
Secure Outsourced Matrix Computation
and Application to Neural Networks?

Xiaoqian Jiang1, Miran Kim1, Kristin Lauter2, and Yongsoo Song2

1 University of Texas, Health Science Center at Houston, USA
{Xiaoqian.Jiang, Miran.Kim}@uth.tmc.edu

2 Microsoft Research, Redmond, USA
{klauter, Yongsoo.Song}@microsoft.com

September 4, 2019

Abstract. Homomorphic Encryption (HE) is a powerful cryptographic primitive to address pri-
vacy and security issues in outsourcing computation on sensitive data to an untrusted computation
environment. Comparing to secure Multi-Party Computation (MPC), HE has advantages in sup-
porting non-interactive operations and saving on communication costs. However, it has not come
up with an optimal solution for modern learning frameworks, partially due to a lack of efficient
matrix computation mechanisms.
In this work, we present a practical solution to encrypt a matrix homomorphically and perform
arithmetic operations on encrypted matrices. Our solution includes a novel matrix encoding method
and an efficient evaluation strategy for basic matrix operations such as addition, multiplication, and
transposition. We also explain how to encrypt more than one matrix in a single ciphertext, yielding
better amortized performance.
Our solution is generic in the sense that it can be applied to most of the existing HE schemes. It
also achieves reasonable performance for practical use; for example, our implementation takes 0.6
seconds to multiply two encrypted square matrices of order 64 and 0.09 seconds to transpose a
square matrix of order 64.
Our secure matrix computation mechanism has a wide applicability to our new framework E2DM,
which stands for encrypted data and encrypted model. To the best of our knowledge, this is the first
work that supports secure evaluation of the prediction phase based on both encrypted data and
encrypted model, whereas previous work only supported applying a plain model to encrypted data.
As a benchmark, we report an experimental result to classify handwritten images using convolutional
neural networks (CNN). Our implementation on the MNIST dataset takes 1.69 seconds to compute
ten likelihoods of 64 input images simultaneously, yielding an amortized rate of 26 milliseconds per
image.

Keywords. Homomorphic encryption; matrix computation; machine learning; neural networks

1 Introduction

Homomorphic Encryption (HE) is an encryption scheme that allows for operations on encrypted inputs
so that the decrypted result matches the outcome for the corresponding operations on the plaintext.
This property makes it very attractive for secure outsourcing tasks, including financial model evaluation
and genetic testing, which can ensure the privacy and security of data communication, storage, and
computation [3, 46]. In biomedicine, it is extremely attractive due to the privacy concerns about patients’
sensitive data [27, 47]. Recently deep neural network based models have been demonstrated to achieve
great success in a number of health care applications [36], and a natural question is whether we can
outsource such learned models to a third party and evaluate new samples in a secure manner?

There are several different scenarios depending on who owns the data and who provides the model.
Assuming a few different roles including data owners (e.g. hospital, institution or individuals), cloud
computing service providers (e.g. Amazon, Google, or Microsoft), and machine learning model providers

? An early version of this work was published in CCS 2018. In this version, we present better experimental results
in Sections 5 and 6 based on our more recent implementation.

(e.g. researchers and companies), we can imagine the following situations: (1) the data owner trains
a model and makes it available on a computing service provider to be used to make predictions on
encrypted inputs from other data owners; (2) model providers encrypt their trained classifier models
and upload them to a cloud service provider to make predictions on encrypted inputs from various data
owners; and (3) a cloud service provider trains a model on encrypted data from some data owners and
uses the encrypted trained model to make predictions on new encrypted inputs. The first scenario has
been previously studied in CryptoNets [23] and subsequent follow-up work [10, 7]. The second scenario
was considered by Makri et al. [35] based on Multi-Party Computation (MPC) using polynomial kernel
support vector machine classification. However, the second and third scenarios with an HE system have
not been studied yet. In particular, classification tasks for these scenarios rely heavily on efficiency of
secure matrix computation on encrypted inputs.

1.1 Our Contribution

In this paper, we introduce a generic method to perform arithmetic operations on encrypted matrices
using an HE system. Our solution requires O(d) homomorphic operations to compute a product of two
encrypted matrices of size d×d, compared to O(d2) of the previous best method. We extend basic matrix
arithmetic to some advanced operations: transposition and rectangular matrix multiplication. We also
describe how to encrypt multiple matrices in a single ciphertext, yielding a better amortized performance
per matrix.

We apply our matrix computation mechanism to a new framework E2DM, which takes encrypted data
and encrypted machine learning model to make predictions securely. This is the first HE-based solution
that can be applied to the prediction phase of the second and third scenarios described above. As a
benchmark of this framework, we implemented an evaluation of convolutional neural networks (CNN)
model on the MNIST dataset [33] to compute ten likelihoods of handwritten images.

1.2 Technical Details

After Gentry’s first construction of a fully HE scheme [21], there have been several attempts to improve
efficiency and flexibility of HE systems. For example, the ciphertext packing technique allows multiple
values to be encrypted in a single ciphertext, thereby performing parallel computation on encrypted
vectors in a Single Instruction Multiple Data (SIMD) manner. In the current literature, most of practical
HE schemes [9, 8, 18, 13] support their own packing methods to achieve better amortized complexity of
homomorphic operations. Besides component-wise addition and multiplication on plaintext vectors, these
schemes provide additional functionalities such as scalar multiplication and slot rotation. In particular,
permutations on plaintext slots enable us to interact with values located in different plaintext slots.

A naive solution for secure multiplication between two matrices of size d × d is to use d2 distinct
ciphertexts to represent each input matrix (one ciphertext per one matrix entry) and apply pure SIMD

a0 a1 a2

a3 a4 a5

a6 a7 a8

·
b0 b1 b2

b3 b4 b5

b6 b7 b8

=

a0 a1 a2

a4 a5 a3

a8 a6 a7

�
b0 b4 b8

b3 b7 b2

b6 b1 b5

+

a1 a2 a0

a5 a3 a4

a6 a7 a8

�
b3 b7 b2

b6 b1 b5

b0 b4 b8

+

a2 a0 a1

a3 a4 a5

a7 a8 a6

�
b6 b1 b5

b0 b4 b8

b3 b7 b2

Fig. 1: Our matrix multiplication algorithm with d = 3.

2

operations (addition and multiplication) on encrypted vectors. This method consumes one level for ho-
momorphic multiplication, but it takes O(d3) multiplications. Another approach is to consider a matrix
multiplication as a series of matrix-vector multiplications. Halevi and Shoup [24] introduced a matrix
encoding method based on its diagonal decomposition, putting the matrix in diagonal order and mapping
each of them to a single ciphertext. So it requires d ciphertexts to represent the matrix and the matrix-
vector multiplication can be computed using O(d) rotations and multiplications. Therefore, the matrix
multiplication takes O(d2) complexity and has a depth of a single multiplication.

We propose an efficient method to perform matrix operations by combining HE-friendly operations
on packed ciphertexts such as SIMD arithmetics, scalar multiplication, and slot rotation. We first define
a simple encoding map that identifies an arbitrary matrix of size d× d with a vector of dimension n = d2

having the same entries. Let � denote the component-wise product between matrices. Then matrix
multiplication can be expressed as A ·B =

∑d−1
i=0 Ai �Bi for some matrices Ai (resp. Bi) obtained from

A (resp. B) by taking specific permutations. Figure 1 describes this equality for the case of d = 3. We
remark that the initial matrix A0 (resp. B0) can be computed with O(d) rotations, and that for any
1 ≤ i < d the permuted matrix Ai (resp. Bi) can be obtained by O(1) rotations from the initial matrix.
Thus the total computational complexity is bounded by O(d) rotations and multiplications. We refer
to Table 1 for comparison of our method with prior work in terms of the number of input ciphertexts
for a single matrix, complexity, and the required depth for implementation. We denote homomorphic
multiplication and constant multiplication by Mult and CMult, respectively.

Table 1: Comparison of secure d-dimensional matrix multiplication algorithms

Methodology
Number of

Complexity Required depth
ciphertexts

Naive method d2 O(d3) 1 Mult

Halevi-Shoup [26] d O(d2) 1 Mult

Ours 1 O(d) 1 Mult + 2 CMult

Our basic solution is based on the assumption that a ciphertext can encrypt d2 plaintext slots, but it
can be extended to support matrix computation of an arbitrary size. When a ciphertext has more than d2

plaintext slots, for example, we can encrypt multiple matrices in a single ciphertext and carry out matrix
operations in parallel. On the other hand, if a matrix is too large to be encoded into one ciphertext, one
can partition it into several sub-matrices and encrypt them individually. An arithmetic operation over
large matrices can be expressed using block-wise operations, and the computation on the sub-matrices
can be securely done using our basic matrix algorithms. We use this approach to evaluate an encrypted
neural networks model on encrypted data.

