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Abstract. Physical attacks are a known threat posed against secure em-
bedded systems. Notable among these is laser fault injection, which is often
considered as the most effective fault injection technique. Indeed, laser
fault injection provides a high spatial accuracy, which enables an attacker
to induce bit-level faults. However, experience gained from attacking 8-bit
targets might not be relevant on more advanced micro-architectures, and
these attacks become increasingly challenging on 32-bit microcontrollers.
In this article, we show that the flash memory area of a 32-bit micro-
controller is sensitive to laser fault injection. These faults occur during
the instruction fetch process, hence the stored value remains unaltered.
After a thorough characterisation of the induced faults and the associ-
ated fault model, we provide detailed examples of bit-level corruption
of instructions and demonstrate practical applications in compromising
the security of real-life codes. Based on these experimental results, we
formulate a hypothesis about the underlying micro-architectural features
that explain the observed fault model.
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1 Introduction

Physical attacks pose a considerable threat to the security of embed-
ded systems. Provided physical access to a device, an attacker can exploit
hardware-based vulnerabilities to bypass existing security measures. Among
? Part of this work is funded by French ANR program (DS0901/2015) with the project
PROSECCO (ANR-15-CE39-0008)
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these techniques, fault injection consists in disturbing the operating con-
ditions of a device, while a secure computation takes place, in order to
retrieve secret information or be granted unauthorised privileges. Laser
fault injection features a high spatial accuracy, which enables an attacker to
induce single bit-flips in static memory cells of 8-bit [13] and 32-bit micro-
controllers [32]. An explanation of the fault mechanism at the architectural
level was proposed, based on the physical understanding of laser injection
phenomenon [24, 14]. Conversely, this technique is expensive and difficult
to carry out with numerous precise parameters to tune, which might result
in endless explorations of the parameters space. While increasing chip
integration enables designers to integrate complex 32-bit architectures,
only few work investigate laser injection on these System-on-Chip architec-
tures [31, 16, 32, 15]. Besides, none of them address the underlying fault
mechanism, which makes it difficult to explain the observed fault models
in a consistent framework.

In this article, we highlight the flash memory as an area of interest for
laser fault injection on a 32-bit microcontroller. We observe that individual
bits of the fetched instructions can be set. The stored value remains
untouched, only the read value is altered. For example, the data, the
source, or the destination register of the fetched instruction can be altered,
but also the opcode itself, potentially changing the instruction itself. Such
modifications give rise to severe security concerns, since an attacker can
then tamper with the instructions on the fly before they are executed.

The contributions of this article are the following. First, we highlight
the sensitivity of flash memory to the single-bit “bit-set” fault model.
We detail the influence of each parameter of the laser on the injected
fault. Then we apply this fault model to real-life codes and show how it
undermines their security. Finally, we discuss a physical explanation for
the observed faults, which is consistent with the micro-architecture of the
NOR flash memory of our target.

The outline of the article is as follows. In Section 2, we analyse previous
works on laser fault injection, pointing out the current scarcity of results
and understanding of fault injection on 32-bit microcontrollers. In Section 3,
we detail our experimental setup. In Section 4, we describe the obtained
fault model and how it is affected by the parameters of our experimental
setup. In Section 5, we highlight how the previously described fault model
applies to implementations of a PIN verification and AES-128 algorithms
by demonstrating two attacks that we performed. In Section 6, we discuss
a hypothesis on the physical phenomenon accounting for the observed fault
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model, as well as the limitations of our setup. Finally, Section 7 concludes
the article.

2 Previous work

Attack schemes against physical implementations of cryptographic algo-
rithms require to define an abstract model of a device erroneous behaviour
[4]. The complexity of fault model characterisation lies in the multiple
features that influence a device response to fault injection, namely its
micro-architecture, technology node, and sensitivity to the fault injection
technique. Therefore, a comprehensive knowledge of the fault mechanism
is hard to acquire.

In order to highlight the current scarcity of results on 32-bit microcon-
trollers, we define four levels of abstraction in Figure 1. The algorithmic
level provides a description of the fault effects on an algorithm outputs,
regardless of its implementation. The execution level details the faults
effects on the components of the software data model. The implementation
level explains how the observed behaviour is related to the hardware imple-
mentation of the target device. The physical level focuses on the physical
phenomenon of the fault injection.

