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Abstract. It is well established that the method of choice for imple-
menting a side-channel secure modular inversion, is to use Fermat’s little
theorem. So 1/ = P~2 mod p. This can be calculated using any square-
and-multiply method safe in the knowledge that no branching or indexing
with potentially secret data (such as x) will be required. However in the
case where the modulus p is a pseudo-Mersenne, or Mersenne, prime of
the form p = 2" — ¢, where ¢ is small, this process can be optimized to
greatly reduce the number of multiplications required. Unfortunately an
optimal solution must it appears be tailored specifically depending on n
and c. What appears to be missing from the literature is a near-optimal
heuristic method that works well in all cases.
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1 Introduction

In elliptic curve cryptography (ECC), a pseudo-Mersenne modulus is often pro-
posed, as it introduces no known weaknesses, and allows a much faster modular
reduction algorithm, independent of the underlying computer architecture. Less
appreciated is the fact that modular inversions can also benefit from such a
choice. For maximum efficiency projective coordinates are most often used for
ECC, which greatly diminishes the significance of the cost of modular inversion.
Nevertheless in a paper that popularised such moduli, Bernstein [1] pointed out
that modular inversion still absorbed 7% of the time for a curve computation,
and in a recent paper Nath and Sarkar [12] point out that as a consequence of
the vigorous optimization of the other aspects of implementation, this may rise
as high as 9%.

Unfortunately working out the optimal strategy in the general case where p =
2™ —cis not that simple, as it depends on both n and c¢. Since the binary expansion
of such a p mostly consists of 1 bits, a simple square and multiply algorithm will
be particularly inefficient, requiring nearly as many multiplications as squarings.
In fact it is impossible to avoid n — 1 squarings. So any attempt at optimisation
will focus on reducing the number of multiplications.

To get an idea of what is possible, let us deconstruct Bernsteins approach
for his prime 22°° — 19, as described by Bos [5]. The value after the # indicates
the exponent of x at that stage in the calculation. In this case the inverse will
be calculated as 1/z = 2% — 21
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On closer examination the process consists of 3 phases. It makes extensive
use of the identity
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By the end of the second phase we have calculated 2 ~!. Note that
c+2 = 21 and 2° — 21 = 11. The third phase then calculates 22”21 =
(m2250’1)25.x25*21. It is easily confirmed that the whole process requires 254
squarings and just 11 multiplications.

Clearly the final phase requires only one extra multiplication. In the first
phase the important work is the calculation of k = 2! and 23! = 22" ~!. The
former to provide the “key” value needed by the final phase, and the latter is
used to kick-start the second phase with some value of the form 22" ~!. Therefore
there are two addition chain calculations involved, the first to determine 3!, with
the constraint that the chain pass through the value of z''. The second applies
to the second phase where the point is to calculate in as few steps as possible

9250 _1 . . . . . .. .
x using identity (1) above. The first chain requires a multiplication for each
addition step in the chain (but not for a doubling). The second addition chain
requires a multiplication for each step, so the shortest possible chain is desired.

To generalise this approach, first choose a value w such that 2 > ¢+ 2.
Calculate the key k = 22" ~°=2 and 22" ~! in phase 1. Raise this value up to
22"""~1 in phase 2, and finally calculate the inverse of  as 22" ~°~2 in phase 3.
Clearly what makes this process rather awkward is the involvement of addition
chains. As is well known calculating shortest addition chains is an NP-complete
problem, and therefore not suitable to be calculated on-the-fly. So it appears



that an optimal solution must be tailored by hand to each pseudo-Mersenne
prime of interest.

The alternative is to come up with a heuristic approach which can quickly
produce a good (if sub-optimal) solution given only n and c. That is the contri-
bution of this paper.

2 A heuristic approach

Choose w to be the smallest number such that 2 > ¢ + 2. Next calculate and
store powers of x using this fixed addition chain of exponents

[1236 121530 60 120 240 255]

This will require three multiplications and seven squarings. Next evaluate the
key value k = 22" ~¢~2 by multiplying together appropriate powers, which will
probably require a few more multiplications. It is easily confirmed that this is
possible for any values of 2% —c¢—2 < 745, which will cover most cases of interest.
Note that these stored values include all of x, x22_1, 1;24_1, 22°~1. Extract these
values, and use them to initialise another addition chain in the exponents, where
the entry i represents the power 22 ~1.

