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Abstract. Recently, Chotard et al. proposed a variant of functional encryption for Inner Product, where
several parties can independently encrypt inputs, for a specific time-period or label, such that functional
decryption keys exactly reveal the aggregations for the specific functions they are associated with. This was
introduced as Multi-Client Functional Encryption (MCFE). In addition, they formalized a Decentralized
version (DMCFE), where all the clients must agree and contribute to generate the functional decryption keys:
there is no need of central authority anymore, and the key generation process is non-interactive between
the clients. Eventually, they designed concrete constructions, for both the centralized and decentralized
settings, for the inner-product function family.
Unfortunately, there were a few limitations for practical use, in the security model: (1) the clients were
assumed not to encrypt two messages under the same label. Then, nothing was known about the security
when this restriction was not satisfied; (2) more dramatically, the adversary was assumed to ask for the
ciphertexts coming from all the clients or none, for a given label. In case of partial ciphertexts, nothing was
known about the security either.
In this paper, our contributions are three-fold: we describe two conversions that enhance any MCFE or
DMCFE for Inner Product secure in their security model to (1) handle repetitions under the same label
and (2) deal with partial ciphertexts. In addition, these conversions can be applied sequentially in any
order. The latter conversion exploits a new tool, which we call Secret Sharing Layer (SSL). Eventually, we
propose a new efficient technique to generate the functional decryption keys in a decentralized way, in the
case of Inner Product, solely relying on plain DDH, as opposed to prior work of Chotard et al. which relies
on pairings.
As a consequence, from the weak MCFE for Inner Product proposed by Chotard et al., one can obtain an
efficient Decentralized MCFE for Inner Product that handles repetitions and partial ciphertexts.
Keywords. Functional Encryption, Inner Product, Multi-Client, Decentralized.

1 Introduction

Functional Encryption (FE) [SW05,O’N10,BSW11,GKP+13b,GGH+13] is an alternative to Fully
Homomorphic Encryption (FHE) in the context of computation on encrypted data. While FHE outputs
the result in an encrypted way, FE outputs the result in clear. Besides, FE generates restricted decryption
keys for specific functions, that only decrypt their specific function applied to the message. This is
in stark contrast with FHE which has no restrictions on the functions that can be computed on the
encrypted data. In particular, FE achieves verifiability for free.

More concretely, for any function f , a functional decryption key dkf allows, given any ciphertext
c with underlying plaintext x, to compute f(x), but does not leak any additional information about
the plaintext x. While general definitions with some generic constructions have been proposed [SS10,
GVW12,GKP+13b,GKP+13a,Wat15,ABSV15,GGG+14,BGJS16,BKS16], only linear and quadratic
functions have been efficiently addressed. Abdalla, Bourse, De Caro, and Pointcheval [ABDP15] proposed
the first FE for inner-product function family (IP-FE), based on the Decisional Diffie-Hellman (DDH)
assumption, but for the selective security model only: encryption queries are known in advance. Agrawal,
Libert and Stehlé [ALS16] achieved adaptive security for IP-FE. Extensions to quadratic functions have
also been proposed [Gay16,BCFG17,DGP18].

While the basic definition of FE is quite general, as f could in theory be any function, it requires that
the whole input x comes from one party, even if x is a vector ~x = (x1, · · · , xn) with several coordinates.
To allow for independent contributions from multiple sources in the case of vector-inputs, two lines of
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research have been developed: Multi-Input Functional Encryption (MIFE) [GGJS13,GKL+13,GGG+14]
and Multi-Client Functional Encryption (MCFE) [GGG+14,GKL+13,CDG+17]. The latter essentially
differs from the former with a label which specifies which inputs from the different clients can be
combined together. As of today, in these settings, only linear functions have been efficiently addressed.
Abdalla et al. [AGRW17] proposed an efficient Multi-Input Inner-Product Functional Encryption
(IP-MIFE) scheme that relies on the k-Lin assumption in prime-order bilinear groups. Later, Abdalla
et al. [ACF+18] removed the use of a pairing, building an IP-MIFE from plain DDH, LWE, or the
DCR assumption, and adding other features. Recently, Chotard et al. [CDG+17] proposed an MCFE
and a decentralized MCFE for Inner-Product (IP-MCFE and IP-DMCFE) from the SXDH assumption in
prime-order bilinear groups.

1.1 Multi-Client Functional Encryption

For MCFE, as defined in [GGG+14,GKL+13], and more concretely in [CDG+17], both an index i for the
client and a label ` (possibly a time-stamp) are used for the encryption: (c1 = Encrypt(1, x1, `), . . . , cn =
Encrypt(n, xn, `)). Only ciphertexts with the same label can be used together, in order to get f(x1, . . . , xn)
during decryption. This is in contrast to MIFE, where no label, and possibly no index, are provided with
the ciphertext, hence many combinations and re-ordering are possible. In such a case, in order to avoid
trivial attacks, the adversary is strongly limited with the encryption queries and functional decryption
key queries it is allowed to ask. Stated otherwise, the information leaked from the ciphertexts by any
decryption key is much more important in the setting of MIFE than in MCFE.

Indeed, with FE and variants, the adversary can get some information from the plaintexts using
functional decryption keys. But this should not jeopardize indistinguishability. Hence, one excludes
illegitimate attacks that ask for messages that can easily be told apart just from functional decryption
keys.

In addition to allowing multiple-source ciphertexts, [CDG+17] goes further in the distributed process:
since senders are distinct and might want to keep control on their data, the validation of the functional
decryption keys is thus critical, and cannot be given to a unique authority. They thus proposed
a decentralized version of MCFE, where no authority is involved, but the generation of functional
decryption keys remains an efficient process, without interactions between the clients.

1.2 Limitations on the Security Model

When dealing with multiple independent clients, it is clear that some input might be missing, leading
to an incomplete ciphertext. While it could seem natural that no evaluation can be performed on an
incomplete ciphertext, there is no guarantee that the functional decryption key cannot reveal some
information about the received inputs.

This is indeed an issue with the protocol proposed by Chotard et al. [CDG+17]: in the inner-product
case, where one computes 〈~x, ~y〉 on a ciphertext of the vector ~x given the functional decryption key for
~y, if yj = 0, xj has no impact on the result. Then, it could seem fine to allow the use of the functional
decryption without the j-th ciphertext. But because of the linear properties of the inner-product, and
namely for the keys, from many functional keys, one can derive keys for vectors with some zeros, and
then decrypt some meaningful information. One could of course keep track of all the possible linear
combinations of the keys when deciding on legitimate attacks, but this is very specific to inner-product.
Chotard et al. [CDG+17] simply decided to declare illegitimate all the attacks with some incomplete
ciphertexts.

In an IP-MCFE, each client is allowed to send a unique scalar (one component of the vector). Of
course, if he would like to send several, it is possible to register as multiple clients. But then, components
would be independent, and would still require the limitation of one value per component and label,
whereas in the MIFE, when vectors are input, it makes sense to allow mix-and-match between the
inputs. In addition, requiring a unique component per label for each client, while under his responsibility,
is a strong limitation. What happens when the client makes a mistake? This is not covered by the
security analysis in [CDG+17].
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Fig. 1. Contributions and Theorems. Here, wtr stands for: “without repetitions”.

1.3 Contributions

Our contributions are three-fold, as shown on figure 1, and essentially address the above limitations:

– We first deal with the limitation in the security model from [CDG+17], that requires complete
ciphertexts: any attack with partial ciphertexts is declared illegitimate. We denote this (weak)
security model IND∗, while our target security model IND still considers such attacks legitimate.
Our solution is quite generic, as this is an additional layer, that is applied to the ciphertexts so that,
unless the ciphertext is complete (with all the encrypted components), no information leaks about
the individual ciphertexts, and thus on each components. This technique relies on a linear secret
sharing scheme, hence the name Secret Sharing Layer (SSL). It can also be seen as a decentralized
version of All-Or-Nothing Transforms [Riv97,Boy99,CDH+00]. We propose a concrete instantiation
in pairing-friendly groups, under the Decisional Bilinear Diffie-Hellman problem, in the random
oracle model. We stress that this conversion transforms any ∗-IND∗-secure MCFE into ∗-IND-secure
MCFE.

– Secondly, when starting from an IP-MCFE, we show how another independent layer of IP-FE allows
repetitions, where clients can encrypt vectors (and the global input is the concatenation of all the
clients’ vectors): more precisely, we will be able to remove the restriction of a unique input per
client and per label (wtr-IND∗ or wtr-IND). We will thus enhance IND∗ and IND with repetitions.

– Eventually, we propose an efficient decentralized algorithm to generate a sum of private inputs, hence
DSum, which can convert an IP-MCFE into IP-DMCFE: this technique is inspired from [KDK11],
and only applies to the functional decryption key generation algorithm, and so this is compatible
with the two above conversions. Namely, this improves on the decentralization from [CDG+17]
since it does not require pairings.

Efficiency. All the above conversions are efficient, or at least of the same order of magnitude as the
initial MCFE. While the SSL techniques introduce pairings, the two others do not: they only rely on
the DDH or even CDH assumptions, in the random oracle model.

Technical Tools. In order to deal with partial ciphertexts, we introduce a new tool, called Secret Sharing
Layer (SSL). In fact, the goal is to allow a user to recover the ciphertexts from the n senders only when
he gets the contributions of all of them. At first glance, one may think this could be achieved by using
All-Or-Nothing Transforms or (n, n)-Secret Sharing. However, these settings require an authority who
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operates on the original messages or generates the shares. Consequently, they are incompatible with our
multi-client schemes. Our SSL tool can be seen as a decentralized version of All-Or-Nothing Transforms
or of (n, n)-Secret Sharing : for each label `, each user i ∈ [n] can generate, on his own, the share S`,i.
And, unless all the shares Si,` have been generated, the encapsulated keys are random and perfectly
mask all the inputs.

We believe that SSL could be used in other applications. As an example, AONT was used in some
traitor tracing schemes [KY02,CPP05]. By using SSL instead of AONT, one can get decentralized
traitor tracing schemes in which the tracing procedure can only be run if all the authorities agree on the
importance of tracing a suspected decoder. This might be meaningful in practice to avoid the abuse of
tracing, in particular on-line tracing, which might break the privacy of the users, in case the suspected
decoders are eventually legitimate decoders.