Algorithmic level

Execution level

Implementation level

Physical level

Fig. 1: Abstraction levels to describe a fault model.

Substantial work has been done to understand fault injection on 8-bit
microcontrollers in the context of smart-card security. Most of the publi-
cations focus on fault description at the algorithmic level to demonstrate
practical attacks on cryptographic algorithms [8, 17, 25, 33]. In some cases,
observations of low-level execution faults are provided, highlighting in-
struction or register corruption [11, 1, 5]. Balasch et al. demonstrated that
a thorough characterisation of a device response to fault injection enables
one to get a better understanding of the fault effects on the underlying
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hardware implementation [1]. At the same time, several authors observed
that timing constraints violation could explain the observed fault models
at the physical level [26, 19]. While none of these works addressed all four
levels of abstraction, they reflect a global understanding of fault injection
on 8-bit microcontrollers.

Current work on 32-bit architectures follows a similar timeline. Most of
the publications focus so far on empirical observations at the algorithmic [6]
and execution level [31, 30]. However, the observed fault models lack a con-
sistent framework. Several difficulties can be underlined while attempting
to understand the effect of fault injection on 32-bit architectures.

First, advanced technology nodes enable designers to improve the
performance of a chip with architectural features like pipeline and cache
mechanisms. They greatly increase the complexity of black-box fault effects
analysis [20, 22] as already observed on 8-bit architectures [1].

Second, fault injection techniques leveraging timing constraints vio-
lation fail to catch local features of 32-bit micro-architectures. Indeed,
attempts to characterise the effects of clock glitches on 32-bit architectures
obtained very similar results to those with 8-bit architectures [2, 19], while
different fault models were observed with optical injection depending on
the injection locality [15].

Third, substantial work has been done to understand fault effects on
32-bit microcontroller at the execution and implementation level using
local electromagnetic fault injection [20, 22]. However, chip sensitivity to
the underlying physical phenomenon is not understood yet and lacks a
consistent description [21].

Laser fault injection was introduced by Skorobogatov in 2002, based on
related works on the simulation of ionising radiation in semiconductors de-
vices [29]. Provided access to the die, an attacker can induce electron-hole
dissociation on the path of a laser beam. As a consequence, a photoelectric
current is generated in reverse biased junctions of the illuminated tran-
sistors. This effect was investigated to describe the bit-flip fault model
in SRAM cells [24, 14] with attacks on AES encryption [13] and secure
program register [32]. Both physical understanding and spatial accuracy
of laser fault injection make this technique well suited to gain insight into
the effects of fault injection on 32-bit architecture.

Previous work on flash memory vulnerabilities pointed out the memory
control logic as a sensitive area to laser fault injection [27, 28, 7] although
the authors do not explain the underlying fault mechanism.

In this article, we characterise the effect of laser injection in the flash
memory area and observe that single bit-set in data fetched from the
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flash memory can be performed. We then give several examples of instruc-
tions corruption. We demonstrate the validity of the fault model on the
implementations of two security algorithms in Section 5 and propose a
transistor-level explanation of the physical fault mechanism in Section 6.

3 Methods and experimental setup

3.1 Target board and microcontroller

The target microcontroller that we used for our experiments embeds an
ARM Cortex-M3 core with 128 kB of flash memory and is manufactured at
the 90 nm technology node. It is mounted on a ChipWhisperer [9] target
board, with the chip soldered below and facing up. We designed a custom
target board suitable for laser injection thanks to the open-source hard-
ware information provided for the ChipWhisperer platform1. The target
microcontroller runs at the 7.4MHz frequency fixed by the ChipWhisperer
platform, corresponding to a 135 ns clock period. An opening was cut on
the PCB board, just under the chip, to give access to its back-side.

To perform laser fault injection, the back of the chip must be de-
capsulated to show the silicon substrate. This is performed by chemical
processing before the chip is mounted on the board. The decapsulation
must be carried out with great care, especially regarding the amount of
chemical product used to decapsulate: too few keeps part of the die covered,
thereby reducing the fault injection area, too much makes the decapsulated
chip very fragile. Thinning the die was not necessary here. A picture of
the board is shown in Figure 2. This target board is then mounted on the
ChipWhisperer motherboard and put in place on the laser bench.

