A.6 Proof of Lemma 6

We prove that if we assume that there is a PPT adversary A which makes |Pr[W5] −
Pr[W6]| non-negligible, then we are able to construct a PPT algorithm which breaks the
zero-knowledge property for ΣNIZK.

We consider a PPT simulator S attempting to break the zero-knowledge property
for the NIZK scheme ΣNIZK. Specifically, S behaves as follows.

Key-Generation. S is given a common reference string crs of ΣNIZK.S runs (pk1, sk1)←
CHF.Gen(1λ), (pk2, sk2)← CHF2.Gen(1λ) and (ek, dk)← LPKE.Gen(1λ). S sets
pk and sk to pk B (pk1, pk2, ek, crs) and sk B sk1, respectively. S computes

f (pk, sk; r), where r
R←− R, then sends (pk, f (pk, sk; r)) toA. S sets each list of LS

and Lm̄ to ∅.
Query. WhenA issues a message mi ∈ M as the i-th query to the signing oracle Sign,
S generates a signature (ci, πi, rE,i, rE2,i) on the message as follows.

– rE,i, r′E,i
U←− RE , r′E2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

– h′i B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, h′i ; r′E2,i).
– ci B LPKE.Enc(ek, sk1, m̄i), xi B (ci, m̄i), w B sk1.
– Issues (xi,w) as an query to Ozk, then receives a proof πi.
– σi B (ci, πi), hi B CHF.Eval(pk1,mi||σi; rE,i).

23

– rE2,i B CHF2.TC(pk2, sk2, (h′i , r
′
E2,i), hi).

S returns (ci, πi, rE2,i, rE,i) to A. LS is set to LS ∪ {(mi, ci, πi, rE2,i, rE,i)}. Lm̄ is set
to Lm̄ ∪ {m̄i}.

Forgery(m∗, c∗, π∗, r∗E , r
∗
E2). S checks whether the following condition is satisfied or

not: [1← NIZK.Ver(crs, x∗, π∗)]∧[(m∗, c∗, π∗, r∗E , r
∗
E2) < LS]∧[1← CHF.SKVer(pk1,

sk∗1)]∧[1← CHF.SKVer2(pk1, sk∗1, sk1)]∧[[m̄∗ < {m̄1, · · · , m̄qs }]∨[∃i ∈ [1, qs] s.t. [m̄∗ =
m̄i] ∧ [(h∗, r∗E2) = (hi, rE2,i)] ∧ [(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)]]], where h∗ B
CHF.Eval(pk1,m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2, h∗; r∗E2), x∗ B (c∗, m̄∗) and
sk∗1 B LPKE.Dec(dk, c∗, m̄∗).
If the condition is satisfied, S outputs 1. Else, then S outputs 0.

It is obvious that if the common reference string crs is generated by (crs, td) ←
S1(1λ) (resp. crs← NIZK.Gen(1λ)) and the proof-generation oracle Ozk is Ocrs,td

1 (resp.
Ocrs

0), then S simulates Game6 (resp. Game5) against A perfectly, and if and only if W6
(resp. W5) occurs, S outputs 1. Hence, we obtain

|Pr[W5] − Pr[W6]| =
∣∣∣∣Pr
[
1← SOcrs

0 (x,w)(crs) | crs← NIZK.Gen(1λ)
]

−Pr
[
1← SO

crs,td
1 (x,w)(crs) | (crs, td)← S1(1λ)

]∣∣∣∣∣ .
⊓⊔

A.7 Proof of Lemma 7

We prove that if we assume that there is a PPT adversary A which makes |Pr[W6] −
Pr[W7]| non-negligible, then we are able to construct a PPT algorithm which breaks the
property of strong collision- resistance in HL model w.r.t. F HtI

ΣSIG
(λ) for ΣCHF.

We consider a PPT simulator S who behaves as a PPT adversary trying to break
the property of strong collision resistance in HL model w.r.t. F HtI

ΣSIG
(λ) for ΣCHF. The

concrete behaviour by S is the following.

