
Pairing-Friendly Twisted Hessian Curves

Chitchanok Chuengsatiansup1 and Chloe Martindale2

1 INRIA and ENS de Lyon
46 Allée d’Italie 69364 Lyon Cedex 07, France
chitchanok.chuengsatiansup@ens-lyon.fr

2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c.r.martindale@tue.nl

Abstract. This paper presents efficient formulas to compute Miller
doubling and Miller addition utilizing degree-3 twists on curves with
j-invariant 0 written in Hessian form. We give the formulas for both
odd and even embedding degrees and for pairings on both G1 ×G2 and
G2×G1. We propose the use of embedding degrees 15 and 21 for 128-bit
and 192-bit security respectively in light of the NFS attacks and their
variants. We give a comprehensive comparison with other curve models;
our formulas give the fastest known pairing computation for embedding
degrees 15, 21, and 24.

Keywords: twisted Hessian curves, pairing-friendly curves, ate pairing,
degree-3 twists, explicit formulas

1 Introduction

Pairings on elliptic curves have various applications in cryptography, rang-
ing from very basic key exchange protocols, such as one round tripartite
Diffie–Hellman [29] [30], to complicated protocols, such as identity-based
encryption [8] [26] [22] [47]. Pairings also help to improve currently exist-
ing protocols, such as signature schemes, to have shortest possible signa-
tures [9].

Curves that are suitable for pairings are called pairing-friendly curves,
and these curves must satisfy specific properties. It is extremely rare that
a randomly generated elliptic curve is pairing-friendly, so pairing-friendly
curves have to be generated in a specific way. Examples of famous and
commonly used pairing-friendly curves include Barreto-Naehrig curves [5]

Chitchanok Chuengsatiansup acknowledges the support of Bpifrance in the context
of the national projet RISQ (P141580). Chloe Martindale was supported by the
Commission of the European Communities through the Horizon 2020 program under
CHIST-ERA USEIT (NWO project 651.002.004).



(BN curves), Barreto-Lynn-Scott curves [4] (BLS curves), and Kachisa-
Schaefer-Scott curves [33] (KSS curves).

The performance of pairing-based cryptography relies on elliptic-curve-
point arithmetic, computation of line functions and pairing algorithms.
A pairing is a bilinear map from two elliptic curve groups G1 and G2 to a
target group GT . To achieve a good performance, as well as having an ef-
ficient pairing algorithm, it is desirable to have a fast elliptic-curve-point
arithmetic in both G1 and G2.

The security of pairings depends mainly on the cost of solving the dis-
crete logarithm problem (DLP) in the three groups previously mentioned,
namely, G1, G2, and GT . Since one can attack pairing-based protocols by
attacking any of these three groups, the cost of solving DLP must be
sufficiently high in all of these three groups.

1.1 Choice of curves and embedding degrees

One way to improve the performance of pairings is to improve the per-
formance of the underlying point arithmetic. Many authors have studied
efficient point arithmetic via the representation of elliptic curves in a spe-
cific model, for example, Hessian form [50] [32] and Edwards form [17] [7].

Pairings based on Edwards curves, along with examples of pairing-
friendly Edwards curves, were proposed by Arene, Lange, Naehrig and
Ritzenthaler [1]. They found that the computation of line functions nec-
essary to compute the pairing is much more complicated than if the curves
were written in Weierstrass form. In other words, even though Edwards
curves allow faster point arithmetic, this gain is somewhat outweighed
by the slower computation of line functions. Li, Wu, and Zhang [40] pro-
posed the use of quartic and sextic twists for Edwards curves, improving
the efficiency of both the point arithmetic and the computation of the
line functions.

Pairings based on Hessian curves with even embedding degrees were
proposed by Gu, Gu and Xie [23]. They provided a geometric interpre-
tation of the group law on Hessian curves along with an algorithm for
computing Tate pairing on elliptic curves in Hessian form. However, no
pairing-friendly curves in Hessian form were given.

Bos, Costello and Naehrig [10] investigated the possibility of using a
model of a curve (such as Edwards or Hessian) allowing for fast point
arithmetic and transforming to Weierstrass form for the actual compu-
tation of the pairing. They found that for every elliptic curve E in the
BN-12, BLS-12, and KSS-18 families of pairing-friendly curves, if E is
isomorphic over Fq to a curve in Hessian or Edwards form, then it is not

2



isomorphic over Fqk to a curve in Hessian or Edwards form, where k is
the embedding degree. This implies that the point arithmetic has to be
performed on curves in Weierstrass form — not all curves can be writ-
ten in special forms such as Hessian or Edwards form. This idea of using
different curve models comes at a cost of at least one conversion between
other curve models into Weierstrass form.

In this article we study the efficiency of curves in Hessian form for
pairing computations. Hessian curves with j-invariant 0 have degree-3
twists that can also be written in Hessian form. This means that we
can take full advantage of speed-up techniques for point arithmetic and
pairing computations that move arithmetic to subfields via the twist,
e.g., as studied for Edwards curves in [40], without the expensive curve
conversion to Weierstrass form. We use the families proposed by [20], in
which we could find three families that can be written in Hessian form.

Regardless of which model of elliptic curve was being studied, most
of the previous articles on this topic were considering even embedding
degrees. One of the main advantages of even embedding degrees is the
applicability of a denominator elimination technique in the pairing com-
putation (avoiding a field inversion) which does not directly apply to odd
embedding degrees. Examples of pairing algorithms for curves in Weier-
strass form with odd embedding degree include the work by Lin, Zhao,
Zhang and Wang in [41], by Mrabet, Guillermin and Ionica in [43], and
by Fouotsa, Mrabet and Pecha in [19].

1.2 Attacks on solving DLP over finite fields

Due to recent advances in number field sieve (NFS) techniques for attack-
ing the discrete logarithm problem for pairing-friendly elliptic curves over
finite fields [31] [35] [2] [3] (NFS attacks and their variants), it is necessary
to re-evaluate the security of pairing-friendly curves. In [18], Fotiadis and
Konstantinou propose countering these attacks by using families with a
higher ρ-value. In this paper, we investigate the feasibility of an alterna-
tive method: increasing the embedding degree. This has the advantage of
keeping the low ρ-value of previously proposed families, but it is disadvan-
taged by the less efficient pairing computations. This article attempts to
analyze the use of Hessian curves in combating this. Previous research on
computing pairings with Hessian curves addressed only even embedding
degrees, and in order to make use of degree-3 twists the embedding degree
should be divisible by 6. Prior to the NFS attacks and their variants, the
favoured embedding degree for 128-bit security was 12, so that to increase

3



the embedding degree while making use of cubic twists the next candi-
date is 15. However, as 15 is odd the formulas of [23] do not apply; for
this reason one focus of this article is to provide formulas for embedding
degree 15. Similarly, the pre-NFS favourite embedding degree for 192-bit
security was 18, which we propose to increase to 21. Observe further that
for 192-bit security, the families of [18] all require the embedding degree
to be greater than 21.

1.3 Our contributions

We present formulas for computing pairings on both G1×G2 and G2×G1

for a curve given in Hessian form that admits degree-3 twists. These
formulas exploit the degree-3 twists where possible: in moving the point
arithmetic in Fqk to Fqk/3 and performing the computations for the line
functions in Fqk/3 in place of Fqk . For efficient curve arithmetic (before
applying the use of twists) we refer to Bernstein, Chuengsatiansup, Kohel,
and Lange [6].

