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Abstract. This paper proposes two one-round authenticated group key
exchange protocols from newly employed cryptographic invariant maps
(CIMs): one is secure in the quantum random oracle model and the other
resists against maximum exposure where a non-trivial combination of
secret keys is revealed. The security of the former (resp. latter) is proved
under the n-way decisional (resp. n-way gap) Diffie–Hellman assumption
on the CIMs in the quantum random (resp. random) oracle model.
We instantiate the proposed protocols on the hard homogeneous spaces
with limitation where the number of the user group is two. In particular,
the protocols instantiated by using the CSIDH, commutative supersin-
gular isogeny Diffie–Hellman, key exchange are currently more realistic
than the general n-party CIM-based ones due to its realizability. Our
two-party one-round protocols are secure against quantum adversaries.

Keywords: One-round authenticated group key exchange · Cryptographic in-
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1 Introduction

1.1 Background

Recently, National Institute of Standards and Technology (NIST) has initi-
ated a process to standardize quantum-resistant public-key cryptographic al-
gorithms [27], so, to study quantum-resistant cryptosystems is a hot research
area. A wide range of quantum-resistant primitives (i.e., mathematical founda-
tions) have been scrutinized by experts on cryptography and mathematics over
the world. They include lattice-based, code-based, and multivariate cryptogra-
phy. We treat with one (relatively) newly entered quantum-resistant primitive,
which is called isogeny-based cryptography.

Key establishing over insecure channels is one of important cryptographic
techniques. Recent researches on this have led to authenticated key exchange
(AKE) and its multiparty extension, that is, authenticated group key exchange
(AGKE). We then propose quantum-resistant AKE and AGKE schemes from
isogenies on elliptic curves. In fact, we establish them on some abstract notions



obtained from isogenies called cryptographic invariant maps (CIMs) and hard
homogeneous spaces (HHSs).

HHS, CIM and CSIDH Key Exchange. In an unpublished but seminal
paper [6], Couveignes initiated the research of isogeny-based cryptography where
he formulated the basic notion of HHSs which is an abstract form of isogeny
graphs and class groups of endomorphism rings of (ordinary) elliptic curves.

Independently, Rostovtsev and Stolbunov [29] proposed a Diffie–Hellman
type key exchange from ordinary elliptic curve isogenies, which is now called
RS key exchange and intensively studied very recently in [9]. While the RS key
exchange uses ordinary curves, De Feo et al. employed supersingular isogenies
for a practical key exchange protocol called supersingular isogeny Diffie–Hellman
(SIDH) key exchange since ordinary isogeny problems suffer from subexponential
quantum attacks. Jao et al. submitted an isogeny-based encryption scheme called
SIKE (supersingular isogeny key encapsulation) to the NIST post-quantum cryp-
tography competition, and the scheme is an enhanced form of the SIDH key
exchange.

Castryck et al. [5] put forward a new HHS-based cryptographic construction
called CSIDH (commutative SIDH) key exchange, which is constructed from a
group action on the set of supersingular elliptic curves defined over a prime field.
This ingenious key exchange opened a new research avenue in isogeny cryptog-
raphy. As another new proposal, Boneh et al. [1] initiated to study a candidate
multiparty non-interactive key exchange on CIMs, whose underlying structure is
given by a HHS, (X,G), where X is a finite set and G is a finite abelian group,
and the invariant map is defined on the n-th product Xn equipped with nice
homomorphic (or equivariant) properties. As in the traditional Diffie–Hellman
and pairing primitives, we can consider n-way computational, decisional, and
gap Diffie–Hellman problems and assumptions on CIMs.

The notions of HHS and CIM give very concise conceptualizations of the
above wonderful recent developments. We propose a generic conversion method
from these key exchanges to authenticated ones. We next review the authenti-
cated key exchanges and their importance.

Recently, Peikert quantified the attack complexity to CSIDH in a quantum
setting, and concluded that CSIDH with a small parameter, e.g., CSIDH-512,
might be breakable using the c-sieve [28]. Precisely, CSIDH-512 has the smaller
security than the claimed 64-bit one. It means that we should use CSIDH with
a bigger parameter, e.g., CSIDH-1024.

Authenticated Key Exchange (AKE). In an AKE protocol, two parties,
called initiator and responder, have own static public keys, exchange ephemeral
public keys, and compute a session key based on the public keys and the re-
lated secret keys. Roughly speaking, interactions between the initiator and the
responder is called round, and the number of the interactions is called round
complexity.
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AKE protocols achieve that honest parties can establish a session key, and
any malicious party cannot guess the session key. The latter condition is formu-
lated in an indistinguishability game. Regarding to this security game, several
models have been invented, and the Canetti–Krawczyk (CK) model was proposed
to capture leakage of the session state [4]. After the proposal, several security
requirements have been indicated such as key compromise impersonation (KCI),
weak perfect forward secrecy (wPFS), and maximal exposure attacks (MEX) (re-
fer to [19] for KCI, wPFS, and MEX). The CK model has been integrated with
KCI, wPFS, and MEX to the CK+ model [10].

Fujioka et al. [10] proposed a generic construction of CK+-secure AKE from
key encapsulation mechanism (KEM), and it means that we have a quantum-
resistant AKE protocol when a quantum-resistant KEM exists. Longa gives an
instantiation of their construction, and shows a two-round SIDH AKE protocol
(AKE-SIDH-SIKE) which is CK+-secure from a KEM scheme [24]. However,
the round complexity of the (resultant) protocol is two as a responder has to
compute a message depending on the incoming message from an initiator.

Galbraith proposed a one-round4 SIDH-based AKE protocol (SIDH TS2)
in [12] based on the Unified Model DH protocol by Jeong, Katz, and Lee [18].
The protocol is CK-secure under a decisional problem in classical random oracle
model (ROM). Other one-round SIDH-based AKE protocols, SIDH UM and
biclique SIDH, are proposed in [11]. The SIDH UM protocol is CK-secure in
the quantum random oracle model (QROM) and the biclique SIDH protocol is
CK+-secure in the ROM.

Hövelmanns et al. [16] introduced a two-move (not one-round) generic AKE
construction which is secure in (a variant of) CK model (called IND-StAA se-
curity) in the QROM. Since their generic construction is based on IND-CPA
public key encryption (PKE), we can obtain isogeny-based AKE protocols from
isogeny-based PKE such as SIKE [17].

To the best of our knowledge, we have neither CK-secure nor CK+-secure
one-round HHS-based AKE protocols.

Authenticated Group Key Exchange (AGKE). It is natural to extend
two-party key exchange to n-party key exchange where n > 2, and actually, a
group key exchange protocol can be constructed using a two-party key exchange
protocol as a building block (e.g., [31]). However, this approach requires more
round complexity than two, and this property holds for AGKE, also.

Several attempts have been done for one-round AGKE [2, 15, 26, 32, 23, 21].
Some do not satisfy important security properties, some have a limitation where
the number of the group is three, and some are not quantum-resistant. Recently,
it is shown that the CIM gives non-interactive key exchange for general n par-
ties [1]. However, the protocol is not an AGKE one.

4 Galbraith claims that the protocol is one-round however the description shows that
it is two-round as the responder generates the response after receiving the first
message [12].

3



Similar to those attempts, several security models for AGKE have been de-
fined like ones for AKE (see a survey in [25]). Among them, we have the G-CK
model (corresponding to the model with (sfs, scm)-secrecy in [3]), the G-eCK
model [26], and the G-CK+ model [32]. The G-CK model is an AGKE variant of
the CK model, and it captures leakage of the session state. The G-CK+ model
integrates the G-CK model with KCI, wPFS, and MEX. The G-eCK model is
an AGKE variant of the eCK model [20], which also captures MEX. It is worth
to note here that the G-CK+ and G-eCK models are incomparable as the CK+

and eCK models are so [8, 7].

One-round AGKE protocols secure in the G-CK or G-CK+ model are given
in [26, 32]. In those protocols, the number of the user group is limited to three,
that is, they are tripartite key exchange.

On the other hand, Li and Yang [23] introduced one-round AGKE proto-
col from multilinear maps (MLMs), which is secure in the G-eCK model, and
Lan et al. [21] introduced one-round AGKE protocol from indistinguishability
obfuscation (iO), which is secure in a weak variant of the G-CK model. These
protocols are not proved in the G-CK or G-CK+ model, and quantum-resistance
is not considered.

Thus, we do not have one-round AGKE protocols for general n-party (n > 3)
secure in the G-CK or G-CK+ model, additionally against quantum adversaries.

1.2 Our Contributions

One-Round AGKE from CIM. We propose two one-round AGKE protocols
on the CIMs. One is called n-UM (n-Unified Model) which satisfies the G-CK
security. The security of n-UM is proved under the n-way DDH assumption in
the quantum random oracle model. The other is called BC n-DH (biclique n-
Diffie–Hellman) which satisfies the G-CK+ security. The security of BC n-DH
is proved under the n-way GDH assumption in the random oracle model. The
BC n-DH protocol requires that the number of the user group is bounded by
logarithm of the security parameter. Comparison with existing one-round AGKE
protocols is shown in Table 1.

Table 1. Comparison of one-round AGKE protocols.

#parties assumption model post-quantum? proof

[15] n KEM, PRF weak G-CK5 based on ingredients StdM
[26] 3 gap-BDH G-eCK no ROM
[32] 3 DBDH G-CK+ no StdM
[23] n MLMs G-eCK no StdM
[21] n iO G-CK no StdM

n-UM n n-DDH G-CK yes QROM
BC n-DH n n-GDH G-CK+ yes ROM

5 The model does not capture weak perfect forward secrecy (wPFS).
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Note that it is not easy to prove the security of BC n-DH in the quantum
random oracle model. In the reduction to the G-CK+ security, the n-GDH solver
needs to access the DDH oracle to maintain consistency among simulations of
queries from the AGKE adversary. Hence, it is hard to prove the security of BC
n-DH without the help of the DDH oracle. Also, the n-GDH solver wants to
extract the answer of the n-GDH problem from a random oracle query by the
AGKE adversary. However, the query may be a quantum state, and the solver
cannot record a copy of the input due to the no-cloning theorem. Thus, such a
proof strategy does not work. Recently, Zhandry [36] introduced a technique to
record quantum queries. It is an open problem how to apply this technique to
the proof.

On the other hand, in the reduction to the G-CK security in the security
proof of n-UM, the adversary never expose ESKs. Thus, it is not necessary to
access the DDH oracle to maintain consistency because the n-DDH solver knows
all necessary secret keys to compute session keys except the test session. In the
n-DDH assumption, the DH value (i.e., sb in Definition 2.7) is given to the solver.
It means that the n-DDH solver does not need to extract any information from
random oracle queries by the AGKE adversary; and therefore, we can prove the
G-CK security of n-UM in the quantum random oracle model.

Instantiating One-Round Two-Party AKE from HHS. We instantiate
the proposed protocols on the HHS with limitation where the number of the
user group is two. In particular, the CSIDH-based protocols are currently more
realistic than the general n-party CIM-based ones due to its realizability. Our
two-party one-round protocols are secure against quantum adversaries.