Key-Generation. S is given (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r)),

where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←− LPKE.Gen(1λ),

(crs, td)
R←− S1(1λ) and r

R←− R. S sets pk to (pk1, pk2, ek, crs). S sends the public
key pk and the leakage f (pk1, pk2, ek, crs, sk1; r) toA. S sets LS and Lm̄ to ∅.

Query. WhenA issues a message mi ∈ M as the i-th query to the signing oracle Sign,
S generates a signature (ci, πi, rE,i, rE2,i) on the message as follows.

– rE,i, r′E,i
U←− RE , r′E2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

– h′i B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, h′i ; r′E2,i).
– ci B LPKE.Enc(ek, sk1, m̄i), xi B (ci, m̄i), πi B S2(crs, xi, td).
– σi B (ci, πi), hi B CHF.Eval(pk1,mi||σi; rE,i).
– rE2,i B CHF2.TC(pk2, sk2, (h′i , r

′
E2,i), hi).

S returns (ci, πi, rE2,i, rE,i) to A. LS is set to LS ∪ {(mi, ci, πi, rE2,i, rE,i)}. Lm̄ is set
to Lm̄ ∪ {m̄i}.

24

Forgery(m∗, c∗, π∗, r∗E , r
∗
E2). S checks whether the following condition is satisfied or

not: [1← NIZK.Ver(crs, x∗, π∗)]∧[(m∗, c∗, π∗, r∗E , r
∗
E2) < LS]∧[1← CHF.SKVer(pk1,

sk∗1)]∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)]∧ [∃i ∈ [1, qs] s.t. [m̄∗ = m̄i]∧ [(h∗, r∗E2) =
(hi, rE2,i)]∧[(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)]], where h∗ B CHF.Eval(pk1,m∗||(c∗, π∗);
r∗E), m̄∗ B CHF2.Eval(pk2, h∗; r∗E2), x∗ B (c∗, m̄∗) and sk∗1 B LPKE.Dec(dk, c∗,
m̄∗).
If the condition is satisfied, S outputs ((m∗||(c∗, π∗), r∗E), (mi||(ci, πi), rE,i)).

It is obvious that S simulates Game6 or Game7, perfectly. The definitions of W6 and
W7 gives us the following equations.

Pr [W6] = Pr
[[

1← NIZK.Ver(crs, x∗, π∗)
] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]

∧
[[

m̄∗ < Lm̄
] ∨ [∃i ∈ [1, qs] s.t.

[
m̄∗ = m̄i

] ∧ [(h∗, r∗E2) = (hi, rE2,i)
]

∧ [(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)
]]]]

(15)
Pr [W7] = Pr

[[
1← NIZK.Ver(crs, x∗, π∗)

] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS
]

∧ [1← CHF.SKVer(pk1, sk∗1)
] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)

]
∧ [m̄∗ < Lm̄

]]
(16)

By (15) and (16), we obtain

|Pr[W6] − Pr[W7]|
≤ Pr
[[

1← NIZK.Ver(crs, x∗, π∗)
] ∧ [(m∗, c∗, π∗, r∗E , r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]

∧
[
∃i ∈ [1, qs] s.t.

[
m̄∗ = m̄i

] ∧ [(h∗, r∗E2) = (hi, rE2,i)
]

∧ [(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)
]]]

The last probability is equal to the probability with whom S wins the game for the
strong collision-resistance in HL model w.r.t. the function class F HtI

ΣSIG
(λ) for ΠCHF. ⊓⊔

A.8 Proof of Lemma 8

We prove that for any k ∈ [1, qs] if we assume that there is a PPT adversary A which
makes |Pr[W7|k−1] − Pr[W7|k]| non-negligible, then we are able to construct a PPT algo-
rithm which breaks the IND-wLCCA security for ΣLPKE.

We consider a PPT simulator S attempting to break the IND-wLCCA security for
the LPKE scheme ΣLPKE. CH denotes the challenger in the IND-wLCCA security
game. Specifically, S behaves as follows.