3.2 Laser characteristics and parameters

The laser source uses an acousto-optic technology to generate an infrared
laser beam at a wavelength of 1,064 nm. An infrared laser is a necessity to
perform fault injection through the back-side since the silicon substrate is
opaque to visible light. An infrared laser can go through it and impact the
active regions of the transistors.

The laser source can shoot laser pulses as short as 50 ns with a maximum
power of 3W. The laser pulse is directed to the focusing system by an
optical fiber. The focusing system allows to obtain a laser spot of 5 µm in
1 https://github.com/newaetech/chipwhisperer/tree/develop/hardware/
victims/cw308_ufo_target

https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw308_ufo_target
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw308_ufo_target
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(a) Picture of the custom target board. The
decapsulated chip mounted below with the
silicon substrate visible is circled in red.
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(b) Tiled infrared picture of the tar-
get microcontroller. The flash mem-
ory is framed in red.

Fig. 2: Target microcontroller on the custom board.

diameter. We manually adjust its focus with a confocal infrared camera.
The laser shot is triggered by an external input, generated by the target
device. There is an adjustable delay between the rising edge of the trigger
and the actual arrival of the laser beam on the die.

There are five injection parameters that must be tuned:

– power: the peak power of the laser pulse,
– duration: the duration of the laser pulse,
– delay: the delay between the arrival of the trigger on the laser source

and the actual shot,
– x position: the x position on the target board,
– y position: the y position on the target board.

3.3 Characterisation codes

Leveraging simple test codes, one can characterise the target unexpected
behaviours and the fault model dependence on experimental conditions.
As opposed to [6], we state that the conclusions drawn from test codes
about the underlying fault mechanisms can be extended to any codes, as
observed in [1]. Attack scenarios on software implementation of secure
algorithms were remarkably consistent with our characterisation results.
Codes given in Listings 1 and 2 were used to characterise the fault model.
Their respective usage is described below. The code was compiled into the
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Thumb instruction set. Therefore, instructions can either be 16 or 32-bit
wide and are sometimes unaligned. Data stored in flash memory is said to
be aligned if it is stored at an address which is a multiple of 32 bits.

Bit-level characterisation of fault location The first code highlights
modifications in data fetched from flash memory. The target instruction is
on line 4 of Listing 1.

Listing 1 Characterisation of bit-set location.
1 test_data:
2 .word 0x00000000
3 NOP
4 LDR R0, test_data
5 NOP
6 # Reading back R0

This LDR instruction fetches the 32-bit word 0x00000000 stored at the
test_data label and stores it in register R0. A fault is detected on the third
bit if, for instance, the actual value stored in register R0 is 0x00000008
after a laser injection was performed. The test word 0x00000000 was used
to highlight bit-sets, as prior test with the word 0xFFFFFFFF validated
that we were not able to induce bit-resets. The advantage of faulting raw
data instead of an instruction is that it allows to observe bit-sets on a
whole 32-bit word, whereas a 32-bit instruction always contains several
1s, for which the bit-set is not observable. The LDR instruction executes
in two clock cycles. In the first clock cycle, the offset of the address at
which the data is stored is computed. In the second clock cycle, the data
is actually read and stored in R0. The second clock cycle is the one we
target. Dummy instructions (NOP) are inserted before and after the target
instruction to prevent the effects of instruction corruption on the observed
fault model.

Characterisation of fault sensitivity over time The second char-
acterisation code aims at highlighting the most fault-sensitive moments
in the execution of instructions. For this, after finding out the location
where a given bit can be faulted thanks to the code given in Listing 1,
we swept over the injection delay with a 10 ns step to target consecutive
instructions shown in Listing 2, from line 3 to 9. Under normal conditions,
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Listing 2 Characterisation of sensitivity over time.
1 # Initialising registers R0, R1, R4, R5, R6,
2 # R8 and R9 to 0xFFFFFFFF
3 MOVW R0, 0x0000
4 MOVW R1, 0x0000
5 MOVW R4, 0x0000
6 MOVW R5, 0x0000
7 MOVW R6, 0x0000
8 MOVW R8, 0x0000
9 MOVW R9, 0x0000

10 # Reading back the registers

after executing the code shown in Listing 2, the output consists in several
32-bit 0x0000FFFF values stored in registers R0, R1, R4, R5, R6, R8, and R9.

The results obtained with these codes are given in the next section,
where we present the influence of the laser parameters on the fault injection
process.