We analyze the efficiency of the pairing computation in each case,
focussing on the embedding degrees that should correspond to 128- and
192-bit security. Our analysis shows that for embedding degree 12, Hessian
curves are outperformed by twisted Edwards curves, but for embedding
degrees 15, 21, and 24 our formulas give the most efficient known pairing
computation. We do not consider 18 as we do not know of any curve
constructions for this case. As explained above, our main focus is on odd
embedding degrees, as we propose the use of k = 15 and k = 21 as a
countermeasure against the NFS attacks and their variants.

We also give concrete constructions of pairing-friendly Hessian curves
for both embedding degrees and a proof-of-concept implementation of the
optimal ate pairing for these cases.

2 Background on Pairings

Let E be an elliptic curve defined over a finite field Fq where q is a prime.
Let r be the largest prime factor of n = #E(Fq) = q + 1 − t where t is
the trace of Frobenius. The embedding degree with respect to r is defined
to be the smallest positive integer k such that r|(qk− 1). Let µr ⊆ F∗

qk
be

the group of r-th roots of unity. For m ∈ Z and P ∈ E[r], let fm,P be a
function with divisor div(fm,P ) = m(P )− ([m]P )− (m− 1)(O), where O

4



denotes the neutral element of E. The reduced Tate pairing is defined as

τr : E(Fqk)[r]× E(Fqk)/[r]E(Fqk) −→ µr

(P,Q) 7→ fr,P (Q)
qk−1

r .

We address the computation of the reduced Tate pairing restricted to
G1 ×G2, where

G1 = E[r] ∩ ker(φq − [1]) and G2 = E[r] ∩ ker(φq − [q]) ⊆ E(Fqk).

Here φq denotes the q-power Frobenius morphism on E. We denote the
restriction of τr to G1 ×G2 by

er : G1 ×G2 −→ µr.

Let T = t−1. We define the ate pairing aT by restricting the Tate pairing
to G2 ×G1 so that

aT : G2 ×G1 −→ µr

(P,Q) 7→ fT,P (Q)
qk−1

r .

Note that in addition to G1 and G2 being switched, the subscript r (i.e.,
the number of loops) is also changed to T .

Algorithm 1 shows Miller’s algorithm to compute the reduced Tate
pairing or the ate pairing. Let m ∈ {r, T} and represent the binary format
of m by (mn−1, . . . ,m1,m0)2. For any two points R,S on E denote by lR,S

the line passing through R and S, and by vR the line passing through R
and−R. We further define `2R = lR,R/v2R and `R,P = lR,P /vR+P . Miller’s
algorithm outputs the Tate pairing if m = r, P ∈ G1, and Q ∈ G2, and
outputs the ate pairing if m = T , P ∈ G2, and Q ∈ G1.

3 Curve constructions

Even though every elliptic curve can be written in Weierstrass form, only
those that contain points of order 3 can be written in (twisted) Hessian
form. Almost all methods to generate pairing-friendly curves are for gener-
ating pairing-friendly Weierstrass curves, so we find pairing-friendly Hes-
sian curves by searching through constructions of pairing-friendly Weier-
strass curves for curves that have points of order 3, and converting those
curves into Hessian form. The families that we present below are guaran-
teed to have points of order 3.

5



Algorithm 1 Miller’s algorithm

Require: m = (mn−1, . . . ,m1,m0)2 and P,Q ∈ E[r] with P 6= Q
1: Initialize R = P and f = 1
2: for i := n− 2 down to 0 do
3: f ← f2 · `2R(Q)
4: R← 2R
5: if mi = 1 then
6: f ← f · `R,P (Q)
7: R← R+ P

8: f ← f (q
k−1)/r

In order to give fast formulas for curve arithmetic, it is desirable for
the pairing-friendly curves that we consider to have twists. Recall that a
degree-d twist of an elliptic curve E/Fq is an elliptic curve E′/Fqe that is
isomorphic to E over a degree-d extension of Fqe but not over any smaller
field. Recall also (e.g., [49]) that the only degrees of twists that occur for
elliptic curves are d ∈ {2, 3, 4, 6} such that d|k, and that degree 3 and 6
twists occur only for elliptic curves with j-invariant 0. We concentrate in
this article on twists of degree 3, partly motivated by our aforementioned
interest in embedding degrees k = 15 and 21. Twisted Hessian curves
with j-invariant 0 are of the form

Ha : aX3 + Y 3 + Z3 = 0.

Suppose that a ∈ Fq is a non-cube such that for ω ∈ Fq3 with a = ω3, the
element ω generates Fqk as a Fqk/3-vector space. Then Ha is a degree-3
twist of H1; the two curves are isomorphic via

ϕ : Ha → H1

(X : Y : Z) 7→ (ωX : Y : Z).
(1)

In particular, if R′ ∈ Ha(Fqk/3), then ϕ(R′) ∈ G2. Analogously to [4],
we choose the G2 input point for the pairing from ϕ(Ha(Fqk/3)). The
simplicity of the twist isomorphism allows us to do many calculations
in Fqk/3 instead of Fqk , as explained in detail on a case-by-case basis in
Section 4.

3.1 Degree six twists of Hessian curves

In this article we include, for completeness, formulas for computing pair-
ings of Hessian curves with even embedding degree. As we want to make

6



use of the natural twist of degree 3, the embedding degrees that we con-
sider are also divisible by 3, so that we are in fact considering embedding
degrees divisible by 6.

As mentioned above, degree-6 twists only occur for elliptic curves with
j-invariant 0. Let a and ω be as in the previous section and let α ∈ Fq2

generate Fqk/3 as a Fqk/6-vector space. Then

Fqk = Fqk/6 + αFqk/6 + ωFqk/6 + αωFqk/6 + ω2Fqk/6 + αω2Fqk/6 .

Define the triangular elliptic curve T/Fq : α2VW (V + aW ) = U3. Then
we can adapt the isomorphism of [6, Theorem 5.3] to see that T is a
degree-2 twist of Ha via the isomorphism

ψ : T → Ha

(U : V : W ) 7→ (U : β(αV − 54W ) : β(−αV + 54ζ23W )),
(2)

where β = ζ3 − ζ23 and ζ3 ∈ Fq is a primitive cube root of unity. In
particular, the triangular elliptic curve T is a degree-6 twist of H1 via the
composition ϕ ◦ ψ, where ϕ is as given in Equation 1.

3.2 Checking for points of order 3

Let E/Fq be an elliptic curve. There is a Hessian model of E if and only if
E(Fq) contains a point of order 3. To apply the formulas in the following
sections we require both E and the degree-3 twist of E that we consider
to have order 3. Recall that #E(Fq) = q + 1 − t, where t is the trace of
Frobenius; by [24] the two non-trivial degree-3 twists E′ satisfy:

#E′(Fq) = q + 1− (3f − t)/2 with t2 − 4q = −3f2,

#E′(Fq) = q + 1− (−3f − t)/2 with t2 − 4q = −3f2.

It is also necessary that, for the twist E′ that we use, #E′(Fq) is divisible
by r (recall that r was the largest prime factor of #E(Fq)); exactly one
of the two possible twists satisfies this condition. So to choose a family
for which the elliptic curve E can be rewritten in Hessian form together
with a degree-3 twist, it suffices to check that 3 divides q+ 1− t and that
3r divides q + 1− (±3f − t)/2 (for one choice of sign).