Key-Generation. S is given an encryption-key ek of ΣLPKE. S runs (pk1, sk1) ←
CHF.Gen(1λ), (pk2, sk2) ← CHF2.Gen(1λ) and (crs, td) ← S1(1λ). S sets pk and
sk to pk B (pk1, pk2, ek, crs) and sk B sk1, respectively. S computes f (pk, sk; r),

where r
R←− R, then sends (pk, f (pk, sk; r)) to A. S sets each list of LS and Lm̄ to

∅.

25

Query. We consider the case when A issues a message mi ∈ M as the i-th query to
Sign. If i ≥ k + 1 (resp. i ≤ k − 1), then S generates a signature (ci, πi, rE,i, rE2,i) on
mi as follows.

– rE,i, r′E,i
U←− RE , r′E2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

– h′i B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, h′i ; r′E2,i).
– ci B LPKE.Enc(ek, sk1, m̄i) (resp. ci B LPKE.Enc(ek, 0|sk1 |, m̄i)).
– xi B (ci, m̄i), πi B S2(crs, xi, td).
– σi B (ci, πi), hi B CHF.Eval(pk1,mi||σi; rE,i).
– rE2,i B CHF2.TC(pk2, sk2, (h′i , r

′
E2,i), hi).

Else if i = k, then S generates a signature (ck, πk, rE,k, rE2,k) on mk in the same
manner as the case of i ≥ k + 1 or i ≤ k − 1 except that how the ciphertext ci = ck

is generated. In the case of i = k, S sends (sk1, 0|sk1 |, m̄k) to CH in Challenge in
IND-wLCCA game for ΣLPKE, then gets a ciphertext ck.
S returns the generated signature (ci, πi, rE,i, rE2,i) toA. S sets LS to LS ∪ {(mi, ci,
πi, rE,i, rE2,i)}. S sets Lm̄ to Lm̄ ∪ {m̄i}.

Forgery(m∗, c∗, π∗, r∗E , r
∗
E2). S computes h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E) and m̄∗ B

CHF2.Eval(pk2, h∗; r∗E2). S issues (c∗, m̄∗) as a query to Dec in Query 2 in IND-
wLCCA game, then receives sk∗1. S outputs β′ B 1 in Guess in IND-wLCCA
game, when the following condition is satisfied: [1 ← NIZK.Ver(crs, x∗, π∗)] ∧
[(m∗, c∗, π∗, r∗E , r

∗
E2) < LS]∧[1← CHF.SKVer(pk1, sk∗1)]∧[1← CHF.SKVer2(pk1,

sk∗1, sk1)] ∧ [m̄∗ < Lm̄], where x∗ B (c∗, m̄∗).

Let β ∈ {0, 1} be the challenge-bit in the IND-wLCCA security game for ΠLPKE. It
is obvious that S simulates Game7|k−1 (resp. Game7|k) when β = 0 (resp. β = 1), and if
and only if W7|k−1 (resp. W7|k) happens, S outputs β′ = 1. It is also obvious that when
W7|k−1 or W7|k occurs, the label m̄∗ in the query (c∗, m̄∗) to the oracle Dec in Query 2
issued by S satisfies m̄∗ , m̄k, so the query (c∗, m̄∗) is not a forbidden query. Hence, we
obtain Pr[W7|k−1] = Pr

[
β′ = 1 | β = 0

]
and Pr[W7|k] = Pr[β′ = 1|β = 1].

It is obvious that Pr[β′ = β] = Pr[β′ = 0 ∧ β = 0] + Pr[β′ = 1 ∧ β = 1] = 1
2 (Pr[β′ =

0|β = 0] + Pr[β′ = 1|β = 1]) = 1
2 (Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0] + 1).

Hence, we obtain AdvIND−wLCCA
ΣLPKE,S = |2 · Pr[β′ = β] − 1| = |Pr[β′ = 1|β = 1] − Pr[β′ =

1|β = 0]| = |Pr[W7|k−1] − Pr[W7|k]|. ⊓⊔

A.9 Proof of Lemma 9

We prove that if we assume that there is a PPT adversaryA which makes Pr[W7|qs] non-
negligible, then we are able to construct a PPT algorithm which breaks the property of
hardness of inversion for the leakage-function f ∈ F HtI

ΣSIG
(λ).