4 Observable fault model

4.1 Parameters and types of faults

Characterisation of bit-set location We observed that moving along
the y-axis (longest side) on the flash memory area allows to precisely target
the bits of the fetched data one after the other. Conversely, moving along
the x-axis (shortest side) does not change the affected bit. Figure 3a shows
a mapping of the faulty bits with a x-step of 100 µm and a y-step of 5 µm
for an aligned word. The laser power is set to 1.1W with a pulse duration
of 135 ns. It clearly shows that the affected bit is directly related to the
y position (see color code on the right-hand side of Figure 3). Black dots
show locations where the chip stopped responding. Figure 3b shows an
optimal delay, around 1,850 ns here, where all the bits of the fetched word
can be set depending on the y coordinate of the laser spot over the flash
memory area.

Figure 4 is the same as Figure 3 but for an unaligned word. In this
situation, the upper and lower 16-bit parts of the accessed data are swapped
(see Figure 4a). This behaviour is better understood by analysing the
injection timing: the sixteen least significant bits are faulty one clock period
(135 ns) before the sixteen most significant bits, as shown on Figure 4b.
This observation reflects the organisation of the binary code, and supports
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Fig. 3: Influence of the x, y and delay parameters on the fault injection on
aligned data.

the assumption that the sequential access to the flash memory is faulted
during the fetch operation.

When performing the fault injection, an attacker does not know if the
target instruction is aligned or not. Therefore, according to Figures 3 and
4, if n denotes the targeted bit of an instruction, the laser spot must be
positioned to fault either the bit n if the instruction is aligned, or the bit
n+ 16 mod 32 if the instruction is unaligned. The previous results lead
to several observations. First, predictable and repeatable faults can be
achieved by targeting a fixed location on the flash memory area. In the
specific case where the corrupted instruction has no effect on the outputs of
the test routine, the equivalent of an instruction skip is observed. Second,
targeting the same instruction with the same spot location might induce
an entirely different behaviour if the instruction memory alignment is
different. The fault model dependency on laser injection parameters is
described below.

After we found a position at which a bit can be set, we explored the
power and duration parameters. The results are presented in Figure 5, for
a laser power ranging from 0.5 to 1.4W and a pulse duration from 65 to
270 ns. From these results, it appears that increasing the power and the
duration of the laser pulse increases the success rate of the fault injection.
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Fig. 4: Influence of the x, y and delay parameters on the fault injection on
unaligned data.

One very interesting setting is 0.5W of power and 200 ns of duration.
Indeed, it allows reaching 100% of fault occurrence for a range of almost
50 ns, while performing only single-bit faults. Performing a fault on two
adjacent bits with 100% probability is then possible by increasing the
power to 1.1W. These results show that in order to obtain single-bit faults,
careful tuning of the laser pulse power and duration is required.

Characterisation of fault sensitivity over time After running the
code shown in Listing 2 at a position where a specific bit can be set, it
appeared that some moments in time are more prone to fault injection than
others. Results are shown in Figure 6, which shows how the probability of
occurrence of a fault changes with the injection delay.

We observe in Figure 6 that the gap between two peaks of fault sensi-
tivity is always a multiple of the clock period. It supports the assumption
that the fault injection is synchronous with the chip internal activity.
Besides, we observe on the left-hand side of Figure 6 that the interval
between two consecutive faults is not constant. As this feature has not
been documented yet, we assume that the fetch timing depends on the
pipeline activity. However, for every instruction, there is a delay parameter
that allows to fault it with 100% probability.
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Fig. 5: Fault occurrence rate and types of faults for two laser injection
parameters: power and duration.
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Fig. 6: Periodicity of the fault occurrence rate for a 0.8W laser pulse of
135 ns.

These characterisation results show that individual instructions can
be targeted. Provided the right injection parameters, single bit-set can be
achieved on all the bits of an instruction or word fetched from the flash
memory.

4.2 Modification of a MOVW instruction

As an illustrative example of the possibilities offered by the fault model,
we performed fault injection on a MOVW instruction. This 32-bit instruction
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loads a 16-bit value into the lower part of a 32-bit register and resets the
upper part. The opcode, the destination register (denoted as Rd) and
the n-bit data (denoted as “i” or “immn”) of the instruction are shown in
the upper part of Figure 7. An example MOVW instruction is given where
0x0000 is stored in R0. This information is given in the ARM Architecture
Reference Manual2. We illustrate the impact of the fault model with three
instruction modifications that we did actually perform on the target. The
arrow indicates which bit is set by laser injection.

bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reference instructions
Generic MOVW 1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8
MOVW, R0, 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data corruption ø

MOVW, R0, 4 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Destination register corruption ø

MOVW, R1, 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Opcode corruption ø

MOVT, R0, 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 7: Examples of achievable corruptions on a MOVW instruction.