Compared to the previous SIDH-based one-round (two-party) AKE proto-
cols [12, 11], the proposed protocols have several merits. While Galbraith et
al. [13] proposed an active attack on the SIDH protocol by using the auxiliary
points exchanged between users, the attack cannot be applied to our CSIDH-
based ones since they include no auxiliary points. In [14], one attack scenario
for the gap Diffie–Hellman (GDH) problem on the SIDH protocol is given since
the degrees of isogenies used are fixed by public parameters as ℓeii for small
primes ℓi, e.g., ℓ1 = 2, ℓ2 = 3. As the CSIDH protocol uses random multiples
consisting of several primes ℓi (i = 1, . . . , n) for the degrees and they are not
fixed by public parameters, the attack cannot be applied to the CSIDH setting.
Thus, the GDH assumption on CSIDH has no effective attacks at present, and
we have a strong confidence on the security of our CSIDH-based BC protocol,
which is reduced from the CSIDH GDH assumption. Comparison with existing
isogeny-based AKE protocols is shown in Table 2.

2 Preliminaries

This work considers the PKI-based setting that each party locally keeps his own
static secret key (SSK) and publishes a static public key (SPK) corresponding
to the SSK. Validity of SPKs is guaranteed by a certificate authority. In a key

5



Table 2. Comparison of isogeny-based AKE protocols.

assumption model #rounds proof

SIDH TS2 [12] SI-CDH CK 1 1 ROM
AKE-SIDH-SIKE [24] SI-DDH CK+ 2 ROM

LJA [22] SI-DDH qCK 2 QROM
AKESIDH-2 [34] SI-DDH CK+ 2 ROM
SIDH UM [11] SI-DDH CK 1 QROM

biclique SIDH [11] di-SI-GDH CK+ 1 ROM
HKSU [16] IND-CPA PKE modified CK 2 QROM

HHS-UM 2-DDH CK 1 QROM
HHS-BC 2-GDH CK+ 1 ROM

exchange session, each party generates an ephemeral secret key (ESK) and sends
an ephemeral public key (EPK) corresponding to the ESK. A session key is
derived from these keys with a key derivation mechanism like a hash function
modeled as the random oracle.

2.1 Post-Quantum G-CK and G-CK+ Model

In this section, we revisit security models, the G-CK model [3]6 and the G-CK+

model [32], for AGKE against quantum adversaries.

Note that we show a model specified to one-round protocols for simplicity. It
can be trivially extended to any round protocol.

Protocol Participants and Initialization. Let U := (U1, . . . , Unu) be a set
of potential protocol participants, where the ID space is IDS. Each party Ui is
modeled as a probabilistic polynomial-time (PPT) Turing machine w.r.t. security
parameter κ while the adversary is modeled by a probabilistic polynomial time
quantum Turing machine. For party Ui, we denote static secret (public) key
by SSK i (SPK i) and ephemeral secret (public) key by ESK i (EPK i). Party Ui

generates its own keys, SSK i and SPK i, and the static public key SPK i is linked
with Ui’s identity in some systems like PKI.

Session. An invocation of a protocol is called a session. We suppose that a
session contains n parties (Uj1 , . . . , Ujn), where 2 ≤ n ≤ nu. A session is managed
by a tuple (Π, rolei, Ujℓ , Uj1 , . . . , Ujn), where Π ∈ PRS is a protocol identifier for
the protocol ID space PRS, rolei is a role identifier, and Ujℓ is a party identifier.
Role identifiers represents the order of party identities in protocols (i.e., in the
two-party case, it corresponds to the initiator or the responder. ). Hereafter,
for simplicity, we can suppose that Ujℓ = Uℓ without loss of generality. If Uj

is activated with (Π, rolei, Uj , U1, . . . , Un, Init), then Uj is called the i-th player.
The role of a party in a session is decided by the lexicographic order of party

6 In [3], several variants of security models are proposed. The G-CK model corresponds
to the model with (sfs, scm)-secrecy.
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identities, and rolei ̸= rolei′ for any i and i′ (i ̸= i′) in a session.7 Uj outputs
EPK j , receives EPK j′ from Uj′ for j

′ = 1, . . . , j − 1, j +1, . . . , n, and computes
the session key SK .

If Uj is the i-th player of a session, the session is identified by sid = (Π, rolei,
Uj , U1, . . . , Un, EPK j) or sid = (Π, rolei, Uj , U1, . . . , Un, EPK 1, . . . , EPKn).
We say that Uj is the owner of session sid, if the third coordinate of sid is Uj .
We say that Uj is a peer of session sid, if the third coordinate of sid is not Uj .
We say that a session is completed if its owner computes the session key. We say
(Π, rolei′ , Uj′ , U1, . . . , Un, EPK 1, . . . ,EPKn) is a matching session of (Π, rolei,
Uj , U1, . . . , Un,EPK 1, . . . ,EPKn), where i

′ ̸= i and j′ ̸= j.

Adversary. The adversary A, which is modeled as a PPT quantum Turing ma-
chine, controls all communications between parties including session activation
and registrations of parties by performing the following adversary queries.

– Send(message): This query allows an adversary A to send the message to
Uj instead of other parties. The message has the following form: (Π, rolei,
Uj , U1, . . . , Un, Init) for session activation, or (Π, rolei′ , Uj′ , U1, . . . , Un,
EPK 1, . . . ,EPK j′ , . . . ,EPKn). Uj′ runs on input the message according to
the protocol, updates the internal state, and returns a response (if any). A
learns the response from Uj′ .

– Establish(Uj ,SPK j): This query allows A to introduce new parties. In re-
sponse, if Uj ̸∈ U (due to the uniqueness of identities) then Uj with the
static public key SPK j is added to U . Note that A is not required to prove
the possession of the corresponding secret key SSK j . If a party is registered
by a Establish query issued by A, then we call the party dishonest. If not, we
call the party honest.

To capture exposure of secret information, the adversary, A, is allowed to
issue the following queries.

– SessionReveal(sid): The adversary, A, obtains the session key SK for the
session sid if the session is completed.

– StateReveal(sid): The adversary, A, obtains the session state of the owner of
session sid if the session is not completed (the session key is not established
yet). The session state includes all ephemeral secret keys and intermediate
computation results except for immediately erased information but does not
include the static secret key. Note that the protocol specifies what the session
state contains.

– StaticReveal(Uj): This query allows A to obtain all static secret keys of the
party Uj .

7 This condition is necessary to keep correctness of the protocol. Some session key
derivation process contain the evaluation of a function on inputting party identifiers
according to roles of parties. If parties do not share their roles, the order of inputs
cannot be consistent for parties.
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– EphemeralReveal(sid): This query allowsA to obtain all ephemeral secret keys
of the owner of the session sid if the session is not completed (the session
key is not established yet). It is necessary to represent a MEX situation that
an adversary can reveal ESKs but is prevented to obtain other session state
such that the adversary trivially wins.

Freshness. For the security definition, we need the notion of freshness. Fresh-
ness is the condition that an adversary cannot break the security in trivial ways,
and necessary to make the experiment meaningful. For example, if the adver-
sary can learn all secret information of a party in a session (i.e., the SSK and
the ESK), it is not avoidable to reveal the session key of the session. To exclude
such a trivial attack secret information learned by the adversary must be limited
for the target session. Conversely, the definition of freshness must not limit any
non-trivial attacks.

Let sid∗ = (Π, rolei, Uj , U1, . . . , Un,EPK 1, . . . , EPKn) be a completed ses-
sion between honest parties (U1, . . . , Un), which is owned by Uj . If a matching

session exists, then let sid∗j′ be a matching session of sid∗ where the owner is
Uj′ .

Definition 2.1 (Freshness for G-CK Security). We say session sid∗ is fresh
in the G-CK model if none of the following conditions hold:

1. The adversary, A, poses SessionReveal(sid∗), or SessionReveal(sid∗j′) if sid∗j′
exists.

2. The adversary, A, poses EphemeralReveal() for any session.

3. The adversary, A, poses StateReveal(sid∗), or StateReveal(sid∗j′) if sid∗j′
exists.

4. The adversary, A, poses StaticReveal(Uj′) for any Uj′ ∈ (U1, . . . , Un) if there
exists a non-matching session of sid∗.

Definition 2.2 (Freshness for G-CK+ Security). We say session sid∗ is
fresh in the G-CK+ model if none of the following conditions hold:

1. The adversary, A, poses SessionReveal(sid∗), or SessionReveal(sid∗j′) if sid∗j′
exists.

2. The adversary, A, poses StateReveal(sid∗), or StateReveal(sid∗j′) if sid∗j′
exists.

3. The adversary, A, poses both of StaticReveal(Uj) and EphemeralReveal(sid∗).

4. The matching session, sid∗j′ exists, and A poses both of StaticReveal(Uj′)

and EphemeralReveal(sid∗j′).

5. The matching session, sid∗j′ does not exist, and A poses StaticReveal(Uj′).

Security Experiment. For the security definition, we consider the following
security experiment. Initially, the adversary, A, is given a set of honest users and
makes any sequence of the queries described above. During the experiment, the
adversary, A, makes the following query.
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– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈R {0, 1},
and return the session key held by sid∗ if b = 0, and return a random key if
b = 1.

The experiment continues until the adversary, A, makes a guess b′. The
adversary, A, wins the game if the test session sid∗ is still fresh and if the
guess of the adversary, A, is correct, i.e., b′ = b. The advantage of the adversary,
A, is defined as Advagke

Π,A (λ) = Pr[A wins]− 1
2 where agke is “g-ck” or “g-ck+”

depending on the relying freshness condition. We define the security as follows.

Definition 2.3 (G-CK/G-CK+ Security). We say that a AGKE protocol Π
is post-quantum secure in the G-CK/G-CK+ model if the following conditions
hold:

1. If all n honest parties complete matching sessions, then, except with negligible
probability, they compute the same session key.

2. For any PPT quantum adversary A, Advg-ck
Π,A(λ) (resp. Advg-ck+

Π,A (λ) ) is

negligible in security parameter κ for the test session sid∗ according to fresh-
ness for G-CK (resp. G-CK+) security.

2.2 Cryptographic Invariant Maps

Boneh et al. [1] recently introduced a new framework for constructing non-
interactive group key exchange from isogenies on elliptic curves, which is called
cryptographic invariant maps (CIM). The notion and assumptions on the CIM
systems are introduced here. In Appendix A, we survey some candidates for CIM
given in [1].

Definition 2.4 (Freeness and Transitivity [1]). Let X be a finite set and
let G be a finite abelian group. We say that G acts efficiently on X freely and
transitively if there are an efficiently computable map ∗ : G × X → X and an
efficiently computable group operation in G such that:

– the map is a group action: g ∗ (h ∗ x) = (gh) ∗ x, and there is an identity
element id ∈ G such that id ∗ x = x, for all x ∈ X and all g, h ∈ G;

– the action is transitive: for every (x, y) ∈ X ×X there is a g ∈ G such that
g ∗ x = y; and

– the action is free: if x ∈ X and g, h ∈ G satisfy g ∗ x = h ∗ x, then g = h.

The above pair (G,X) gives a convenient conceptual foundation called hard
homogeneous spaces (HHSs), which is reviewed in Section 5.1. On the top of
HHS given by (G,X), we build the notion of CIM as in the following definition
(in a similar manner that bilinear maps are built on the top of cyclic groups in
traditional cryptography literatures).

Definition 2.5 (Cryptographic Invariant Map (CIM) [1]). By a crypto-
graphic invariant map we mean a randomized algorithm MapGen that inputs a
security parameter λ, outputs public parameters pp = (X,S,G, e), and runs in
time polynomial in λ, where:
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– X and S are sets, and X is finite,
– G is a finite abelian group that acts efficiently on X freely and transitively,
– e is a deterministic algorithm that runs in time polynomial in λ and n,

such that for each n > 0, algorithm e takes λ as input and computes a map
en : Xn → S that satisfies:
• Invariance property of en: for all x ∈ X and g1, . . . , gn ∈ G, en(g1 ∗
x, . . . , gn ∗ x) = en((g1 · · · gn) ∗ x, x, . . . , x);

• Non-degeneracy of en: for all i with 1 ≤ i ≤ n and x1, . . . , xi−1, xi+1, . . . ,
xn ∈ X, the map X → S defined by y 7−→ en(x1, . . . , xi−1, y, xi+1, . . . ,
xn) is injective.