Our implementation is based on an HE scheme of Cheon et al. [13], which is optimized in computation
over the real numbers. For example, it took 0.6 seconds to securely compute the product of two matrices
of size 64 × 64 and 0.09 seconds to transpose a single matrix of size 64 × 64. For the evaluation of an
encrypted CNN model, we adapted a similar network topology to CryptoNets: one convolution layer and
two fully connected (FC) layers with square activation function. This model is obtained from the keras
library [14] by training 60,000 images of the MNIST dataset, and used for the classification of handwriting
images of size 28×28. It took 1.69 seconds to compute ten likelihoods of encrypted 64 input images using
the encrypted CNN model, yielding an amortized rate of 26 milliseconds per image. This model achieves
a prediction accuracy of 98.1% on the test set.

2 Preliminaries

The binary logarithm will be simply denoted by log(·). We denote vectors in bold, e.g. a, and every
vector in this paper is a row vector. For a d1× d matrix A1 and a d2× d matrix A2, (A1;A2) denotes the

3

(d1+d2)×d matrix obtained by concatenating two matrices in a vertical direction. If two matrices A1 and
A2 have the same number of rows, (A1|A2) denotes a matrix formed by horizontal concatenation. We let
λ denote the security parameter throughout the paper: all known valid attacks against the cryptographic
scheme under scope should take Ω(2λ) bit operations.

2.1 Homomorphic Encryption

HE is a cryptographic primitive that allows us to compute on encrypted data without decryption and
generate an encrypted result which matches that of operations on plaintext [9, 18, 6, 13]. So it enables
us to securely outsource computation to a public cloud. This technology has great potentials in many
real-world applications such as statistical testing, machine learning, and neural networks [40, 29, 23, 31].

Let M and C denote the spaces of plaintexts and ciphertexts, respectively. An HE scheme Π =
(KeyGen, Enc, Dec, Eval) is a quadruple of algorithms that proceeds as follows:

• KeyGen(1λ). Given the security parameter λ, this algorithm outputs a public key pk, a public evalu-
ation key evk and a secret key sk.

• Encpk(m). Using the public key pk, the encryption algorithm encrypts a message m ∈ M into a
ciphertext ct ∈ C.

• Decsk(ct). For the secret key sk and a ciphertext ct, the decryption algorithm returns a message
m ∈M.

• Evalevk(f ; ct1, . . . , ctk). Using the evaluation key evk, for a circuit f : Mk → M and a tuple of
ciphertexts (ct1, . . . , ctk), the evaluation algorithm outputs a ciphertext ct′ ∈ C.

An HE scheme Π is called correct if the following statements are satisfied with an overwhelming
probability:

• Decsk(ct) = m for any m ∈M and ct← Encpk(m).
• Decsk(ct

′) = f(m1, . . . ,mk) with an overwhelming probability if ct′ ← Evalevk(f ; ct1, . . . , ctk) for an
arithmetic circuit f :Mk →M and for some ciphertexts ct1, . . . , ctk ∈ C such that Decsk(cti) = mi.

An HE system can securely evaluate an arithmetic circuit f consisting of addition and multiplication
gates. Throughout this paper, we denote by Add(ct1, ct2) and Multevk(ct1, ct2) the homomorphic addition
and multiplication between two ciphertexts ct1 and ct2, respectively. In addition, we let CMultevk(ct;u)
denote the multiplication of ct with a scalar u ∈ M. For simplicity, we will omit the subscript of the
algorithms when it is clear from the context.

2.2 Ciphertext Packing Technique

Ciphertext packing technique allows us to encrypt multiple values into a single ciphertext and perform
computation in a SIMD manner. After Smart and Vercauteren [45] first introduced a packing technique
based on polynomial-CRT, it has been one of the most important features of HE systems. This method
represents a native plaintext space M as a set of n-dimensional vectors in Rn over a ring R using
appropriate encoding/decoding methods (each factor is called a plaintext slot). One can encode and
encrypt an element of Rn into a ciphertext, and perform component-wise arithmetic operations over the
plaintext slots at once. It enables us to reduce the expansion rate and parallelize the computation, thus
achieving better performance in terms of amortized space and time complexity.

However, the ciphertext packing technique has a limitation that it is not easy to handle a circuit
with some inputs in different plaintext slots. To overcome this problem, there have been proposed some
methods to move data in the slots over encryption. For example, some HE schemes [22, 13] based on
the ring learning with errors (RLWE) assumption exploit the structure of Galois group to implement the
rotation operation on plaintext slots. That is, such HE schemes include the rotation algorithm, denoted
by Rot(ct; `), which transforms an encryption ct of m = (m0, . . . ,mn−1) ∈ M = Rn into an encryption
of ρ(m; `) := (m`, . . . ,mn−1,m0, . . . ,m`−1). Note that ` can be either positive or negative, and a rotation
by (−`) is the same as a rotation by (n− `).

4

2.3 Linear Transformations

Halevi and Shoup [24] introduced a method to evaluate an arbitrary linear transformation on encrypted
vectors. In general, an arbitrary linear transformation L : Rn → Rn over plaintext vectors can be
represented as L : m 7→ U ·m for some matrix U ∈ Rn×n. We can express the matrix-vector multiplication
by combining rotation and constant multiplication operations.

Specifically, for 0 ≤ ` < n, we define the `-th diagonal vector of U by u` = (U0,`, U1,`+1, . . . ,
Un−`−1,n−1, Un−`,0, . . . , Un−1,`−1) ∈ Rn. Then we have

U ·m =
∑

0≤`<n

(u` � ρ(m; `)) (1)

where � denotes the component-wise multiplication between vectors. Given a matrix U ∈ Rn×n and an
encryption ct of the vector m, Algorithm 1 describes how to compute a ciphertext of the desired vector
U ·m.

Algorithm 1 Homomorphic linear transformation

procedure LinTrans(ct;U)

1: ct′ ← CMult(ct;u0)
2: for ` = 1 to n− 1 do
3: ct′ ← Add(ct′, CMult(Rot(ct; `);u`))
4: end for
5: return ct′

As shown in Algorithm 1, the computational cost of matrix-vector multiplication is about n additions,
constant multiplications, and rotations. Note that rotation operation needs to perform a key-switching
operation and thus is comparably expensive than the other two operations. So we can say that the
complexity is asymptotically O(n) rotations. It can be reduced when the number of nonzero diagonal
vectors of U is relatively small.

3 Secure Matrix Multiplication via Homomorphic Encryption

In this section, we propose a simple encoding method to convert a matrix into a plaintext vector in a
SIMD environment. Based on this encoding method, we devise an efficient algorithm to carry out basic
matrix operations over encryption.

3.1 Permutations for Matrix Multiplication

We propose an HE-friendly expression of the matrix multiplication operation. For a d× d square matrix
A = (Ai,j)0≤i,j<d, we first define useful permutations σ, τ , φ, and ψ on the set Rd×d. For simplicity, we
identify Z ∩ [0, d) as a representative of Zd and write [i]d to denote the reduction of an integer i modulo
d into that interval. All the indexes will be considered as integers modulo d.

• σ(A)i,j = Ai,i+j .
• τ(A)i,j = Ai+j,j .
• φ(A)i,j = Ai,j+1.
• ψ(A)i,j = Ai+1,j .

Note that φ and ψ represent the column and row shifting functions, respectively. Then for two square
matrices A and B of order d, we can express their matrix product AB as follows:

A ·B =

d−1∑
k=0

(
φk ◦ σ(A)

)
�
(
ψk ◦ τ(B)

)
, (2)

5

where � denotes the component-wise multiplication between matrices. The correctness is shown in the
following equality by computing the matrix component of the index (i, j):

d−1∑
k=0

(
φk ◦ σ(A)

)
i,j
·
(
ψk ◦ τ(B)

)
i,j

=

d−1∑
k=0

σ(A)i,j+k · τ(B)i+k,j

=

d−1∑
k=0

Ai,i+j+k ·Bi+j+k,j

=

d−1∑
k=0

Ai,k ·Bk,j

= (A ·B)i,j .

Since Equation (2) consists of permutations on matrix entries and the Hadamard multiplication opera-
tions, we can efficiently evaluate it using an HE system with ciphertext packing method.

3.2 Matrix Encoding Method

We propose a row ordering encoding map to transform a vector of dimension n = d2 into a matrix in
Rd×d. For a vector a = (ak)0≤k<n, we define the encoding map ι : Rn → Rd×d by

ι : a 7→ A = (ad·i+j)0≤i,j<d,

i.e., a is the concatenation of row vectors of A. It is clear that ι(·) is an isomorphism between additive
groups, which implies that matrix addition can be securely computed using homomorphic addition in a
SIMD manner. In addition, one can perform multiplication by scalars by adapting a constant multiplica-
tion of an HE scheme. Throughout this paper, we identify two spaces Rn and Rd×d with respect to the
ι(·), so a ciphertext will be called an encryption of A if it encrypts the plaintext vector a = ι−1(A).