3.3 Generating curves

Recall that E is an elliptic curve defined over a finite field Fq where q is
prime, and r is the largest prime factor of #E(Fq). The embedding degree

7



k is the smallest integer k such that r|qk−1. Constructions of parametric
families of pairing-friendly curves give an elliptic curve E with integral
coefficients and polynomials q(x) and r(x), where for each x0 such that
q(x0) is prime and r(x0) has a large prime factor, the reduction of E mod
q(x0) is a pairing-friendly curve with parameters q = q(x0) and r = r(x0).

Cyclotomic families are families of curves where the underlying field
K is a cyclotomic field, the size r of the largest prime-order subgroup of
the group of Fq-point is a cyclotomic polynomial, and the field K con-
tains

√
−D for some small discriminant D. We searched through [20] and

found three cyclotomic-family constructions that satisfy the conditions
outlined in the previous section; for each family D = 3. The following
constructions generate pairing-friendly Weierstrass curves which have a
(twisted) Hessian model [6, Section 5]. Note that twists of these curves
(see Section 3.2) are also expressible in twisted Hessian form. We denote
the cyclotomic polynomial of degree n by Φn(x) .

Recall the L-notation: LN [`, c] = exp
(
(c + o(1))(lnN)`(ln lnN)1−`

)
.

The best complexity for NFS attacks up until recently was Lqk [1/3, 1.923],
but now due to work of [35] the best complexity for composite k is reduced
to Lqk [1/3, 1.526]. In particular, with the earlier figure, a 256-bit prime q
together with embedding degree k = 12 gave a security complexity of 139
bits, but that has now been brought down to 110 bits. To compensate,
a pairing implementation using embedding degree 12 aiming for 128-bit
security would have to increase the size of the base field to about 364
bits. We propose increasing the embedding degree instead to k = 15,
for which the base field does not have to increased so dramatically; see
details below. Similarly, with the earlier figure, a 384-bit prime q together
with embedding degree k = 18 gave a security complexity of 194 bits, but
that has now been brought down to 154 bits. To compensate, a pairing
implementation using embedding degree 18 aiming for 192-bit security
now requires log(q) ≈ 653, giving k log(q) ≈ 11754. We propose increasing
the embedding degree instead to k = 21 or k = 24, for which the base
field does not have to be increased so dramatically; see details below.

Construction 1: k ≡ 3 (mod 18). This construction follows Con-
struction 6.6 in [20]. Pairing-friendly curves with embedding degree k ≡ 3
(mod 18) can be constructed using the following polynomials:

r(x) = Φ2k(x),

t(x) = xk/3+1 + 1,

q(x) = 1
3(x2 − x+ 1)(x2k/3 − xk/3 + 1) + xk/3+1.

8



For this construction, the resulting curves and their twists all have points
of order 3. However, there is no such x0 for which both q(x0) and r(x0)
are prime. This means that r(x0) factors, and the largest prime-order
subgroup of E(Fq) actually has less than r(x0) elements. Recall that the
discriminant D = 3: the curves are defined by an equation of the form
y2 = x3 + b and have cubic twists. The ρ-value of this family is ρ =
(2k/3 + 2)/ϕ(k) where ϕ is the Euler ϕ-function. For k = 21 this gives
ρ = 4/3. To get 192-bit security we have to take r about 420 bits, for
which we get log(q) ≈ 560 and k log(q) ≈ 11760.

Construction 2: k ≡ 9, 15 (mod 18). This construction follows Con-
struction 6.6 in [20]. Pairing-friendly curves with embedding degree k ≡
9, 15 (mod 18) can be constructed using the following polynomials:

r(x) = Φ2k(x),

t(x) = −xk/3+1 + x+ 1,

q(x) = 1
3(x+ 1)2(x2k/3 − xk/3 + 1)− x2k/3+1.

This satisfies all the same properties as Construction 1. For k = 15 the
ρ-value is ρ = 3/2. To get 128-bit security we have to take log(r) ≈
256. Then log(q) ≈ 384, and k log(q) ≈ 5760. This actually gives 143-bit
security; a family with a lower ρ-value would be more efficient.

Construction 3: k ≡ 0 (mod 6) and 18 - k. This construction
follows Construction 6.6 in [20]. Pairing-friendly curves with embedding
degree k ≡ 0 (mod 6) where 18 - k can be constructed using the following
polynomials:

r(x) = Φk(x),

t(x) = x+ 1,

q(x) = 1
3(x− 1)2(xk/3 − xk/6 + 1) + x.

For this construction, the resulting curves and their twists all have points
of order 3. There also exists x0 such that both q(x0) and r(x0) are prime.
The curves generated by this construction admit sextic twists. The ρ-
value for this construction is given by ρ = (k/3 + 2)/ϕ(k) where ϕ is the
Euler ϕ-function. For k = 12 this gives ρ = 3/2 and for k = 24 this gives
ρ = 5/4. To get 192-bit security with k = 24 we need log(r) ≈ 392, for
which log(q) ≈ 490 and k log(q) ≈ 11760.

9



For all the constructions outlined above, the curves are given in Weier-
strass form as v2 = u3+b. To convert a pairing-friendly Weierstrass curve
of the above form that has a point (u3, v3) of order 3 into twisted Hessian
form, we refer to [6]. The authors give explicit transformations showing
that there is a Hessian model of the above curve given by aX3+Y 3+Z3 =
0, where a = 27(u63/v

3
3−2v3). Let m, s and mc denote field multiplication,

field squaring and field multiplication by a small constant respectively.
They compute the total cost for the whole conversion to be 9m+2s+5mc

plus one inversion and one cube root computation.

4 Computation of line functions

Each iteration of Miller’s loop (Algorithm 1) includes a Miller doubling
step and some of the iterations also include a Miller addition step. The
Miller doubling step has four costly parts: computing the double of a point
R on the curve, computing the Miller function `R,R = lR,R/v2R, squaring
an element f ∈ Fqk , and multiplying f2 by `R,R. The Miller addition step
has three costly parts: computing the sum of two points P and R on the
curve, computing the Miller function `P,R = lP,R/vP+R, and multiplying
an element f ∈ Fqk by `P,R. We attempt in the following sections to
optimize each of these parts for Hessian curves H/Fq : X3 + Y 3 +Z3 = 0
of j-invariant 0 for pairings on both G1 × G2 (such as the Tate pairing)
and G2 ×G1 (such as the ate pairing).

4.1 Denominator elimination

It is, of course, desirable to avoid the field inversion that results from
dividing by vP1+P2(Q), with P2 = R and P1 ∈ {R,P}, which we can do
(to some extent). For curves in (twisted) Hessian form, the neutral group
element is given by (0 : −1 : 1), and negation by −(x, y) = (x/y, 1/y)
(in affine coordinates). This means that the line vP1+P2 passing through
P3 = P1 + P2 and (0 : −1 : 1) has a more complicated form than for
many other popular curve shapes (such as short Weierstrass or Edwards).
Namely, writing (X3 : Y3 : Z3) = P3 and (XQ : YQ : ZQ), we have

vP3(Q) : (Z3 + Y3)XQ − (ZQ + YQ)X3.

When considering pairings on G1 × G2, we have that P3 ∈ G1 and
Q ∈ G2, and when considering pairings on G2×G1, we have that P3 ∈ G2

and Q ∈ G1. As vP3(Q) = vQ(P3), exactly the same arguments apply to
G1 × G2 as to G2 × G1 in this case; say for simplicity that P3 ∈ G1 and

10



Q ∈ G2. Suppose that we have chosen Q such that there exists Q′ ∈
Ha(Fqk/3) for which Q = ϕ(Q′), where ϕ is the cubic twist isomorphism
from Equation 1.