2 Definitions and Security Models

In this section, we first review the definitions of MCFE from [CDG+17]. DMCFE will use individual secret
keys, instead of the master secret key. This will thus add distributed setup and functional decryption
key generation, the public flows being available to the adversary.

2.1 Multi-Client Functional Encryption

As in [GGG+14,GKL+13,CDG+17], we define private-key MCFE, with possible deterministic encryption:

Definition 1 (Multi-Client Functional Encryption). A multi-client functional encryption onM
over a set of n senders is defined by four algorithms:

– SetUp(λ): Takes as input the security parameter λ, and outputs the public parameters mpk, the
master secret key msk and the n encryption keys eki;

– Encrypt(eki, xi, `): Takes as input a user encryption key eki, a value xi to encrypt, and a label `,
and outputs the ciphertext C`,i;

– DKeyGen(msk, f): Takes as input the master secret key msk and a function f : Mn → R, and
outputs a functional decryption key dkf ;

– Decrypt(dkf , `, ~C): Takes as input a functional decryption key dkf , a label `, and an n-vector
ciphertext ~C, and outputs f(~x), if ~C is a valid encryption of ~x = (xi)i ∈Mn for the label `, or ⊥
otherwise.

As usual, we will assume public keys being included in the associated secret keys, and master keys
being included in the individual keys. Correctness states: given (mpk,msk, (eki)i)← SetUp(λ), for any
label `, any function f :Mn → R, and any vector ~x = (xi)i ∈ Mn, if C`,i ← Encrypt(eki, xi, `), for
i ∈ {1, . . . , n}, and dkf ← DKeyGen(msk, f), then Decrypt(dkf , `, ~C` = (C`,i)i) = f(~x = (xi)i).

2.2 A New Indistinguishability Security Notion

We introduce a new indistinguishability-based security definition, which naturally addresses the short-
comings of the security achieved in prior work [CDG+17]: first, we authorize several challenge ciphertexts
for the same user i and label `, contrary to [CDG+17] where encryption is deterministic and therefore
only provides security for a single challenge ciphertext per pair (i, `). This can make sense in applications
where this condition is naturally satisfied, for instance when labels correspond to time stamps, used
only once. We remove this limitation, thereby broadening the range of applications for MCFE.

Second, we strengthen the security model by allowing the adversary to query the left-or-right
encryption oracle for some honest users, but not necessarily all of them, leading to incomplete ciphertexts.
In [CDG+17], attacks with incomplete ciphertexts are considered non-legitimate, which means that the
possible leakage of information on the plaintext by partial decryption (where ciphertexts are known
only for a fraction of the total set of users, for a given label) is not captured by the security model.
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As in prior work [CDG+17], we consider the case where clients can be dishonest or corrupted. We
thus have to consider collusions, where several clients give their secret keys to an adversary who will
play on their behalf.

We define our new security notion below, and highlight the differences with the security definition
from [CDG+17]. Namely, the extra requirements (in gray) corresponds to their weaker security definition,
which we call IND∗, while IND is the new, stronger, security notion.

Definition 2 (IND, IND∗ -Security Game for MCFE). Let us consider MCFE, a scheme over a set
of n senders. No adversary A should be able to win the following security game against a challenger C:

– Initialize: the challenger C runs the setup algorithm (mpk,msk, (eki)i)← SetUp(λ) and chooses a
random bit b $← {0, 1}. It provides mpk to the adversary A;

– Encryption queries QEncrypt(i, x, `): A has unlimited and adaptive access to the encryption oracle,
and receives the ciphertext C`,i ← Encrypt(eki, x, `);

– Challenge queries QLeftRight(i, x0, x1, `): A has unlimited and adaptive access to a Left-or-Right
encryption oracle, and receives the ciphertext C`,i ← Encrypt(eki, x

b, `);
– Functional decryption key queries QDKeyGen(f): A has unlimited and adaptive access to the

DKeyGen(msk, f) algorithm for any input function f of its choice. It is given back the functional
decryption key dkf ;

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive corruption queries
on input index i, to get the encryption key eki of any sender i of its choice;

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β of the security
game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of corrupted senders (the
set of indexes i input to QCorrupt during the whole game), and HS the set of honest (non-corrupted)
senders. We set the output to β ← b′, unless one of the cases below is true, in which case we set
β

$← {0, 1}:

1. some QLeftRight(i, x0i , x
1
i , `)-query has been asked for an index i ∈ CS with x0i 6= x1i ;

2. for some label ` and for some function f asked to QDKeyGen, there exists a pair of vectors
(~x0 = (x0i )i, ~x

1 = (x1i )i) such that f(~x0) 6= f(~x1), when
– x0i = x1i , for all i ∈ CS;
– QLeftRight(i, x0i , x

1
i , `)-queries (or QEncrypt(i, xi, `)-queries if xi = x0i = x1i ) have been asked

for all i ∈ HS;
3. for some label `, a challenge query QLeftRight(i, x0i , x

1
i , `) has been asked for some i ∈ HS, but

challenge queries QLeftRight(j, x0j , x
1
j , `) or encryption queries QEncrypt(j, xj , `) have not all

been asked for all j ∈ HS.

We say MCFE is IND-secure if for any adversary A, AdvINDMCFE(A) = |Pr[β = 1|b = 1]− Pr[β = 1|b = 0]|
is negligible.

We also define a weaker versions of the security game:

– where the adversary must announce in advance the corruption (QCorrupt) queries: static security
(sta-IND∗/sta-IND);

– where the adversary must announce in advance the challenge (QLeftRight) queries: selective security
(sel-IND∗/sel-IND);

– where the adversary is limited to one encryption/challenge query on each (i, `): later queries
with the same i and ` will be ignored by QEncrypt and QLeftRight: without-repetition security
(wtr-IND∗/wtr-IND).

Note that the two first above excluded cases are situations where the adversary could trivially distinguish
the encrypted vectors, they are thus considered illegitimate attacks:



6

1. since the encryption might be deterministic, if we allow challenge queries even for corrupted
encryption keys, these queries should be on identical messages: with the encryption key, the
adversary could simply re-encrypt and compare in case of deterministic encryption. More concretely,
since we possibly consider adaptive corruptions, a QLeftRight-query can be asked at some point for
an honest sender that will get corrupted later: with the secret encryption key, the adversary can
re-encrypt and compare. In the case of static corruptions, this simply means that the adversary
should not ask QLeftRight-queries for corrupted clients;

2. for any functional decryption key, all the possible evaluations should not trivially allow the adversary
to distinguish the ciphertexts generated through QLeftRight-queries (on honest components), only
when ciphertexts are complete.

For such illegitimate attacks, the guess of the adversary is not considered (a random bit β is output).
Otherwise, this is a legitimate attack, and the guess b′ of the adversary is output.

In [CDG+17], there is the additional restriction on incomplete ciphertexts (in gray), that corresponds
to the weaker IND∗ security notion: if for some label `, a challenge-query QLeftRight(i, x0i , x

1
i , `) has

been asked for some i ∈ HS, but the ciphertext is incomplete (which means that there is not at least
a challenge-query QEncrypt(j, x0j , x

1
j , `) or an encryption-query QEncrypt(j, xj , `) for all j ∈ HS), the

attack is also considered illegitimate, and one sets β $← {0, 1}.
[CDG+17] gave a construction that only satisfies this weaker wtr-IND∗ security definition for Inner

Product. On the one hand, we show how to get to from any variant of IND∗ to the same variant of
IND, using an extra Secret Sharing Layer, in Section 5. On the other hand, we show how to allow
repetitions for Inner Product, in Section 6, by adding a layer of single-input Functional Encryption for
Inner Product.

3 Notations and Assumptions

3.1 Groups

Prime Order Group. We use a prime-order group generator GGen, a probabilistic polynomial time
(PPT) algorithm that on input the security parameter 1λ returns a description G = (G, p, P ) of an
additive cyclic group G of order p for a 2λ-bit prime p, whose generator is P .

We use implicit representation of group elements as introduced in [EHK+13]. For a ∈ Zp, define
[a] = aP ∈ G as the implicit representation of a in G. More generally, for a matrix A = (aij) ∈ Zn×mp

we define [A] as the implicit representation of A in G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G be an element in
G. Note that from a random [a] ∈ G, it is generally hard to compute the value a (discrete logarithm
problem in G). Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute [ax] ∈ G
and [a+ b] = [a] + [b] ∈ G.

Pairing Group. We also use a pairing-friendly group generator PGGen, a PPT algorithm that on
input 1λ returns a description PG = (G1,G2,GT , p, P1, P2, e) of asymmetric pairing groups where G1,
G2, GT are additive cyclic groups of order p for a 2λ-bit prime p, P1 and P2 are generators of G1 and
G2, respectively, and e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map.
Define PT := e(P1, P2), which is a generator of GT . We again use implicit representation of group
elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs as the implicit representation of a in Gs
. Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e. For two matrices A, B with
matching dimensions define e([A]1, [B]2) := [AB]T ∈ GT .
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3.2 Computational Assumptions

Definition 3 (Computational Diffie-Hellman Assumption). The Computational Diffie-Hellman
(CDH) Assumption states that, in a prime-order group G $← GGen(1λ), no PPT adversary can compute
[xy], from [x] and [y] for x, y $← Zp, with non-negligible success probability.

Equivalently, this assumption states it is hard to compute [a2] from [a] for a $← Zp. This comes from
the fact that 4[xy] = [(x+ y)2]− [(x− y)2].

Definition 4 (Decisional Diffie-Hellman Assumption). The Decisional Diffie-Hellman (DDH)
Assumption states that, in a group G $← GGen(1λ), no PPT adversary can distinguish between the two
following distributions with non-negligible advantage: {([a], [r], [ar]) | a, r $← Zp} and {([a], [r], [s]) |
a, r, s

$← Zp}.

Equivalently, this assumption states it is hard to distinguish, knowing [a], a random element from the
span of [~a] for ~a =(1

a
) , from a random element in G2: [~a] · r = [~ar] = ( [r]

[ar]
) ≈ ([r]

[s]
) .