The notation x ←R X will denote an independent uniform random variable
x over the set X. Similarly, we use x′ ←R Alg(y) to define a random variable
x′ that is the output of a randomized algorithm Alg on input y.

Definition 2.6 (n-way Computational Diffie–Hellman Assumption [1]).
We say that MapGen satisfies the n-way computational Diffie–Hellman assump-
tion (n-CDH) if for every polynomial time quantum algorithm S,

Advn-CDH
S (λ) = Pr[S(pp, g1 ∗ x, . . . , gn ∗ x) = en−1((g1 · · · gn) ∗ x, x, . . . , x)]

is a negligible function of λ, when pp ←R MapGen(1λ), g1, . . . , gn ←R G, and
x ←R X.

Definition 2.7 (n-way Decisional Diffie–Hellman Assumption [1]). Let
consider the following two distributions, D0 and D1, where pp ←R MapGen(1λ),
g1, . . . , gn ←R G, and x ←R X:

– D0 is (pp, g1 ∗ x, . . . , gn ∗ x, s0) where s0 = en−1((g1 · · · gn) ∗ x, x, . . . , x).
– D1 is (pp, g1 ∗ x, . . . , gn ∗ x, s1) where s1 is random in Im(en−1) ⊆ S.

We say that MapGen satisfies the n-way decisional Diffie–Hellman assumption
(n-DDH) if for every polynomial time quantum algorithm S,

Advn-DDH
S (λ) = |Pr[S(z) = 1|z ← D0]− Pr[S(z) = 1|z ← D1]|

is a negligible function of λ.

Definition 2.8 (n-way Gap Diffie–Hellman Assumption). We say that
MapGen satisfies the n-way gap Diffie–Hellman assumption (n-GDH) if for every
polynomial time quantum algorithm S which accesses the n-DDH oracle O(·) =
n-DDH(·),

Advn-GDH
S (λ) = Pr[SO(pp, g1 ∗ x, . . . , gn ∗ x) = en−1((g1 · · · gn) ∗ x, x, . . . , x)]

is a negligible function of λ, when pp ←R MapGen(1λ), g1, . . . , gn ←R G, and
x←R X. For any input (pp, x′1, . . . , x

′
n, s

′) where x′i = g′i ∗ x (i = 1, . . . n), the
n-DDH oracle O(·) = n-DDH(·) acts as follows:
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n-DDH(pp, x′1, . . . , x
′
n, s
′) = 0 if s′ = en−1((g

′
1 · · · g′n) ∗ x, x, . . . , x), and

n-DDH(pp, x′1, . . . , x
′
n, s
′) = 1 otherwise.

In [1], several candidates for CIM are demonstrated including the theta null
invariants, Igusa invariants, invariants for Kummer surfaces and Deligne invari-
ants, but they do not give an appropriate one in Definition 2.5. Thus, to obtain
a suitable invariant is a big open problem remained in [1].

3 n-UM : G-CK Secure n-Party Authenticated Group
Key Exchange

In this section, we propose an one-round n-party AGKE scheme, n-Unified Model
(n-UM), secure in the G-CK model. n-UM is based on CIM with MapGen. The
security can be proved under the n-DDH assumption forMapGen in the quantum
random oracle model.

3.1 Design Principle

To be secure in the G-CKmodel, the adversary must be prevented to impersonate
any party in the test session. In other words, if the adversary does not know any
SSK, the session key must be indistinguishable from a random key. Thus, it is
necessary that all SSKs contribute to the session key derivation. The session
key is an output of a hash function. In n-UM, each user has the static key pair
(ti, Ti = ti ∗ x), and Z1 = en−1((t1 · · · tn) ∗ x, x, . . . , x) is contained in the input
of the hash function. Z1 can be computed if one of {ti} is given.

On the other hand, in the G-CK model, the adversary can reveal SSKs if
the test session has no non-matching session. It means that all EPKs are sent
and received without interruption in the test session. In this case, the adversary
can compute Z1 with the revealed SSK. Hence, it is also necessary that all
ESKs contribute to the session key derivation. In n-UM, each user generates the
ephemeral key pair (ri, Ri = ri ∗ x), and Z2 = en−1((r1 · · · rn) ∗ x, x, . . . , x) is
contained in the input of the hash function. Z2 can be computed if one of {ri}
is given.

Therefore, all cases of the G-CK model can be covered.

3.2 Useful Techniques for Quantum Random Oracle Model

A problem on security proofs in the quantum random oracle model is how to
generate random values for exponentially many positions in order to simulate
outputs of the hash function. For a hash function H : Dom→ Rng, in the quan-
tum random oracle model, the adversary poses a superposition |ϕ⟩ = Σαx|x⟩ and
the oracle returns Σαx|H(x)⟩. If Rng is large for a quantum polynomial-time
simulator, it is difficult to generate all random output values of H to compute
Σαx|H(x)⟩. Zhandry [35] showed a solution with the notion of k-wise indepen-
dent function.
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A weight assignment on a set X is a function D : X → R such that
Σx∈XD(x) = 1. A distribution on X is a weight-assignment D such that D(x) ≥
0 for all x ∈ X . Consider the set of functions H : X → Y for sets X and Y,
denoted by HX ,Y . We define the marginal weight assignment DW of D on HX ,Y
where the weight of a function HW :W → Y is equal to the sum of the weights
of all H ∈ HX ,Y that agree with HW on W.

Definition 3.1 (k-wise equivalence). We call two weight assignments D1 and
D2 on HX ,Y k-wise equivalent if for all W ⊆ X of size k, the marginal weight
assignments D1,W and D2,W (of D1 and D2) over HX ,Y are identical.

Definition 3.2 (k-wise independent function). We call a function f k-wise
independent function if f is k-wise equivalent to a random function.

Lemma 3.1 (Theorem 3.1 in [35]). Let A be a quantum algorithm making
q quantum queries to an oracle H : X → Y. If we draw H from some weight
assignment D, then for every z, the quantity PrH←D[AH() = z] is a linear
combination of the quantities PrH←D[H(xi) = ri ∀i ∈ 1, . . . , 2q] for all possible
settings of the xi and ri.

Lemma 3.2 (Theorem 6.1 in [35]). If there exists 2qi-wise independent func-
tion, then any quantum algorithm A making qi quantum queries to random or-
acles Oi can be efficiently simulated by a quantum algorithm B, which has the
same output distribution, but makes no queries.

Hence, a quantum algorithm B can simulate quantum random oracles in a
polynomial-time. We use this simulation technique to simulate outputs of the
hash function in the security proof of n-UM.

On the other hand, the other problem on security proofs in the quantum
random oracle model is how to insert intended random values as the outputs of
corresponding oracle inputs. Zhandry [35] showed a solution with the notion of
semi-constant distributions SCω.

Definition 3.3 (Semi-constant distribution). We define SCω, the semi-
constant distribution, as the distribution over HX ,Y resulting from the following
process:

– First, pick a random element y from Y.
– For each x ∈ X , do one of the following:

• With probability ω, set H(x) = y. We call x a distinguished input to H.

• Otherwise, set H(x) to be a random element in Y.

Lemma 3.3 (Corollary 4.3 in [35]). The distribution of outputs of a quan-
tum algorithm making nh queries to an oracle drawn from SCω is at most a
distance 3

8n
4
hω

2 away from the case when the oracle is drawn from the uniform
distribution.

12



T1 = t1 ∗ x · · · Ti = ti ∗ x · · · Tn = tn ∗ x
R1 = r1 ∗ x · · · Ri = ri ∗ x · · · Rn = rn ∗ x

R1−→ · · · Ri←− Ri−→ · · · Rn←−
Z1 = en−1(T1, . . . , Ti−1, ti ∗ Ti+1, Ti+2, . . . , Tn)
Z2 = en−1(R1, . . . , Ri−1, ri ∗Ri+1, Ri+2, . . . , Rn)

SK = H(Π, U1, . . . , Un, R1, . . . , Rn, Z1, Z2)

Fig. 1. Outline of n-UM Protocol.

We suppose that the simulation succeeds with probability ϵ if the adversary
uses an inserted random value as the outputs of corresponding oracle inputs. If
the probability that the adversary uses one of the points is ω, then the simu-
lation succeeds with probability ϵω − 3

8n
4
hω

2. By choosing ω to maximise the
success probability, the simulation succeeds with probability O(ϵ2/n4h). We use
this simulation technique to insert a n-DDH instance into the hash function in
the security proof of n-UM.

3.3 Protocol

Based on the above principle, we have the n-UM protocol (Fig. 1).

Public Parameters. We set Π = nUM. Let λ be a security parameter.
Let MapGen be a generation algorithm of a cryptographic invariant map, and
(X,S,G, e) ←R MapGen(1λ) and x ←R X are chosen. Let H : {0, 1}∗ →
{0, 1}λ be a hash function modeled as a quantum random oracle. Public param-
eters are (Π, X, S,G, e, x,H).

Static Secret and Public Keys. Party Ui chooses ti ∈ G as the SSK. Then,
Ui computes Ti = ti ∗ x as the SPK.

Key Exchange. W.l.o.g, we suppose a session executed by U = (U1, . . . , Un) ⊆
U .

1. Ui chooses ri ←R G as the ESK, and computes Ri = ri ∗ x as the EPK.
Then, Ui broadcasts (Π, rolei′ , Ui, Ri) to U \ Ui.

2. On receiving (Π, rolej′ , Uj , Rj) for all j ̸= i, Ui computes Z1 = en−1(T1, . . . ,
Ti−1, ti ∗ Ti+1, . . . , Tn) and Z2 = en−1(R1, . . . , Ri−1, ri ∗ Ri+1, . . . , Rn).

8

Then, Ui generates the session key SK = H(Π, U1, . . . , Un, R1, . . . , Rn, Z1,
Z2), and completes the session.

The session state of a session owned by Ui contains the ESK ri, and interme-
diate computation Ri. Since other information that is computed after receiving
the messages from other parties is immediately erased when the session key is
established, such information is not contained in the session state.
8 Ti and Ri are indexed in the cyclic manner in modulo n. For example, when i = n,
then Z1 = en−1(tn ∗ T1, . . . , Tn) and Z2 = en−1(rn ∗R1, . . . , Rn).
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3.4 Security

Theorem 3.1. Suppose that H is modeled as a quantum random oracle and
that the n-DDH assumption holds. Then the n-UM protocol is a post-quantum
G-CK-secure n-party authenticated key group exchange protocol in the quantum
random oracle model.

In particular, for any quantum adversary A against the n-UM protocol that
runs in time at most t, involves at most nu honest parties and activates at most
ns sessions, and makes at most nh queries to the quantum random oracle and
nq SessionReveal queries, there exists a n-DDH quantum solver S such that

Advn-DDH
S (λ) ≥

2Advg-ck
nUM,A(λ)

2

n2un
2
s(8nhnq + 3(nh + nq + 1)4)

,

where S runs in time t plus time to perform O
(
(nu + ns)λ

)
group action opera-

tions.

Proof. Since H is modeled as a quantum random oracle, adversary A has only
three ways to distinguish a session key of the test session from a random string.