Even embedding degrees. The following is essentially a rephrasing of the
denominator elimination technique presented in [23] (although they do
not mention pairings on G2 ×G1).

Assume now that 6|k. In particular, by the discussion in Section 3.1,
the triangular curve T : α2VW (V + ω3W ) = U3, with α and ω as in
Section 3.1, defines a quadratic twist of Hω3 via the isomorphism ψ of
Equation 2. We choose our point Q′ ∈ Hω3(Fqk/3) from the image under
ψ of T (Fqk/6), so that there exist U, V,W ∈ Fqk/6 for which Q′ = (U :

β(αV − 54W ) : β(−αV + 54ζ23W )), where β = ζ3 − ζ23 and ζ3 ∈ Fq is a
primitive cube root of unity. Evaluation of vP3 at Q = ϕ(Q′) then gives

v2R(Q) : (Z3 + Y3)Uω − 54β(ζ23 − 1)WX3 ∈ Fqk/2 .

This value will go to 1 in the final expontentiation step of Miller’s al-
gorithm (Algorithm 1), so without loss of generality we can set it to 1
throughout the computation.

Odd embedding degrees. Unfortunately the denominator elimination tech-
nique of [23] does not apply to this case; instead we extend ideas of [41]

and [43]. Observe that 1
x−y = x2+xy+y2

x3−y3 . Let Q′ = (XQ′ , YQ′ , ZQ′). Plug-

ging x = (Z3+Y3)XQ′ω and y = (ZQ′+YQ′)X3 in 1
vP3

(Q) with Q = ϕ(Q′),

we get that the denominator x3− y3 is in Fqk/3 so will go to 1 in the final
exponentiation, hence can be set to 1 for the whole computation. That
is, we replace 1

vP3
(Q) by the numerator

nP3(Q) = ((Z3+Y3)XQ′)
2ω2+(Z3+Y3)XQ′(1+YQ′)X3ω+((1+YQ′)X3)

2,

and we replace the Miller function `P1,P2(Q) by nP3(Q) · lP1,P2(Q). The
numerator nP3(Q) can be computed with cost 2k

3 m + 1
9M + 2

9S via

u = (Z3 + Y3)XQ′ ; v = (1 + YQ′)X3; n = u2ω2 + (u · v)ω + v2.

4.2 Miller doubling

Let R = (X1 : Y1 : Z1) ∈ Hb(K) for b ∈ {1, a}. The fastest known
formulas to compute 2R = (X3 : Y3 : Z3) (due to [6]) are as follows:

T = Y 2
1 ; A = Y1 · T ; S = Z2

1 ; B = Z1 · S;

X3 = X1 · (A−B); Y3 = −Z1 · (2A+B); Z3 = Y1 · (A+ 2B).

11



The cost for point doubling with the above formulas is 5m + 2s in K.

In all that follows we denote multiplication and squaring in Fq by m
and s respectively, and multiplication and squaring in Fqk by M and S
respectively. We also assume always that 3|k.

Pairings on G1 × G2. The Miller doubling function is given by

`R,R(Q) = lR,R(Q)/v2R(Q).

For pairings on G1×G2 the input points are P ∈ G1 and Q ∈ G2, and R
will be a multiple of P .

We first address the computation of lR,R(Q). This line is the tangent
line toH1 at R evaluated at Q, which is given by lR,R(Q) : X2

1XQ+TYQ+
S, where R = (X1 : Y1 : Z1) and T = Y 2

1 , and S = Z2
1 are the values

that were computed in the point doubling computation. Set Q′ = (XQ′ :
YQ′ : 1) and Q = ϕ(Q′), where ϕ : Ha → H1 is the twist isomorphism
Equation 1 (this is possible as 3|k). Then we can write lR,R(Q) as

lR,R(Q) : (SYQ′ + T ) + aXQ′X
2
1ω,

which can be computed with cost 2k
3 m + s via

U = X2
1 ; V = SYQ′ ; W = ηU ; lR,R(Q) = V + T +Wω,

where η = aXQ′ and can be precomputed. We now split into cases.

Even embedding degrees. By Section 4.1, we can set the denominator
of the Miller doubling function to 1, so that the computation of the line
function lR,R(Q) is in fact the computation of the whole Miller (doubling)
function `R,R(Q).

Furthermore, a general element of Fqk considered as element of the
Fqk/3-vector space generated by ω will be of the form c1ω + c2ω

2 + c3ω
3,

but for `2R(Q) we have that c2 = 0. In particular, the multiplication
of `2R(Q) with f2 in Step 3 of Algorithm 1 will not be the full cost of a
general multiplication in Fqk (that is, approximately k2m), but by school-
book multiplication will cost 6 multiplications in Fqk/3 , which amounts to

6
(
k
3

)2
m = 2

3M. Putting together all of the above, the Miller doubling
step for even embedding degrees costs(

5 +
2k

3

)
m + 3s +

2

3
M + S.

12



Odd embedding degrees. By Section 4.1, we have `2R(Q) = n2R(Q) ·
lR,R(Q), where n2R(Q) is as given in Section 4.1. Putting the above to-
gether, the Miller doubling step for odd embedding degrees costs(

5 +
4k

3

)
m + 3s +

16

9
M +

11

9
S.

Pairings on G2 × G1. In this case, the input points are P ∈ G2 and
Q ∈ G1, and R will be a multiple of P . We choose P = (XP : YP :
1) ∈ ϕ(Ha(Fpk/3)), where ϕ is the twist isomorphism given in Equation 1.
As R = (X1 : Y1 : Z1) is a multiple of P , it is also in the image of
Ha(Fpk/3) under ϕ; let R′ ∈ Ha(Fpk/3) be the pre-image of R under ϕ.
As 2R = 2ϕ(R′) = ϕ(2R′), we can perform the doubling operation on
the cubic twist Ha, so that the operation count occurs in Fqk/3 . That is,
point doubling can be performed using 5 multiplications and 2 squarings
in Fqk/3 , which amounts to 5

9M + 2
9S. For even embedding degrees this

can be done slightly faster, which we address below.
As for pairings on G1 × G2, we address the computations of the line

function

lR,R(Q) : X2
1XQ + TYQ + S, (3)

where T = Y 2
1 and S = Z2

1 , in order to compute the Miller doubling
function.

Even embedding degrees. Assume now that 6|k. As described in Section
4.1 we choose the input point from G2, in this case P = ϕ(P ′), such
that P ′ is in the image of the quadratic twist isomorphism ψ given in
Section 3.1. This implies that R′ = ϕ−1(R), as a multiple of P ′, also lies
in this image, so that there exist U1, V1,W1 ∈ Fqk/6 for which

R′ = (X ′1 : Y ′1 : Z ′1) = (U1 : β(αV1 − 54W1) : β(−αV1 + 54ζ23W1)), (4)

where β = ζ3 − ζ23 and ζ3 ∈ Fq is a primitive cube root of unity. Here ω
and α are as in Section 3.1. We also have X ′1 ∈ Fqk/6 and Y ′1 , Z

′
1 ∈ Fqk/3 .