Definition 5 (Decisional Bilinear Diffie Hellman Assumption). The Decisional Bilinear Diffie
Hellman (DBDH) Assumption states that, in a pairing group PG $← PGGen(1λ), for any PPT adversary,
the following advantage is negligible, where the probability distribution is over a, b, c, s $← Zp:

AdvDBDH
PG (A) =|Pr[1← A(PG, [a]1, [b]1, [b]2, [c]2, [abc]T )]

− Pr[1← A(PG, [a]1, [b]1, [b]2, [c]2, [s]T )]|.

Definition 6 (Q-fold DBDH). For any integer Q, the Q-fold DBDH assumption states for any PPT
adversary, the following advantage is negligible, where the probability distribution is over a, b, ci, si

$← Zp:

AdvQ-DBDH
PG (A) =|Pr[1← A(PG, [a]1, [b]1, [b]2, {[ci]2, [abci]T }i∈[Q])]

− Pr[1← A(PG, [a]1, [b]1, [b]2, {[ci]2, [si]T }i∈[Q])]|.

This Q-fold DBDH assumption is equivalent to classical DBDH assumption:

Lemma 7 (Random Self Reducibility of DBDH). For any adversary A against the Q-fold DBDH,
running within time t, there exists an adversary B running within time t+ 2Q(tGT + tG2), where tGT
and tG2 denote respectively the time for an exponentiation in GT and G2 (we only take into account the
time for exponentiations here), such that

AdvQ-DBDH
PG (A) ≤ AdvDBDH

PG (B).

Proof. Upon receiving a DBDH challenge (PG, [a]1, [b]1, [b]2, [c]2, [s]T ), B samples αi, c′i
$← Zp com-

putes [ci]2 := [αi · c]2 + [c′i]2, [si]T := [αi · s]T + [ci · ab]T for all i ∈ [Q], and gives the challenge
(PG, [a]1, [b]1, [b]2, {[ci]2, [si]T }i∈[Q]) to A.

3.3 Symmetric Key Encryption

A symmetric key encryption (SEnc, SDec) with key space K is defined as:

– SEnc(K,m): given a key K and a message m, outputs a ciphertext ct;
– SDec(K, ct): given a key K and a ciphertext ct, output a plaintext.

The following must hold:

Correctness. For all m in the message space, Pr[SDec(K,SEnc(K,m)) = m] = 1, where the probability
is taken over K $← K.
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One Time Security. For any PPT adversary A, the following advantage is negligible:

AdvOT
SKE(A) :=

∣∣∣∣∣∣2× Pr

b′ = b :

(m0,m1)← A(1λ)
K

$← K, b $← {0, 1}, ct = SEnc(K,mb)
b′ ← A(ct)

− 1

∣∣∣∣∣∣ .
If the key space is larger than the message space, on can simply use the one-time pad to build a one-time
secure symmetric encryption. Otherwise, a pseudo-random generator can stretch the key to the right
length.

3.4 Single Input Functional Encryption

A private-key, single input Functional Encryption for a family F consists of the following PPT algorithms:

– SetUp(λ): on input a security parameter, it outputs a master secret key msk and a public key mpk.
The latter is implicitly input of all other algorithms.

– Encrypt(msk,m): on input the master secret key and a message, it outputs a ciphertext ct.
– DKeyGen(msk, f): on input the master secret key and a function f ∈ F , it outputs a decryption

key dkf .
– Dec(ct, dkf ): deterministic algorithm that returns a message or a rejection symbol ⊥ if it fails.

Correctness and security, as defined below, must hold:

Correctness. For any message m, and any function f in the family F , we have: Pr[Dec(ct, dkf ) =
f(m)] = 1, where the probability is taken over (msk,mpk) ← SetUp(λ), ct ← Encrypt(msk,m), and
dkf ← DKeyGen(msk, f).

Indistinguishability. The security notion is defined by an indistinguishability game similar to the
previous one for MCFE:

Definition 8 (IND-Security Game for FE). Let FE be a functional encryption scheme. No adversary
A should be able to win the following security game:

– Initialize: runs (msk,mpk)← SetUp(λ), choose a random bit b $← {0, 1} and returns mpk to A.
– QLeftRight(m0,m1): on input two messages (m0,m1), returns Enc(msk,mb).
– QDKeyGen(f): on input a function f ∈ F , returns DKeyGen(msk, f).
– Finalize: it outputs the guess b′ of A on the bit b, unless some f was queried to QDKeyGen and
(m0,m1) was queried to QLeftRight such that f(m0) 6= f(m1), in which case it outputs a uniformly
random bit, independent of A’s guess.

The adversary A has unlimited and adaptive access to the left-right encryption oracle QLeftRight, and
to the key generation oracle QDKeyGen. We say FE is IND-secure if for any adversary A, AdvINDFE (A) =
|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| is negligible.

We can also define a weaker selective variant, where pairs (m0,m1) to QLeftRight-queries are known
from the beginning.

4 Secret Sharing Layer

As explained in Section 2, the difference between our indistinguishability notion and the previous
one [CDG+17], is that incomplete ciphertexts were considered illegitimate. This was with the intuition
that no adversary should use it since this leaks no information. But actually, an adversary could exploit
that in the real-life. Our new security notion requires the scheme to actually leak nothing in such a case.

Here, we present a generic layer, called the Secret Sharing Layer (SSL), that we will use to
encapsulate ciphertexts. It allows a user to recover the ciphertexts from the n senders only when he
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gets the contributions of all the servers. That is, if one sender did not send anything, the user cannot
get any information from any of the ciphertexts of the other senders. More concretely, a share of a key
S`,i is generated for each user i ∈ [n] and each label `. Unless all the shares Si,` have been generated,
the encapsulation keys are random and mask all the ciphertexts.

After giving the definition of SSL, we provide a construction whose security is based on the DBDH
assumption.

4.1 Definitions

Definition 9 (Secret Sharing Layer (SSL)). A secret sharing layer on K over a set of n senders
is defined by four algorithms:

– SSL.SetUp(λ): Takes as input a security parameter λ and generates the public parameters pkssl and
the personal encryption keys are ekssl,i for all i ∈ [n];

– SSL.Encaps(pkssl, `): Takes as input the public parameters pkssl and the label ` and outputs a
ciphertext C` and an encapsulation key K` ∈ K;

– SSL.Share(ekssl,i, `): Takes as input a personal encryption ekssl,i and the label `, outputs the share
S`,i;

– SSL.Decaps(pkssl, (S`,i)i∈[n], `, C`): Takes as input all the shares S`,i for all i ∈ [n], a label `, and a
ciphertext C`, and outputs the encapsulation key K`.

Correctness. For any label `, we have: Pr[SSL.Decaps(pkssl, (S`,i)i∈[n], `, C`) = K`] = 1, where the
probability is taken over

(
pkssl, (ekssl,i)i∈[n]

)
← SSL.SetUp(λ), (C`,K`) ← SSL.Encaps(pkssl, `), and

S`,i ← SSL.Share(ekssl,i, `) for all i ∈ [n].

Indistinguishability. We want to show that the encapsulated keys are indistinguishable from random if
not all the shares are known to the adversary. We could define a Real-or-Random security game [BDJR97]
for all the masks. Instead, we limit the Real-or-Random queries to one label only (whose index is
chosen in advance), and for all the other labels, the adversary can do the encapsulation by itself, since
it just uses a public key. This is well-known that a hybrid proof among the label indices (the order they
appear in the game) shows that the One-Label security is equivalent to the Many-Label security. The
One-Label definition will be enough for our applications.

Definition 10 (1-Label-IND-Security Game for SSL). Let us consider an SSL scheme over a set
of n senders. No adversary A should be able to win the following security game against a challenger C,
where HS is the set of honest senders and CS the set of corrupted senders, and the labels `j are ordered
by their first use in the game:

– Initialize(ρ): the adversary announces the index of the unique label `∗ = `ρ that will be involved
in challenge queries. The challenger C runs the setup algorithm (pkssl, (ekssl,i)i∈[n]) ← SetUp(λ)

and chooses a random bit b $← {0, 1}. It provides pkssl to the adversary A, together with the keys
{ekssl,i}i∈CS ;

– Challenge queries QRealRandom(`ρ): A has an unlimited access to a Real-or-Random encapsulation
oracle (for the label `ρ only), and receives a ciphertext C`ρ , together with an encapsulation key Kb

`ρ
,

where (C`ρ ,K
0
`ρ
)← SSL.Encaps(pkssl, `ρ), and K1

`ρ
$← K, where K is the encapsulation key space;

– Sharing queries QShare(i, `j): A has unlimited and adaptive access to the sharing oracle, and gets
S`j ,i ← SSL.Share(ekssl,i, `j);

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive corruption queries
on input index i, to get the encapsulation key ekssl,i;

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs this β ← b′ if, for the label
`∗ = `ρ, there is an honest index i∗ ∈ HS for which (`∗, i∗) has not been asked to the sharing oracle,
otherwise a random bit β is output.
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We say this SSL is 1-Label-IND-secure if for any adversary A, its advantage Adv1-Label-INDSSL (A) =
|Pr[β = 1|b = 1]− Pr[β = 1|b = 0]| is negligible.

We can also define the weaker static variant, where corruptions are known from the beginning.

4.2 Construction of the Secret Sharing Layer

Let us exhibit a concrete construct for our main tool SSL, in the random oracle model, under the DBDH
assumption.

– SSL.SetUp(λ): Takes as input a security parameter λ and generates PG = (G1,G2,GT , pssl,

P1, P2, e)
$← PGGenssl(1

λ). Generates a full domain hash function Hssl from {0, 1}λ into G1. It also
generates ~t $← Znp . The public parameters pkssl consist of (PG,Hssl, T2), with T2 = [

∑
j tj ]2 and the

personal encapsulation keys are ekssl,i = ti.
– SSL.Share(ekssl,i, `): Takes as input the key ekssl,i = ti and the label ` and outputs the share
S`,i = ti · Hssl(`) ∈ G1.