– Guessing attack: A correctly guesses the session key.
– Key replication attack: A creates a session that is not matching to the test
session, but has the same session key as the test session.

– Forging attack: A computes Z1 and Z2 used in the test session identified with
(Π, rolei, Uj , U1, . . . , Un, R1, . . . , Rn), and queries H with a superposition
including (Π, U1, . . . , Un,R1, . . . , Rn, Z1, Z2).

Since H is a quantum random oracle, the probability of guessing the output of
H is O(1/2λ). Since non-matching sessions have different communicating parties
or ephemeral public keys, key replication is equivalent to finding H-collision;
therefore the probability of succeeding key replication is O(n2s/2λ).

Let M be the event that A wins the security experiment with n-UM, H be the
event that A succeeds forging attack, and H the complementary event of H. Thus
we have Pr[M | H] = 1

2 , and therefore Advg-ck
nUM,A(λ) = Pr[M]− 1

2 ≤ Pr[M ∩ H].
By the definition of freshness in the G-CK-model, there are two cases that

A chooses a test session.

– E1: A chooses a test session with a non-matching session.
– E2: A chooses a test session without non-matching session, and reveals the

static secret keys of the owner of the test session and the owners of its
matching sessions.

In each case, we will show how to construct an n-DDH solver S. Solver S is
given a n-DDH instance (X,S,G, e, x1 = g1 ∗ x, . . . , xn = gn ∗ x, s).

E1. S prepares nu honest parties, selects n honest parties U = (U1, . . . , Un) to
whom S assigns the static public keys {Ti = xi}[1,n]. The remaining nu − n
parties are assigned random static public and secret key pairs. S selects i ←R
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{1, . . . , ns}, and chooses i-th session sid∗ among sessions, activated by A, owned
by Uj , and having intended peers (U1, . . . , Uj−1, Uj+1, . . . , Un).

When A activates sessions containing an honest party except U, S follows
the protocol description. Since S knows static secret keys of at least one party,
it can respond all queries faithfully. The only exception is the session owned by
U because S does not know static secret keys of them. Then, S sets s as Z1 in
such sessions.

Also, S chooses rj ←R G and ζ ←R {0, 1}λ as the ephemeral secret key and
the session key of sid∗, respectively. Rj = rj ∗ x is the ephemeral public key
corresponding to rj . ζ is inserted as the output of H in the test session sid∗ (i.e.,
the session key).
S has difficulty in responding hash queries because it needs to return su-

perpositions corresponding to random values for exponentially many positions
(The domain of H is PRS× IDSn ×Xn × S2). We solve this problem by using
Lemma 3.2. Specifically, since the number of queries to H made by A is nh for
direct queries, nq for SessionReveal queries, and one for the Test query, for the
total of nh+nq+1 queries, a (nh+nq+1)-wise independent function is sufficient
to simulate superposition of outputs. There is the other difficulty to correctly an-
swer the n-DDH problem because A uses ζ with exponentially small probability
if the position of ζ is only the corresponding input. We can also solve this problem
by using Lemma 3.3. Specifically, the simulator inserts ζ in outputs for inputs
(Π,U′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) ∈ X ⊂ PRS × IDSn ×Xn × S2. The probability

that a randomly chosen input is contained in X is ω. If A chooses (Π,U′ = U,
R′1, . . . , Rj , . . . , R

′
n, Z

′
1 = s, Z ′2 = en−1(R

′
1, . . . , R

′
j−1, rj ∗R′j+1, . . . , R

′
n)) ∈ X as

the test session, then S can use the distinguishing capacity of A to distinguish
the n-DDH challenge.

We use the game hopping technique in the security proof. Let Advg-ck,Gi

nUM,A(λ)
be the advantage of A in Gi.

– Let G0 be the standard attack game for the CK security. When A poses
a superposition to quantum random oracle H, the superposition of output
values corresponding to the input is returned to A. Then, Advg-ck,G0

nUM,A (λ) =

Advg-ck
nUM,A(λ).

– G1 is the same asG0 except that the game halts if A poses Test(sid) for sid ̸=
sid∗. Since sid∗ is chosen from nuns sessions, it holds that Advg-ck,G1

nUM,A (λ) ≥
1

nuns
Advg-ck,G0

nUM,A (λ).

– Let ω ∈ (0, 1) be chosen later, and X be a subset of PRS× IDSn×Xn×S2

where (Π,U′, R′i1 , . . . , R
′
in
, Z ′1, Z

′
2) ∈ PRS×IDSn×Xn×S2 is put in X with

independent probability ω. G2 is the same as G1 except that the game halts
if (Π,U, R′1, . . . , Rj , . . . , R

′
n, s, en−1(R

′
1, . . . , R

′
j−1, rj ∗ R′j+1, . . . , R

′
n)) ̸∈ X

for the test session sid∗ = (Π, rolei, Uj , U, R′1, . . . , Rj , . . . , R
′
n), A poses

SessionReveal(Π, rolei′ , Uj′ , U
′, R′i1 , . . . , R

′
in
) such that (Π,U′, R′i1 , . . . , R

′
in
,

Z ′1, Z
′
2) ∈ X , or A poses H(Π,U′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) such that (Π,U′,

R′i1 , . . . , R
′
in
, Z ′1, Z

′
2) ∈ X . We note that R′1, . . . , R

′
j−1, R

′
j+1, . . . , R

′
n can

be decided by A because sid∗ has no matching session, and A cannot poses
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SessionReveal(Π, rolei, Uj , U, R′1, . . . , Rj , . . . , R
′
n) by the freshness condition.

Advg-ck,G2

nUM,A (λ) ≥ ω(1− ωnhnq) ·Advg-ck,G1

nUM,A (λ)

≥ ωAdvg-ck,G1

nUM,A (λ)− ω
2nhnq

holds.
– G3 is the same asG2 except that ζ is set asH(Π,U′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) for

all (Π,U′, R′i1 , . . . , R
′
in
, Z ′1, Z

′
2) ∈ X , and hash values are randomly chosen

for all other inputs. Now, H is distributed according to SCω. By Lemma 3.3,
the output distribution of A in G3 is at most a distance 3

8 (nh + nq + 1)4ω2

from that in G2. Hence, Advg-ck,G3

nUM,A (λ) ≥ Advg-ck,G2

nUM,A (λ)−
3
8 (nh+nq+1)4ω2

holds.

Finally, we estimate Advg-ck,G3

nUM,A (λ) by Advn-DDH
S (λ) with the reduction to

n-DDH problem. For simplicity, we assume that S has quantum access to two
random oracles H1 : PRS×IDSn×Xn×S2 → {0, 1}λ and H2 : PRS×IDSn×
Xn × S2 → {0, 1} where H2 outputs 1 with probability ω. Let X be the set of
(Π,U′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) such that H2(Π,U

′, R′i1 , . . . , R
′
in
, Z ′1, Z

′
2) = 1.

We can see that the above conditions are equivalent to G3. By Lemma 3.2,
S can perfectly simulate H1 and H2 by using a (nh + nq + 1)-wise indepen-
dent function without oracle accesses. S prepares Rlist with entries of the form
(Π, rolei′ , Uj′ , U

′, R′i1 , . . . , R
′
in
, SK) and Hlist with entries of the form (Π,U′,

R′i1 , . . . , R
′
in
, Z ′1, Z

′
2, SK), and S maintains two lists for consistent responses

to H and SessionReveal queries. On input (X,S,G, e, x1, . . . , xn, s), S works as
follows:

– Choose rj ←R G and ζ ←R {0, 1}λ, and set Rj = rj ∗ x and {Ti = xi}[1,n]
in sid∗. The remaining nu − n parties are assigned random static public and
secret key pairs. Set sid∗ = (Π, rolei, Uj , U, ∗, . . . , Rj , . . . , ∗).

– Send(Π, rolei′ , Uj′ ,U
′, Init): Solver S selects uniformly random ephemeral

secret key r′j′ , computes ephemeral public key R′j′ = r′j′ ∗x honestly, records

(Π, rolei′ , Uj′ ,U
′, R′j′ , ∗) in List Rlist, and returns it.

– Send(Π, rolei′ , Uj′ ,U
′, R′i1 , . . . , R

′
j′−1, R

′
j′+1, . . . , R

′
in
): Solver S selects uni-

formly random ephemeral secret key r′j′ , and computes ephemeral public
key R′j′ = r′j′ ∗ x honestly. If U′ ̸= U, then simulate H(Π,U′, R′i1 , . . . , R

′
in
,

en−1((ti1 · · · tin)∗x, x, . . . , x), en−1(R′i1 , . . . , r
′
j′ ∗R′j′+1, . . . , R

′
in
)). Otherwise,

simulateH(Π,U, R′i1 , . . . , R
′
in
, s, en−1(R

′
i1
, . . . , r′j′∗R′j′+1, . . . , R

′
in
)). Record

(Π, rolei′ , Uj′ ,U
′, R′i1 , . . . , R

′
in
, SK) in List Rlist as completed, and returns

it, where SK is the output of H.
– Establish(Uj′ , Tj′): S responds to the query faithfully. Note that Establish for
Uj′ ∈ U is never posed by the freshness condition.

– H(·): S simulates a random oracle such that

H(Π,U′, R′i1 , . . . , R
′
in , Z

′
1, Z

′
2)

=

{
ζ if H2(Π,U

′, R′i1 , . . . , R
′
in
, Z ′1, Z

′
2) = 1

H1(Π,U
′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) otherwise
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– SessionReveal(·): When A poses (Π, rolei′ , Uj′ , U
′, R′i1 , . . . , R

′
in
) such that

H2(Π,U
′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) = 1, then outputs a random bit and aborts.

Otherwise, return SK = H1(Π,U
′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2).

– StateReveal(sid): S responds to the query faithfully.
– StaticReveal(C): If C is queried before, S returns error. Otherwise, S re-

sponds to the query faithfully. Note that StaticReveal(Uj) for Uj ∈ U is
never posed by the freshness condition.

– Test(sid): If sid ̸= sid∗, then S aborts with failure. Otherwise, S responds ζ
to the query.

– If adversary A outputs guess γ, S outputs γ.

S may abort in the simulation of SessionReveal and Test. Also, S may fail if A
posesH(Π,U′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) such that (Π,U′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) ∈ X .

However, inG3, these events do not occur because of the game hopping. If (Π,U′,
R′i1 , . . . , R

′
in
, s, Z ′2) ∈ X , then H(Π,U′, R′i1 , . . . , R

′
in
, s, Z ′2) = ζ. In the case of

s = s0 = en−1((g1 · · · gn) ∗ x, x, . . . , x), the simulation of Test query is the same
as the real session key. In the case of s = s1, the simulation of Test query is the
same as the random session key. Thus, Advg-ck,G3

nUM,A (λ) is

Advg-ck,G3

nUM,A (λ) = Advn-DDH
S (λ).

Therefore, Advg-ck
nUM,A(λ) is

Advg-ck
nUM,A(λ) ≤

nuns
ω

Advn-DDH
S (λ) + nunsω

(
nhnq +

3

8
(nh + nq + 1)4

)
.

The right side is minimized when ω =
4Advg-ck

nUM,A(λ)

nuns(8nhnq+3(nh+nq+1)4) .

E2. S prepares nu honest parties, selects n honest parties U = (U1, . . . , Un), and
assigns random static public and secret key pairs for all parties (i.e., S knows
all {tj}[1,u]). S selects i ←R {1, . . . , ns}, and chooses i-th session sid∗ among
sessions, activated by A, owned by Uj and having intended peers (U1, . . . , Uj−1,
Uj+1, . . . , Un).