3.3 Matrix Multiplication on Packed Ciphertexts

An arbitrary permutation operation on Rd×d can be understood as a linear transformation L : Rn → Rn
such that n = d2. In general, its matrix representation U ∈ {0, 1}n×n ⊆ Rn×n has n number of nonzero
diagonal vectors. So if we directly evaluate the permutations A 7→ φk ◦ σ(A) and B 7→ ψk ◦ τ(B) for
1 ≤ k < d, each of them requires O(d2) homomorphic operations and thus the total complexity is
O(d3). We provide an efficient algorithm to perform the matrix multiplication on packed ciphertexts by
combining Equation (2) and our matrix encoding map.

3.3.1 Tweaks of Permutations

We focus on the following four permutations σ, τ , φ, and ψ described above. We let Uσ, Uτ , V , and W
denote the matrix representations corresponding to these permutations, respectively. Firstly, the matrix
representations Uσ and Uτ of σ and τ are expressed as follows:

Uσd·i+j,` =

{
1 if ` = d · i+ [i+ j]d;

0 otherwise;

Uτd·i+j,` =

{
1 if ` = d · [i+ j]d + j;

0 otherwise,

6

for 0 ≤ i, j < d and 0 ≤ ` < d2. Similarly, for 1 ≤ k < d, the matrix representations of φk and ψk can be
computed as follows:

V kd·i+j,` =

{
1 if ` = d · i+ [j + k]d;

0 otherwise;

W k
d·i+j,` =

{
1 if ` = d · [i+ k]d + j;

0 otherwise,

for 0 ≤ i, j < d and 0 ≤ ` < d2.
As described in Equation (1), we employ the diagonal decomposition of the matrix representations

for multiplications with encrypted vectors. Let us count the number of diagonal vectors to estimate the
complexity. We use the same notation u` to write the `-th diagonal vector of a matrix U . For simplicity,
we identify ud2−` with u−`. The matrix Uσ has exactly (2d − 1) number of nonzero diagonal vectors,
denoted by uσk for k ∈ Z ∩ (−d, d). The `-th diagonal vector of Uτ is nonzero if and only if ` is divisible
by the integer d, so Uτ has d nonzero diagonal vectors. For any 1 ≤ k < d, the matrix V k has two
nonzero diagonal vectors vk and vk−d. Similarly, the matrix W k has the only nonzero diagonal vector
wd·k. Therefore, homomorphic evaluations of the permutations σ and τ require O(d) rotations while it
takes O(1) rotations to compute ψk or φk for any 1 ≤ k < d.

3.3.2 Homomorphic Matrix Multiplication

Suppose that we are given two ciphertexts ct.A and ct.B that encrypt matrices A and B of size d ×
d, respectively. In the following, we describe an efficient evaluation strategy for homomorphic matrix
multiplication.

Step 1-1: This step performs the linear transformation Uσ on the input ciphertext ct.A. As mentioned
above, the matrix Uσ is a sparse matrix with (2d − 1) number of nonzero diagonal vectors uσk for
k ∈ Z ∩ (−d, d), so we can represent the linear transformation as

Uσ · a =
∑

−d<k<d

(uσk � ρ(a; k)) (3)

where a = ι−1(A) ∈ Rn is the vector representation of A. If k ≥ 0, the k-th diagonal vector is computed
by

uσk [`] =

{
1 if 0 ≤ `− d · k < (d− k);

0 otherwise,

where uσk [`] denotes the `-th component of uσk . In the other cases k < 0, it is computed by

uσk [`] =

{
1 if − k ≤ `− (d+ k) · d < d;

0 otherwise.

Then Equation (3) can be securely computed as∑
−d<k<d

CMult (Rot(ct.A; k);uσk) ,

resulting the encryption of the plaintext vector Uσ · a, denoted by ct.A(0). Thus, the computational cost
is about 2d additions, constant multiplications, and rotations.

Step 1-2: This step is to evaluate the linear transformation Uτ on the input ciphertext ct.B. As described
above, the matrix Uτ has d nonzero diagonal vectors so we can express this matrix-vector multiplication
as

Uτ · b =
∑

0≤k<d

(uτd·k � ρ(b; d · k)), (4)

7

where b = ι−1(B) and uτd·k is the (d · k)-th diagonal vector of the matrix Uτ . We note that for any
0 ≤ k < d, the vector uτd·k contains one in the (k + d · i)-th component for 0 ≤ i < d and zeros in all the
other entries. Then Equation (4) can be securely computed as∑

0≤k<d

CMult (Rot(ct.B; d · k);uτd·k) ,

resulting the encryption of the plaintext vector Uτ ·b, denoted by ct.B(0). The complexity of this procedure
is roughly half of the Step 1-1: d additions, constant multiplications, and rotations.

Step 2: This step securely computes the column and row shifting operations of σ(A) and τ(B), respec-
tively. For 1 ≤ k < d, the column shifting matrix V k has two nonzero diagonal vectors vk and vk−d that
are computed by

vk[`] =

{
1 if 0 ≤ [`]d < (d− k);

0 otherwise;

vk−d[`] =

{
1 if (d− k) ≤ [`]d < d;

0 otherwise.

Then we get an encryption ct.A(k) of the matrix φk ◦ σ(A) by adding two ciphertexts CMult(Rot
(ct.A(0); k);vk) and CMult(Rot(ct.A(0); k − d);vk−d). In the case of the row shifting permutation, the
corresponding matrix W k has exactly one nonzero diagonal vector wd·k whose entries are all one. Thus
we can obtain an encryption of the matrix ψk ◦ τ(B) by computing ct.B(k) ← Rot(ct.B(0); d · k). The
computational cost of this procedure is about d additions, 2d constant multiplications, and 3d rotations.

Step 3: This step computes the Hadamard multiplication between the ciphertexts ct.A(k) and ct.B(k)for
0 ≤ k < d, and finally aggregates all the resulting ciphertexts. As a result, we get an encryption ct.AB
of the matrix AB. The running time of this step is d homomorphic multiplications and additions.

In summary, we can perform the homomorphic matrix multiplication operation as described in Algo-
rithm 2.

Algorithm 2 Homomorphic matrix multiplication

procedure HE-MatMult(ct.A, ct.B)

[Step 1-1]
1: ct.A(0) ← LinTrans(ct.A;Uσ)

[Step 1-2]
2: ct.B(0) ← LinTrans(ct.B;Uτ)

[Step 2]
3: for k = 1 to d− 1 do
4: ct.A(k) ← LinTrans(ct.A(0);V k)

5: ct.B(k) ← LinTrans(ct.B(0);W k)
6: end for

[Step 3]
7: ct.AB ← Mult(ct.A(0), ct.B(0))
8: for k = 1 to d− 1 do
9: ct.AB ← Add(ct.AB, Mult(ct.A(k), ct.B(k)))

10: end for
11: return ct.AB

8

3.3.3 Further Improvements

This implementation of matrix multiplication takes about 5d additions, 5d constant multiplications, 6d
rotations, and d multiplications. The complexity of Steps 1-1 and 1-2 can be reduced by applying the
idea of baby-step/giant-step algorithm. Given an integer k ∈ (−d, d), we can write k =

√
d · i+ j for some

−
√
d < i <

√
d and 0 ≤ j <

√
d. It follows from [25, 26] that Equation (3) can be expressed as

Uσ · a =
∑

−
√
d<i<

√
d

0≤j<
√
d

(
uσ√

d·i+j � ρ(a;
√
d · i+ j)

)
=

∑
−
√
d<i<

√
d

ρ

 ∑
0≤j<

√
d

ai,j ;
√
d · i


where ai,j = ρ(uσ√

d·i+j ;−
√
d · i) � ρ(a; j). We first compute encryptions of baby-step rotations ρ(a; j)

for 0 ≤ j <
√
d. We use them to compute the ciphertexts of ai,j ’s using only constant multiplications.

After that, we perform
√
d additions,

√
d constant multiplications, and a single rotation for each i. In

total, Step 1-1 can be homomorphically evaluated with 2d additions, 2d constant multiplications, and
3
√
d rotations. Step 1-2 can be computed in a similar way using d additions, d constant multiplications,

and 2
√
d rotations.

On the other hand, we can further reduce the number of constant multiplications in Step 2 by lever-
aging two-input multiplexers. The sum of ρ(vk;−k) and ρ(vk−d; d− k) generates a plaintext vector that
has 1’s in all the slots, which implies that

CMult(Rot(ct.A(0); k − d);vk−d) = Rot(CMult(ct.A(0); ρ(vk−d; d− k)); k − d)

= Rot(ct.A(0) − CMult(ct.A(0); ρ(vk,−k)); k − d).

For each 1 ≤ k < d, we compute CMult(ct.A(0); ρ(vk,−k)). Then, using the fact that

CMult(Rot(ct.A(0); k);vk) = Rot(CMult(ct.A(0); ρ(vk,−k)); k),

we obtain the desired ciphertext ct.A(k) with addition and rotation operations.
Table 2 summarizes the complexity and the required depth of each step of Algorithm 2 with the

proposed optimization techniques.