We consider a PPT algorithm S. S behaves as a PPT algorithm in the definition of
the leakage-function class F HtI

ΣSIG
(λ). S is given (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2,

ek, crs, sk1; r)) as inputs, and simulates Game7|qs against A. The concrete behaviour by
S is the following.

Key-Generation. S is given (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r)),

where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←− LPKE.Gen(1λ),

(crs, td)
R←− S1(1λ) and r

R←− R. S sets pk to (pk1, pk2, ek, crs). S sends (pk, f (pk1,
pk2, ek, crs, sk1; r)) toA. S sets each list of LS and Lm̄ to ∅.

26

Query. WhenA issues a message mi ∈ M as the i-th query to the signing oracle Sign,
S generates a signature (ci, πi, rE,i, rE2,i) on the message as follows.

– rE,i, r′E,i
U←− RE , r′E2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

– h′i B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, h′i ; r′E2,i).
– ci B LPKE.Enc(ek, sk1, m̄i), xi B (ci, m̄i), πi B S2(crs, xi, td).
– σi B (ci, πi), hi B CHF.Eval(pk1,mi||σi; rE,i).
– rE2,i B CHF2.TC(pk2, sk2, (h′i , r

′
E2,i), hi).

S returns (ci, πi, rE2,i, rE,i) to A. LS is set to LS ∪ {(mi, ci, πi, rE2,i, rE,i)}. Lm̄ is set
to Lm̄ ∪ {m̄i}.

Forgery(m∗, c∗, π∗, r∗E , r
∗
E2). S sets h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2,

h∗; r∗E2) and sk∗1 B LPKE.Dec(dk, c∗, m̄∗). S outputs sk∗1.

It is obvious that S simulates Game7|qs against A perfectly. If A wins the game
Game7|qs , thenS is able to acquire a secret-key sk∗1 such that [1← CHF.SKVer(pk1, sk∗1)]∧
[1← CHF.SKVer2(pk1, sk∗1, sk1)]. Hence, we obtain

Pr
[S (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r))→ sk∗1

s.t.
[
1← CHF.SKVer

(
pk1, sk∗1

)] ∧ [1← CHF.SKVer2
(
pk1, sk∗1, sk1

)]]
= Pr
[
W7|qs

]
,

where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←− LPKE.Gen(1λ),

(crs, td)
R←− S1(1λ) and r

R←− R.
If we assume that there exists a polynomial function poly(λ) such that Pr

[
W7|qs

]
≥

1/poly(λ), then we obtain

Pr
[S (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r))→ sk∗1

s.t.
[
1← CHF.SKVer

(
pk1, sk∗1

)] ∧ [1← CHF.SKVer2
(
pk1, sk∗1, sk1

)]] ≥ 1/poly(λ),

where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←− LPKE.Gen(1λ),

(crs, td)
R←− S1(1λ) and r

R←− R.
This contradicts to the hardness of inversion for the leakage-function f ∈ F HtI

ΣSIG
(λ).
⊓⊔

A.10 Proof of Theorem 2

We prove the theorem by proving that if we assume that there is a PPT adversary A
which breaks the HtC-SK property for ΠCHF,n, then we are able to construct a PPT
algorithm S which breaks the DL assumption. We prove the theorem for the case that
n ≥ 2. The theorem for the case that n = 1 can be proven in the same manner.
S is given (p,G, g, ga) as an instance of the discrete logarithm problem. Then, S

behaves as follows: Chooses j
U←− [1, n] and sets g j B ga. For every i ∈ [1, n], chooses

xi
U←− Zp, then sets x B (x1, · · · , xn). For every i ∈ [1, n] \ { j}, chooses ai

U←− Zp, then
sets gi B gai . Sets y B

∏
i∈[1,n] gxi

i .
S gives pk B (p,G, g, g1, · · · , gn, y) toA. After that, S receives x∗ B (x∗1, · · · , x∗n) ∈

Zn
p sent byA. Since we are considering a PPT adversaryA breaking the HtC-SK prop-

erty for ΠCHF,n, x∗ satisfies the relation [x∗ , x] ∧ [
∏

i∈[1,n] gx∗i
i =
∏

i∈[1,n] gxi
i].