– SSL.Encaps(pkssl, `): Takes as input the public key pkssl = (PG,Hssl, T2) and the label `, samples
r

$← Zp, and outputs the ciphertext C` and the encapsulation key K` defined as: C` = [r]2,K` =
e(Hssl(`), r · T2)).

– SSL.Decaps(pkssl, (S`,i)i∈[n], `, C`): Takes as input all the shares S`,i for all i ∈ [n], a label ` and a
ciphertext C`, and outputs an encapsulation key

K` = e

∑
j

S`,j , C`

 .

We stress here that K` is not unique for each label `: whereas S`,i deterministically depends on ` and
the client i, K` is randomized by the random coins r. Hence, with all the shares, using a specific C` one
can recover the associated K`. Correctness follows from the fact that the above decapsulated key K` is
equal to

e

∑
j

tjHssl(`), [r]2

 = e

Hssl(`), [r ·
∑
j

tj ]2

 = e (Hssl(`), r · T2) ,

where the pair (C`,K`) has been generated by the same SSL.Encaps call, with the same random r. The
intuition for the security is that given all the S`,i = ti · Hssl(`) for a label `, one can recover the masks
K` = e(Hssl(`), r ·T2) using C` = [r]2. However if S`,i is missing for one slot i, then all the encapsulation
keys K` are pseudo-random, from the DBDH assumption.

4.3 Security Proof

Let A be a PPT adversary against the security of the above SSL. We build a PPT adversary B against
the qr-fold DBDH such that:

Adv1-Label-INDSSL (A) ≤ n× Advqr-DBDH
PG (B),

where qh denotes the number of Hssl queries (explicit or implicit) and qr the number of challenge-queries
to the QRealRandom oracle. Applying Lemma 7, one can reduce the security to the DBDH assumption.

Let us thus consider a simulator B that receives a qr-fold DBDH challenge (PG, [a]1, [b]1, [b]2,
{[ci]2, [si]T }i), and simulates the view of the 1-Label-IND for SSL adversary A as follows:

– Initialize(ρ): B guesses an index i∗ $← [n], samples ti
$← Zp for all i 6= i∗, sets [ti∗ ]2 ← [b]2, and

returns pkssl = (PG, T2 = [
∑

j tj ]2) to A;
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– Hssl(`): if this is the ρ-th new query, one sets `∗ ← ` and Hssl(`
∗) ← [a]1. For others queries, B

outputs [h]1 for a random h
$← Zp. B keeps track of the queries and outputs to the random oracle

H, so that it answers two identical queries with the same output;
– QRealRandom(`): if not done yet, one asks for Hssl(`). If ` isn’t the ρ-th new query `∗ to Hssl, then

nothing is returned to A. Otherwise B sets C`∗ ← [cj ]2, for the next index j in the qr-fold DBDH
instance, and computes K`∗ ← [sj ]T + e([a]1, (

∑
i 6=i∗ ti) · [cj ]2). It returns (C`∗ ,K`∗) to A;

– QShare(i, `): if not done yet, one asks for Hssl(`). If (i, `) = (i∗, `∗), one aborts the simulation.
Otherwise, B computes and gives back the share S`,i = ti · Hssl(`), where Hssl is computed as
described above, for i 6= i∗, or S`,i = h · [b]1, if i = i∗, where Hssl(`) = [h]1, and h is known, since
` 6= `∗;

– QCorrupt(i): if i = i∗, one aborts the simulation, otherwise one returns ti to A.

One can remark that in this simulation we need to query Hssl(`), if not done yet, during QRealRandom
and QShare queries, in order to determine which ` is the ρ-th one in the game. These are the so-called
implicit queries. First, one can note that the simulation does not abort if (i∗, `∗) has not been asked to
QShare and i∗ is not corrupted, which happens with probability greater than 1/n if we know that one
share is not known for `∗. Then, one also notes that when B receives a real qr-fold DBDH challenge,
that is sj = abcj for all indices j, then B simulates the 1-Label-IND-security game with b = 0. Indeed,
since b = ti∗ , for the j-th QRealRandom-query, we have:

K`∗ = [sj ]T + e([a]1, (
∑
i 6=i∗

ti) · [cj ]2) = [abcj ]T + e([a]1, (
∑
i 6=i∗

ti) · [cj ]2)

= e([a]1, [bcj ]2) + e([a]1, (
∑
i 6=i∗

ti) · [cj ]2) = e([a]1, [bcj ]2 + (
∑
i 6=i∗

ti) · [cj ]2)

= e([a]1, (b+
∑
i 6=i∗

ti) · [cj ]2) = e([a]1, (
∑
i

ti) · [cj ]2) = e(Hssl(`
∗), cj · T2)

where C`∗ = [cj ]2. With a random qr-fold DBDH challenge, the simulation corresponds to the case
b = 1, which concludes the proof.

5 Strengthening the Security of MCFE using SSL

We now show how we can enhance the security of any MCFE using a Secret Sharing Layer as defined
in Section 4. Namely, we show that the construction of Section 5.2 is IND secure if the underlying the
MCFE is 1-Label-IND∗-secure, thereby removing the complete-ciphertext restriction. The 1-Label-IND∗

security is exactly the same security notion as IND∗ where the challenge QLeftRight oracle can only
be queried with the same label. Hence, as above, the index ρ of the target label `∗ is provided by
the adversary, at the beginning, and so we can assume that all the encryption queries for `∗ = `ρ are
asked to the QLeftRight oracle, while the other encryption queries are asked to the QEncrypt oracle
(contrarily to the encapsulation in the SSL scheme, encryption uses a secret key). It is well-known that
1-Label-IND∗ and IND∗ are equivalent [BDJR97], but the former is more convenient in our security
proof.

5.1 1-Label-IND∗ Security for MCFE

As just explained, the 1-Label-IND∗-security game for MCFE is exactly the IND∗-security game for
MCFE from Definition 2 where only one label `∗ is allowed in the challenge QLeftRight oracle, defined
by its index ρ, at the initialization step. We assume that all the other encryption queries are asked to
the QEncrypt oracle.

Definition 11 (1-Label-IND∗-Security Game for MCFE). Let us consider MCFE, a scheme over
a set of n senders. No adversary A should be able to win the following security game against a challenger
C:
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– Initialize(ρ): the adversary announces the index of the unique label `∗ = `ρ that will be involved in
challenge queries. The challenger C runs the setup algorithm (mpk,msk, (eki)i) ← SetUp(λ) and
chooses a random bit b $← {0, 1}. It provides mpk to the adversary A;

– Encryption queries QEncrypt(i, x, `j): A has unlimited and adaptive access to the encryption oracle
(for j 6= ρ), and receives the ciphertext C`j ,i ← Encrypt(eki, x, `j);

– Challenge queries QLeftRight(i, x0, x1, `ρ): A has unlimited and adaptive access to a Left-or-Right
encryption oracle (for the label `ρ only), and receives the ciphertext C`ρ,i ← Encrypt(eki, x

b, `ρ);
– Functional decryption key queries QDKeyGen(f): A has unlimited and adaptive access to the

DKeyGen(msk, f) algorithm for any input function f of its choice. It is given back the functional
decryption key dkf ;

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive corruption queries
on input index i, to get the encryption key eki of any sender i of its choice;

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β of the security
game, according to the analysis given below, where `∗ = `ρ.

The output β of the game depends on some conditions, where CS is the set of corrupted senders (the
set of indexes i input to QCorrupt during the whole game), and HS the set of honest (non-corrupted)
senders. We set the output to β ← b′, unless one of the cases below is true, in which case we set
β

$← {0, 1}:

1. some QLeftRight(i, x0i , x
1
i , `
∗)-query has been asked for an index i ∈ CS with x0i 6= x1i ;

2. for some function f asked to QDKeyGen, there exists a pair of vectors (~x0 = (x0i )i, ~x
1 = (x1i )i) such

that f(~x0) 6= f(~x1), when
– x0i = x1i , for all i ∈ CS;
– QLeftRight(i, x0i , x

1
i , `
∗)-queries have been asked for all i ∈ HS.

3. a challenge query QLeftRight(i, x0i , x
1
i , `
∗) has been asked for some i ∈ HS, but challenge queries

QLeftRight(j, x0j , x
1
j , `
∗) have not all been asked for all j ∈ HS.

We say MCFE is 1-Label-IND∗-secure if for any adversary A, its advantage Adv1-Label-IND
∗

MCFE (A) =
|Pr[β = 1|b = 1]− Pr[β = 1|b = 0]| is negligible.

We can also define the weaker static, selective, and/or without-repetition variants.

5.2 Generic Construction of IND-Secure MCFE

Let MCFE := (SetUp,Encrypt,DKeyGen,Decrypt) be a Multi-Client Functional Encryption (see Defi-
nition 1), SSL := (SSL.SetUp,SSL.Encaps,SSL.Decaps) be a Secret Sharing Layer (see Definition 9),
and SKE := (SEnc, SDec) be Symmetric Encryption scheme (as defined in Section 3.3) with same
key space as SSL, and whose message space is the ciphertext space of MCFE. We define MCFE′ =
(SetUp′,Encrypt′,DKeyGen′,Decrypt′) as follows:

– SetUp′(λ): It executes (mpk,msk, (eki)i) ← SetUp(λ) and (pkssl, (ekssl,i)i) ← SSL.SetUp(λ). The
public parameters mpk′ consist of mpk ∪ pkssl, while the encryption keys are ek′i = eki ∪ ekssl,i for
i = 1, . . . , n, and the master secret key is msk′ = msk;

– Encrypt′(ek′i, xi, `): It parses the encryption key ek′i as eki ∪ ekssl,i, runs C`,i ← Encrypt(eki, xi, `),
(C`,K`) ← SSL.Encaps(pkssl, `), and S`,i ← SSL.Share(ekssl,i, `). The ciphertext C ′`,i is set to
(D`,i = SEnc(K`, C`,i), C`, S`,i);

– DKeyGen′(msk′, f): With msk = msk′, it runs dkf = DKeyGen(msk, f);
– Decrypt′(dkf , `, (C

′
`,i)i∈[n]): Takes as input a functional decryption key dkf , a label `, and ci-

phertexts (C ′`,i = (D`,i, C`, S`,i))i∈[n]. It operates in two steps; first it applies SSL.Decapsssl(pkssl,
(S`,i)i∈[n], `, C`) on all the ciphertexts C` to get all the encapsulation keys K`’s and thus all the
plaintexts C`,i’s using SDec on D`,i. Then it runs Decrypt(dkf , `, (C`,i)i∈[n]).
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5.3 Security Analysis

We now show that this generic construction MCFE′ achieves IND-security, assuming the underlying
MCFE is 1-Label-IND∗-secure (see Definition 11)), SSL is 1-Label-IND-secure (see Definition 10), and
the symmetric encryption is one-time secure (see definition in Section 3.3). More precisely, we can state
the following security result:

Theorem 12. For any adversary A running within time t, against the IND-security of the above MCFE’,

AdvINDMCFE′(A) ≤ (n+ 1) · L×
(

Adv1-Label-IND
∗

MCFE (t) + 2 · Adv1-Label-INDSSL (t′)

+qe · AdvOT
SKE(t

′′)

)
,

with t′ and t′′ quite close to t, where L is the total number of labels involved in the security game and
qe is the maximum number of ciphertexts generated under a label. In addition Adv(t), for any security
notion, is the maximum advantage an algorithm can get within time t.