Table 2: Complexity and required depth of Algorithm 2

Step Add CMult Rot Mult Depth

1-1 2d 2d 3
√
d -

1 CMult
1-2 d d 2

√
d -

2 2d d 3d - 1 CMult

3 d - - d 1 Mult

Total 6d 4d 3d+ 5
√
d d 1 Mult + 2 CMult

4 Advanced Operations for Homomorphic Matrix Computation

In this section, we introduce a method to transpose a matrix over an HE system. We also present a faster
rectangular matrix multiplication by employing the ideas from Algorithm 2. We can further extend our
algorithms to parallel matrix computation without additional cost.

4.1 Matrix Transposition on Packed Ciphertexts

Let U t be the matrix representation of the transpose map A 7→ At on Rd×d ∼= Rn. For 0 ≤ i, j < d, its
entries are given by

U td·i+j,k =

{
1 if k = d · j + i;

0 otherwise.

9

The k-th diagonal vector of U t is nonzero if and only if k = (d − 1) · i for some i ∈ Z ∩ (−d, d), so
the matrix U t is a sparse matrix with (2d − 1) nonzero diagonal vectors. We can represent this linear
transformation as

U t · a =
∑
−d<i<d

(t(d−1)·i � ρ(a; (d− 1) · i)),

where t(d−1)·i denotes the nonzero diagonal vector of U t. The `-th component of the vector t(d−1)·i is
computed by

t(d−1)·i[`] =

{
1 if `− i = (d+ 1) · j, 0 ≤ j < d− i;
0 otherwise,

if i ≥ 0, or

t(d−1)·i[`] =

{
1 if `− i = (d+ 1) · j, −i ≤ j < d;

0 otherwise,

if i < 0. The total computational cost is about 2d rotations and the baby-step/giant-step approach can
be used to reduce the complexity; the number of automorphism can be reduced down to 3

√
d.

4.2 Rectangular Matrix Multiplication

In this section, we design an efficient algorithm for rectangular matrix multiplication such as R`×d ×
Rd×d → R`×d or Rd×d × Rd×` → Rd×`. For convenience, let us consider the former case that A has
a smaller number of rows than columns (i.e., ` < d). A naive solution is to generate a square matrix
by padding zeros in the bottom of the matrix A and perform the homomorphic matrix multiplication
algorithm in Section 3.3, resulting in running time of O(d) rotations and multiplications. However, we can
further optimize the complexity by manipulating its matrix multiplication representation using a special
property of permutations described in Section 3.1.

4.2.1 Refinements of Rectangular Matrix Multiplication

Suppose that we are given an `×d matrix A and a d×d matrix B such that ` divides d. Since σ and φ are
defined as row-wise operations, the restrictions to the rectangular matrix A are well-defined permutations
on A. By abuse of notation, we use the same symbols σ and φ to denote the restrictions. We also use
C`1:`2 to denote the (`2 − `1)× d submatrix of C formed by extracting from `1-th row to the (`2 − 1)-th
row of C. Then their matrix product AB has shape `× d and it can be expressed as follows:

A ·B =
∑

0≤k<d

(φk ◦ σ(A))�
(
(ψk ◦ τ(B))0:`

)
=
∑

0≤i<`

∑
0≤j<d/`

(φj·`+i ◦ σ(A))�
(
(ψj·`+i ◦ τ(B))0:`

)
.

Our key observation is the following lemma, which gives an idea of a faster rectangular matrix mul-
tiplication algorithm.

Lemma 1. Two permutations σ and φ are commutative. In general, we have φk ◦ σ = σ ◦ φk for k > 0.
Similarly, we obtain ψk ◦ τ = τ ◦ ψk for k > 0.

Now let us define a d × d matrix Ā containing (d/`) copies of A in a vertical direction (i.e., Ā =
(A; . . . ;A)). Lemma 1 implies that

(φi ◦ σ(Ā))j·`:(j+1)·` = φi ◦ (σ(Ā)j·`:(j+1)·`)

= φi ◦ σ ◦ φj·`(A)

= φj·`+i ◦ σ(A).

10

Similarly, using the commutative property of τ and ψ, it follows

(ψi ◦ τ(B))j·`:(j+1)·` = (ψj·`+i ◦ τ(B))0:`.

Therefore, the matrix product AB is written as follows:

A ·B =
∑

0≤j<d/`

 ∑
0≤i<`

(φi ◦ σ(Ā))� (ψi ◦ τ(B))


j·`:(j+1)·`

.

4.2.2 Homomorphic Rectangular Matrix Multiplication

Suppose that we are given two ciphertexts ct.Ā and ct.B that encrypt matrices Ā and B, respectively.
We first apply the baby-step/giant-step algorithm to generate the encryptions of σ(Ā) and τ(B) as

in Section 3.3.3. Next, we can securely compute
∑`−1
i=0(φi ◦ σ(Ā)) � (ψi ◦ τ(B)) in a similar way to

Algorithm 2, say the output is ct.ĀB. Finally, we perform aggregation and rotation operations to get the

final result:
∑d/`−1
j=0 Rot(ct.ĀB; j · ` · d). This step can be evaluated using a repeated doubling approach,

yielding a running time of log(d/`) additions and rotations. See Algorithm 3 for an explicit description
of homomorphic rectangular matrix multiplication.

Algorithm 3 Homomorphic rectangular matrix multiplication

procedure HE-RMatMult(ct.Ā, ct.B)

[Step 1]
1: ct.A(0) ← LinTrans(ct.Ā;Uσ)
2: ct.B(0) ← LinTrans(ct.B;Uτ)

[Step 2]
3: for k = 1 to `− 1 do
4: ct.A(k) ← LinTrans(ct.A(0);V k)

5: ct.B(k) ← LinTrans(ct.B(0);W k)
6: end for

[Step 3]
7: ct.ĀB ← Mult(ct.A(0), ct.B(0))
8: for k = 1 to `− 1 do
9: ct.ĀB ← Add(ct.ĀB, Mult(ct.A(k), ct.B(k)))

10: end for

[Step 4]
11: ct.AB ← ct.ĀB
12: for k = 0 to log(d/`)− 1 do
13: ct.AB ← Add(ct.AB, Rot(ct.AB; ` · d · 2k))
14: end for
15: return ct.AB

Table 3 summarizes the total complexity of Algorithm 3. Even though we need additional computation
for Step 4, we can reduce the complexities of Step 2 and 3 to O(`) rotations and ` multiplications,
respectively. We also note that the final output ct.AB encrypts a d× d matrix containing (d/`) copies of
the desired matrix product AB in a vertical direction.

This resulting ciphertext has the same form as a rectangular input matrix of Algorithm 3, so it can
be reusable for further matrix computation without additional cost.

11

Table 3: Complexity of Algorithm 3

Step Add CMult Rot Mult

1 3d 3d 5
√
d -

2 ` 2` 3` -

3 ` - - `

4 log(d/`) - log(d/`)

Total 3d+ 2`+ log(d/`) 3d+ 2` 3`+ 5
√
d+ log(d/`) `

4.3 Parallel Matrix Computation

Throughout Sections 3 and 4, we have identified the message spaceM = Rn with the set of matricesRd×d
under the assumption that n = d2. However, most of HE schemes [9, 18, 13] have a quite large number
of plaintext slots (e.g. thousands) compared to the matrix dimension in some real-world applications,
i.e., n � d2. If a ciphertext can encrypt only one matrix, most of plaintext slots would be wasted. This
subsection introduces an idea that allows multiple matrices to be encrypted in a single ciphertext, thereby
performing parallel matrix computation in a SIMD manner.

For simplicity, we assume that n is divisible by d2 and let g = n/d2. We modify the encoding map
in Section 3.2 to make a 1-to-1 correspondence ιg between Rn and (Rd×d)g, which transforms an n-
dimensional vector into a g-tuple of square matrices of order d. Specifically, for an input vector a =
(a`)0≤`<n, we define ιg by

ιg : a 7→
(
Ak = (ag·(d·i+j)+k)

)
0≤k<g .

The components of a with indexes congruent to k modulo g are corresponding to the k-th matrix Ak.

We note that for an integer 0 ≤ ` < d2, the rotation operation ρ(a; g · `) represents the matrix-wise
rotation by ` positions. It can be naturally extended to the other matrix-wise operations including scalar
linear transformation and matrix multiplication. For example, we can encrypt g number of d×d matrices
into a single ciphertext and perform the matrix multiplication operations between g pairs of matrices at
once by applying our matrix multiplication algorithm on two ciphertexts. The total complexity remains
the same as Algorithm 2, which results in a less amortized computational complexity of O(d/g) per
matrix.

5 Implementation of Homomorphic Matrix Operations

In this section, we report the performance of our homomorphic matrix operations and analyze the per-
formance of the implementation. For simplicity, we assume that d is a power-of-two integer. In general,
we can pad zeros at the end of each row to set d as a power of two.