27

Hence, we obtain g
x∗j−x j

j =
∏

i∈[1,n]\{ j} g
xi−x∗i
i and g j = g(

∑
i∈[1,n]\{ j} ai(xi−x∗i))/(x∗j−x j) = ga.

S outputs a = (
∑

i∈[1,n]\{ j} ai(xi − x∗i))/(x∗j − x j). Note that Pr[x∗j , x j] ≥ 2/n, where
n ≥ 2. ⊓⊔

A.11 Proof of Theorem 3

We consider a key-pair (pk, sk), a message m ∈ M, and a message m′ ∈ M. pk and sk
are parsed as pk = (p,G, g1, · · · , gn, y) and sk = (x1, · · · , xn), respectively.

P(r̂) denotes the probability that the randomness r̂ is chosen as the randomness used

to compute the hash value for the message m. Hence, P(r̂) = Pr[r̂ = r | r
U←− Zn

p] =

Pr[
∧

i∈[1,n][r̂i = ri] | r
U←− Zn

p] =
∏

i∈[1,n] Pr[r̂i = ri | ri
U←− Zp] = 1/pn.

P(r̂′) denotes the probability that CHF.TC(pk, sk, (m, r),m′) outputs r̂′ ∈ Zn
p, where

the randomness r ∈ Zn
p is chosen uniformly at random. Hence,

P(r̂′) = Pr[r̂′ = CHF.TC(pk1, sk1, (m, r),m′) | r
U←− Zn

p] = Pr[
∧

i∈[1,n][r̂′i = J(m)(xi −
ri)/J(m′) − xi] | r

U←− Zn
p] =
∏

i∈[1,n] Pr[r̂′i = J(m)(xi − ri)/J(m′) − xi | ri
U←− Zp] = 1/pn.

Hence, P(r̂) = P(r̂′) = 1/pn. Therefore, for any (pk, sk) and any m,m′ ∈ M, r
U←− R

and r′ B CHF.Eval(pk, sk, (m, r),m′) distribute identically. ⊓⊔

A.12 Proof of Theorem 4

We prove the theorem by the argument of game-transformation. We use four games
Game0, Game1, Game2 and Game3. Each game is defined as follows.

Game0. Game0 is the game of strong collision-resistance for the CHF scheme ΠCHF,n in
the auxiliary leakage model w.r.t. the function class F HtI

ΠSIG
(λ). Concretely, the game

is the following.
CH runs (pk1, sk1) ← CHF.Gen(1λ), (pk2, sk2) ← CHF2.Gen(1λ), (ek, dk) ←
LPKE.Gen(1λ) and (crs, td) ← S1(1λ). pk1 is parsed as (p,G, g1, · · · , gn, y). sk1 is
parsed as (x1, · · · , xn). pk is set as (pk1, pk2, ek, crs). sk is set as sk1. CH sets r as

r
R←− R, where R is the randomness space of a leakage function f ∈ F HtI

ΠSIG
(λ), then

computes f (pk, sk; r). CH sends (pk, sk2, dk, td, f (pk, sk; r)) toA. Then, (m, r) and
(m′, r′), where m,m′ ∈ {0, 1}∗ and r, r′ ∈ Zn

p, are sent to CH by A. r and r′ are
parsed as (r1, · · · , rn) and (r′1, · · · , r′n), respectively. A is said to win the game, if
the following condition is satisfied:

[[
m , m′

] ∨ [[m = m′
] ∧ [r , r′

]]] ∧
y · n∏

i=1

gri
i

J(m)