This gives us a small saving in the point doubling calculation. In the
preamble we stated that all the point doubling arithmetic is performed in
Fqk/3 . However, the final step in the computation of X ′3 (the X-coordinate
of 2R′) is not a full multiplication in Fqk/3 but a multiplication of a Fqk/6-

element X ′1 with a Fqk/3-element (A−B), costing 2
(
k
6

)2
m = 1

18M using

schoolbook multiplication instead of 1
9M. So we save 1

18M on the point
doubling for even embedding degrees, resulting in 1

2M + 2
9S.

13



As shown in Section 4.1, the Miller doubling function `R,R(Q) is just
given by the line function lR,R(Q) in this case, the computation of which
we now address. As above we have that R = (X1 : Y1 : Z1) = (X ′1ω : Y ′1 :
Z ′1) so that Equation 3 becomes

lR,R(Q) : (X ′1)
2XQω

2 + TYQ + S.

The values S and T are computed during the point doubling computa-
tion and lie in Fqk/3 , so the computation of `R,R(Q) = lR,R(Q) costs an
additional squaring in Fqk/6 , multiplication of a Fqk/6-element with a Fq-
element, and multiplication of a Fqk/3-element with a Fq-element, giving
k
2m + 1

36S via

c1 = (X ′1)
2; c2 = c1XQ; c3 = TYQ.

Additionally, the formula for `R,R(Q) considered as an element of the
Fqk/6-vector space generated by ω and α has no coefficient of ω, αω, or

αω2. Therefore the multiplication of `R,R(Q) with a general element (i.e.,

f2) of Fqk costs only 3 · 6
(
k
6

)2
m = 1

2M with schoolbook arithmetic.
Putting the above together, the full Miller doubling step for even

embedding degrees costs

k

2
m + M +

5

4
S.

Odd embedding degrees. By Section 4.1, the Miller doubling function
`R,R(Q) is given by `R,R(Q) = n2R(Q) · lR,R(Q), where n2R(Q) is as
given in Section 4.1. As described above for even embedding degrees, we
have that

lR,R(Q) : (X ′1)
2XQω

2 + TYQ + S,

where S, T ∈ Fqk/3 and are computed during the point doubling compu-
tation. In the case of odd embedding degrees, we have that X ′1 ∈ Fqk/3 ,
so that the cost of commutating lR,R(Q) via c1, c2, and c3 as above is
2k
3 m+ 1

9S. Putting the above together, the whole Miller doubling step for
odd embedding degrees costs

4k

3
m +

7

3
M +

14

9
S.

4.3 Miller addition

Let P1 = P = (X1 : Y1 : 1) and P2 = R = (X2 : Y2 : Z2) ∈ Hb(K) for
b ∈ {1, a}. The fastest known formulas to compute P1 + P2 = P3 = (X3 :

14



Y3 : Z3) for P1 6= P2 (due to [25]) are as follows:

A = X1 · Z2; C = Y1 ·X2; D = Y1 · Y2; F = η ·X2;

G = (D + Z2) · (A− C); H = (D − Z2) · (A+ C); X3 = G−H;

J = (D + F ) · (A− Y2); K = (D − F ) · (A+ Y2); Y3 = K − J ;

Z3 = J +K −G−H − 2(Z2 − F ) · (C + Y2),

where η = aX1 can be precomputed. The cost for point addition with the
above formulas is 9m in K.

Pairings on G1 × G2. The Miller addition function is given by

`P1,P2(Q) = lP1,P2(Q)/vP1+P2(Q).

For pairings on G1×G2 the input points are P ∈ G1 and Q ∈ G2, and for
addition we have that P1 = P = (X1 : Y1 : 1) and P2 = R = (X2 : Y2 : Z2)
is a multiple of P .

The line lP1,P2(Q) is the line passing through P and R evaluated at
Q. As above we write Q = (ωX ′Q : Y ′Q : 1) with Q′ = (XQ′ , YQ′ : 1) ∈
Ha(Fqk/3). Then

lP,R(Q) : (E − Y2)X1 + (YQ′ − Y1)(A−X2)− (E − Y2)XQ′ω,

where E = Y1Z2, and where A is the value that was computed during
the computation of P + R. In particular, the cost of computing lP,R(Q)
is

(
2 + 2k

3

)
m via

E = Y1 · Z2; L = (E − Y2) ·X1; M = (YQ′ − Y1) · (A−X2);

N = (E − Y2) ·XQ′ ; lP,R(Q) = L+M −Nω.

Even embedding degrees. By Section 4.1, the Miller addition function
`P1,P2(Q) is just given by lP1,P2(Q) in this case. Also, exactly as for
the Miller doubling function, multiplying a general element of Fqk with

lP,R(Q) costs only 2
3M. Putting together all of the above, the entire Miller

addition step costs (
11 +

2k

3

)
m +

2

3
M.

Odd embedding degrees. By Section 4.1, the Miller addition function
`P1,P2(Q) is given by `P1,P2(Q) = nP1+P2(Q) · lP1,P2(Q), where nP1+P2(Q)
is as given in Section 4.1. Putting together all of the above, the entire
Miller addition step costs(

11 +
4k

3

)
m +

16

9
M +

2

9
S.

15



Pairings on G2×G1. For pairings on G2×G1 the input points P ∈ G2

and Q ∈ G1, and in the Miller addition function `P1,P2(Q) we have that
P1 = P = (X1 : Y1 : 1) and P2 = R = (X2 : Y2 : Z2), which is some
multiple of P . In exactly the same way as discussed for the Miller doubling
function, the point addition can be performed in the group Ha(Fqk/3) in
place of H(Fqk), so that the operation count occurs in Fqk/3 . That is,
point addition can be performed using 9 multiplications in Fqk/3 , which
amounts to 1M. For even embedding degrees this can be done faster,
which we address below. As for pairings on G1 × G2, we will need to
compute the line function

lP,R(Q) : −(E − Y2)XQ + (E − Y2)X1 + (YQ − Y1)(A−X2),

where E = Y1Z2 and A = X1Z2. Let P = ϕ(P ′) and R = ϕ(R′) be the
images of P ′ = (X ′1, Y

′
1 , 1) and R′ = (X ′2, Y

′
2 , Z

′
2) ∈ Ha(Fqk/3) respectively

under the twist isomorphism ϕ of Equation 1. Then

lP,R(Q) : −(E′ − Y ′2)XQ + (C ′ − Y ′2X ′1 + YQ(A′ −X ′2))ω,

where E′ = Y ′1Z
′
2, A = A′ω, C = C ′ω and A′ = X ′1Z

′
2 and C ′ = Y ′1X

′
2

are the values that were computed during the point addition. This can
be computed in 2k

3 m + 2
9M via

E′ = Y ′1 · Z ′2; d1 = Y ′2 ·X ′1; d2 = (E′−Y ′2) ·XQ; d3 = (A′−X ′2) · YQ.

Even embedding degrees. Suppose now that 6|k. As described already for
Miller doubling, we may choose U2, V2,W2 ∈ Fqk/6 such that

R′ = (U2 : β(αV2 − 54W2) : β(−αV2 + 54ζ23W2)),

where β = ζ3 − ζ23 and ζ3 ∈ Fq is a primitive cube root of unity (c.f.
Equation 4). Note that we do not apply this to P because we want to
make use of the mixed addition with Z1 = 1.