We stress that this security result keeps all the properties of the basic MCFE and the SSL schemes:

– if MCFE and SSL are both secure against adaptive corruptions, MCFE’ is also IND against adaptive
corruptions;

– if MCFE is secure with repetitions, MCFE’ is also IND with repetitions.

The proof uses a hybrid argument that goes over all the labels `1, . . . , `L used as input to the queries A
makes to QEncrypt′ or QLeftRight′ oracles. We define the following hybrid games, for all ρ = 0, . . . , L:

Game Gρ: This hybrid game outputs right answers for the QLeftRight′-queries involving the first ρ
labels, and left answers for the other labels, to the IND-adversary A, as follows:

– Initialize: it gets the global parameters (mpk,msk, (eki)i∈[n]) ← SetUp(λ), (pkssl, (ekssl,i)i∈[n]) ←
SSL.SetUp(λ) and it returns the public ones mpk′ = mpk ∪ pkssl to the adversary A;

– QEncrypt′(i, x, `j): it returns Encrypt′(eki, x, `j);
– QLeftRight′(i, x0, x1, `j): if j ≤ ρ, it returns Encrypt′(eki, x

1, `j), if j > ρ, it returns Encrypt′(eki,
x0, `j);

– QDKeyGen′(f): it returns DKeyGen′(msk, f);
– QCorrupt′(i): it returns ek′i = eki ∪ ekssl,i;
– Finalize: as in Definition 2, for IND-security.

For any hybrid game Gρ, we denote by AdvGρ(A) := Pr[β = 1], where β is the output of Finalize. Note
that AdvINDMCFE′(A) = |AdvG0(A) − AdvGL

(A)|. Lemma 13 states that for all i ∈ [L], |AdvGi−1(A) −
AdvGi(A)| is negligible, which concludes the proof.

Lemma 13. For any adversary A against the IND-security of the above MCFE′, for all ρ ∈ [L], there
exist PPT adversaries Bρ, B′ρ, and B′′ρ such that

|AdvGρ−1(A)− AdvGρ(A)| ≤ (n+ 1) ·
(

Adv1-Label-IND
∗

MCFE (Bρ)+
2 · Adv1-Label-INDSSL (B′ρ) + qe · AdvOT

SKE(B′′ρ)

)
Proof (of Lemma 13). Actually, two cases can happen between games Gρ−1 and Gρ, for each ρ ∈ [L]:
either all the ciphertexts are generated under `ρ or not all of them. We first make the guess, and then
deal with the two cases: if they are all generated (for honest clients), this is the simple 1-Label-IND∗

security game for the underlying MCFE, otherwise there is an honest index i∗ for which the ciphertext
has not been generated, and the SSL scheme will help, together with the symmetric encryption scheme:

Guess of the Case for the `ρ: We define a new sequence of hybrid games G∗ρ for all ρ = 0, . . . , n,
which is exactly as above, except that a guess for the missing honest-client ciphertext i∗ under `ρ is
performed (i∗ = 0 means that all the honest-client ciphertexts are expected to be generated under `ρ):

– Initialize: it first makes a guess for i∗ $← {0, . . . , n}, and then does as in Gρ;
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– QEncrypt′(i, x, `j), QLeftRight′(i, x0, x1, `j), QDKeyGen′(f), QCorrupt′(i), as in Gρ;
– Finalize: as in Gρ, except if
• i∗ = 0, but not all the honest ciphertexts under `ρ have been asked;
• i∗ 6= 0, but client i∗ is corrupted;
• i∗ 6= 0, but the i∗-th client ciphertext has been asked under `ρ;

in which cases a random bit is output.

Since G∗ρ and Gρ are the same unless the guess is incorrect, which happens with probability exactly
1/(n+ 1), for any adversary A: AdvGρ(A) = (n+ 1) · AdvG∗ρ(A).
All the Ciphertexts are Generated under `ρ: Under the condition that A asks for all the honest
ciphertexts under `ρ, which means the correct guess is i∗ = 0, we build a PPT adversary Bρ against the
1-Label-IND∗ security of MCFE such that

|AdvG∗ρ−1
(A ∧ i∗ = 0)− AdvG∗ρ(A ∧ i

∗ = 0)| ≤ Adv1-Label-IND
∗

MCFE (Bρ).

Bρ simulates the IND-adversary A’s view as follows:

– Initialize: it sends ρ and obtains mpk from its own 1-Label-IND∗-security game for MCFE, samples
(pkssl, (ekssl,i)i∈[n])← SSL.SetUp(λ) and returns mpk′ = mpk ∪ pkssl to the adversary A;

– QEncrypt′(i, x, `j): it uses its own encryption oracle QEncrypt to get C ← QEncrypt(i, x, `j). Then,
it computes (C`j ,K`j ) ← SSL.Encaps(pkssl, `j), and S`j ,i ← SSL.Share(ekssl,i, `j). Eventually, it
computes and returns the ciphertext (SEnc(K`j , C), C`j , S`j ,i);

– QLeftRight′(i, x0, x1, `j): if j < ρ, it uses its own encryption oracle QEncrypt to get the ci-
phertext C ← QEncrypt(i, x1, `j); if j > ρ, it uses its own encryption oracle QEncrypt to get
C ← QEncrypt(i, x0, `j); if j = ρ, then it uses its own left-or-right encryption oracle to get
C ← QLeftRight(i, x0, x1, `ρ). Then, it computes (C`j ,K`j ) ← SSL.Encaps(pkssl, `j), and S`j ,i ←
SSL.Share(ekssl,i, `j). Eventually, it computes and returns the ciphertext (SEnc(K`j , C), C`j , S`j ,i);

– QCorrupt′(i): it uses its own corruption oracle to get eki ← QCorrupt(i), and returns ek′i = eki∪ekssl,i;
– Finalize: Bρ checks whether all the honest ciphertexts under `ρ have been asked. If not, it ignores
A’s guess and sends a uniformly random bit β $← {0, 1}; Otherwise, it forwards A’s guess.

Since we only consider A’s output when all the ciphertexts have been generated, we are in the
1-Label-IND∗ setting, with the “∗”. QLeftRight-queries are only asked under the label `ρ. When b = 0,
these queries are answered by Encrypt(eki, x

0, `ρ), as in G∗ρ−1, whereas for b = 1, they are answered by
Encrypt(eki, x

1, `ρ), as in G∗ρ.

Some Ciphertexts are Missing under `ρ: For β ∈ {0, 1}, we define the game Hρ,β as G∗ρ, except
that when i∗ 6= 0, QEncrypt′(i, x, `ρ) encrypts x and QLeftRight′(i, x0, x1, `ρ) encrypts xβ in C, then
they both generate (C`ρ ,K`ρ)← SSL.Encaps(pkssl, `ρ), S`ρ,i ← SSL.Share(ekssl,i, `ρ), sample a fresh key
K ′`ρ

$← K at random in the key space, and return the ciphertext (SEnc(K ′`ρ , C), C`ρ , S`ρ,i).
Now, we build PPT adversaries Bρ,0 and Bρ,1 against the 1-Label-IND-security of the SSL such

that

|AdvG∗ρ−1
(A ∧ i∗ 6= 0)− AdvHρ,0(A ∧ i∗ 6= 0)| ≤ Adv1-Label-INDSSL (Bρ,0);

|AdvG∗ρ(A ∧ i
∗ 6= 0)− AdvHρ,1(A ∧ i∗ 6= 0)| ≤ Adv1-Label-INDSSL (Bρ,1).

Let β ∈ {0, 1}. We proceed to describe Bρ,β. First, Bρ,β samples the guess i∗ $← {0, . . . , n}. If i∗ = 0,
then Bρ,β behaves exactly as the challenger in the game G∗ρ−1+β . Otherwise, it does the following, using
the 1-Label-IND-security game against SSL:

– Initialize: it generates (mpk,msk, (eki)i∈[n])← SetUp(λ), and sends ρ to receive pkssl from its own
1-Label-IND challenger for SSL. It returns mpk′ = mpk ∪ pkssl to the adversary A;

– QEncrypt′(i, x, `j): it can compute C ← Encrypt(eki, x, `j). Then, it call its own oracle to get
S`j ,i ← QShare(i, `j). If j 6= ρ, it computes (C`j ,K`j ) ← SSL.Encaps(pkssl, `j), if j = ρ it calls
(C`ρ ,K`ρ)← QRealRandom(`ρ). Eventually, it returns the ciphertext (SEnc(K`j , C), C`j , S`j ,i);
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– QLeftRight′(i, x0, x1, `j): if j < ρ, it computes C = Encrypt(eki, x
1, `j); if j > ρ, it computes

C = Encrypt(eki, x
0, `j); and if j = ρ, it computes C = Encrypt(eki, x

β, `j). Then it call its own
oracle to get S`j ,i = QShare(i, `j). If j 6= ρ, it computes (C`j ,K`j )← SSL.Encaps(pkssl, `j), if j = ρ it
calls (C`ρ ,K`ρ)← QRealRandom(`ρ). Eventually, it returns the ciphertext (SEnc(K`j , C), C`j , S`j ,i);

– QDKeyGen′(f): it runs and returns DKeyGen(msk, f).
– QCorrupt′(i): it uses its own corruption oracle to get ekssl,i ← QCorrupt(i), and returns ek′i =

eki ∪ ekssl,i;
– Finalize: Bρ,β checks whether the ciphertext for the i∗-th client has been asked under `ρ. If so, it

ignores A’s guess and sends a uniformly random bit β $← {0, 1}; Otherwise, it forwards A’s guess.