=

y · n∏
i=1

gr′i
i

J(m′) .
Game1. Game1 is the same as Game0 except that the winning condition byA is changed

to the following one: [[[m , m′] ∧ [J(m) , J(m′)] ∧ [[x , x∗] ∨ [x = x∗]]] ∨ [[m =
m′] ∧ [r , r′]]] ∧ [(y · ∏n

i=1 gri
i)J(m) = (y · ∏n

i=1 gr′i
i)J(m′)], where, for i ∈ [1, n],

x∗i B (J(m)ri − J(m′)r′i)/(J(m′) − J(m)), x∗ B (x∗1, · · · , x∗n) and x B (x1, · · · , xn).

28

Game2. Game2 is the same as Game1 except that the winning condition byA is changed
to the following one: [[[m , m′] ∧ [J(m) , J(m′)] ∧ [x = x∗]] ∨ [[m = m′] ∧ [r ,
r′]]] ∧ [(y ·∏n

i=1 gri
i)J(m) = (y ·∏n

i=1 gr′i
i)J(m′)].

Game3. Game3 is the same as Game2 except that the winning condition byA is changed
to the following one: [m = m′] ∧ [r , r′] ∧ [(y ·∏n

i=1 gri
i)J(m) = (y ·∏n

i=1 gr′i
i)J(m′)].

Wi, where i ∈ {0, 1, 2, 3}, denotes the event thatA wins the game Gamei. It holds that

Pr [W0] ≤ |Pr [W0] − Pr [W1]| + |Pr [W1] − Pr [W2]| + |Pr [W2] − Pr [W3]| .

By the above inequality and the following lemmas, Theorem 4 is proven.

Lemma 10. |Pr[W0] − Pr[W1]| is negligible, if J : {0, 1}∗ → Zp \ {0} is a collision-
resistant hash function.

Lemma 11. |Pr[W1]−Pr[W2]| is negligible, if the discrete logarithm assumption holds.

Lemma 12. |Pr[W2] − Pr[W3]| is negligible under the hard-to-invert property of the
function f ∈ F HtI

ΠSIG
(λ).

Lemma 13. Pr[W3] is negligible, if the discrete logarithm assumption holds.
⊓⊔

Proof of Lemma 10. We prove that if there is a PPTA which makes |Pr[W0] − Pr[W1]|
non-negligible, we can construct a PPT S which breaks the collision-resistance of the
hash function J : {0, 1}∗ → Zp \ {0}. Let us consider a PPT S which behaves as follows.
S randomly generates (pk1, sk1), (pk2, sk2), (ek, dk) and (crs, td). pk1 and sk1 are

parsed as (p,G, g1, · · · , gn, y) and (x1, · · · , xn), respectively. pk and sk are set as (pk1,

pk2, ek, crs) and sk1, respectively. S sets r as r
R←− R, where R is the randomness space

of a leakage function f ∈ F HtI
ΠSIG

(λ), then computes f (pk, sk; r). S sends (pk, sk2, dk, td,
f (pk, sk; r)) to A. Then, S receives (m, r) and (m′, r′) from A. If [m , m′] ∧ [J(m) =
J(m′)] ∧ [(y ·∏n

i=1 gri
i)J(m) = (y ·∏n

i=1 gr′i
i)J(m′)], then S outputs (m,m′). We obtain

|Pr[W0] − Pr[W1]| ≤ Pr[[m , m′] ∧ [J(m) = J(m′)] ∧ [(y ·
n∏

i=1

gri
i)J(m) = (y ·

n∏
i=1

gr′i
i)J(m′)]]

= Pr[S(·)→ (m,m′) s.t. [m , m′] ∧ [J(m) = J(m′)]].

If we assume that there is a PPT adversary A which makes |Pr[W0] − Pr[W1]| non-
negligible, S is able to break the collision-resistance property of the hash function J.