This gives us a small saving in the point addition calculation: the
computations of C and of F now cost 1

18M each instead of 1
9M each,

saving 1
18M; the cost for point addition is therefore 8

9M.
As shown in Section 4.1, the Miller addition function `P,R(Q) is just

given by the line function lP,R(Q) in this case. Multiplication of a general
element in Fqk with `P,R(Q) costs only 2

3M as `P,R(Q) has no coefficient
of ω2. Putting together all of the above, we get the cost for the whole
Miller addition step

2k

3
m +

16

9
M.

16



Odd embedding degrees. By Section 4.1, the Miller addition function
`P,R(Q) is given by nP+R(Q) · lP,R(Q) in this case, where nP+R(Q) is
as given in Section 4.1. Putting together all of the above, we get the cost
for the full Miller addition step

4k

3
m + 3M +

2

9
S.

5 Comparison

As this paper primarily concerns cubic twists, we only discuss results for
embedding degrees that are divisible by 3. To our knowledge, most of the
previous work on the optimization of operation counts for one iteration of
Miller’s loop concentrated on pairings for G1 ×G2. To properly compare
different results, we need to take into account the number of iterations of
Miller’s loop, which differs greatly between G1 ×G2 and G2 ×G1.

For pairings on G1×G2, the lowest number of iterations occurs for the
twisted ate pairing when twists are available, or the reduced Tate pairing
when twists are not available. In this paper, we explicitly address the first
case, so the twisted ate pairing gives the minimal number of iterations.
Let t be the trace of Frobenius, let T = t − 1, and let d be the degree
of the twist. The number of iterations of Miller’s loop for the twisted ate
pairing is given by log(Te), where Te ≡ T e (mod r) and 1 < e|d. Also T
is a d-th root of unity in Fr, so when d = 6 the smallest value of log(Te)
is log(T2) ≈ log(r)/3, and when d = 3 the smallest value of log(Te) is
log(T3) ≈ log(r). For more details on the twisted ate pairing see [24].

For pairings on G2 × G1, the lowest number of iterations occurs for
the optimal ate pairing. The best-case-scenario (which can in principle
occur for any embedding degree) is log(r)/ϕ(k) iterations of Miller’s loop,
where ϕ is the Euler ϕ-function. This scenario takes x as the input for
the Miller’s algorithm (e.g., in place of r = r(x) as in Tate). For more
details on the optimal ate pairing see [51].

We compared previous results in this area for Weierstrass curves with
Jacobian coordinates [27] [1], Weierstrass curves with projective coordi-
nates [15], Edwards curves [1], Edwards curves with sextic twists [40], and
Hessian curves with quadratic twists [23]. Most of these papers considered
only pairings on G1×G2 (many of them were written before Vercauteren’s
paper [51] on optimal pairings) and only even embedding degree (to avoid
dealing with denominators).

17



5.1 Comparing results for G2 × G1

The only other paper containing operation counts for pairings on G2×G1

and embedding degree divisible by 3, to our knowledge, is [15], which con-
siders projective Weierstrass coordinates. In that paper they look at even
embedding degrees, so we only compare our results for the optimal ate
pairing when k = 12 and 24 (c.f. Construction 3). Assume for simplicity
that s ≈ 0.8m. The formulas presented in [15] give an operation count of

41
36M + 41

36S ≈
{

295.2m k = 12
1180.8m k = 24

for Miller doubling and

4
3M + 1

18S ≈
{

198.4m k = 12
793.6m k = 24

for Miller addition.

The formulas presented in this paper give an operation count of

k
2m + M + 5

4S ≈
{

294.0m k = 12
1164.0m k = 24

for Miller doubling and

2k
3 m + 16

9 M ≈
{

264.0m k = 12
1040.0m k = 24

for Miller addition.

As the formulas for Hessian form are faster for doubling but slower for
adding (with respect to projective Weierstrass form), there is a trade-
off to assess. Suppose that we wish to compute the optimal ate pairing
and that we have an example for which the input for Miller’s algorithm
is x. The pairing can then be computed in log(x) = log(r)/ϕ(k) itera-
tions of Miller’s loop — this amounts to O(log(x)) Miller doubling steps,
O(Ham(x)) Miller addition steps, where Ham(x) denotes the Hamming
weight of x, and the final exponentiation. When k = 12, the formulas
presented in [15] compute the pairing in ≈ 295.2 · O(log(x)) + 198.4 ·
O(Ham(x)) multiplications in Fq and an exponentiation, and the formu-
las presented in this paper compute the pairing in ≈ 294.0 · O(log(x)) +
264.0 · O(Ham(x)) multiplications in Fq and an exponentiation. That is,
the formulas using Hessian curves outperform the projective Weierstrass
curves only for an x-value such that log(x) > 54.67·Ham(x). When k = 24,
the formulas using Hessian curves outperform the projective Weierstrass
curves for an x-value such that log(x) > 14.67 · Ham(x).

5.2 Comparing results for G1 × G2

Comparing the aforementioned papers [27], [1], [15], [40], [23], and our
results, we see that the fastest curve model for embedding degree divisible

18



by 6 together with a G1 × G2 pairing is the Edwards form with sextic
twists [40] using

(
4k
3 + 4

)
m+7s+ 1

3M+S for one Miller doubling step and(
4k
3 +12

)
m+1

3M for one Miller addition step. The fastest curve model for
odd embedding degree divisible by 3 together with a G1 × G2 pairing is
the projective Weierstrass form [15] using (k+ 6)m + 7s + M + S for one
Miller doubling step and (k+13)m+3s+M for one Miller addition step.

5.3 Comparing G1 × G2 and G2 × G1

In the following table we compare the operation counts from the most
efficient curve shape for each subcase (optimal ate vs. twisted ate and
even vs. odd) in what we hope is a meaningful way: we give the number of
Fq-multiplications per Miller doubling/addition multiplied by 1

log(r)× the

number of iterations. We call these numbers DBLc (for doubling compare)
and ADDc (for addition compare). We assume here that s = 0.8m for
simplicity. The most efficient option for each subcase is as follows.

Table 1. Best operation counts for DBLc and ADDc for each embedding degree and
type of pairing

k pairing Model # iterations DBLc ADDc

12
twisted ate Edwards [40] log(r)/3 62.9 25.3
optimal ate Projective [15] log(r)/4 73.8 49.6
optimal ate Hessian (this paper) log(r)/4 73.5 66.0

15
twisted ate Projective [15] log(r) 431.6 255.4
optimal ate Hessian (this paper) log(r)/8 103.1 120.0

21
twisted ate Projective [15] log(r) 826.4 477.4
optimal ate Hessian (this paper) log(r)/12 133.8 155.9

24
twisted ate Edwards [40] log(r)/3 231.5 78.7
optimal ate Projective [15] log(r)/8 147.5 99.2
optimal ate Hessian (this paper) log(r)/8 140.7 134.0

For embedding degree 12, [40] is clearly the most efficient. For em-
bedding degrees 15 and 21, our results are clearly the most efficient. For
embedding degree 24, doubling is more efficient in Hessian form with op-
timal ate while addition is more efficient in Edwards form with twisted
ate. We could assess this trade-off in a similar way to the trade-off that
was required to compare results for even embedding degrees for optimal
ate pairings; our results will outperform those of [40] when the Hamming
weight of x is sufficiently low compared to log(x).

19



Not included in Table 1 are the precomputation costs (which are rela-
tively low for our constructions) and the final exponentiation costs (which
are roughly uniform across all curve shapes). A significant part of the
precomputation cost for many models is the conversion between curve
models, which is not necessary for our constructions. (Recall that for BN,
BLS, and KSS, this conversion is always necessary if one wants to take
advantage of the fast point arithmetic on Hessian or Edwards curves, as
proven in [10].)