Game Gρ, which encrypts x1 under `ρ just differs from Hρ,1 with real vs. random keys K`ρ , as emulated
by Bρ,1, according to the real-or-random behavior of the 1-Label-IND game for SSL. Game Gρ−1,
which encrypts x0 under `ρ just differs from Hρ,0 with real vs. random keys K`ρ , as emulated by Bρ,0,
according to the real-or-random behavior of the 1-Label-IND game for SSL.

Since the encapsulation keys K`ρ are uniformly random in games Hρ,0 and Hρ,1, we can use the
one-time security of SKE, for each ciphertext for the label `ρ, to obtain a PPT adversary B′′ρ such that:

|AdvHρ,0(A ∧ i∗ 6= 0)− AdvHρ,1(A ∧ i∗ 6= 0)| ≤ qe · AdvOT
SKE(B′′ρ),

where qe denotes maximum number of ciphertexts generated under a label.
Putting everything together, for the case i∗ 6= 0, we obtain PPT adversaries B′ρ and B′′ρ such that:

|AdvG∗ρ−1
(A ∧ i∗ 6= 0)− AdvG∗ρ(A ∧ i

∗ 6= 0)| ≤ 2Adv1-Label-INDSSL (B′ρ) + qe · AdvOT
SKE(B′′ρ))

Since for any game G and any adversary A, AdvG(A) = AdvG(A ∧ i∗ = 0) + AdvG(A ∧ i∗ 6= 0), this
concludes the proof of Lemma 13.

6 IP-MCFE with Repetitions

In this section, we add an extra layer of IP-FE on top of the IP-MCFE from [CDG+17], to remove the
restriction of having a unique challenge ciphertext per client and per label. Our construction works
for any IP-FE that is compatible with the IP-MCFE from [CDG+17], namely, an IP-FE whose message
space is the ciphertext space of the IP-MCFE. For correctness, we exploit the fact that decryption of the
IP-MCFE computes the inner product of the ciphertext together with the decryption keys. For security,
we exploit the fact that the IP-MCFE is linearly homomorphic, in the sense that given an input ~x,
one can publicly maul an encryption of ~x′ into an encryption of ~x+ ~x′. This is used to bootstrap the
security from one to many challenge ciphertexts per (user,label) pair, similarly to [AGRW17,ACF+18]
in the context of multi-input IP-FE. In fact, [ACF+18] uses a one-time secure multi-input FE as inner
layer, and a single-input IP-FE as outer layer, while we use an IP-MCFE as inner layer, and an IP-FE as
outer layer. The main technical challenge is to handle the case of (adaptive) corruptions, which are not
considered in [AGRW17,ACF+18] (even in the static case where corruptions are known beforehand).

We first recall the IP-MCFE from [CDG+17] extended to handle vectors as inputs of the encryption
algorithm. Also, we make use of the fact that the encryption algorithm can act on vectors of group
elements, in Gm, where G is a prime-order group, as opposed to vectors over Z. Decryption recovers
the inner product in the group G, without any restriction on the size of the input of the encryption and
decryption key generation algorithms. Namely, the message space of IP-FE is Gm,for some dimension m,
its decryption key space is Zmp , where p is the order of G, and for any [~x] ∈ Gm, ~y ∈ Zmp , IP.Dec(ct, dk~y) =
[~x>~y] with probability one, where ct ← IP.Encrypt(IP.msk, [~x]), dk~y ← IP.DKeyGen(IP.msk, ~y), and
(IP.mpk, IP.msk) ← IP.SetUp(λ). for Then we give our generic construction to obtain security with
repetitions.
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6.1 Reproduction of the IP-MCFE from [CDG+17]

In [CDG+17], Chotard et al. proposed an IND∗-secure IP-MCFE. Roughly speaking, it relies on a
private-key variant of Abdalla et al. [ABDP15] IP-FE, where a random oracle is used to generate
common randomness among the different users, that is used to produce the ciphertexts. We extend it
to handle vector-inputs for each client, instead of just scalars.

– SetUp(λ): samples G := (G, p, P )
$← GGen(1λ), a full-domain hash function H onto G2, Si

$← Zm×2p ,
for i = 1, . . . , n. Returns the public key mpk := (G,H), encryption keys eki = Si for i = 1, . . . , n,
and the master secret key msk = ((Si)i), (in addition to mpk, which is omitted);

– Encrypt(eki, ~xi, `): Takes as input the value ~xi ∈ Zmp to encrypt, under the key eki = Si and the
label `. It computes [~u`] := H(`) ∈ G2, and outputs the ciphertext [~ci] = [Si~u` + ~xi] ∈ Gm;

– DKeyGen(msk, ~y): Takes as input msk = (Si)i and an inner-product function defined by ~y ∈ Zm·np

as f~y(~x) = 〈~x, ~y〉,where ~x = (~x1‖ · · · ‖~xn) ∈ Znmp , and outputs the functional decryption key
dk~y =

(
~y,
∑

i S
>
i ~yi
)
∈ Zmnp × Z2

p;
– Decrypt(dk~y, `, ([~ci])i∈[n]): Takes as input a functional decryption key dk~y = (~y, ~d), a label `, and

ciphertexts. It computes [~u`] := H(`) and returns [α] =
∑

i[~ci]
>~yi − [~u`]

>~d.

For correctness, one can check that:

[α] =
∑
i

[~ci]
>~yi − [~u`]

>~d =
∑
i

[Si~u` + ~xi]
>~yi − [~u`]

>
∑
i

S>i ~yi

=
∑
i

[Si~u`]
>~yi + [~xi]

>~yi −
∑
i

[Si~u`]
>~yi =

∑
i

[~xi]
>~yi = [~x>~y] = [〈~x, ~y〉].

For security, we will use the two following properties of the IP-MCFE from [CDG+17]:

– Linear Homomorphism of ciphertexts: for any i ∈ [n], ~xi, ~x′i ∈ Zp, and any label `, we have
[~ci] + [~x′i] = Encrypt(eki, ~xi + ~x′i, `), where [~ci] = Encrypt(eki, ~xi, `).

– Deterministic Encryption. In particular, together with the linear homomorphism of ciphertexts, this
implies that for any ~xi, ~x′i ∈ Zmp and any label `, we have: Encrypt(eki, ~xi, `)− Encrypt(eki, ~x

′
i, `) =

[~xi − ~x′i].

6.2 Construction of IND-Secure IP-MCFE with Repetitions

Let MCFE = (SetUp,Encrypt,DKeyGen,Decrypt) be the above IP-MCFE scheme, and IP-FE = (IP.SetUp,
IP.Encrypt, IP.DKeyGen, IP.Dec) be a single-input Inner Product FE (as defined in Section 3.4) whose
message space is the ciphertext space of MCFE. We define a new MCFE′ = (SetUp′,Encrypt′,DKeyGen′,
Decrypt′) as follows:

– SetUp′(λ): It executes (mpk,msk, (eki)i) ← SetUp(λ) as well as, for i = 1, . . . , n, (IP.mpki,
IP.mski) ← IP.SetUp(λ). The encryption keys are ek′i = (eki, IP.mski) for all i = 1, . . . , n, the
public key is mpk′ := (mpk, {IP.mpki}i), and the master secret key is msk′ = (msk, {IP.mski}i);

– Encrypt′(ek′i, ~xi, `): It parses the encryption key ek′i as (eki, IP.mski), runs [~ci,`]← Encrypt(eki, ~xi, `),
and returns C ′`,i := IP.Encrypt(IP.mski, [~ci,`]);

– DKeyGen′(msk′, ~y): on input ~y := (~y1‖ · · · ‖~yn) ∈ Znmp , it computes dk~y = DKeyGen(msk, ~y), and for
all i ∈ [n]: dk~yi = IP.DKeyGen(mski, ~yi). It returns dk′~y =

(
dk~y, {dk~yi}i∈[n]

)
.

The three above algorithms are enough to show the security (as proven below), which holds with respect
to any IP-MCFE that satisfies the Linearly Homomorphism of ciphertexts, and deterministic encryption,
as defined above. However, correctness only holds for the particular IP-MCFE from [CDG+17], where
decryption computes the inner product between ciphertexts and decryption keys. That prevents from a
generic transformation.

We now prove correctness when using the IP-MCFE from [CDG+17] in MCFE’:
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– Decrypt′(dk′~y, `, (C
′
`,i)i∈[n]): Takes as input a functional decryption key dk′~y =

(
dk~y, {dk~yi}i∈[n]

)
,

where dk~y = (~y, ~d =
∑

i S
>
i ~yi), a label `, and ciphertexts (C ′`,i)i∈[n]. First, it computes [di,`] =

IP.Dec(dk~yi , C
′
`,i) for all i ∈ [n]. Then it computes [~u`] = H(`), and computes [α] = [

∑
i di,`]− ~d>[~u`].

Finally, it returns the discrete logarithm α ∈ Zp.

Correctness. By correctness of the IP-FE, we have for all i ∈ [n], and any label `: [di,`] = [〈~yi, ~xi+Si~u`〉] =
[〈~yi, ~xi〉] + 〈~yi,Si〉 · [~u`]. Thus,

∑
i[di,`] = [〈~y, ~x〉] + (

∑
i ~y
>
i Si) · [~u`]. Since ~d =

∑
i S
>
i ~yi, we have∑

i[di,`] = [〈~y, ~x〉] + ~d>[~u`], hence α = 〈~x, ~y〉.