In our implementation, we employ a special encryption scheme suggested by Cheon et al. [13] (CKKS),
which supports approximate computation over encrypted data. A unique property of the HE scheme
is the rescaling procedure to truncate a ciphertext into a smaller modulus, which leads to rounding
of the plaintext. This plays an important role in controlling the magnitude of messages, and thereby
achieving efficiency of approximate computation. Recently, a significant performance improvement was
made in [12] based on the Residue Number System (RNS) and Kim et al. [30] proposed a different special
modulus technique to optimize the key-switching operation. We give a proof-of-concept implementation
using Microsoft SEAL version 3.3.2 [43] which includes this RNS variant of the CKKS scheme. All the
experiments were performed on a Macbook Pro laptop with an Intel Core i9 running with 4 cores rated
at 2.3GHz.

12

5.1 Parameter Setting

We present how to select parameters of our underlying HE scheme to support homomorphic matrix
operations described in Sections 3 and 4. Our underlying HE scheme is based on the RLWE assumption
over the cyclotomic ring R = Z[X]/(XN + 1) for a power-of-two integer N . Let us denote by [·]q the
reduction modulo q into the interval (−q/2, q/2]∩Z of the integer. We write Rq = R/qR for the residue
ring of R modulo an integer q. The native plaintext space is represented as a set of (N/2)-dimensional

complex vectors. We use an RNS by taking a ciphertext modulus q =
∏L
i=0 qi which is a product of

distinct primes. Based on the ring isomorphism Rq →
∏L
i=0Rqi , a 7→ (a (mod qi))0≤i≤L, a polynomial

with a large modulus q can be represented as a tuple of polynomials with smaller coefficients modulo qi.
If needed, we raise a ciphertext modulus from q to psq for a prime number ps, called the special modulus,
and perform the key-switching procedure over Rpsq followed by modulus reduction back to q. We note
that the RNS primes should be 1 modulo 2N to utilize an efficient Number Theoretic Transformation
(NTT) algorithm.

Suppose that all the elements are scaled by a factor of an integer p and then converted into the nearest
integers for quantization. If we are multiplying a ciphertext by a plaintext vector, we assume that the con-
stant vector is scaled by a factor of an integer pc to maintain the precision. Thus, the rescaling procedure
after homomorphic multiplication reduces a ciphertext modulus by p while the rescaling procedure after
a constant multiplication reduces a modulus by pc. For example, Algorithm 2 has depth of two constant
multiplications for Step 1 and 2, and has additional depth of a single homomorphic multiplication for
Step 3. This implies that an input ciphertext modulus is reduced by (2 log pc +log p) bits after the matrix
multiplication algorithm. As a result, we obtain the following lower bound on the bit length of a fresh
ciphertext modulus, denoted by log q:

log q =


log q0 for HE-MatAdd;

log q0 + 2 log pc + log p for HE-MatMult;

log q0 + log pc for HE-MatTrans,

where q0 is the output ciphertext modulus. The final ciphertext represents the desired vector but is scaled
by a factor of p, which means that log q0 should be larger than log p for correctness of decryption. In
other words, the chain of moduli for HE-MatMult can be defined via a set of primes {q0, q1, q2, q3, ps} such
that log q1 ≈ log p and log q2 ≈ log q3 ≈ log pc. In our implementation, we take log p = log pc = 30 and
log q0 = log ps = 40.

We use the discrete Gaussian distribution of standard deviation σ = 3.2 to sample error polynomials.
The secret-key polynomials were sampled from the discrete ternary uniform distribution over {0,±1}N .
The cyclotomic ring dimension is chosen as N = 213 to achieve at least 80-bit security level against the
known attacks of the LWE problem based on the estimator of Albrecht et al. [2]. In short, we present
three parameter sets and sizes of the corresponding fresh ciphertexts as follows:

(N, log q, size) =


(213, 40, 80 KB) for HE-MatAdd;

(213, 130, 260 KB) for HE-MatMult;

(213, 70, 140 KB) for HE-MatTrans.

5.2 Performance of Matrix Operations

Table 4 presents timing results for matrix addition, multiplication, and transposition for various ma-
trix sizes from 4 to 64 where the throughput means the number of matrices being processed in parallel.
We provide three distinct implementation variants: single-packed, sparsely-packed, and fully-packed. The
single-packed implementation is that a ciphertext represents only a single matrix; two other implemen-
tations are to encode several matrices into sparsely or fully packed plaintext slots. We use the same
parameters for all variants, and thus each ciphertext can hold up to N/2 = 212 plaintext values. For
example, if we consider 4× 4 matrices, we can process operations over 212/(4 · 4) = 256 distinct matrices
simultaneously. In the case of dimension 16, a ciphertext can represent up to 212/(16 · 16) = 16 distinct
matrices.

13

Table 4: Benchmarks of homomorphic matrix operations

Dim Throughput
Message Expansion Encoding+ Decoding+ Relative time per matrix

size rate Encryption Decryption HE-MatAdd HE-MatMult HE-MatTrans

4

1 0.06 KB 4437 9.68 ms 0.49 ms 35 µs 47.33 ms 17.08 ms

16 0.94 KB 277 9.87 ms 0.87 ms 2.19 µs 2.96 ms 1.12 ms

256 15 KB 17.3 4.45 ms 4.45 ms 0.14 µs 0.18 ms 0.06 ms

16

1 0.94 KB 277 9.72 ms 0.57 ms 36 µs 152 ms 33.79 ms

4 3.75 KB 69.3 9.12 ms 0.58 ms 9.25 µs 34.67 ms 8.04 ms

16 15 KB 17.3 10.23 ms 0.93 ms 2.19 µs 9.04 ms 2.01 ms

64 1 15 KB 17.3 9.09 ms 0.54 ms 34 µs 600.59 ms 90.88 ms

Ciphertext sizes. As mentioned above, a ciphertext could hold 212 different plaintext slots, and thus
we can encrypt one 64 × 64 matrix into a fully-packed ciphertext. We assumed that all the inputs had
log p = 30 bits of precision, which means that an input matrix size is bounded by 64× 64× 30 bits or 15
KB. Since a single ciphertext is at most 260 KB for an evaluation of matrix multiplication, the encrypted
version is 260/15 ≈ 17 times larger than the un-encrypted version. In Table 4, the third column gives the
size of input matrices and the fourth column gives an expansion ratio of the generated ciphertext to the
input matrices.

Timing results. We conducted experiments over ten times and measured the average running times for all
the operations. For the parameter setting in Section 5.1, the key generation takes about 60 milliseconds. In
Table 4, the fifth column gives timing for encoding input matrices and encrypting the resulting plaintext
slots. Since matrix multiplication requires the largest fresh ciphertext modulus and takes more time
than others, we just report the encryption timing results for the case. In the sixth column, we give
timing for decrypting the output ciphertext and decoding to its matrix form. Note that encryption and
decryption timings are similar each other; but encoding and decoding timings depend on the throughput.
The last three columns give amortized time per matrix for homomorphic matrix computation. The entire
execution time, called latency, is similar between the three variant implementations, so the parallel matrix
computation provides roughly a speedup as a factor of the throughput.

Performance of rectangular matrix multiplication. We present the performance of Algorithm 3 described
in Section 4.2. As a concrete example, we consider the rectangular matrix multiplication R16×64 ×
R64×64 → R16×64. As we described above, our optimized method has a better performance than a simple
method exploiting Algorithm 2 for the multiplication between 64× 64 matrices.

To be precise, the first step of Algorithms 2 or 3 generates two ciphertexts ct.A(0) and ct.B(0) by
applying the linear transformations of Uσ and Uτ , thus both approaches have almost the same computa-
tional complexity. Next, in the second and third steps, two algorithms apply the same operations to the
resulting ciphertexts but with different numbers: Algorithm 2 requires approximately four times more
operations compared to Algorithm 3. As a result, Step 2 turns out to be the most time consuming part
in Algorithm 2, whereas it is not the dominant procedure in Algorithm 3. Finally, Algorithm 3 requires
some additional operations for Step 4, but we need only log(64/16) = 2 automorphisms.

Table 5 shows more detailed experimental results of HE-MatMult and HE-RMatMult based on the same
parameter as in the above section. The total running times of two algorithms are 600 milliseconds and
283 milliseconds, respectively; therefore, Algorithm 3 achieves a speedup of 2× compared to Algorithm 2.

6 E2DM: Making Prediction based on Encrypted Data and Model

In this section, we propose a novel framework E2DM to test encrypted convolutional neural networks
model on encrypted data. We consider a new service paradigm where model providers offer encrypted

14

Table 5: Performance comparison of homomorphic square and rectangular matrix multiplications

Algorithm Step 1 Step 2 Step 3 Step 4 Total

HE-MatMult
161.09 ms

418.20 ms 20.99 ms - 600.28 ms

HE-RMatMult 114.15 ms 5.44 ms 1.91 ms 282.59 ms

Speedup - 3.66× 3.86× - 2.12×

trained classifier models to a public cloud and the cloud server provides on-line prediction service to data
owners who uploaded their encrypted data. In this inference, the cloud should learn nothing about private
data of the data owners, nor about the trained models of the model providers.