[124816...2" ... n—w)

which is just the powers of 2 while n —w < 2™. Finally complete the addition
chain using a simple binary method. This chain dictates how to use the identity
8 n—w . . .
(1) to ramp up 2% ~1 to 2" " L. Finally calculate the result by squaring this
final value w times, and multiplying it by the key k.
For the modulus 22°° — 19, w = 5 and the key value will be k = 2!! =
22.23.28, which would require two extra multiplications. The addition chain in

the exponents will be

1248163264 128 192 224 240 248 250]

which will require 9 further multiplications (recall that the first 4 entries are
already available), plus one for phase 3. The total number of multiplications is
15, somewhat inferior to the optimal value of 11.

When it comes to implementing this method, note that the same array used
to store the powers of x in phase 1, can be re-used in phase 2. Specifically the
11 element array used in phase 1 can be re-used in phase 2 for values of n less
than 2048. Therefore the method as described will work for all primes of the
form 2™ — ¢ for n < 2048 and ¢ < 1024. See algorithm 1.

3 Performance

To get an idea of just how suboptimal this general approach will be, we compare
it with some implementations that are already “out there” in the wild, in existing



Algorithm 1 Modular inversion with respect to a pseudo-Mersenne prime

INPUT: An element x € F,,, n and ¢, where prime p = 2" — ¢, n < 2048, ¢ < 1024

INPUT: An array a=[1,2,3,6,12,15,30,60,120,240,255]

OuTPUT: 1/x mod p
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: function FrINV(z, n, c)
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10] « h[9].h[5]
b+ 0
w4+ 1
while w < ¢+ 2 do
w 4— 2w
b+ b+1
j+w—c—2
if 5 # 0 then

i< 10

while a[i] > j do
41— 1

k < hli

J <« —ali]
while j # 0 do

14— 1—1
if j > ali] then
k < k.h[i]
J < J—ali
h[1] + h[2]
h([2] + h[5]
R[3] « A[10]
j <3
m < 8

while 2m < n do
t < hlj]
Jj—J+1
for i< 0; i <m; i< i+ 1do
t+ t?
hlj] < t.hlj — 1]
m < 2m
l+<n—m
r < hlj]
while [ # 0 do
m < m/2
Jj—J—1
if | > m then
l+—1l—m
t<—r
for i< 0; i<m; i< i+1do
t « t?
r < t.h[j]

for i< 0; i<b; i< i+ 1do
r o r?

if w —c—2# 0 then
r < r.k

return r

> Phase 1

> Calculate Key

> Phase 2
> Re-use the array

> Double up

> Complete addition chain

> Phase 3




code and libraries. Specifically we looked at the code associated with references
[1], [6], [7], [12] and [13] in October 2018. In Table 1 we show the number of
multiplications as implemented, and as required by the method described here.
In cases where the number of squarings exceeds n — 1, these are recorded as
well. As expected our method is suboptimal, but not by much. In fact it may
be considered as better than expected. For example Bos et al. [6] found that
they could always calculate the modular inversion using at most 1.11 [logy(p)]
squarings and multiplications. With our much larger sample we find that it can
be done using at most 1.09 [log,(p)]. As can be seen we also find that on occasion
this method improves on a manually tailored solution.

Prime As Implemented | This Method | Alternate Method
2127 1 10 [12] 12 12
2221 3 12 [12] 12 13
2222 117 12 [12] 14 14
2251 9 14 [12] 15 15
2255 19 11 [1] 15 15
2256 _ 189 21(260) [6] 14 14
2266 _3 12 [12] 12 13
2336 _3 13 [13] 13 14
2382 _ 105 14 [12] 16 17
2383 _ 187 15 [12] 17 18
2384 _ 317 15 [6] 18 18
24 17 14 [12] 14 14
25t 187 15 [12] 18 19
2512 _ 569 |16(512) [6], 18 [12] 19 20
252t 1 13 [7] 13 13
2007 1 14 [12] 15 15
2751 — 165 19 [12] 19 19
2832 _ 143 16 [12] 17 18
289 _ 9213 18 [12] 18 18
2960 _ 167 19 [12] 17 19
21024 _ 105 20 [12] 18 19
21088 _ g9 16 [12] 17 17

Table 1. Number of Multiplications (Squarings)

4 A Generalisation

Not all Mersenne-like primes that have been suggested for use in the context of
ECC are of the simple form considered above. For example there are the gen-
eralised Mersenne primes [14] and various hybrid forms. Therefore it is natural
to ask if the general purpose scheme described above can be easily extended to
include more of these.



Here we consider prime moduli of the form 2" — 2" — ¢, where 2n < m and
c is small and positive. This covers at least two cases likely to be of particular
interest, Hamburg’s recently standardised Goldilocks curve [9] with a modulus
of 2448 — 2224 _ 1 and the NIST standard curve secp256k1, as used in Bitcoin
with its modulus of 2256 — 232 — 977. Observe that

—C
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= 7

From here the strategy is straightforward. Calculate the second term just as
described above, and then extend the addition chain as necessary to calculate
the larger first term. We omit the details.