By performing a bit-set on the bit of index 2 of the instruction, the
data to be stored was altered. Setting this bit led to store 0x0004 instead
of 0x0000 into R0.

By performing a bit-set on the bit of index 8 of the instruction, the
destination register was altered. Setting this bit led to store 0x0000 into
R1 instead of R0.

Finally, by performing a bit-set on the bit of index 23 of the instruction,
the opcode was altered. This changed the instruction from MOVW to MOVT.
Setting this bit led to store 0x0000 into the upper part of R0 instead,
without altering the lower part.

These simple examples aim at illustrating the capabilities of the method.
Depending on the instructions of the assembly code, advanced manipula-
tions are possible.

2 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.
architecture.reference/index.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
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5 Applications to real-life codes

This section shows how to leverage the fault model described above on
real-life security codes. We did perform all the experiments and obtained
perfect repeatability, in accordance with the fault model described above.
It is worth noting that we did not observe any degradation or wear of the
Flash memory under attack.

5.1 PIN verification algorithm

In order to apply the fault injection technique described above to a real
security test-case, we targeted a constant-time 4-digit PIN verification
algorithm with hardened Booleans [12]. Its description is given in Algo-
rithm 1.

Algorithm 1 Constant-time 4-digit VerifyPIN with hardened Booleans.
1: trials = 3;
2: reference_PIN[4] = {1, 2, 3, 4}
3: procedure VerifyPIN(user_PIN[4])
4: authenticated = FALSE
5: diff = FALSE
6: dummy = TRUE
7: if trials > 0 then
8: for i ← 0 to 3 do
9: if user_PIN[i] != reference_PIN[i] then diff = TRUE
10: else dummy = FALSE
11: if diff == TRUE then trials = trials - 1
12: else authenticated = TRUE
13: return authenticated

The PIN verification algorithm is protected against simple power
analysis [18] by a constant-time implementation. Therefore, an attacker
cannot determine the correct digits one after the other by simply observing
the execution time of the algorithm. This is achieved by systematically
comparing all the digits of the user and reference PINs (see for loop on
line 8 of Algorithm 1). Thus a perturbation attack is required to break
such an implementation.

A first approach to perform a successful authentication using a fault
attack without providing the correct user PIN could be to change the
initialisation value of the authenticated variable (see initialisation on line
4 of Algorithm 1). By setting it to TRUE instead of FALSE, the authenti-
cation is successful even if the user PIN is wrong. However, the target
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implementation that we used employs hardened Booleans. This common
technique consists in storing Booleans in bytes and encoding TRUE as 0x55
and FALSE as 0xAA for instance. In this case, two bit-sets and two bit-resets
are needed to turn TRUE into FALSE, making the attack very challenging
and impractical in our fault injection setup since we can only perform
bit-sets.

The approach we explored is then to corrupt the trials counter (see
line 7 of Algorithm 1). Indeed, if we can bypass this comparison, then
an exhaustive search over all the possible PINs becomes feasible. The if
instruction is compiled into the assembly code shown in Figure 8. The CMP
instruction compares the trials variable, stored in R3, with 0. Then the
BLE instruction branches to address if the result of the comparison is “less
or equal”.

C code Assembly code

if (trials > 0) CMP R3, 0
BLE address

Fig. 8: C and assembly code for an if branch.

We chose to alter the destination register part of the CMP instruction
to force a comparison with register R7 instead of register R3 (see Figure 9).
The ARM convention is to store in register R7 the address of the SRAM
space, called frame pointer, allocated for the subroutine local variables.
The result of the comparison is thus always positive, and the branch is
never taken. Even if the trials counter reaches zero, the user and reference
PINs are still compared. Therefore, an attacker can iterate over all the
possible 4-digit PINs until authentication succeeds.

5.2 AES encryption

The second security use-case is the AES-128 encryption algorithm [10].
The algorithm consists of ten rounds, each round including AddRoundKey,
SubBytes, ShiftRows and MixColumns transformations, except for the
last round which does not include the MixColumns transformation. A final
AddRoundKey is then performed, which is the transformation we targeted.