6.1 Neural Networks Architecture

The first viable example of CNN on image classification was AlexNet by Krizhevsky et al. [32] and it was
dramatically improved by Simonyan et al. [44]. It consists of a stack of linear and non-linear layers. The
linear layers can be convolution layers or FC layers. The non-linear layers can be max pooling (i.e., com-
pute the maximal value of some components of the feeding layer), mean pooling (i.e., compute the average
value of some components of the feeding layer), ReLu functions, or sigmoid functions.

Specifically, the convolution operator forms the fundamental basis of the convolutional layer. The
convolution has kernels, or windows, of size k×k, a stride of (s, s), and a mapcount of h. Given an image
I ∈ Rw×w and a kernel K ∈ Rk×k, we compute the convolved image Conv(I,K) ∈ RdK×dK by

Conv(I,K)i′,j′ =
∑

0≤i,j<k

Ki,j · Is·i′+i,s·j′+j

for 0 ≤ i′, j′ < dK = d(w − k)/se+1. Here d·e returns the least integer greater than or equal to the input.
It can be extended to multiple kernels K = {K(k)}0≤k<h as

Conv(I,K) = (Conv(I,K(0)), · · · , Conv(I,K(h−1))) ∈ RdK×dK×h.

On the other hand, FC layer connects nI nodes to nO nodes, or equivalently, it can be specified by the
matrix-vector multiplication of an nO × nI matrix. Note that the output of convolution layer has a form
of tensor so it should be flatten before FC layer. Throughout this paper, we concatenate the rows of the
tensor one by one and output a column vector, denoted by FL(·).

6.2 Homomorphic Evaluation of CNN

We present an efficient strategy to evaluate CNN prediction model on the MNIST dataset. Each image is
a 28× 28 pixel array, where the value of each pixel represents a level of gray. After an arbitrary number
of hidden layers, each image is labeled with 10 possible digits. The training set has 60,000 images and
the test set has 10,000 images. We assume that a neural network is trained with the plaintext dataset
in the clear. We adapted a similar network topology to CryptoNets: one convolution layer and two FC
layers with square activation function. Table 6 describes our neural networks to the MNIST dataset and
summarizes the hyperparameters.

The final step of neural networks is usually to apply the softmax activation function for a purpose of
probabilistic classification. We note that it is enough to obtain an index of maximum values of outputs
in a prediction phase.

In the following, we explain how to securely test encrypted model on encrypted multiple data. In
our implementation, we take N = 213 as a cyclotomic ring dimension so each plaintext vector is allowed
to have dimension less than 212 and one can predict 64 images simultaneously in a SIMD manner. We
describe the parameter selection in more detail below.

15

Table 6: Description of our CNN on the MNIST dataset

Layer Description

Convolution Input image 28× 28, kernel size 7× 7, stride size of 3, number of output channels 4

1st square Squaring 256 input values

FC-1 Fully connecting with 256 inputs and 64 outputs: R64×256 × R256×1 → R64×1

2nd square Squaring 64 input values

FC-2 Fully connecting with 64 inputs and 10 outputs: R10×64 × R64×1 → R10×1

6.2.1 Encryption of Images

At the encryption phase, the data owner encrypts the data using the public key of an HE scheme. Suppose
that the data owner has a two-dimensional image I ∈ R28×28. For 0 ≤ i′, j′ < dK = 8, let us define an
extracted image feature I[i′, j′] formed by taking the elements I3·i′+i,3·j′+j for 0 ≤ i, j < 7. That is, a
single image can be represented as the 64 image features of size 7 × 7. It can be extended to multiple
images I = {I(k)}0≤k<64. For each 0 ≤ i, j < 7, the dataset is encoded into a matrix consisting of the
(i, j)-th components of 64 features over 64 images and it is encrypted as follows:

ct.Ii,j = Enc


I(0)[0, 0]i,j I

(1)[0, 0]i,j · · · I(63)[0, 0]i,j
I(0)[0, 1]i,j I

(1)[0, 1]i,j · · · I(63)[0, 1]i,j
...

...
. . .

...
I(0)[7, 7]i,j I

(1)[7, 7]i,j · · · I(63)[7, 7]i,j

 .
The resulting ciphertexts {ct.Ii,j}0≤i,j<7 are sent to the public cloud and stored in their encrypted form.

6.2.2 Encryption of Trained Model

The model provider encrypts the trained prediction model values such as multiple convolution kernels’
values K = {K(k)}0≤k<4 and weights (matrices) of FC layers. The provider begins with a procedure
for encrypting each of the convolution kernels separately. For 0 ≤ i, j < 7 and 0 ≤ k < 4, the (i, j)-th
component of the kernel matrix K(k) is copied into plaintext slots and the model provider encrypts the

plaintext vector into a ciphertext, denoted by ct.K
(k)
i,j .

Next, the first FC layer is specified by a 64 × 256 matrix and it can be divided into four square
sub-matrices of size 64 × 64. For 0 ≤ k < 4, we write Wk to denote the k-th sub-matrix. Each matrix
is encrypted into a single ciphertext using the matrix encoding method in Section 3.2, say the output
ciphertext ct.Wk.

For the second FC layer, it can be expressed by a 10× 64 matrix. The model provider pads zeros in
the bottom to obtain a matrix V of size 16× 64 and then generates a 64× 64 matrix V̄ containing four
copies of V vertically, say the output ciphertext ct.V . Finally, the model provider transmits three distinct

types of ciphertexts to the cloud: ct.K
(k)
i,j , ct.Wk, and ct.V .

6.2.3 Homomorphic Evaluation of Neural Networks

At the prediction phase, the public cloud takes ciphertexts of the images from the data owner and the
neural network prediction model from the model provider. Since the data owner uses a SIMD technique to
batch 64 different images, the first FC layer is specified as a matrix multiplication: R64×256 ×R256×64 →
R64×64. Similarly, the second FC layer is represented as a matrix multiplication: R10×64 × R64×64 →
R10×64.

Homomorphic convolution layer. The public cloud takes the ciphertexts ct.Ii,j and ct.K
(k)
i,j for 0 ≤ i, j <

7 and 0 ≤ k < 4. We apply pure SIMD operations to efficiently compute dot-products between the

16

kernel matrices and the extracted image features. For each 0 ≤ k < 4, the cloud performs the following
computation on ciphertexts:

ct.Ck ←
∑

0≤i,j<7

Mult(ct.Ii,j , ct.K
(k)
i,j).

By the definition of the convolution, the resulting ciphertext ctk represents a square matrix Ck of order
64 such that

Ck =


...

...
FL(Conv(I(0),K(k))) · · · FL(Conv(I(63),K(k)))

...
...

 .
That is, it is an encryption of the matrix Ck having the i-th column as the flatten convolved result
between the the i-th image I(i) and the k-th kernel K(k) .

The first square layer. This step applies the square activation function to all the encrypted output images
of the convolution in a SIMD manner. That is, for each 0 ≤ k < 4, the cloud computes as follows:

ct.S
(1)
k ← SQR(ct.Ck)

where SQR(·) denotes the squaring operation of an HE scheme. Note that ct.S
(1)
k is an encryption of the

matrix Ck � Ck.

The FC-1 layer. This procedure requires a matrix multiplication between a 64 × 256 weight matrix
W = (W0|W1|W2|W3) and a 256 × 64 input matrix C = (C0 � C0; C1 � C1; C2 � C2; C3 � C3). The
matrix product W · C is formed by combining the blocks in the same way, that is,

W · C =
∑

0≤k<4

(Wk · (Ck � Ck)).

Thus the cloud performs the following computation:

ct.F ←
∑

0≤k<4

HE-MatMult(ct.Wk, ct.S
(1)
k).

The second square layer. This step applies the square activation function to all the output nodes of the
first FC layer:

ct.S(2) ← SQR(ct.F).

The FC-2 layer. This step performs the rectangular multiplication algorithm between the weight cipher-
text ct.V and the output ciphertext ct.S(2) of the second square layer:

ct.out← HE-RMatMult(ct.V, ct.S(2)).

6.2.4 The Threat Model

Suppose that one can ensure the IND-CPA security of an underlying HE scheme, which means that
ciphertexts of any two messages are computationally indistinguishable. Since all the computations on the
public cloud are performed over encryption, the cloud learns nothing from the encrypted data so we can
ensure the confidentiality of the data against such a semi-honest server.

6.3 Performance Evaluation of E2DM

We evaluated our E2DM framework to classify encrypted handwritten images of the MNIST dataset. We
used the library keras [14] with Tensorflow [1] to train the CNN model from 60,000 images of the dataset
by applying the ADADELTA optimization algorithm [50].