6 Concluding remarks

This paper presents efficient formulas to compute Miller doubling and
Miller addition on curves of j-invariant 0 with embedding degree divisible
by 3 when written in Hessian form. This paper presents formulas for both
pairings of the form G1 × G2 and G2 × G1 and compares the efficiency
of these formulas to the best known formulas of previous research. We
present the first formulas for pairings on G2 × G1 that utilize twists of
degree 3 in the case of odd embedding degrees, and the first formulas that
utilize twists of degree 3 for Hessian curves in all cases. Our formulas for
embedding degrees 15, 21, and (subject to trade-offs) 24 are the most
efficient among known choices.

Curves generated by the methods used in this paper (originally due
to [20]) are guaranteed to have twists of degree 3 and have embedding
degree k ≡ 3, 9, 15 (mod 18) or k ≡ 0 (mod 6) where 18 - k. We suggest
updating the use of embedding degree 12 to 15 for 128-bit security and 18
to 21 for 192-bit security in light of the NFS attacks and their variants.
This allows us to keep the relatively small primes for the base field and a
low ρ-value. We additionally suggest including k = 24 in any future (more
precise) comparisons, as our results show that this may be competitive
with k = 21 (since the ρ-value for k = 24 is lower than that of k = 21).

In future work, we plan to study precisely how the NFS attacks and
their variants apply to our constructions in order to be able to properly
evaluate the security and propose concrete parameters. A comparison be-
tween the larger embedding degrees (but low ρ-value) that we suggest
in this paper and the higher ρ-value (but small embedding degrees) sug-
gested in [18] would be very interesting, but we leave this for future work.
It would also be interesting to evaluate the performance of other curve
models with degree 3 twists on G2 × G1 pairings. We also consider the
optimized implementation as future work.

20



References

1. Christophe Arene, Tanja Lange, Michael Naehrig, and Christophe Ritzenthaler.
Faster Computation of the Tate Pairing. IACR Cryptology ePrint Archive,
2009:155, 2009. http://eprint.iacr.org/2009/155.

2. Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François Morain. Im-
proving NFS for the Discrete Logarithm Problem in Non-prime Finite Fields. In
Eurocrypt 2015 [44], pages 129–155, 2015.

3. Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The Tower Number
Field Sieve. In Asiacrypt 2015 [28], pages 31–55, 2015.

4. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the Selection of Pairing-
Friendly Groups. In SAC 2003 [42], pages 17–25, 2003.

5. Paulo S.L.M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of
Prime Order. In SAC 2005 [45], pages 319–331, 2006. http://cryptosith.org/

papers/pfcpo.pdf.
6. Daniel J. Bernstein, Chitchanok Chuengsatiansup, David Kohel, and Tanja Lange.

Twisted Hessian Curves. In LATINCRYPT 2015 [39], pages 269–294, 2015. http:
//cr.yp.to/papers.html#hessian.

7. Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on el-
liptic curves. In Asiacrypt 2007 [37], pages 29–50, 2007. http://cr.yp.to/

newelliptic/newelliptic-20070906.pdf.
8. Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil

Pairing. In CRYPTO 2001 [34], pages 213–229, 2001. http://www.iacr.org/

archive/crypto2001/21390212.pdf.
9. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil

pairing. Journal of Cryptology, 17(4):297–319, 2004. http://crypto.stanford.

edu/~dabo/pubs/papers/weilsigs.ps.
10. Joppe W. Bos, Craig Costello, and Michael Naehrig. Exponentiating in Pairing

Groups. In SAC 2013 [38], 2013. https://eprint.iacr.org/2013/458.pdf.
11. Wieb Bosma, editor. Algorithmic Number Theory, 4th International Symposium,

ANTS-IV, Leiden, The Netherlands, July 2–7, 2000, proceedings, volume 1838 of
Lecture Notes in Computer Science. Springer, 2000.

12. Zhenfu Cao and Fangguo Zhang, editors. Pairing-Based Cryptography — Pairing
2013, 6th International Conference, Beijing, China, November 22–24, 2013, Re-
vised Selected Papers, volume 8365 of Lecture Notes in Computer Science. Springer,
2014.

13. Çetin Kaya Koç, David Naccache, and Christof Paar, editors. Cryptographic hard-
ware and embedded systems — CHES 2001, third international workshop, Paris,
France, May 14–16, 2001, proceedings, volume 2162 of Lecture Notes in Computer
Science. Springer, 2001.

14. Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors. Progress
in Cryptology — INDOCRYPT 2008, 9th International Conference on Cryptology
in India, Kharagpur, India, December 14–17, 2008. Proceedings, volume 5365 of
Lecture Notes in Computer Science. Springer, 2008.

15. Craig Costello, Hüseyin Hisil, Colin Boyd, Juan Manuel González Nieto, and Ken-
neth Koon-Ho Wong. Faster Pairings on Special Weierstrass Curves. In Pairing
2009 [48], pages 89–101, 2009.

16. Ronald Cramer, editor. Advances in Cryptology — EUROCRYPT 2005, 24th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22–26, 2005, Proceedings, volume 3494 of Lec-
ture Notes in Computer Science. Springer, 2005.

21

http://eprint.iacr.org/2009/155
http://cryptosith.org/papers/pfcpo.pdf
http://cryptosith.org/papers/pfcpo.pdf
http://cr.yp.to/papers.html#hessian
http://cr.yp.to/papers.html#hessian
http://cr.yp.to/newelliptic/newelliptic-20070906.pdf
http://cr.yp.to/newelliptic/newelliptic-20070906.pdf
http://www.iacr.org/archive/crypto2001/21390212.pdf
http://www.iacr.org/archive/crypto2001/21390212.pdf
http://crypto.stanford.edu/~dabo/pubs/papers/weilsigs.ps
http://crypto.stanford.edu/~dabo/pubs/papers/weilsigs.ps
https://eprint.iacr.org/2013/458.pdf


17. Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44:393–422, 2007. http://www.ams.org/bull/2007-44-03/
S0273-0979-07-01153-6/home.html.

18. Georgios Fotiadis and Elisaveth Konstantinou. TNFS resistant families of pairing-
friendly elliptic curves. Journal of Theoretical Computer Science, 2018. (to appear).

19. Emmanuel Fouotsa, Nadia El Mrabet, and Aminatou Pecha. Optimal Ate Pairing
on Elliptic Curves with Embedding Degree 9, 15 and 27. IACR Cryptology ePrint
Archive, 2016:1187, 2016. http://eprint.iacr.org/2016/1187.

20. David Freeman, Michael Scott, and Edlyn Teske. A Taxonomy of Pairing-Friendly
Elliptic Curves. Journal of Cryptology, 23(2):224–280, 2010. http://eprint.iacr.
org/2006/372/.

21. Steven D. Galbraith and Kenneth G. Paterson, editors. Pairing-Based Cryptogra-
phy — Pairing 2008, Second International Conference, Egham, UK, September 1–
3, 2008, Proceedings, volume 5209 of Lecture Notes in Computer Science. Springer,
2008.

22. Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In Asi-
acrypt 2002 [52], pages 548–566, 2002. http://www.cs.ucdavis.edu/~franklin/

ecs228/pubs/extra_pubs/hibe.pdf.
23. Haihua Gu, Dawu Gu, and WenLu Xie. Efficient Pairing Computation on Elliptic

Curves in Hessian Form. In ICISC 2010, pages 169–176, 2010.
24. Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The Eta Pairing Re-

visited. IEEE Transactions on Information Theory, 52(10):4595–4602, 2006.
http://eprint.iacr.org/2006/110.