⊓⊔

Proof of Lemma 11. We prove that if there is a PPTA which makes |Pr[W1] − Pr[W2]|
non-negligible, a PPT S which breaks the HtC-SK property for ΠCHF,n can be con-
structed. Let us consider a PPT S which behaves as follows.
S is given the keys (pk1, sk1) ofΠCHF,n. pk1 and sk1 are parsed as (p,G, g1, · · · , gn, y)

and (x1, · · · , xn), respectively. S randomly generates (pk2, sk2), (ek, dk) and (crs, td). pk

29

and sk are set as (pk1, pk2, ek, crs) and sk1, respectively. S sets r as r
R←− R, then com-

putes f (pk, sk; r). S sends (pk, sk2, dk, td, f (pk, sk; r)) toA. Then, S receives (m, r) and
(m′, r′) from A. S computes x∗i B (J(m) · ri − J(m′) · r′i)/(J(m′) − J(m)) for i ∈ [1, n]
and sets x∗ B (x∗1, · · · , x∗n) and x B (x1, · · · , xn). If [m , m′] ∧ [J(m) , J(m′)] ∧ [x ,
x∗] ∧ [(y ·∏n

i=1 gri
i)J(m) = (y ·∏n

i=1 gr′i
i)J(m′)], then S outputs x∗.

We obtain
∏

i∈[1,n] gJ(m)·(xi+ri)
i =

∏
i∈[1,n] gJ(m′)·(xi+r′i)

i , g
∑

i∈[1,n] ai·J(m)·(xi+ri) = g
∑

i∈[1,n] ai·J(m′)·(xi+r′i),

and g
∑

i∈[1,n] ai·xi = g
∑

i∈[1,n]
J(m′)·r′i −J(m)·ri

J(m)−J(m′) . In the transition from the first equation to the second
one, we used the fact that for every gi ∈ G where i ∈ [1, n], there exists an integer
ai ∈ Zp such that gi = gai .

Likewise, we obtain
∏

i∈[1,n] gJ(m)·(x∗i +ri)
i =

∏
i∈[1,n] gJ(m′)·(x∗i +r′i)

i , g
∑

i∈[1,n] ai·J(m)·(x∗i +ri) =

g
∑

i∈[1,n] ai·J(m′)·(x∗i +r′i), and g
∑

i∈[1,n] ai·x∗i = g
∑

i∈[1,n]
J(m′)·r′i −J(m)·ri

J(m)−J(m′) .
Hence, we obtain g

∑
i∈[1,n] ai·xi = g

∑
i∈[1,n] ai·x∗i , and y =

∏
i∈[1,n] gxi

i =
∏

i∈[1,n] gx∗i
i .

As a result, we obtain

|Pr[W1] − Pr[W2]|

≤ Pr

[m , m′] ∧ [J(m) , J(m′)] ∧ [x , x∗] ∧
(y · ∏

i∈[1,n]

gri
i)J(m) = (y ·

∏
i∈[1,n]

gr′i
i)J(m′)

= Pr

S(p,G, g1, · · · , gn, y, x)→ x∗ s.t.

y = ∏
i∈[1,n]

gx∗i
i

 ∧ [x , x∗]

 .
If we assume that there is a PPT adversary A which makes |Pr[W1] − Pr[W2]| non-
negligible, S is able to break the property of HtC-SK for ΠCHF,n. We have already
proven Theorem 2 which says that the property of HtC-SK for ΠCHF,n can be proven
under the discrete logarithm assumption. Hence, |Pr[W1] − Pr[W2]| is negligible under
the DL assumption. ⊓⊔

Proof of Lemma 12. Let f be a leakage function f ∈ F HtI
ΠSIG

(λ). We prove that if there
is a PPT A which makes |Pr[W2] − Pr[W3]| non-negligible, we can construct a PPT S
which breaks the hardness of inversion for the function. Let us consider a PPT S which
behaves as follows.
S is given (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r)), where (pk1, sk1),