6.3 Security Analysis

In this section, we will prove that the above MCFE′ achieves 1-Label-IND∗-security if the MCFE
from [CDG+17] is wtr-IND∗-secure (which has been proven in [CDG+17]) and the IP-FE is IND-secure
(which has been proven in [ABDP15]). More precisely, we can state the following security result:

Theorem 14. For any adversary A, against the 1-Label-IND∗-security of the above MCFE′,

Adv1-Label-IND
∗

MCFE′ (A) ≤ Advwtr-IND
∗

MCFE (t′) + n · AdvINDIP-FE(t
′′),

where both t′ and t′′ are close to the running time t of A.

As a consequence, starting from both the IP-FE from [ALS16], the IP-MCFE from [CDG+17], and adding
the above SSL scheme, one gets an IP-MCFE that is IND-secure, with repetitions and with adaptive
corruptions.

The proof uses a series of hybrid games, defined below. For any game G, we denote AdvG(A)
the advantage of A in the game G, that is, the probability that the procedure Finalize in the game
G outputs 1. For any user i ∈ [n], we denote by Qi the number of queries to the oracle QLeftRight′

containing the user i, that is, of the form: QLeftRight′(i, ~xk,0i , ~xk,1i , `), for k ∈ {1, . . . , Qi}. When all the
Qi’s are 1, there is no repetition, but here we are dealing with repetitions. The counter k numbers the
repetitions.

Game Gβ: For any β ∈ {0, 1}, we define the following game, where multiple plaintexts can be queried
for the same user i and the same label. We use a counter k, which starts at 1 to number the queries
(~xk,0i , ~xk,1i ), under the label `∗ = `ρ. We do not keep track of the queries under other labels (as in
previous definitions).

– Initialize(ρ): it generates (mpk,msk, (eki)i∈[n])← SetUp(λ), and for all i ∈ [n], (IP.mpki, IP.mski)←
IP.SetUp(λ). It returns mpk′ := (mpk, (IP.mpki)i∈[n]) to the adversary A;

– QEncrypt′(i, ~xi, `j): it first computes [~ci]← Encrypt(eki, ~xi, `j), and returns IP.Enc(mski, [~ci]);
– QLeftRight′(i, ~xk,0i , ~xk,1i , `ρ): it computes [~cki ]← Encrypt(eki, ~x

k,β
i , `ρ), and returns IP.Enc(mski, [~c

k
i ]);

– QDKeyGen′(~y): on input ~y := (~y1‖ · · · ‖~yn) ∈ Znmp , it first computes dk~y = DKeyGen(msk, ~y), and
for all i ∈ [n]: dk~yi = IP.DKeyGen(mski, ~yi). It returns dk′~y =

(
dk~y, {dk~yi}i∈[n]

)
.

– QCorrupt′(i): on input a user i ∈ [n], it returns (eki, IP.mski).
– Finalize: as in Definition 11.

Note that:
Adv1-Label-IND

∗

MCFE′ (A) = |AdvG0(A)− AdvG1(A)|.

Game H0: Now we consider the game H0 defined exactly as G0, except in QLeftRight′(i, ~xk,0i , ~xk,1i , `ρ),
one computes [~cki ] ← Encrypt(eki, ~x

k,0
i + ~x1,1i − ~x1,0i , `ρ). Then it returns IP.Enc(IP.mski, [~c

k
i ]). The

transition from G0 and H0 uses 1-Label-IND∗ security and the linear homomorphism of the ciphertexts
of MCFE. Namely, we build a PPT adversary B against the 1-Label-IND∗ security of MCFE such that:

|AdvG0(A)− AdvH0(A)| ≤ Adv1-Label-IND
∗

MCFE (B).

B simulates the view of the 1-Label-IND∗-adversary A against MCFE′ as follows:
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– Initialize(ρ): after having sent ρ, it gets mpk from its 1-Label-IND∗ challenger. For all i ∈ [n],
(IP.mpki, IP.mski)← IP.SetUp(λ), and it returns mpk′ := (mpk, (IP.mpki)i∈[n]) to the adversary A;

– QEncrypt′(i, ~xi, `j): it first computes [~ci]← QEncrypt(i, ~xi, `j), and returns IP.Enc(mski, [~ci]);
– QLeftRight′(i, ~xk,0i , ~xk,1i , `ρ): for k = 1, i.e. the first query for user i, B queries its own QLeftRight

oracle to get [~c1i ] = QLeftRight(i, ~xk,0i , ~xk,1i , `ρ); otherwise it computes [~cki ] := [~c1i ] + [~xk,0i − ~x
1,0
i ]. It

then returns IP.Encrypt(IP.mski, [~c
k
i ]) to A;

– QDKeyGen′(~y): on input ~y := (~y1‖ · · · ‖~yn) ∈ Znmp , it first computes dk~y = DKeyGen(msk, ~y), and
for all i ∈ [n]: dk~yi = IP.DKeyGen(mski, ~yi). It returns dk′~y =

(
dk~y, {dk~yi}i∈[n]

)
.

– QCorrupt′(i): B queries its own oracle to obtain eki ← QCorrupt(i), and returns (eki, IP.mski) to A.
– Finalize: B verifies that the conditions in Definition 11 are satisfied; if they are, it forwards the

guess b′ of A, otherwise, it sends a random bit to its own Finalize oracle.

Note that the constraints B has to verify in the finalize procedure, and namely for condition (2),
might look exponential for general functionalities. But in the case of inner-product, one just has
to look at spanned vector sub-spaces. Namely, all queries (i, ~xki,0i , ~xki,1i , `ρ)i∈[n],ki∈[Qi] to QLeftRight′

and all queries ~y := (~y1‖ · · · ‖~yn) to QDKeyGen′ must satisfy:
∑

i〈~x
ki,0
i , ~yi〉 =

∑
i〈~x

ki,1
i , ~yi〉. This is an

exponential number of linear equations, but, as noted in [AGRW17], it suffices to verify the linearly
independent equations, of which there can be at most n ·m. This can be done efficiently given the
queries.

One can note that, for the label `ρ = `∗, [~c1i ] received by B is actually [~c1i ] = Encrypt(eki, ~x
1,b
i ,

`∗), where b is the random bit chosen by the 1-Label-IND∗ security game for MCFE that B is in-
teracting with. By linear homomorphism of the ciphertexts of MCFE, for all k ∈ [Qi], we have:
[~cki ] = Encrypt(eki, ~x

1,b
i , `∗) + [~xk,0i − ~x

1,0
i ] = Encrypt(eki, ~x

k,0
i + ~x1,bi − ~x

1,0
i , `∗). So, when b = 0, B simu-

lates G0, while it simulates H0 when b = 1, which proves |AdvG0(A)−AdvH0(A)| ≤ Adv1-Label-IND
∗

MCFE (B).
We define the following hybrid gamesHr, for all r ∈ [n], asH0, except for QLeftRight′(i, ~x

k,0
i , ~xk,1i , `ρ):

for all i ≤ r, it sets [~cki ] ← Encrypt(eki, ~x
k,1
i , `ρ), instead of [~cki ] ← Encrypt(eki, ~x

k,0
i + ~x1,1i − ~x

1,0
i , `k),

and returns IP.Enc(mski, [~c
k
i ]). Note that this definition is compatible with H0 defined previously, and

Hn is G1. Thus, it suffices to build a PPT adversary Br for all r ∈ [n], against the IND-security of the
IP-FE, such that:

|AdvHr−1(A)− AdvHr(A)| ≤ AdvINDIP-FE(Br).
We distinguish two cases. The first case occurs when A queries the user r to its oracle QCorrupt′.
Then, conditioned on the event that Finalize doesn’t output a random bit, it must be the case that
for all k ∈ [Qr], ~x

k,0
r = ~xk,1r . If we call E this first case, we have: AdvHr−1(A ∧ E) = AdvHr(A ∧

E). The second case corresponds to the event ¬E: A does not query QCorrupt′ on r. We build a
PPT adversary B such that |AdvHr−1(A|¬E) − AdvHr(A|¬E) ≤ AdvINDIP-FE(Br), which implies that
|AdvHr−1(A ∧ ¬E)− AdvHr(A ∧ ¬E) ≤ AdvINDIP-FE(Br). We conclude using the fact that for any game
G and event E: AdvG(A) = AdvG(A ∧ E) + AdvG(A ∧ ¬E). We now proceed to describe Br, which
simulates the view of the 1-Label-IND∗-adversary A against MCFE′ as follows:

– Initialize(ρ): Br obtains IP.mpkr from its own Initialize oracle, and generates (IP.mpki, IP.mski)←
IP.SetUp(λ) for all i 6= r, (mpk,msk, (eki)i)← SetUp(λ) and returns mpk′ := (mpk, (IP.mpki)i) to
A.

– QEncrypt′(i, ~xi, `j): it computes [~ci]← Encrypt(eki, ~xi, `j). If i 6= r, it returns IP.Enc(mski, [~ci]); if
i = r, it returns QLeftRight([~ci], [~ci]).

– QLeftRight′(i, ~xk,0i , ~xk,1i , `ρ): B computes [~ck,0i ] = Encrypt(eki, ~x
k,1
i , `ρ) and [~ck,1i ] = Encrypt(eki,

~xk,0i + ~x1,1i − ~x
1,0
i , `ρ), and uses its own QLeftRight oracle to output the ciphertext to A

• if i < r, it outputs IP.Enc(mski, [~c
k,0
i ]);

• if i > r, it outputs IP.Enc(mski, [~c
k,1
i ]);

• if i = r, it outputs QLeftRight([~ck,0i ], [~ck,1i ]).
– QDKeyGen′(~y): on input ~y := (~y1‖ · · · ‖~yn) ∈ Znmp , Br computes dk~y = DKeyGen(msk, ~y), for all
i 6= r: it computes dk~yi = IP.DKeyGen(mski, ~yi), and it queries its QDKeyGen oracle to obtain
QDKeyGen(~yr). It returns dk′~y =

(
dk~y, {dk~yi}i∈[n]

)
to A.
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– QCorrupt(i): if i = r, B aborts the simulation and sends a random bit to its Finalize oracle.
Otherwise, it returns IP.mski.