17

6.3.1 Optimization Techniques

Suppose that we are given an encryption ct.A of a d× d matrix A. Recall from Section 3 that we apply
homomorphic liner transformations to generate the encryption ct.A(`) of a matrix φ` ◦σ(A) for 0 ≤ ` < d.
Sometimes one can pre-compute φ` ◦ σ(A) in the clear and generate the corresponding ciphertexts for
free. Thus this approach gives us a space/time trade-off: although it requires more space for d ciphertexts
rather than a single ciphertext, it reduces the overhead of rotation operations from (3d+5

√
d) to (d+2

√
d),

achieving a better performance. This method has another advantage, in that an input ciphertext modulus
is reduced by (log p+log pc) bits after matrix multiplication while (log p+2 log pc) in the original method.
This is because the encryptions of φk ◦σ(A) are given as fresh ciphertexts and it only requires additional
depths to generate the encryptions of ψk ◦ τ(B).

We can apply this idea to the FC layers. For each 0 ≤ k < 4 and 0 ≤ ` < 64, the model provider

generates a ciphertext ct.W
(`)
k representing the matrix φ` ◦ σ(Wk) of the first FC layer. For the second

FC layer, the provider generates an encryption ct.V (`) of the matrix φ` ◦ σ(V̄) for 0 ≤ ` < 16.

6.3.2 Parameters

The convolution layer and the square activation layers have a depth of one homomorphic multiplication.
As discussed before, the FC layers have depth of one homomorphic multiplication and one constant
multiplication by applying the pre-computation optimization technique. Therefore, the lower bound on
the bit length of a fresh ciphertext modulus is 5 log p + 2 log pc + log q0. In our implementation, we
assume that all the inputs had log p = 30 bits of precision and we set log pc = 30 for the bit precision
of constant values. We set the bit lengths of the output ciphertext modulus and the special modulus
as log q0 = log ps = log p + 10. We could actually obtain the bit length of the largest fresh ciphertext
modulus about log q ≈ 250 and took the ring dimension N = 213 to ensure at least 80 bits of security.
This security was chosen to be consistent with other performance number reported from CryptoNets.
Note that a fresh ciphertext has 0.488 MB under this parameter setting.

6.3.3 Ciphertext Sizes

Each image is a 28× 28 pixel array, where each pixel is in the range from 0 to 255. The data owner first
chooses 64 images in the MNIST dataset, normalizes the data by dividing by the maximum value 255,
and generates the ciphertexts {ct.Ii,j}0≤i,j<7. The total size of ciphertexts is 0.488×49 ≈ 23.926 MB and
a single ciphertext contains information of 64 images, and therefore the total ciphertext size per image
is 23.926/64 ≈ 0.374 MB or 383 KB. Since each image has approximately 28 × 28 × 30 bits, it is 133
times smaller than the encrypted one. Meanwhile, the model provider generates three distinct types of
ciphertexts:

– ct.K
(k)
i,j for 0 ≤ i, j < 7 and 0 ≤ k < 4;

– ct.W
(`)
k for 0 ≤ k < 4 and 0 ≤ ` < 64;

– ct.V (`) for 0 ≤ ` < 16.

The total size of ciphertexts is 0.488× 468 ≈ 228.516 MB. After the homomorphic evaluation of E2DM,
the cloud sends only a single ciphertext to an authority who is the legitimate owner of the secret key of
the HE scheme. The ciphertext size is around 0.078 MB and the size per image is 0.078/64 MB ≈ 1.25
KB. Table 7 summarizes the numbers in the second and third columns.

Table 7: Total ciphertext sizes of E2DM

Ciphertext size Size per instance

Data owner → Cloud 23.926 MB 383 KB

Model provider → Cloud 228.516 MB -

Cloud → Authority 0.078 MB 1.25 KB

18

6.3.4 Implementation Details

The key generation takes about 0.87 seconds for the parameters setting in Section 6.3.2. The data owner
takes about 121 milliseconds to encrypt 64 different number of images. Meanwhile, the model provider
takes about 1.06 seconds to generate the encrypted prediction models. This procedure takes more time
than the naive method but it is an one-time process before data outsourcing and so it is a negligible
overhead.

In Table 8, we report timing results for the evaluation of E2DM. The third column gives timings
for each step and the fourth column gives the relative time per image (if applicable). The dominant
cost of evaluating the framework is that of performing the first FC layer. This step requires four matrix
multiplication operations over encrypted 64 × 64 matrices so it expects to take about 0.6 × 4 ≈ 2.4
seconds from the result of Table 4. We further take advantage of the pre-computation method described
in Section 6.3.1, and thereby it only took about 1.36 seconds to evaluate the layer (1.8 times faster).
Similarly, we could apply this approach to the second FC layer, which leads to 0.09 seconds for the
evaluation. In total, it took about 1.69 seconds to classify encrypted images from the encrypted training
model, yielding an amortized rate of 26 milliseconds per image.

Table 8: Experimental results of E2DM for MNIST

Stage Latency
Amortized time

per image

Data owner Encoding + Encryption 120.91 ms 1.89 ms

Model provider Encoding + Encryption 1059.14 ms -

Cloud

Convolution 219.34 ms 3.42 ms

1st square 16.99 ms 0.27 ms

FC-1 1355.19 ms 21.17 ms

2nd square 6.41 ms 0.10 ms

FC-2 90.41 ms 1.41 ms

Total evaluation 1688.34 ms 26.38 ms

Authority Decoding +Decryption 0.72 ms 0.01 ms

After the evaluation, the cloud returns only a single packed ciphertext that is transmitted the author-
ity. Then the output can be decrypted with the secret key and the authority computes the argmax of 10
scores for each image to obtain the prediction. These procedures take around 0.72 milliseconds, yielding
an amortized time of 0.01 milliseconds per image. In the end, the data owner gets the results from the
authority.

This model achieves an accuracy of 98.1% on the test set. The accuracy is the same as the one
obtained by the evaluation of the model in the clear, which implies that there is no precision loss from
the approximate homomorphic encryption.

6.4 Comparison with Previous Work

Table 9 compares our result for the MNIST dataset with the state-of-the-art frameworks: CryptoNets [23],
MiniONN [34], and GAZELLE [28]. The first column indicates the framework and the second column
denotes the method used for preserving privacy. The last columns give running time and communication
costs required for image classification.

HE-based frameworks. We used a similar network topology to CryptoNets (only different numbers of nodes
in the hidden layers) but considered different scenario and underlying cryptographic primitive. CryptoNets
took 570 seconds to perform a single prediction, yielding in an amortized rate of 70 milliseconds. In
our case, data is represented in a matrix form and applied to the evaluation of neural networks using

19

homomorphic matrix operations. As a result, E2DM achieves 340-fold reduction in latency and 34-fold
reduction in message sizes. CryptoNets allows more SIMD parallelism, so it could give better amortized
running time. However, this implies that CryptoNets requires a very large number of prediction to yield
better amortized complexity, so its framework turns out to be less competitive in practice.

Mixed protocol frameworks. Liu et al. [34] presented MiniONN framework of privacy-preserving neural
networks by employing a ciphertext packing technique as a pre-processing tool. Recently, Juvekar et
al. [28] presented GAZELLE that deploys automorphism structure of an underlying HE scheme to perform
matrix-vector multiplication, thereby improving the performance significantly. It took 30 milliseconds
to classify one image from the MNIST dataset and has an online bandwidth cost of 0.5 MB. Even
though these mixed protocols achieve relatively fast run-time, they require interaction between protocol
participants, resulting in high bandwidth usage.

Table 9: Privacy-preserving neural network frameworks for MNIST

Framework Method
Runtime Communication cost

Offline Online Total Amortized Offline Online Total Amortized

CryptoNets HE - - 570 s 70 ms - - 595.5 MB 0.07 MB

MiniONN HE, MPC 0.88 s 0.40 s 1.28 s 1280 ms 3.6 MB 44 MB 47.6 MB 47.6 MB

GAZELLE HE, MPC 0 0.03 s 0.03 s 30 ms 0 0.5 MB 0.5 MB 0.5 MB

E2DM HE - 1.69 s 26 ms - - 23.93 MB 0.37 MB

7 Related Works

7.1 Secure Outsourced Matrix Computation

Matrix multiplication can be performed using a series of inner products. Wu and Haven [48] suggested
the first secure inner product method in a SIMD environment. Their approach is to encrypt each row or
column of a matrix into an encrypted vector and obtain component-wise product of two input vectors by
performing a single homomorphic multiplication. However, it should aggregate all the elements over the
plaintext slots in order to get the desired result and this procedure requires at least log d automorphisms.
Since one can apply this solution to each row of A and each column of B, the total complexity of secure
matrix multiplication is about d2 multiplications and d2 log d automorphisms.

Recently, several other approaches have been considered by applying the encoding methods of Lauter
et al. [40] and Yasuda et al. [49] on an RLWE-based HE scheme. Duong et al. [17] proposed a method to
encode a matrix as a constant polynomial in the native plaintext space. Then secure matrix multiplication
requires only one homomorphic multiplication over packed ciphertexts. This method was later improved
in [37]. However, this solution has a serious drawback for practical use: the resulting ciphertext has non-
meaningful terms in its coefficients, so for more computation, it should be decrypted and re-encoded by
removing the terms in the plaintext polynomial.