Algorithm 2 describes the AddRoundKey transformation. It operates on
a 4x4 state matrix [10]. Going through all the sixteen possible entries, the
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bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reference instructions
Generic CMP 0 0 1 0 1 Rd imm8
CMP R3, 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0

Register corruption ø

CMP R7, 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0

Fig. 9: Fault on the destination register part of the CMP instruction to fault
the comparison.

AddRoundKey transformation consists in XORing the state matrix entry
Si,j and a tenth round-key byte K10

i,j , where i denotes the column and j
denotes the row.

Algorithm 2 Add_round_key transformation.
1: procedure Add_round_key
2: for i ← 0 to 3 do
3: for j ← 0 to 3 do
4: Si,j = Si,j ⊕K10

i,j

As shown in Algorithm 2, the AddRoundKey transformation consists in
two nested for loops. The C and assembly codes for this construction are
shown on Figure 10.

C code Assembly code

for (int i=0; i<4; i++)
{

for (int j=0; j<4; j++)
{

...
}

}

MOV R0, 0
addr_i:
MOV R1, 0
addr_j:
...
ADD R1, 1
CMP R1, 3
BLE addr_j
ADD R0, 1
CMP R0, 3
BLE addr_i

Fig. 10: C and assembly code for two nested for loops.
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In order to fault the final AddRoundKey transformation, we chose to
alter the control flow and prematurely exit the for loops. By performing a
fault on the ADD instruction, we can modify the data part and add 5 instead
of 1 to the loop variable (see Figure 11). This causes the for loop to end
prematurely, since the exit condition is satisfied after the first iteration. As
a consequence, faulty bytes of the ciphertext are given by the expression
Ci,j ⊕K10

i,j , where Ci,j denote the correct byte of the ciphertext found on
the i-th column of the j-th row of the state-matrix after completion of a
fault-free encryption.

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reference instructions
Generic ADD 0 0 1 1 0 Rd imm8
ADD R0, 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Data corruption ø

ADD R0, 5 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1

Fig. 11: Fault on the data part of the ADD instruction to prematurely escape
a for loop.

By faulting the inner for loop on its first execution, in the first column
of the state matrix, the three last bytes of the first row are faulty. The
resulting ciphertext C̃ inner

i,j is given in Equation (1).

C̃ inner
i,j =

{
Ci,j ⊕K10

i,j if i = 0, j ∈ [1..3]

Ci,j otherwise
(1)

By faulting the outer for loop, only the first column bytes of the
state matrix are XORed with the associated tenth round-key bytes. Thus
the three last columns of the ciphertext matrix are faulty. The resulting
ciphertext C̃outer

i is given in Equation (2).

C̃outer
i,j =

{
Ci,j ⊕K10

i,j if i ∈ [1..3], j ∈ [0..3]

Ci,j otherwise
(2)

Holding these two faulty ciphertexts, the attacker can recover the last
fifteen bytes of the tenth round key by XORing the fifteen faulty bytes
with the bytes of the correct ciphertext (see Equation (3)).

K10
i,j =

{
C̃ inner
i,j ⊕ Ci,j if i = 0, j ∈ [1..3]

C̃outer
i,j ⊕ Ci,j if i ∈ [1..3], j ∈ [0..3]

(3)



Title Suppressed Due to Excessive Length 17

The first byte of the tenth round key K10
0,0 must then be brute-forced,

which is easily done in 27 attempts on average. The whole AES key can
then be recovered by reversing the key schedule. To conclude, altering the
control-flow of AES encryption and obtaining two faulty ciphertexts allows
an attacker to fully recover the AES key with an average complexity of 27.

6 Discussion

6.1 Possible explanation for the observed fault model

The architecture of the flash memory in the microcontroller we targeted
is a NOR flash (see Figure 12). Previous work has highlighted that the
sensitive areas of CMOS are reverse biased PN junctions [23]. From this
information, we can propose the following explanation for the observed
fault model described in Section 4.

D

CBLi

Iph

Vread Gnd

Vdd

G

S

WLj WLj+1BLi

Reverse biased junction
Charged floating gate (Logic 0)

Laser spot

Fig. 12: Schematic of a bit-line in a NOR flash memory. The red elements
indicate the effect of the laser shot.