When A activates sessions containing honest parties, S follows the protocol
description. Since S knows static secret keys of at least one peer, it can respond
all queries faithfully. In sid∗, S assigns ephemeral public keys {Rj = xj}[1,n],
respectively. Then, S sets s as Z2 in sid∗. Also, S chooses random ζ ∈ {0, 1}λ as
the session key of sid∗. ζ is inserted in the output of H in the test session sid∗

(i.e., the session key).

We use the game hopping technique in the security proof. Let Advg-ck,Gi

nUM,A(λ)
be the advantage of A in Gi.

– Let G0 be the standard attack game for the CK security. When A poses
a superposition to quantum random oracle H, the superposition of output
values corresponding to the input is returned to A. Then, Advg-ck,G0

nUM,A (λ) =

Advg-ck
nUM,A(λ).
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– G1 is the same as G0 except that the game halts if A poses Test(sid)

for sid ̸= sid∗. Since sid∗ is chosen from nuns sessions, Advg-ck,G1

nUM,A (λ) ≥
1

nuns
Advg-ck,G0

nUM,A (λ) holds.
– G2 is the same as the game, G1, except that ζ is set as H(Π,U, R1, . . . , Rn,
en−1((t1 · · · tn) ∗ x, x, . . . , x), s), and choose H(Π,U′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2)

randomly for all other inputs. Now, H is distributed according to SCω where
ω is the probability of randomly selecting (Π,U, R1, . . . , Rn, en−1((t1 · · · tn)∗
x, x, . . . , x), s) from the domain, which is negligibly small. By Lemma 3.3, the
output distribution of A in G2 is at most a distance 3

8 (nh+nq +1)4ω2 from

that in G1. Hence, Advg-ck,G2

nUM,A (λ) ≥ Advg-ck,G1

nUM,A (λ)−
3
8 (nh + nq + 1)4ω2 =

Advg-ck,G1

nUM,A (λ)− negl holds.

Finally, we estimate Advg-ck,G2

nUM,A (λ) by using Advn-DDH
S (λ). For simplicity,

we assume that S has quantum access to two random oracles H1 : PRS ×
IDSn×Xn×S2 → {0, 1}λ and H2 : PRS×IDSn×Xn×S2 → {0, 1} where H2

outputs 1 with probability ω. By Lemma 3.2, S can perfectly simulate H1 and
H2 by using a (nh + nq + 1)-wise independent function without oracle accesses.
S prepares Rlist with entries of the form (Π, rolei′ , Uj′ , U

′, R′i1 , . . . , R
′
in
, SK)

and Hlist with entries of the form (Π,U′, R′i1 , . . . , R
′
in
, Z ′1, Z

′
2, SK), and S main-

tains two lists for consistent responses to H and SessionReveal queries. On input
(X,S,G, e, x1, . . . , xn, s), S works as follows:

– Choose tj ←R G for all parties and ζ ←R {0, 1}λ, and set {Tj = tj ∗ x}[1,nu]

and {Rj = xj}[1,n] in sid∗. Set sid∗ = (Π, rolei, Uj , U, R1, . . . , Rn).
– Send(Π, rolei′ , Uj′ ,U

′, Init): Solver S selects uniformly random ephemeral
secret key r′j′ , computes ephemeral public key R′j′ = r′j′ ∗x honestly, records

(Π, rolei′ , Uj′ ,U
′, R′j′ , ∗) in List Rlist, and returns it.

– Send(Π, rolei′ , Uj′ ,U
′, R′i1 , . . . , R

′
j′−1, R

′
j′+1, . . . , R

′
in
): Solver S selects uni-

formly random ephemeral secret key r′j′ , and computes ephemeral public key
R′j′ = r′j′ ∗ x honestly. Simulate H(Π,U′, R′i1 , . . . , R

′
in
, en−1((ti1 · · · tin) ∗

x, x, . . . , x), en−1(R
′
i1
, . . . , r′j′ ∗ R′j′+1, . . . , R

′
in
)). Record (Π, rolei′ , Uj′ ,U

′,

R′i1 , . . . , R
′
in
, SK) in List Rlist as completed, and returns it, where SK is

the output of H.
– Establish(Uj′ , Tj′): S responds to the query faithfully. Note that Establish for
Uj′ ∈ U is never posed by the freshness condition.

– H(·): S simulates a random oracle such that

H(Π,U′, R′i1 , . . . , R
′
in , Z

′
1, Z

′
2)

=

{
ζ if H2(Π,U

′, R′i1 , . . . , R
′
in
, Z ′1, Z

′
2) = 1

H1(Π,U
′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) otherwise

– SessionReveal(·): When A poses (Π, rolei′ , Uj′ , U
′, R′i1 , . . . , R

′
in
) such that

H2(Π,U
′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2) = 1, then outputs a random bit and aborts.

Otherwise, return SK = H1(Π,U
′, R′i1 , . . . , R

′
in
, Z ′1, Z

′
2).

18



– StateReveal(sid): S responds to the query faithfully.
– StaticReveal(C): If C is queried before, S returns error. Otherwise, S re-

sponds to the query faithfully.
– Test(sid): If sid ̸= sid∗, then S aborts with failure. Otherwise, S responds ζ

to the query.
– If adversary A outputs guess γ, S outputs γ.

S may abort in the simulation of StaticReveal and Test. However, in G2, these
events do not occur because of the game hopping. If (Π,U′, R′i1 , . . . , R

′
in
, Z ′1,

s) ∈ X , then H(Π,U′, R′i1 , . . . , R
′
in
, Z ′1, s) = ζ. In the case of s = s0 =

en−1((g1 · · · gn) ∗ x, x, . . . , x), the simulation of Test query is the same as the
real session key. In the case of s = s1, the simulation of Test query is the same
as the random session key. Thus, Advg-ck,G2

nUM,A (λ) is

Advg-ck,G2

nUM,A (λ) = Advn-DDH
S (λ).

Therefore, Advg-ck
nUM,A(λ) is

Advg-ck
nUM,A(λ) ≤ nuns ·Advn-DDH

S (λ) + negl.

⊓⊔

4 Biclique n-DH : G-CK+ Secure n-Party Authenticated
Group Key Exchange

In this section, we propose an one-round n-party AGKE scheme, biclique n-
Diffie–Hellman (BC n-DH), secure in the G-CK+ model. BC n-DH is based on
CIM with MapGen. The security can be proved under the n-GDH assumption
for MapGen in the random oracle model.

4.1 Design Principle

To be secure in the G-CK+ model, the protocol resists against maximum expo-
sure. In other words, the session key must be indistinguishable from a random
key even if the adversary may obtain either static or ephemeral secret key of
each party regarding to the session. Thus, it is necessary that the shared values
must contain all combinations of static or ephemeral key of each party.

Hereafter, we use a notation, In = {1, . . . , n}, and in this notation, n may be
omitted as I when it is clear. In BC n-DH, party Ui computes all combinations
of Tj and Rj with its static or ephemeral secret key, ti or ri. Then, the share
values are Z∅, . . ., ZI where their indexes are given as all elements of P(I), the
power set of I, i,e., Z∅ = en−1((t1 · · · tn)∗x, x, . . . , x), . . . , ZI = en−1((r1 · · · rn)∗
x, x, . . . , x). The session key is an output of a hash function whose inputs contains
the above shared values.

It is worth to note here that we need to assume that the number of the user
group is bounded by logarithm of the security parameter, λ. Otherwise, we need
exponential computations in λ as the number of the shared values is 2n.
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4.2 Protocol

Based on the above principle, we have the BC n-DH protocol (Fig. 2).

Public Parameters. We set Π = BCnDH. Let λ be a security parameter. Let
MapGen be a generation algorithm of a cryptographic invariant map, and (X, S,
G, e) ←R MapGen(1λ) and x ←R X are chosen. Let H : {0, 1}∗ → {0, 1}λ be a
hash function modeled as a random oracle. Public parameters are (Π, X, S, G,
e, x, H).

Static Secret and Public Keys. Party Ui chooses ti ∈ G as the SSK. Then,
Ui computes Ti = ti ∗ x as the SPK.

Key Exchange. As in Section 3, we suppose a session executed byU = (U1, . . . ,
Un) ⊆ U .

Note that the role identifier is decided by the lexicographic order of party
identities, and thus i, the suffix of the the role identifier, rolei, can be computed
as i = fU(Uj) with a function, fU, when U is fixed. Hereafter, we omit the
explanation regarding to the suffix of the the role identifier. In addition, we
express that the role identifiers can be express with the elements in {0, 1}|n| as
their variety is n.

1. Ui chooses ri ←R G as the ESK, and computes Ri = ri ∗ x as the EPK.
Then, Ui broadcasts (Π, rolei′ , Ui, Ri) to U \ Ui.

2. On receiving (Π, rolej′ , Uj , R1, . . . , Rn), Ui computes Z∅ = en−1(T1, . . . ,
Ti−1, ti∗Ti+1, Ti+2, . . . , Tn), . . . , ZI = en−1(R1, . . . , Ri−1, ri∗Ri+1, Ri+2, . . . ,
Rn) as follows:

9 for all P ∈ P(I),
– if i ∈ P , then vi = ri, and else if i ̸∈ P , then vi = ti,

– for all k ∈ I (k ̸= i), if k ∈ P , then Vk = Rk, and else if k ̸∈ P , then
Vk = Tk, and

– Ui computes ZP as ZP = en−1(V1, . . . , Vi−1, vi ∗ Vi+1, Vi+2, . . . , Vn).

Then, Ui generates the session key SK = H(Π, U1, . . . , Un, R1, . . . , Rn,
Z∅, . . . , ZI), and completes the session.

It is clear that ZP = en−1((v1 · · · vn) ∗ x, x, . . . , x) for all P (∈ P(I)) where
vk = rk for k ∈ P and vk = tk for k ̸∈ P as en−1((v1 · · · vn) ∗ x, x, . . . , x) =
en−1(V1, . . . , Vi−1, vi ∗Vi+1, Vi+2, . . . , Vn) and Vk = vk ∗x for all k ∈ I, and thus,
every Ui ∈ U can share the same session key, SK .

The session state of a session owned by Ui contains the ESK ri, and interme-
diate computation Ri. Since other information that is computed after receiving
the messages from other parties is immediately erased when the session key is
established, such information is not contained in the session state.

9 Ti and Ri are indexed in the cyclic manner in modulo n.
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T1 = t1 ∗ x · · · Ti = ti ∗ x · · · Tn = tn ∗ x
R1 = r1 ∗ x · · · Ri = ri ∗ x · · · Rn = rn ∗ x

R1−→ · · · Ri←− Ri−→ · · · Rn←−
Z∅ = en−1(T1, . . . , Ti−1, ti ∗ Ti+1, Ti+2, . . . , Tn)

...
ZI = en−1(R1, . . . , Ri−1, ri ∗Ri+1, Ri+2, . . . , Rn)
SK = H(Π, U1, . . . , Un, R1, . . . , Rn, Z∅, . . . , ZI)

Fig. 2. Outline of Biclique n-DH Protocol.

4.3 Security

Theorem 4.1. Suppose that H is modeled as a random oracle and that the
n-way GDH assumption holds for S. Then the biclique n-DH protocol is a post-
quantum G-CK+ secure n-party authenticated group key exchange protocol in the
random oracle model.