Prime As Implemented | This Method
218 _ 9% 13 [9] 15
2256 _ 932 _ 977 15 [12] 17

Table 2. Number of Multiplications

5 Two birds, one stone

The same idea can be used to efficiently calculate modular square roots, as
often required in ECC implementation for point decompression [8]. If the prime
p = 3 mod 4, then the square root of a quadratic residue = can be calculated
from y = 2P=3)/4 as \/z = xy mod p, and if p = 5 mod 8, the square root can be
calculated from y = z(?=5)/8 with a small amount of extra work — see algorithm
3.37 in chapter 3 of [11] for details. By modifying our algorithm in an obvious
way to calculate these y values instead, and then re-using the same function,
the inverse 2P~2 mod p can be found in the former case as zy?, and in the latter
case as 2°y8. See [4] and the implementation associated with [9] for an example
of the deployment of this idea.

Next we generalise this idea. First we categorise the prime moduli according
to the value of e, where e is the maximum integer such that 2¢|p — 1. If as is
commonly the case the modulus is 3 mod 4, then e = 1 and if the modulus is
5 mod 8 then e = 2. Larger values of e might also occur for the case where the
modulus is 1 mod 8.

Now in the general case both modular inverses and tests for quadratic resid-
uosity can start with the calculation of the progenitor value y
_1)/2e+1

y = 22 mod p

From here the modular inverse can be calculated as

1/z = 22 12 = xZefl_l.(myZl)Qe mod p



Quadratic residuosity can be determined from (a:y2)2€71. If an element x is
a quadratic residue, then its square root can be calculated.

We acknowledge that using this more round-about method to calculate mod-
ular inverses and modular square roots may require a small amount of extra
work — for the former case see the last column in table 2. And in certain cases
modular square roots can be achieved significantly faster, as /z = z®+1/4 if
¢ =1, and from \/z = z(*+3)/8 if ¢ = 3, as clearly in these cases only squarings
are required, with no multiplications at all.

When considering the calculation of square roots it is common in the liter-
ature to make assumptions about p, as the calculation is much simpler for the
cases where e = 1 and e = 2. Here we eschew this attractive but specialised ap-
proach and instead use the more complex Tonelli-Shanks algorithm (algorithm
3.34 [11]), which is normally reserved only for the “difficult” p = 1 mod 8 case.
This requires knowledge of a fixed quadratic non-residue d, which ideally should
be small. As is well known in the case e = 1, then d = —1 is a good choice.
For the case e = 2, then d = 2. However for e > 2 often no automatic value is
available, and indeed no deterministic algorithm is known which can find one. In
practice however the prime modulus is known in advance and a simple off-line
search through the small primes will quickly find a suitable non-residue. Also
needed will be a precomputed 2¢-th root of unity, that is z = d®—1/2",

In the application of Tonelli-Shanks we again assume that the progenitor y is
first calculated as above. Indeed this may already be available from a prior test
for quadratic residuosity, as it would obviously be pointless to proceed to try and
find the square root of a non-square. This is the case when performing elliptic
curve point decompression for example. Then the algorithm to find the square
root of x proceeds as follows (in a Pythoneque pseudo-code, where the cmov
function moves the second parameter into its first parameter if the condition
specified in its third parameter is true. Such a function is a staple of constant-
time implementation).

S=y*X

t=s*y

for k in range(e,1,-1)
b=t
for i in range(1,k-1)

b*=b

cmov(s,s*z,b!=1)
z*=z

cmov (t,t*z,b!=1)

The square root will be the final value of s. Observe that in the case where
e = 1 the for loop is not executed.

Next consider the cost of this algorithm in terms of e. The method above
takes 2e — 1 multiplications and (e? — e)/2 squarings. For larger values of e this
is offset to a small extent, as for the same size of p the initial calculation of y will
cost e less squarings. Overall the extra costs will not be excessive for moderate
values of e.



This ability to calculate both inverses and square roots from the same initial
computation of the progenitor y, leads immediately to the “inverse square root”
trick [4], where

1
Vufv = uz.T. udv
udv

This calculation, requiring just one modular exponentiation, is relevant if
implementing the Elligator2 method for deterministic mapping to elliptic curve
points [3], or if performing point decompression on Edwards curves [4].