When a bit is read from flash memory, the associated bit-line is pre-
charged to Vdd. A floating-gate transistor, connected to this bit-line, is
activated by its word-line. If the floating gate is charged, then the threshold
voltage is high. If there is no charge on the floating gate, then the threshold
voltage is low. A floating-gate transistor with no voltage on its control
gate is blocked, regardless of the charge stored on its floating gate. By
setting an intermediate voltage Vread on the control gate of the floating-
gate transistor, low-threshold transistors pull the bit-line to ground while
high-threshold transistors do not.
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In NOR flash memory, floating-gate transistors are connected in parallel
between a bit-line and the ground. When a laser spot illuminates the drain
of a blocked transistor, a photocurrent Iph is induced between its drain
and the bulk (connected to ground). This is illustrated by the red elements
in Figure 12. As a consequence, its bit-line is pulled down to ground. Even
though the word-line activates a floating-gate transistor that stores charges
(see left-hand side of Figure 12), then the bit-line would still be pulled to
ground by the laser-induced photocurrent. There is no physical mechanism
to explain how a laser shot could prevent photocurrent from being drawn.
Assuming a logic 1 stored in memory is encoded as a low voltage on the
bit-line, this explains the asymmetry of the fault model which shows only
bit-sets.

This physical mechanism can be applied to any floating-gate transistor
of the flash memory. Assuming that bit-lines are horizontal and word-
lines are vertical, it explains why we can sweep over the bits of a fetched
instruction as we move the laser spot along the y-axis, affecting the bit-lines
one after the other. However, moving along the x-axis affects transistors
connected to the same bit-line, setting the same bit. This explains why
moving along the y-axis allows targeting specific bits, independently of
the x-coordinate as shown in Figures 3a and 4a.

Finally, the power dependency of the photocurrent spatial distribution
explains why two adjacent bits can be faulted with sufficient power, as
shown in Figure 5. By affecting transistors connected to different adjacent
bit-lines, adjacent bits can be set.

6.2 Limitations

Mono-spot laser The fact that the laser we use has only one spot limits
the number of bits that can be simultaneously set in the instruction. We
observed either a single bit-set or two adjacent bit-sets. A multi-spot laser
setup is thus useful to set multiple non-adjacent bits and extend the range
of reachable modified instructions.

Bit-set only The observed fault model only consists of bit-sets. We do
not observe laser induced bit-reset in this region of the circuit. Even though
this limits the range of reachable modified instructions, Section 5 shows
that this fault model has numerous applications.

Control flow corruption mostly As demonstrated by two examples
in Section 5, faulting the control flow of a program is feasible. However,
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given our fault model, faulting the data is impossible most of the time
while targeting the flash memory. Indeed, data is not hard-coded in the
instructions but instead stored in RAM and fetched when needed. For
example, it is impossible to perform safe-error attacks on AES encryption
[3] since the AES round-key bytes are not hard-coded in the instructions.

Altering the control flow is already an effective way to lower the security
of algorithms though. In future works, some arithmetic operations could be
modified to actually alter the data. However, this is very algorithm-specific
and must be investigated for each case.

6.3 Reproducibility with a new target code and an identical
microcontroller

Performing extensive characterisation and exploration of laser parameters
to perform a correct fault injection is a time-consuming process and can
take months. However, reproducing these results on a new target code and
an identical microcontroller would be much faster. It would first require
to decapsulate the chip and mount it on a suitable board for back-side
laser injection. Then, the code shown in Listing 1 with a laser power of
0.5W and duration of 200 ns can be used to find the y coordinates at
which each individual bit is set. Access to the assembly code of the target
application is needed to identify the target instruction. After that, the
ARM Architecture Reference Manual is used to find out a valid faulty
instruction. Finally, the delay injection parameter must be tuned.

7 Conclusion

This article presented a new laser fault injection attack on the flash memory
of a 32-bit microcontroller. Provided the right injection parameters, an
attacker can set individual bits of the words fetched from flash memory in a
very predictable manner. Based on our characterisation results, we provided
practical examples of control flow and data corruption affecting common
security algorithms. Finally, we discussed how the hardware features of a
NOR flash memory can explain the observed fault model. Future works on
the topic will focus on examining state-of-the-art software countermeasures
such as control flow integrity that may be relevant against the attacks that
we demonstrated on the PIN verification and AES algorithms.
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