In particular, for any AGKE quantum adversary A against the biclique n-
DH protocol that runs in time at most t, involves at most nu honest parties and
activate at most ns sessions, and makes at most nh queries to the random oracle,
there exists a n-way GDH quantum solver S such that

Advn-GDH
S (λ) ≥ min

{ 1

nnu
,

1

nn−1u ns
, . . . ,

1

nun
n−1
s

,
1

nns

}
·Advg-ck+

BCnDH,A(λ),

where S runs in time t plus time to perform O
(
(nu + ns)λ

)
group action opera-

tions and make O(nh + ns) queries to the n-DDH oracle.

Proof. Since H is modeled as a random oracle, adversary A has only three ways
to distinguish a session key of the test session from a random string.

– Guessing attack: A correctly guesses the session key.
– Key replication attack: A creates a session that is not matching to the test
session, but has the same session key as the test session.

– Forging attack:A computes Z∅, . . . , ZI used in the test session identified with
(Π, U1, . . . , Un, R1, . . . , Rn), and queries H with (Π, U1, . . . , Un, R1, . . . ,
Rn, Z∅, . . . , ZI).

Since H is a random oracle, the probability of guessing the output of H is
O(1/2λ). Since non-matching sessions have different communicating parties or
ephemeral public keys, key replication is equivalent to finding H-collision; there-
fore the probability of succeeding key replication is O(n2s/2λ). However to detect
collision the adversary has to query with both inputs the random oracle, in par-
ticular query with Z∅, . . . , ZI used in the test session as describe in Forging
attack above.

Let M be the event that A wins the security experiment with BCnDH, H be
the event that A succeeds forging attack, and H the complementary event of H.
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Thus we have Pr[M | H] = 1
2 , and therefore

Advg-ck+
BCnDH,A(λ) = Pr[M]− 1

2
≤ Pr[M ∩ H]. (1)

By the definition of freshness in the G-CK+ model, there are six cases that
A chooses a test session.

– E1: A chooses a test session without a matching session, and does not reveal
the ephemeral secret key of the owner of the test session.

– E2: A chooses a test session without a matching session, and does not reveal
the static secret key of the owner of the test session.

– E3: A chooses a test session with matching sessions, and does not reveal the
ephemeral secret keys of the owner of the test session and of the owners of
its matching sessions.

– E4: A chooses a test session with matching sessions, and does not reveal the
static secret keys of the owner of the test session and of the owners of its
matching sessions.

– E5: A chooses a test session with matching sessions, and does not reveal the
ephemeral secret key of the owner of the test session and the static secret
keys of the owners of its all matching sessions.

– E6: A chooses a test session with matching sessions, and does not reveal the
static secret key of the owner of the test session and the ephemeral secret
keys of the owners of its all matching sessions.

– E7: A chooses a test session with matching sessions, and does not reveal the
ephemeral secret key of the owner of the test session, the ephemeral secret
keys of the owners of some matching sessions, and the static secret keys of
the owners of the other matching sessions.

– E8: A chooses a test session with matching sessions, and does not reveal the
static secret key of the owner of the test session, the static secret keys of
the owners of some matching sessions, and the ephemeral secret keys of the
owners of the other matching sessions.

In each case, we will show how to construct an n-GDH solver S. Solver S is given
an n-GDH instance (S). Hereafter, MHEi (i = 1, . . . , 6) denotes event M∩H∩Ei.

At the end of the experiment, it is decided which event occurred. In other
words for each event analysis below it is assumed that the event conditions are
satisfied upon the adversary termination.

Before analyzing the events, we note that the session state of a session in the
biclique n-DH protocol is equivalent to the ephemeral secret key in the session
as no other information (except the static secret key) is necessary to compute
the shared secrets and the session key.

E1. S prepares nu honest parties, selects (n−1) party Ūj (j = 2, . . . , n) to whom
S assigns the static public key Tj = xj . The remaining (nu − n+ 1) parties are
assigned random static public and secret key pairs. S selects ī ←R {1, . . . , ns}
and chooses ī-th session sid∗ among sessions, activated by A and owned by an
honest party, Ū1, different from Ūj .
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When A activates sessions between honest peers, S follows the protocol de-
scription. Since S knows static secret keys of at least one peer, it can respond
all queries faithfully. The only exception is the session sid∗, for which S sets
ephemeral public key of sid∗ to x1, and chooses a random ζ ∈ {0, 1}λ as the
session key of sid∗.

The simulator has difficulty in responding queries related to Ūj because S
does not know the static secret key of Ūj . More precisely, for sessions owned by Ūj

with peers {U ′i} controlled by A, S cannot compute the shared secrets, Z∅, . . . ,
ZI , but may have to answer SessionReveal queries. A could also derive session
keys of these session by computing the shared secrets, Z∅, . . . , ZI , and query H.
If these 2n values, Z∅, . . . , ZI , do not coincide, then S fails its simulation. To
handle this situations, S prepares Rlist with entries of the form (pid, rid, uid,
uid1, . . . , uidn, W1, . . . , Wn, SK ) ∈ PRS×{0, 1}|n|×IDS×IDSn×Xn×{0, 1}λ
and Hlist with entries of the form (pid, uid1, . . . , uidn, W1, . . . , Wn, Z∅, . . . , ZI ,
SK ) ∈ PRS× IDSn ×Xn × S2n × {0, 1}λ, where pid is a string which gives a
protocol identifier, rid is a string which gives a role identifier, and uidi is a string
which gives a user identifier, and S maintains two lists for consistent responses
to H and SessionReveal queries as follows. Below, Y is generated by S on behalf
of Uj .

– Send(Π, rolei, Uj , U1, . . . , Un, Init): Solver S selects uniformly random
ephemeral secret key rj , computes ephemeral public key Rj = rj ∗x honestly,
records (Π, rolei, Uj , U1, . . . , Un, Rj) in List Rlist, and returns Rj .

– Send(Π, rolei, Uj , U1, . . . , Un, R1, . . . , Rn): If session (Π, rolei, Uj , U1, . . . ,
Un, Rj) is not recorded in List Rlist, S records session (Π, rolei, Uj , U1, . . . ,
Un, R1, . . . , Rn) in List Rlist as not completed. Otherwise, S records the
session in List Rlist as completed.

– Establish(Uj′ , Tj′): S responds to the query faithfully. Note that Establish for
Uj′ ∈ U is never posed by the freshness condition.

– H(·): S simulates a random oracle in the usual way except for queries of the
form (Π, U1, . . . , Un, R1, . . . , Rn, Z∅, . . . , ZI). When (Π, U1, . . . , Un, R1, . . . ,
Rn, Z∅, . . . , ZI) is queried, S responds to these queries in the following way:

• if (Π, U1, . . . , Un, R1, . . . , Rn, Z∅, . . . , ZI , SK ) ∈ Hlist for some SK , S
returns SK to A.
• else if the validity conditions, n-DDH(pp, V1, . . . , Vn, ZP ) = 1, hold for
all P ∈ P(I) where Vk = Rk for k ∈ P and Vk = Tk for k ̸∈ P ,
∗ then if there exists (Π, rolei, Uj , U1, . . . , Un, R1, . . . , Rn, SK ) ∈ Rlist

for some i, S returns SK ;
∗ otherwise, S chooses SK ←R {0, 1}λ, returns SK and stores (Π,
rolei, Uj , U1, . . . , Un, R1, . . . , Rn, SK ) in Rlist for all Uj (j =
1, . . . , n). S also stores the new tuple (Π, U1, . . . , Un, R1, . . . , Rn,
Z∅, . . . , ZI , SK ) in Hlist.

• else S choose SK ←R {0, 1}λ, returns it to A and stores the new tuples
(Π, rolei, Uj , U1, . . . , Un, R1, . . . , Rn, Z∅, . . . , ZI , SK ) in Hlist for all Uj

(j = 1, . . . , n).
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– SessionReveal(·): S simulates these queries in the usual way except for queries
of the form (Π, rolei, Uj , U1, . . . , Un, R1, . . . , Rn). When (Π, rolei, Uj , U1, . . . ,
Un, R1, . . .Rn) is queried, S does one of the following:
• if there is no session with identifier (Π, rolei, Uj , U1, . . . , Un, R1, . . . ,
Rn), the query is aborted.
• else if (Π, rolei, Uj , U1, . . . , Un, R1, . . . , Rn, SK ) ∈ Rlist for some SK , S
returns SK to A.
• else if (Π, U1, . . . , Un, R1, . . . , Rn, Z∅, . . . , ZI , SK ) ∈ Hlist such that
n-DDH(pp, V1, . . . , Vn, ZP ) = 1, hold for all P ∈ P(I) where Vk = Rk

for k ∈ P and Vk = Tk for k ̸∈ P , S returns SK and stores the new tuple
(Π, rolei, Uj , U1, . . . , Un, R1, . . . , Rn, SK ) in Rlist.

– StateReveal(sid): If the corresponding ephemeral public key is x1, then solver
S aborts with failure. Otherwise, solver S responds to the query faithfully.

– StaticReveal(Uj′): If Uj′ is queried before, S returns error. Otherwise, S re-
sponds to the query faithfully.

– Test(sid): If sid is not the ī-th session of Ū1, then solver S aborts with failure.
Otherwise, solver S responds to the query faithfully.

– If adversary A outputs guess γ, solver S aborts with failure.

Provided that E1 occurs and A selects sid∗ as the test session with peer Ūj

(j = 2, . . . , n), the simulation does not fail. In this case, the session identifier of
sid∗ is (Π, rolei, Ū1, Ū1, . . . , Ūn, R1, . . . , Rn), where R1 = x1 and other {Ri} are
the incoming ephemeral public keys of sid∗. If A wins the security game, it must
have queried H with inputs ZP = n-CDH(pp, V1, . . . , Vn) for all P ∈ P(I) where
Vk = Rk for k ∈ P and Vk = Tk for k ̸∈ P . To solve the n-CDH instance, S
checks if there is an H query made by A of the form (Π, Ū1, . . . , Ūn, R1, . . . , Rn,
Z∅, . . . , ZI), such that n-DDH(pp, V1, . . . , Vn, ZP ) = 1, hold for all P ∈ P(I)
where Vk = Rk for k ∈ P and Vk = Tk for k ̸∈ P . If such an H query exists, S
outputs Z{2,...,n} as the n-CDH answer where Z{2,...,n} = n-CDH(pp, R1, T2, . . . ,

Tn) = n-CDH(pp, x1, . . . , xn). With probability at least 1
nn−1
u ns

, the test session

is sid∗ with owner Ū1 and peers {Ūj} (j = 2, . . . , n). Thus the advantage of S is

Advn-GDH
S (λ) ≥ 1

nn−1u ns
· Pr[MHE1]. (2)

Notice that in the above simulation S cannot respond to StaticReveal(Ūj)
query. However, given that event E1 occurs, S correctly guesses the test session
and the test session is fresh at the end of the experiment, then A have not
queried for the static secret keys of the test session whose peers are {Ūj}.

Such static key reveal queries would contradict the freshness of the test ses-
sion and thus the simulation terminated without errors.