(pk2, sk2), (ek, dk) and (crs, td) are randomly generated and r ∈ R is randomly chosen.
pk1 and sk1 are parsed as (p,G, g1, · · · , gn, y) and (x1, · · · , xn), respectively. S sends
(pk1, pk2, ek, crs, f (pk1, pk2, ek, crs, sk1; r)) to A. Then, S receives (m, r) and (m′, r′)
from A. S computes x∗i B (J(m)ri − J(m′)r′i)/(J(m′) − J(m)) for i ∈ [1, n] and sets
sk∗1 B (x∗1, · · · , x∗n). S outputs sk∗1. We obtain

|Pr[W2] − Pr[W3]|
≤ Pr[[m , m′] ∧ [J(m) , J(m′)] ∧ [sk1 = sk∗1] ∧ [(y ·

∏
i∈[1,n]

gri
i)J(m) = (y ·

∏
i∈[1,n]

gr′i
i)J(m′)]]

= Pr[S(pk1, pk2, ek, crs, sk2, dk, td, f (pk1, sk1; r))→ sk∗1 s.t. [sk∗1 = sk1]]
= Pr[S(pk1, pk2, ek, crs, sk2, dk, td, f (pk1, sk1; r))→ sk∗1

s.t. [1← CHF.SKVer(pk1, sk∗1)] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)].

30

If we assume that there is a PPT adversary A which makes |Pr[W2] − Pr[W3]| non-
negligible, S breaks the hardness of inversion of the function f ∈ F HtI

ΠSIG
(λ). ⊓⊔

Proof of Lemma 13. We prove that if there is a PPT A which makes Pr[W4] non-
negligible, we can construct a PPT S which breaks the n-representation assumption [3,
6]. We give the definition of the assumption below.

Definition 10. We say that n-representation assumption holds if for every PPT A,
Pr[A(p,G, g1, · · · , gn)→ ((x1, · · · , xn), (x′1, · · · , x′n)) s.t. [(x1, · · · , xn) , (x′1, · · · , x′n)]∧
[
∏

i∈[1,n] gxi
i =
∏

i∈[1,n] gx′i
i]] is negligible, where (p,G)

R←− G(1λ), g1, · · · , gn
U←− G and

x1, · · · , xn
U←− Zp.

Validity of the assumption is guaranteed by the following theorem [3, 6].

Theorem 6. n-representation assumption holds under the DL assumption.

Let us consider a PPT S which behaves as follows. S is given (p,G, g1, · · · , gn) as

an instance of the n-representation problem. S chooses x1, · · · , xn
U←− Zp, and sets

y B
∏

i∈[1,n] gxi
i . Then, S sets pk1 and sk1 as (p,G, g1, · · · , gn, y) and (x1, · · · , xn), re-

spectively. S randomly generates (pk2, sk2), (ek, dk) and (crs, td). pk and sk are set as

(pk1, pk2, ek, crs) and sk1, respectively. S sets r as r
R←− R, then computes f (pk, sk; r).

S sends (pk, sk2, dk, td, f (pk, sk; r)) to A. Then, S receives (m, r) and (m′, r′) from
A. If [m = m′] ∧ [r , r′] ∧ [(y · ∏n

i=1 gri
i)J(m) = (y · ∏n

i=1 gr′i
i)J(m′)], then S out-

puts (r, r′). We obtain
(
y ·∏i∈[1,n] gri

i

)J(m)
=

(
y ·∏i∈[1,n] gr′i

i

)J(m′)
=

(
y ·∏i∈[1,n] gr′i

i

)J(m)
.

Hence,
∏

i∈[1,n] gri
i =
∏

i∈[1,n] gr′i
i . Theorefore, we obtain

Pr[W4] = Pr

[m = m′] ∧ [r , r′] ∧

y · ∏

i∈[1,n]

gri
i

J(m)

=

y · ∏
i∈[1,n]

gr′i
i

J(m′)

= Pr

S(p,G, g1, · · · , gn)→ (r, r′) s.t.
[
r , r′

] ∧ ∏
i∈[1,n]

gri
i =
∏

i∈[1,n]

gr′i
i

 .

If we assume that there is a PPT adversaryA which makes Pr[W4] non-negligible, S is
able to break the n-representation assumption. ⊓⊔

31