Most of related works focus on verifiable secure outsourcing of matrix computation [11, 4, 38, 19]. In
their protocols, a client delegates a task to an untrusted server and the server returns the computation
result with a proof of the correctness of the computation. There are general results [20, 15, 19] of verifiable
secure computation outsourcing by applying a fully HE scheme with Yao’s Garbled circuit or pseudo-
random functions. However, it is still far from practical to apply these theoretical approaches to real-world
applications.

7.2 Privacy-preserving Neural Networks Predictions

Privacy-preserving deep learning prediction models were firstly considered by Gilad-Bachrach et al. [23].
The authors presented the private evaluation protocol CryptoNets for CNN. A number of subsequent

20

works have improved it by normalizing weighted sums prior to applying the approximate activation
function [10], or by employing a fully HE to apply an evaluation of an arbitrary deep neural networks [7].

There are other approaches for privacy-preserving deep learning prediction based on MPC [5, 41] or its
combination with (additively) HE. The idea behind such hybrid protocols is to evaluate scalar products
using HE and compute activation functions (e.g. threshold or sigmoid) using MPC technique. Mohassel
and Zhang [39] applied the mixed-protocol framework of [16] to implement neural networks training
and evaluation in a two-party computation setting. Liu et al. [34] presented MiniONN to transform an
existing neural network to an oblivious neural network by applying a SIMD batching technique. Riazi et
al. [42] designed Chameleon, which relies on a trusted third-party. Their frameworks were later improved
in [28] by leveraging effective use of packed ciphertexts. Even though these hybrid protocols could improve
efficiency, they result in high bandwidth and long network latency.

8 Conclusion and Future Work

In this paper, we presented a practical solution for secure outsourced matrix computation. We did demon-
strate its applicability by presenting a novel framework E2DM for secure evaluation of encrypted neural
networks on encrypted data. Our experimentation shows that E2DM achieves lower size of encrypted
messages and latency compared to CryptoNets.

Our secure matrix computation primitive can be applied to various computing applications such as
genetic testing and machine learning. In particular, we can investigate financial model evaluation based
on our E2DM framework. Our another future work is to extend the matrix computation mechanism for
more advanced operations.

References

1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems, 2015. https://www.

tensorflow.org.
2. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. Journal of

Mathematical Cryptology, 9(3):169–203, 2015.
3. C. S. Alliance. Security guidance for critical areas of focus in cloud computing, 2009. http://www.

cloudsecurityalliance.org.

4. M. J. Atallah and K. B. Frikken. Securely outsourcing linear algebra computations. In Proceedings of the 5th
ACM Symposium on Information, Computer and Communications Security, pages 48–59. ACM, 2010.

5. M. Barni, C. Orlandi, and A. Piva. A privacy-preserving protocol for neural-network-based computation. In
Proceedings of the 8th workshop on Multimedia and security, pages 146–151. ACM, 2006.

6. J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved security for a ring-based fully homomorphic
encryption scheme. In Cryptography and Coding, pages 45–64. Springer, 2013.

7. F. Bourse, M. Minelli, M. Minihold, and P. Paillier. Fast homomorphic evaluation of deep discretized neural
networks. In Annual International Cryptology Conference, pages 483–512. Springer, 2018.

8. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In Advances
in Cryptology–CRYPTO 2012, pages 868–886. Springer, 2012.

9. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrap-
ping. In Proc. of ITCS, pages 309–325. ACM, 2012.

10. H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff. Privacy-preserving classification on deep
neural network. IACR Cryptology ePrint Archive, 2017:35, 2017.

11. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Annual International Cryptology Confer-
ence, pages 89–105. Springer, 1992.

12. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. A full RNS variant of approximate homomorphic
encryption. In International Conference on Selected Areas in Cryptography. Springer, 2018.

13. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic of approximate numbers.
In International Conference on the Theory and Application of Cryptology and Information Security, pages
409–437. Springer, 2017.

14. F. Chollet et al. Keras, 2015. https://github.com/keras-team/keras.

21

15. K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In Annual Cryptology Conference,
pages 151–168. Springer, 2011.

16. D. Demmler, T. Schneider, and M. Zohner. ABY-a framework for efficient mixed-protocol secure two-party
computation. In NDSS, 2015.

17. D. H. Duong, P. K. Mishra, and M. Yasuda. Efficient secure matrix multiplication over lwe-based homomorphic
encryption. Tatra Mountains Mathematical Publications, 67(1):69–83, 2016.

18. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

19. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix computations, with
applications. In Proceedings of the 2012 ACM conference on Computer and communications security, pages
501–512. ACM, 2012.

20. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to
untrusted workers. In Annual Cryptology Conference, pages 465–482. Springer, 2010.

21. C. Gentry et al. Fully homomorphic encryption using ideal lattices. In STOC, volume 9, pages 169–178, 2009.
22. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In Advances in Cryptology–

CRYPTO 2012, pages 850–867. Springer, 2012.
23. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. CryptoNets: Applying

neural networks to encrypted data with high throughput and accuracy. In International Conference on
Machine Learning, pages 201–210, 2016.

24. S. Halevi and V. Shoup. Algorithms in helib. In Annual Cryptology Conference, pages 554–571. Springer,
2014.

25. S. Halevi and V. Shoup. Bootstrapping for helib. In Annual International conference on the theory and
applications of cryptographic techniques, pages 641–670. Springer, 2015.

26. S. Halevi and V. Shoup. Faster homomorphic linear transformations in helib. In Annual International
Cryptology Conference, pages 93–120. Springer, 2018.

27. X. Jiang, Y. Zhao, X. Wang, B. Malin, S. Wang, L. Ohno-Machado, and H. Tang. A community assessment of
privacy preserving techniques for human genomes. BMC Med. Inform. Decis. Mak., 14 Suppl 1(Suppl 1):S1,
Dec. 2014.

28. C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. GAZELLE: A low latency framework for secure
neural network inference. In 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD,
2018. USENIX Association.

29. M. Kim and K. Lauter. Private genome analysis through homomorphic encryption. BMC medical informatics
and decision making, 15(Suppl 5):S3, 2015.

30. M. Kim, Y. Song, B. Li, and D. Micciancio. Semi-parallel logistic regression for gwas on encrypted data.
IACR Cryptology ePrint Archive, 2019:294, 2019.

31. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure logistic regression based on homomorphic encryption:
Design and evaluation. JMIR medical informatics, 6(2), 2018.

32. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing systems, pages 1097–1105, 2012.

33. Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.
34. J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via minionn transformations.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages
619–631. ACM, 2017.

35. E. Makri, D. Rotaru, N. P. Smart, and F. Vercauteren. Pics: Private image classification with SVM. Cryp-
tology ePrint Archive, Report 2017/1190, 2017. https://eprint.iacr.org/2017/1190.

36. R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley. Deep learning for healthcare: review, opportunities
and challenges. Brief. Bioinform., May 2017.

37. P. K. Mishra, D. H. Duong, and M. Yasuda. Enhancement for secure multiple matrix multiplications over ring-
lwe homomorphic encryption. In International Conference on Information Security Practice and Experience,
pages 320–330. Springer, 2017.

38. P. Mohassel. Efficient and secure delegation of linear algebra. IACR Cryptology ePrint Archive, 2011:605,
2011.

39. P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving machine learning. In Security
and Privacy (SP), 2017 IEEE Symposium on, pages 19–38. IEEE, 2017.

40. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be practical? In Proceedings
of the 3rd ACM workshop on Cloud computing security workshop, pages 113–124. ACM, 2011.

41. C. Orlandi, A. Piva, and M. Barni. Oblivious neural network computing via homomorphic encryption.
EURASIP Journal on Information Security, 2007(1):037343, 2007.

22

42. M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar. Chameleon: A
hybrid secure computation framework for machine learning applications. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, pages 707–721. ACM, 2018.

43. Microsoft SEAL (release 3.3). https://github.com/Microsoft/SEAL, 2019. Microsoft Research, Redmond,
WA.

44. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

45. N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs, codes and cryptography,
71(1):57–81, 2014.

46. H. Takabi, J. B. Joshi, and G.-J. Ahn. Security and privacy challenges in cloud computing environments.
IEEE Security & Privacy, 8(6):24–31, 2010.

47. S. Wang, X. Jiang, H. Tang, X. Wang, D. Bu, K. Carey, S. O. M. Dyke, D. Fox, C. Jiang, K. Lauter, and
Others. A community effort to protect genomic data sharing, collaboration and outsourcing. npj Genomic
Medicine, 2(1):33, 2017.

48. D. Wu and J. Haven. Using homomorphic encryption for large scale statistical analysis. Technical report,
Technical Report: cs. stanford. edu/people/dwu4/papers/FHESI Report. pdf, 2012.

49. M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba. New packing method in somewhat
homomorphic encryption and its applications. Security and Communication Networks, 8(13):2194–2213, 2015.

50. M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

23