E2. S prepares nu honest parties, selects n distinct honest parties Ūj (j =
1, . . . , n), and assigns Ūj ’s static public key as Tj = xj , respectively. S assigns
random static public and secret key pairs for the remaining (nu − n) parties. S
follows the protocol description when A activates session between honest peers,
and simulate A’s queries related to Ūj as explained in E1.
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If A selected a session whose participants are (Ū1, . . . , Ūn) as the test session,
and E2 occurs, this simulation does not fail. Let (Π, rolei, Ūj , Ū1, . . . , Ūn, R1, . . . ,
Rn) be the session identifier of the test session. Note that S generated Ri and
so knows ri. When A is successful, S checks if there is an H query made by
A of the form (Π, Ū1, . . . , Ūn, R1, . . . , Rn, Z∅, . . . , ZI), such that n-DDH(pp,
V1, . . . , Vn, ZP ) = 1, hold for all P ∈ P(I) where Vk = Rk for k ∈ P and
Vk = Tk for k ̸∈ P . If such an H query exists, S outputs ZI as the n-CDH
answer where ZI = n-CDH(pp, T1, . . . , Tn) = n-CDH(pp, x1, . . . , xn). With
probability at least 1

nn
u
, A will select a test session with owner Ūj and peers

{Ūj′} (j′ = 1, . . . , j − 1, j + 1, . . . , n). Thus, the advantage of S is

Advn-GDH
S (λ) ≥ 1

nnu
· Pr[MHE2]. (3)

S cannot respond to any StaticReveal(Ūj) queries during the simulation. As
before if event E2 occurs, S correctly guesses the test session and the test session
is fresh at the end of the experiment, then A have not queried for the static
secret key of Ūj , and therefore the simulation does not terminate with error.

E3. In the beginning, we explain the case where the test session has single match-
ing session for simplicity. Then, we extend it to the case where the test session
has several matching sessions later.
S prepares nu honest parties, selects (n−2) party Ūj (j = 3, . . . , n) to whom

S assigns the static public key Tj = xj . The remaining (nu − n+ 2) parties are
assigned random static public and secret key pairs. S selects ī, j̄ ←R {1, . . . , ns},
and chooses ī-th session sid∗ and j̄-th session sid∗ among sessions activated by
A and owned by honest parties, Ū1 and Ū2, respectively. When activated, S sets
the ephemeral public key of sid∗ to be x1 and of sid∗ to be x2. Since S knows
the static secret keys of all honest parties, it can respond all queries, faithfully,
except those that related to sid∗ and sid∗.

Provided that A selects sid∗ as the test session, sid∗ as its matching session,
and E3 occurs, the simulation does not fail. Let (Π, rolei, Ū1, Ū1, . . . , Ūn, R1, . . . ,
Rn) and (Π, roleî, Ū2, Ū1, . . . , Ūn, R1, . . . , Rn) be the session identifiers of sid∗

and sid∗, respectively. When A wins the security game, S checks if there is an
H query made by A of the form (Π, Ū1, . . . , Ūn, R1, . . . , Rn, Z∅, . . . , ZI), such
that n-DDH(pp, V1, . . . , Vn, ZP ) = 1, hold for all P ∈ P(I) where Vk = Rk for
k ∈ P and Vk = Tk for k ̸∈ P . If such an H query exists, S outputs Z{3,...,n} as

the n-CDH answer. With probability at least 1
nn−2
u n2

s

, A selects sid∗ as the test

session and sid∗ as its matching session.
S cannot respond to StateReveal queries against the test session and its

matching during the simulation. However, under event E3 adversary does not
issue such queries, and hence the simulation does not fail.

In the case where the test session has two matching sessions. S prepares nu
honest parties, selects (n − 3) party Ūj (j = 4, . . . , n) to whom S assigns the
static public key Tj = xj . S selects ī, j̄, k̄ ←R {1, . . . , ns}, and chooses ī-th
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session sid∗, and j̄-th session sid∗, and k̄-th session sid∗
′
(the other matching

session) among sessions activated by A and owned by honest parties Ū1, Ū2, and
Ū3, respectively. When activated, S sets the ephemeral public key of sid∗ to be

x1, of sid
∗ to be x2, and of sid∗

′
to be x3.

When A wins the security game, S checks if there is an H query made by
A of the form (Π, Ū1, . . . , Ūn, R1, . . . , Rn, Z∅, . . . , ZI), such that n-DDH(pp,
V1, . . . , Vn, ZP ) = 1, hold for all P ∈ P(I) where Vk = Rk for k ∈ P and Vk = Tk
for k ̸∈ P . If such an H query exists, S outputs Z{4,...,n} as the n-CDH answer.

With probability at least 1
nn−3
u n3

s

, A selects sid∗ as the test session, sid∗ as its

matching session, and sid∗
′
as its other matching session.

It is easy to extend the above consideration to the case of where the test
session has several matching sessions. When the number of the matching sessions
is k (k ≤ n− 1), with probability at least 1

n
n−(k+1)
u nk+1

s

, A selects the test session

and its matching sessions. Thus, the advantage of S is totally given as

Advn-GDH
S (λ) ≥ min

{ 1

nn−2u n2s
,

1

nn−3u n3s
, . . . ,

1

nns

}
· Pr[MHE3]. (4)

E4, E5, E6, E7, and E8. The analysis of E4, E5, E6, E7, and E8 is similar to E2, E1,
E3, E3, and E1, respectively. We omit the details and provide only the conclusion.
In each case, we can construct an n-GDH solver S as follows.

Advn-GDH
S (λ) ≥ 1

nn
u

·Pr[MHE4], (5)

Advn-GDH
S (λ) ≥ 1

nn−1
u ns

·Pr[MHE5], (6)

Advn-GDH
S (λ) ≥ min

{
1

nn−1
u ns

, 1
nn−2
u n2

s

, . . . , 1
nun

n−1
s

}
·Pr[MHE6], (7)

Advn-GDH
S (λ) ≥ min

{
1

nn−2
u n2

s

, 1
nn−3
u n3

s

, . . . , 1
nun

n−1
s

}
·Pr[MHE7], (8)

Advn-GDH
S (λ) ≥ min

{
1

nn−1
u ns

, 1
nn−2
u n2

s

, . . . , 1
nun

n−1
s

}
·Pr[MHE8]. (9)

Analysis. Combining (1), . . . , (9), we have

Advn-GDH
S (λ) ≥ min

{ 1

nnu
,

1

nn−1u ns
, . . . ,

1

nun
n−1
s

,
1

nns

}
·Advg-ck+

BCnDH,A(λ).

During the simulation, the solvers S and S perform O
(
(nu+ns)λ

)
group action

operations for assigning static and ephemeral keys, and make O(nh + ns) times
n-DDH oracle queries for simulating SessionReveal and the random oracle H
queries. This completes the proof of Theorem 4.1. ⊓⊔

It is worth to note here that the above proof seems to work in the strong
adversary model where a corrupted party can register any public key of its choice.

o

26



5 Two-Party Authenticated Key Exchanges from Hard
Homogeneous Spaces

We give more realistic two-party AKE protocols than the general n-party CIM-
based ones due to its realizability while the number of the user group is restricted
to two.

5.1 Hard Homogeneous Spaces (HHS)

As a special case of cryptographic invariant map, we have the notion of hard
homogeneous spaces (HHS), which was introduced by Couveignes in [6].

Definition 5.1 ([6, 5]). A hard homogeneous space consists of a finite commu-
tative group G acting freely and transitively on some set X. The following tasks
are required to be easy (e.g., polynomial-time):

– Compute the group operations on G.

– Sample randomly from G with (close to) uniform distribution.

– Decide validity and equality of a representation of elements of X.

– Compute the action of a group element g ∈ G on some x ∈ X.

By attaching the identity map as a one-variable pairing, i.e., e1 = id : X → X,
we obtain the 1-variable cryptographic invariant map pp = (X,X,G, e). On the
system, we consider 2-way computational (resp., decisional, gap) Diffie–Hellman
assumption.

Based on this group action (g, x) 7→ g ∗ x, we have the Diffie–Hellman type
key exchange protocol (Fig. 3).

Alice

a ←R G : Alice′s secret key,

compute a ∗ x,
SK Alice = a ∗ (b ∗ x) .

a∗x
−−−−−−−→
←−−−−−−−

b∗x

Bob

b ←R G : Bob′s secret key,

compute b ∗ x,
SK Bob = b ∗ (a ∗ x) .

Fig. 3. Outline of HHS based DH Protocol.

The notion of HHS is realized by two instantiations: one is called Rostovtsev–
Stolbunov system [29, 9] and the other is CSIDH system by Castryck et al. [5].
The former one is obtained from ordinary elliptic curves and their isogenies and
the latter from Fp-rational supersingular elliptic curves and their Fp-rational
isogenies, respectively. In particular, the CSIDH key exchange is practical and
we focus on the CSIDH case in the following as a concrete instantiation.

27



Example of HHS: CSIDH [5] Castryck et al. [5] proposed a special form
of cryptographic invariant map with n = 1. Namely, public parameters pp =
(X,S,G, e) includes X = S = Eℓℓp(O) which is the set of elliptic curves over Fp

whose Fp-rational endomorphism ring is some fixed quadratic orderO,G = cl(O)
which is the ideal class group of O and e is the identity map e1 = id : X → X. On
the cryptographic invariant map, we can define 2-way computational (resp. deci-
sional, gap) Diffie–Hellman problem and obtain associated assumptions. Based
on the Diffie–Hellman assumption, Castryck et al. obtained a non-interactive
key exchange called CSIDH.

Let K be a quadratic number field and O ⊂ K an order, that is, a subring
which is a free Z-module of rank 2. A fractional ideal of O is an O-submodule of
K of the form αa, where α ∈ K∗ and a is an O-ideal. A fractional O-ideal a is
invertible if there exists a fractionalO-ideal b such that ab = O. If such a b exists,
we define a−1 = b. The set of invertible fractional ideals I(O) forms an abelian
group under ideal multiplication. This group contains the principal ideals P (O)
as a subgroup, hence we define the ideal class group of O as cl(O) = I(O)/P (O).
Every ideal class [a] ∈ cl(O) has an integral representative. Any integral ideal
a of O splits into a product of O-ideals as (πO)ras, where π is the p-power
Frobenius endomorphism and as ̸⊆ πO. This defines an elliptic curve E/E[a]
and an isogeny φa : E → E/E[a] of degree N(a): the separable part of φa

has kernel E[a] = ∩α∈as kerα, and the purely inseparable part consists of r
iterations of Frobenius. The isogeny φa and codomain E/E[a] are both defined
over Fp and are unique up to Fp-isomorphism. Since principal ideals correspond
to endomorphisms, two ideals lead to the same codomain if and only if they
are equal up to multiplication by a principal fractional ideal. Moreover, every
Fp-isogeny ψ between curves in Eℓℓp(O) comes from an invertible O-ideal in this
way, and the ideal as can be recovered from ψ as as = {α ∈ O | kerα ⊇ kerψ}.
In other words,

Theorem 5.1 ([33, 30, 5]). Let O be an order in an imaginary quadratic field.
If Eℓℓp(O) is non-empty, then the ideal class group cl(O) acts on Eℓℓp(O) via

cl(O)× Eℓℓp(O)→ Eℓℓp(O)
([a], E) 7→ E/E[a],

where a is chosen as an integral representative, and this action is free. Further-
more, if Eℓℓp(O) contains a supersingular curve, the action is transitive, else the
action has exactly two orbits.

We denote E/E[a] by a ∗E. Based on this group action, we have the CSIDH
key exchange protocol (Fig. 4). For sampling from the class group cl(O), we
follow the manner given in [5]. See Appendix B as well.

In the following, we have one-round two-party AKE protocols from HHS as
special cases of multiparty key exchanges in the previous section. In the following,
we describe the HHS-based G-CK (resp. G-CK+) secure AKE protocols based
on it.
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Alice

a ←R cl(O) : Alice′s secret key,

compute a ∗ E,

SK Alice = a ∗ (b ∗ E) .

a∗E
−−−−−−−→
←−−−−−−−

b∗E

Bob

b ←R cl(O) : Bob′s secret key,

compute b ∗ E,

SK Bob = b ∗ (a ∗ E) .