25. Hüseyin Hışıl. Elliptic curves, group law, and efficient computation. PhD thesis,
Queensland University of Technology, 2010.

26. Jeremy Horwitz and Ben Lynn. Toward Hierarchical Identity-Based Encryp-
tion. In Eurocrypt 2002 [36], pages 466–481, 2002. http://theory.stanford.

edu/~horwitz/pubs/hibe.pdf.
27. Sorina Ionica and Antoine Joux. Another Approach to Pairing Computation in

Edwards Coordinates. In INDOCRYPT 2008 [14], pages 400–413, 2008.
28. Tetsu Iwata and Jung Hee Cheon, editors. Advances in Cryptology — ASIACRYPT

2015, 21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29 – December 3,
2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer Science.
Springer, 2015.

29. Antoine Joux. A One Round Protocol for Tripartite Diffie-Hellman. In ANTS-
IV [11], pages 385–393, 2000. http://cgi.di.uoa.gr/~aggelos/crypto/page4/

assets/joux-tripartite.pdf.
30. Antoine Joux. A One Round Protocol for Tripartite Diffie-Hellman. Journal of

Cryptology, 17(4):263–276, 2004.
31. Antoine Joux and Cécile Pierrot. The Special Number Field Sieve in Fpn , Ap-

plication to Pairing-Friendly Constructions. In Pairing 2013 [12], pages 45–61,
2013.

32. Marc Joye and Jean-Jacques Quisquater. Hessian elliptic curves and side-channel
attacks. In CHES 2001 [13], pages 402–410, 2001. http://joye.site88.net/.

33. Ezekiel J. Kachisa, Edward F. Schaefer, and Michael Scott. Constructing Brezing-
Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field. In
Pairing 2008 [21], pages 126–135, 2008.

34. Joe Kilian, editor. Advances in Cryptology — CRYPTO 2001, 21st Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 19–23,

22

http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html
http://eprint.iacr.org/2016/1187
http://eprint.iacr.org/2006/372/
http://eprint.iacr.org/2006/372/
http://www.cs.ucdavis.edu/~franklin/ecs228/pubs/extra_pubs/hibe.pdf
http://www.cs.ucdavis.edu/~franklin/ecs228/pubs/extra_pubs/hibe.pdf
http://eprint.iacr.org/2006/110
http://theory.stanford.edu/~horwitz/pubs/hibe.pdf
http://theory.stanford.edu/~horwitz/pubs/hibe.pdf
http://cgi.di.uoa.gr/~aggelos/crypto/page4/assets/joux-tripartite.pdf
http://cgi.di.uoa.gr/~aggelos/crypto/page4/assets/joux-tripartite.pdf
http://joye.site88.net/


2001, Proceedings, volume 2139 of Lecture Notes in Computer Science. Springer,
2001.

35. Taechan Kim and Razvan Barbulescu. Extended Tower Number Field Sieve: A
New Complexity for the Medium Prime Case. In CRYPTO 2016 [46], pages 543–
571, 2016.

36. Lars R. Knudsen, editor. Advances in Cryptology — EUROCRYPT 2002, Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Amsterdam, The Netherlands, April 28 – May 2, 2002, proceedings, volume 2332
of Lecture Notes in Computer Science. Springer, 2002.

37. Kaoru Kurosawa, editor. Advances in Cryptology — ASIACRYPT 2007, 13th
International Conference on the Theory and Application of Cryptology and In-
formation Security, Kuching, Malaysia, December 2–6, 2007, Proceedings, volume
4833 of Lecture Notes in Computer Science. Springer, 2007.

38. Tanja Lange, Kristin Lauter, and Petr Lisonek, editors. Selected areas in cryptog-
raphy, 20th international conference, SAC 2013, Burnaby, BC, Canada, August
14–16, 2013, Revised Selected Papers, volume 8282 of Lecture Notes in Computer
Science. Springer, 2014.

39. Kristin E. Lauter and Francisco Rodŕıguez-Henŕıquez, editors. Progress in Cryp-
tology — LATINCRYPT 2015, 4th International Conference on Cryptology and
Information Security in Latin America, Guadalajara, Mexico, August 23–26, 2015,
Proceedings, volume 9230 of Lecture Notes in Computer Science. Springer, 2015.

40. Liangze Li, Hongfeng Wu, and Fan Zhang. Pairing Computation on Edwards
Curves with High-Degree Twists. In Inscrypt 2013, 2014. https://doi.org/10.

1007/978-3-319-12087-4_12.
41. Xibin Lin, Changan Zhao, Fangguo Zhang, and Yanming Wang. Computing the

Ate Pairing on Elliptic Curves with Embedding Degree k = 9. IEICE Transactions,
91-A(9):2387–2393, 2008.

42. Mitsuru Matsui and Robert J. Zuccherato, editors. Selected Areas in Cryptography,
10th Annual International Workshop, SAC 2003, Ottawa, Canada, August 14–15,
2003, Revised Papers, volume 3006 of Lecture Notes in Computer Science. Springer,
2004.

43. Nadia El Mrabet, Nicolas Guillermin, and Sorina Ionica. A study of pairing com-
putation for elliptic curves with embedding degree 15. IACR Cryptology ePrint
Archive, 2009:370, 2009. http://eprint.iacr.org/2009/370.

44. Elisabeth Oswald and Marc Fischlin, editors. Advances in Cryptology — EURO-
CRYPT 2015, 34th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Sofia, Bulgaria, April 26–30, 2015, Proceedings,
Part I, volume 9056 of Lecture Notes in Computer Science. Springer, 2015.

45. Bart Preneel and Stafford E. Tavares, editors. Selected Areas in Cryptography,
12th International Conference, SAC 2005, Kingston, ON, Canada, August 11–12,
2005, Revised Selected Papers, volume 3897 of Lecture Notes in Computer Science.
Springer, 2006.

46. Matthew Robshaw and Jonathan Katz, editors. Advances in Cryptology —
CRYPTO 2016, 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14–18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes
in Computer Science. Springer, 2016.

47. Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In Eurocrypt
2005 [16], pages 457–473, 2005. http://eprint.iacr.org/2004/086/.

48. Hovav Shacham and Brent Waters, editors. Pairing-Based Cryptography — Pairing
2009, Third International Conference, Palo Alto, California, USA, August 12–14,

23

https://doi.org/10.1007/978-3-319-12087-4_12
https://doi.org/10.1007/978-3-319-12087-4_12
http://eprint.iacr.org/2009/370
http://eprint.iacr.org/2004/086/


2009, proceedings, volume 5671 of Lecture Notes in Computer Science. Springer,
2009.

49. Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer, 2009.

50. Nigel P. Smart. The Hessian form of an elliptic curve. In CHES 2001 [13], pages
118–125, 2001.

51. Frederik Vercauteren. Optimal pairings. In IEEE Transactions on Information
Theory 56(1), pages 455–461, 2010.

52. Yuliang Zheng, editor. Advances in Cryptology — ASIACRYPT 2002, 8th In-
ternational Conference on the Theory and Application of Cryptology and Informa-
tion Security, Queenstown, New Zealand, December 1–5, 2002, Proceedings, volume
2501 of Lecture Notes in Computer Science. Springer, 2002.

24


	Pairing-Friendly Twisted Hessian Curves