In the past prime moduli of the form p = 1 mod 8 have been avoided due
to their perceived difficulty, and often libraries did not offer support. However
the extra cost and complexity is in fact not excessive for moderate values of
e. This opens up more possibilities for elliptic curve moduli with an exploitable
form for fast implementation, for example the primes 22°° —31 and 2333 —31. We
observe that in the original paper introducing Curve25519 Bernstein [1] preferred
2255 — 19 over 22°° — 31 solely because “19 is smaller than 31”. However in later
work [2] the prime 24'* — 17 is recommended as 17 is close to a power of 2, as
also is 31. A suitable Weierstrass curve for p = 2255 — 31 of prime order (and
with prime order twist) would be y? = 23 — 32 + 5313.

6 Exploiting the Scholz-Brauer conjecture

Finally we re-consider our approach for primes of the particular generalised
Mersenne form 2™ — 2¢+ 1, where e > 0. As can be easily observed in these cases
the progenitor y becomes y = 2" ~! mod p where m = n — e — 1. In this case
the well-known Scholz-Brauer conjecture on addition chains applies (see [10],
Chapter 4.6.3).

(2™ —-1)<m-—1+1(m)

where [(m) is the length of the optimal addition chain for m. No counter-
example to this conjecture has been found, and indeed in many cases the equality
relationship is known to hold. Therefore we can take m — 1 + I(m) to be very
close to optimal. This suggests the following much simpler (and almost certainly
superior) algorithm for calculating the progenitor y.

First find a simple shortest star chain for m, using tools freely available on
the net. For example for p = 2255 — 31, then m = 249, and a suitable chain of
length 10 would be

1,2,3,6,9,15, 30,60, 120, 240, 249

Now see algorithm 2, inspired by the proof of Theorem G in [10], Chapter
4.6.3. The performance comparison for the calculation of the progenitor value y
with our original algorithm 1, is shown in table 3. For an extension of this method
to a somewhat larger class of pseudo-Mersenne primes, see the Appendix.



Algorithm 2 Calculation of progenitor y for pseudo-Mersenne prime of the
form 2" —2¢ + 1

INPUT: An element xz € F,, n and e, for prime p =2" —2° 41

INPUT: An addition chain length L for m =n —e — 1, a=[1,2,..]

OurpuT: y =22 ~'modp

1: function Fry(z)

2 T T

3 hl0] « x

4 fll] <0

5: for k< 1; k<L; k+ k+1do
6 d < a[k] — a[k — 1]

7 fori< 0; i<d; i+ i+ 1do
8

9

r 72
. r < r.h[f[d]]

10: h[k] —~r

11: f[a[k]} — k

12: return r

Prime | Algorithm 1 | Algorithm 2

21771 11 9
222t _ 3 11 10
2255 _ 31 12 10
2266 _ 3 11 11
2336 _3 12 11
2383 _ 31 13 11
2495 _ 31 13 11
252t _q 12 12
2607 _q 14 12

Table 3. Number of Multiplications



7 Conclusion

When implementing an easy-to-maintain general purpose cryptographic library,
it helps to avoid duplication and special case implementation where possible,
while still obtaining respectable performance. In the case of side-channel resis-
tant modular inversion with respect to pseudo-Mersenne primes, the method of
choice is to use Fermat’s Little Theorem. Optimal performance seems to require
a tailored solution for each modulus of interest, a process prone to error. Here
we have first presented a slightly suboptimal algorithm which provides accept-
able performance, but using a single function which works well for most cases
likely to be of interest to cryptographers. Then we extend the idea to cover the
determination of quadratic residuosity and the calculation of modular square
roots, for primes of any form. Finally we present a much simpler method that
often gives improved performance for a large subset of pseudo-Mersenne prime
moduli.

One last observation: Basically the whole problem goes away if instead we
were to use moduli of the form 2™ + ¢ for positive values of ¢. Again such primes
were also once considered by Bernstein [1]. And there are some nice such primes
available, such as 22%° 495, 2263 19, 2390 13 and 2519 + 15. One objection might
be to the extra bit required in the representation, but in many cases, depending
on how exactly field elements are represented, this might not be an issue.
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Extending Scholz-Brauer method to a larger class of
pseudo-Mersenne primes

Consider generalised pseudo-Mersenne primes of the form 27 — 2¢+e+1 4 ge+l _
2¢ + 1, where e > 0 and d > 0. In this case the progenitor becomes y =
22" 2" mod p, which can be calculated as y = 22" *=12" Therefore the same
method as described can be used, followed by d squarings, without requiring any
more multiplications.

Now for primes p = 2" — ¢, if e = 1 this method applies to values of ¢ =
24+2 _ 3 for example ¢ = 1,5 and 13. If e = 2 the method applies for ¢ =
2943 _ 5 which includes ¢ = 3,11,27. For e = 3, then ¢ = 2¢t* — 9, which
includes ¢ = 7,23. Therefore this simpler and faster method can be used for
c=1,3,5,7,11,13,15,23,27,29, 31...
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