Fig. 4. Outline of CSIDH Protocol.

5.2 G-CK Secure AKE Protocol (from HHS)

We give our HHS-based UM protocol. Public parameters are pp = (X,G). We
set Π = HHS-UM, that is, the protocol ID is “HHS-UM.” The secret-key space
for initiators and responders is given by the group G.

User U1 has static public key, T1 = t1 ∗ x, where t1 ←R G, and t1 is U1’s
static secret key. User U2 has static public key, T2 = t2 ∗x, where t2 ←R G, and
t2 is U2’s static secret key. Here, ephemeral secret keys for U1 and U2 are given
as r1 ←R G, and r2 ←R G, respectively. U1 sends a ephemeral public key R1

as R1 = r1 ∗ x to U2, U2 sends back a ephemeral public key R2 as R2 = r2 ∗ x
to U1.

U1 computes Z1 = t1 ∗ T2, and Z2 = r1 ∗ R2, and then, obtains the session
key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2), where H is a hash function.

U2 can computes the session key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2)
from Z1 = t2 ∗ T1, and Z2 = r2 ∗R1 (Fig. 5).

It is clear that the session keys of both parties are equal.
The security of this scheme is given as a corollary of Theorem 3.1.

Corollary 5.1. Suppose that H is modeled as a quantum random oracle and
that the 2-DDH assumption holds on the HHS (X,G). Then the 2-UM protocol
is a post-quantum G-CK-secure 2-party authenticated key exchange protocol in
the quantum random oracle model.

An instantiation of the HHS-UM protocol by using CSIDH protocol for the
HHS is described in Appendix C.

5.3 G-CK+ Secure AKE Protocol (from HHS)

We give our HHS-based biclique protocol. Public parameters are pp = (X,G). We
set Π = HHS-BC, that is, the protocol ID is “HHS-BC.” Static and ephemeral
keys are the same as our HHS UM protocol. The secret-key space for initiators
and responders is given by the group G.

User U1 has static public key, T1 = t1 ∗ x, where t1 ←R G, and t1 is U1’s
static secret key. User U2, also, has static public key, B = t2∗x, where t2 ←R G,
and t2 is U2’s static secret key. Here, ephemeral secret keys for U1 and U2 are
given as r1 ←R G, and r2 ←R G, respectively. U1 sends an ephemeral public
key R1 as R1 = r1 ∗ x to U2, U2 sends back an ephemeral public key R2 as
R2 = r2 ∗ x to U1.
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T1 = t1 ∗ x T2 = t2 ∗ x
R1 = r1 ∗ x

R1−→ R2 = r2 ∗ x
R2←−

Z1 = t1 ∗ T2 Z1 = t2 ∗ T1

Z2 = r1 ∗R2 Z2 = r2 ∗R1

SK = H(Π, U1, U2, R1, R2, Z1, Z2)

Fig. 5. Outline of HHS UM Protocol.

T1 = t1 ∗ x T2 = t2 ∗ x
R1 = r1 ∗ x

R1−→ R2 = r2 ∗ x
R2←−

Z1 = t1 ∗ T2 Z1 = t2 ∗ T1

Z2 = r1 ∗ T2 Z2 = t2 ∗R1

Z3 = t1 ∗R2 Z3 = r2 ∗ T1

Z4 = r1 ∗R2 Z4 = r2 ∗R1

SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3, Z4)

Fig. 6. Outline of HHS Biclique Protocol.

U1 computes the non-trivial combinations of the ephemeral and static public
keys as Z1 = t1 ∗ T2, Z2 = r1 ∗ T2, Z3 = t1 ∗ R2, and Z4 = r1 ∗ R2, and then,
obtains the session key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3, Z4), where
H is a hash function.

U2 can computes the session key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3,
Z4) from Z1 = t2 ∗ T1, Z2 = t2 ∗R1, Z3 = r2 ∗ T1, and Z4 = r2 ∗R1 (Fig. 6).

It is clear that the session keys of both parties are equal.
The security of this scheme is given as a corollary of Theorem 4.1.

Corollary 5.2. Suppose that H is modeled as a random oracle and that the 2-
way GDH assumption holds on the HHS (X,G). Then the biclique 2-DH protocol
is a post-quantum G-CK+ secure authenticated group key exchange protocol in
the random oracle model.

An instantiation of the HHS-BC protocol by using CSIDH protocol for the
HHS is described in Appendix C.
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Appendix

A Candidates for Cryptographic Invariant Maps [1]

Let E be an ordinary elliptic curve over a finite field Fq such that the ring Z[π]
generated by its Frobenius endomorphism π is integrally closed. Then, Z[π] is
the full endomorphism ring O of E. Denote by Ab(E) the set of abelian varieties
over Fq that are a product of the form

(a1 ∗ E)× · · · × (an ∗ E) ∼= (a1 · · · an) ∗ E × En−1,

where a1, . . . , an ∈ cl(O), and assume that we can efficiently compute an iso-
morphism invariant for abelian varieties in Ab(E), i.e., isom: Ab(E) → S to
some set S that to any tuple E1, . . . , En of elliptic curves isogenous to E asso-
ciates an element isom(E1 × · · · × En) of S such that isom(E1 × · · · × En) =
isom(E′1× · · · ×E′n) if and only if the products E1× · · · ×En and E′1× · · · ×E′n
are isomorphic as abelian varieties.

Based on such an isomorphism invariant isom, we construct a cryptographic
invariant map. The algorithm MapGen(1λ) computes a sufficiently large base
field Fq, and an elliptic curve E over Fq such that the ring Z[π] generated by its
Frobenius endomorphism is integrally closed. The algorithm then outputs the
public parameters pp = (X,S,G, e) where X = Eℓℓq(O) is the isogeny class of E
over Fq, S is the codomain of the isomorphism invariant isom, G = cl(O) is the
ideal class group of O, and the map en : Xn → S is given by en(E1, . . . , En) =
isom(E1 × · · · × En). It is shown that G acts on X freely and transitively as
in Definition 2.4. This approach provides a cryptographic invariant map assum-
ing isom exists. In [1], several candidates for isom are demonstrated including
the theta null invariants, Igusa invariants, invariants for Kummer surfaces and
Deligne invariants, but no invariant maps give an appropriate one in Defini-
tion 2.5. Thus, to obtain a suitable invariant is a big open problem remained
in [1].
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B Description of CSIDH [5]

Parameters, sampling from the class group, and evaluating the group action are
given as follows.

Parameters. Fix a large prime p of the form 4 · ℓ1 · · · ℓn − 1, where the ℓi are
small distinct odd primes. Fix the elliptic curve E0 : y2 = x3 + x over Fp; it is
supersingular since p ≡ 3 mod 4. The Frobenius endomorphism π satisfies π2 =
−p, so its Fp-rational endomorphism ring is an order in the imaginary quadratic
field Q(

√
−p). More precisely, O = Endp(E0) = Z[π], which has conductor 2.

Rational Elkies primes. The choice made above imply that the ℓi-isogeny
graph is a disjoint union of cycles. Moreover, since π2− 1 ≡ 0 mod ℓi, the ideals
ℓiO split as ℓiO = lili, where li = (ℓi, π− 1) and li = (ℓi, π+1). In other words,
all the ℓi are Elkies primes. Then, we can use the following algorithm to walk
along the cycles: Find a basis of the ℓi-torsion and compute the eigenspaces of
Frobenius; apply Vélu’s formulas to a basis point of the correct eigenspace to
compute the codomain.

Furthermore, the kernel of ϕli is the intersection of the kernels of the scalar
multiplication [ℓi] and the endomorphism π − 1. That is, it is the subgroup
generated by a point P of order ℓi which lies in the kernel of π − 1 or, in other
words, is defined over Fp. Similarly, the point generating the kernel of ϕli is of
order ℓi and defined over Fp2 but not Fp.

Sampling from the class group. Ideally, we would like to know the exact
structure of the ideal class group cl(O) to be able to sample elements uniformly
at random. However, such a computation is currently not feasible for the size of
discriminant we need, hence we resort to heuristic arguments. Assuming that the
li do not have very small order and are evenly distributed in the class group, we
can expect ideals of the form le11 le22 · · · lenn for small ei to lie in the same class only
very occasionally. For efficiency reasons, it is desirable to sample the exponents
ei from a short range centered around zero, say {−m, . . . ,m} for some integer
m. Choosing m such that 2m+1 ≥ n

√
#cl(O) is sufficient. Since the prime ideals

li are fixed global parameters, the ideal
∏

i l
ei
i may simply be represented as a

vector (e1, . . . , en).

Evaluating the class group action. Since π2 = −p ≡ 1 mod ℓi, we are
now in the favorable situation that the eigenvalues of Frobenius on all ℓi-torsion
subgroups are +1 and -1. Hence, we can efficiently compute the action of li
(resp. li) by finding an Fp-rational (resp. Fp2 \Fp-rational) point of order ℓi and
apply Vélu-type formulas. This step could simply be repeated for each ideal l±1i

whose action is to be evaluated.

33



T1 = t1 ∗ E T2 = t2 ∗ E
R1 = r1 ∗ E

R1−→ R2 = r2 ∗ E
R2←−

Z1 = t1 ∗ T2 Z1 = t2 ∗ T1

Z2 = r1 ∗R2 Z2 = r2 ∗R1

SK = H(Π, U1, U2, R1, R2, Z1, Z2)

Fig. 7. Outline of CSIDH UM Protocol.

T1 = t1 ∗ E T2 = t2 ∗ E
R1 = r1 ∗ E

R1−→ R2 = r2 ∗ E
R2←−

Z1 = t1 ∗ T2 Z1 = t2 ∗ T1

Z2 = r1 ∗ T2 Z2 = t2 ∗R1

Z3 = t1 ∗R2 Z3 = r2 ∗ T1

Z4 = r1 ∗R2 Z4 = r2 ∗R1

SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3, Z4)

Fig. 8. Outline of CSIDH Biclique Proto-
col.

C CSIDH-based G-CK and G-CK+ Secure AKE
Protocols

We give our CSIDH-based UM protocol and biclique protocol. Public parameters
are pp = (p,O, E, {ℓi},m). We set Π = CSIDHUM (resp. Π = CSIDHBC), that
is, the protocol ID is “CSIDHUM” (resp “CSIDHBC”). The secret-key space for
initiators and responders is given by the ideal class group G = cl(O). Static and
ephemeral keys are the same for both CSIDH UM and biclique protocols.

User U1 has static public key, T1 = t1 ∗ E, where t1 ←R G, and t1 is U1’s
static secret key. User U2 has static public key, T2 = t2 ∗E, where t2 ←R G, and
t2 is U2’s static secret key. Here, ephemeral secret keys for U1 and U2 are given
as r1 ←R G, and r2 ←R G, respectively. U1 sends a ephemeral public key R1

as R1 = r1 ∗ x to U2, U2 sends back a ephemeral public key R2 as R2 = r2 ∗ x to
U1.

Users U1 and U2 compute Z1, Z2 (resp. Z1, . . . , Z4), and then, obtains the ses-
sion key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2) (resp. SK = H(Π, U1, U2, R1,
R2, Z1, . . . , Z4)), where H is a hash function as in Fig. 7 (resp. Fig. 8). It is clear
that the session keys of both parties are equal. And, the security of the schemes
is given in Corollary 5.1 (resp. Corollary 5.2).
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