– Finalize: Br verifies that the conditions in Definition 11 are satisfied; if they are, it forwards the
guess b′ of A, otherwise, it sends a random bit to its own Finalize oracle.

Note that when the random bit b used by the IND-security game of IP-FE that Br is interacting
with is equal to 0, then, Br simulates the game Hr to A; otherwise, it simulates the game Hr−1. In
particular, the condition of the Finalize from Definition 11 implies that for all queries (i, ~xki,0i , ~xki,1i , `ρ)

to QLeftRight′, we have:
∑

i〈~x
ki,0
i , ~yi〉 =

∑
i〈~x

ki,1
i , ~yi〉 for all ki ∈ [Qi]. Thus, we have in particular, for

all k ∈ [Qr]:

〈~xk,0r − ~x1,0ρ , ~yr〉 = 〈~xk,1r − ~x1,1ρ , ~yr〉 ⇒
〈~xk,0r + ~x1,1r − ~x1,0ρ , ~yr〉 = 〈~xk,1r + ~x1,1r − ~x1,1ρ , ~yr〉 ⇒
〈~ck,0r , ~yr〉 = 〈~ck,1r , ~yr〉,

where [~ck,0r ] = Encrypt(ekr, (~x
k,0
r + ~x1,1r − ~x1,0r ), `ρ) and [~ck,1r ] = Encrypt(ekr, (~x

k,1
r + ~x1,1r − ~x1,1r ), `ρ). The

last implication uses the structural properties of the IP-MCFE scheme, namely, the property of linear
homomorphism, and deterministic encryption. The last equality corresponds exactly to the condition to
prevent the Finalize oracle from the IND security game of the IP-FE from outputting a random bit (see
Definition 8).

This proves |AdvHr−1(A)− AdvHr(A)| ≤ AdvINDIP-FE(Br), and concludes the security proof.

7 DMCFE from MCFE without Pairings

7.1 Decentralized Multi-Client Functional Encryption

In [CDG+17], Chotard et al. defined the notion of DMCFE, where the generation of the functional
decryption keys is distributed among the clients, so that they keep control on these keys. For efficiency
reasons, they focused on efficient one-round key generation protocols DKeyGen that can be split in
a first step DKeyGenShare that generates partial keys and the combining algorithm DKeyComb that
combines partial keys into the functional decryption key. The full definition can be found in [CDG+17],
and we briefly recall it here for completeness.

Definition 15 (Decentralized Multi-Client Functional Encryption). A decentralized multi-
client functional encryption onM between a set of n senders (Si)i, for i = 1, . . . , n, and a functional
decrypter FD is defined by the setup protocol and four algorithms:

– SetUp(λ): This is a protocol between the senders (Si)i that generate their own secret keys ski and
encryption keys eki, and eventually output the public parameters mpk;

– Encrypt(eki, xi, `): Takes as input a user encryption key eki, a value xi to encrypt, and a label `,
and outputs the ciphertext C`,i;

– DKeyGenShare(ski, `f ): Takes as input a user secret key ski and a label `f , and outputs the partial
functional decryption key dkf,i for a function f :Mn → R that is described in `f ;

– DKeyComb((dkf,i)i, `f ): Takes as input the partial functional decryption keys and eventually outputs
the functional decryption key dkf ;

– Decrypt(dkf , `, ~C): Takes as input a functional decryption key dkf , a label `, and an n-vector
ciphertext ~C, and outputs f(~x), if ~C is a valid encryption of ~x = (xi)i ∈Mn for the label `, or ⊥
otherwise;

The correctness property essentially states the combined key corresponds to the functional decryption
key. The security model is quite similar to the previous one for MCFE (see Definition 2), except that
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– for the DKeyGen protocol: the adversary has access to transcripts of the communications, thus
modeled by a query QDKeyGen(i, f) that executes DKeyGenShare(ski, `f ), where `f is a description
of f ;

– corruption queries additionally reveal the secret keys ski;
– the Finalize procedure ignores incomplete functional decryption keys: for condition (2), only

functions f for which all the honest key-shares have been asked are considered.

The critical point is the last one: the distributed key generation must guarantee that without all the
shares, no information is known about the functional decryption key. In addition, the protocol must be
efficient.

7.2 Distributed Sum

In order to convert an MCFE scheme into a DMCFE, one needs to allow efficient distributed computation
of the functional decryption key. In many cases, this can be seen as a particular MCFE for the unique
sum function on the contributions of all the clients. As an example, for the IP-MCFE from [CDG+17],
dk~y =

(
~y,
∑

i S
>
i ~yi
)
, and namely one has to compute

∑
i xi =

∑
i S
>
i ~yi, where the xi’s can be computed

by each client.
In this section, we thus focus on the functionality of publishing the sum of individual secrets, in an

efficient manner.

Definition 16 (Ideal Protocol DSum). A DSum on a group G among n senders is defined by three
algorithms:

– DSum.SetUp(λ): Takes as input the security parameter λ. Generates the public parameters pp and
the personal secret keys ski for i = 1 · · ·n;

– DSum.Encode(xi, `, ski): Takes the xi value to encode, a label ` and the personal secret key ski of
the user i. Returns the share M`,i

– DSum.Combine( ~M): Takes as input a vector ~M = (M`,i)i of shares. Returns the value
∑

iM`,i;

Correctness. For any label `, we want Pr[DSum.Combine( ~M`) =
∑

i xi] = 1, where the probability is
taken over M`,i ← DSum.Encode(xi, `, ski) for all i ∈ [n], and (pp, (ski)i)← DSum.SetUp(λ) .

Security Notion. This protocol must guarantee the privacy of the xi’s, their sum possibly excepted
when all the shares are known. This is the classical security notion for multi-party computation, where
the security proof is performed by simulating the view of the adversary from the output of the result:
nothing when not all the shares are asked, and just the sum of the inputs when all the shares are
queried. We also have to deal with the corruptions, which give the users’ secret keys.

7.3 DSum Protocol in the Random Oracle Model

The protocol below is similar to [KDK11], with a hash function. We provide a new security analysis,
which relies on the CDH problem in the Random Oracle Model.

– DSum.SetUp(λ): Takes as input the security parameter λ and generates a group G of prime
order p, with a generator g, were the CDH assumption holds. It also generates a hash function
H : {0, 1}∗ → G, for any group G, denoted additively. Each user i, picks ti

$← Zp. The public
parameters pp are (G, p, g,H, ([ti])i) and the personal secret keys ski = ti for i = 1 · · ·n (with the
public parameters);

– DSum.Encode(xi, `, ski): Takes the xi value to encode, a label ` and the personal secret key ski = ti of
the user i, it returnsM`,i computed as below, where h`,i,j = H([tmin{i,j}], [tmax{i,j}], ti ·[tj ], `) = h`,j,i:

M`,i = xi −
∑
j<i

h`,i,j +
∑
j>i

h`,i,j .

– DSum.Combine( ~M = (M`,i)i): Takes as input a vector ~M of shares. Computes and return the value∑
iM`,i;
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Correctness. The correctness should show that the sum of the shares is equal to the sum of the xi’s:
the former is equal to

∑
i

xi −∑
j<i

h`,i,j +
∑
j>i

h`,i,j

 =
∑
i

xi −
∑
i

∑
j<i

h`,i,j +
∑
i

∑
j>i

h`,j,i

=
∑
i

xi −
∑
i

∑
j<i

h`,i,j +
∑
j

∑
i<j

h`,j,i =
∑
i

xi

7.4 Security Analysis (in the Random Oracle Model)

We will prove that there exists a simulator that generates the view of the adversary from the output
only. In this proof, we will assume static corruptions (the set CS of the corrupted clients is known from
the beginning) and the hardness of the CDH problem. However, this construction will only tolerate up
to n− 2 corruptions, so that there are at least 2 honest users. But this is also the case for the MCFE.

W.l.o.g., we can assume that HS = {1, . . . , n− c} and CS = {n− c+1, . . . , n}, by simply reordering
the clients, when CS is known. We will gradually modify the behavior of the simulator, with less and
less powerful queries. At the beginning, the DSum.Encode-query takes all the same inputs as in the real
game, including the secret keys. At the end, it should just take the sum (when all the queries have been
asked), as well as the corrupted xj ’s.

Game G0: The simulator runs as in the real game, with known CS.
Game G1: The simulator is given a group G with a generator g and a random pair (X = [t];Y = [t2]).

– DSum.SetUp: the simulator randomly chooses αi
$← Zp, for i = 1, . . . , n−c, and definesXi ← X+[αi].

This sets ti = t+αi. It can also set Yi,j = CDH(Xi, Xj) = Y +(αi+αj) ·X+[αiαj ], for i, j ≤ n− c.
It then randomly choses ti ← Zp for i > n− c and sets Xi = [ti]. It can also generate all the other
Yi,j = CDH(Xi, Xj)’s, using the known ti’s. It sends the Xi’s as the pp, and the secret keys ti of
the corrupted users;

– DSum.Encode(xi, `): the simulator generates all the required h`,i,j using the Xj ’s and Yi,j ’s, querying
the hash function, and returns M`,i = xi −

∑
j<i h`,i,j +

∑
j>i h`,i,j .

Game G2: The simulator does as above, but just uses a random Y ′
$← G instead of Y , to answer the

DSum.Encode-queries.
This can make a difference for the adversary if the latter asks for the hash function on some tuple

(Xmin{i,j}, Xmax{i,j},CDH(Xi, Xj), `), for i, j ≤ n− c, as this will not be the value h`,i,j , which has been
computed using Yi,j 6= CDH(Xi, Xj). In such a case, one can find CDH(Xi, Xj) = Y +[αi+αj ]·X+[αiαj ]
in the list of the hash queries, and thus extract Y = CDH(X,X). As a consequence, under the hardness
of the square Diffie-Hellman problem (which is equivalent to the CDH problem), this simulation is
indistinguishable from the previous one.

Game G3: The simulator does as above except for the DSum.Encode-queries. If this is not the last-
honest query under label `, the simulator returns M`,i = −

∑
j<i h`,i,j +

∑
j>i h`,i,j ; for the last honest

query, it returns M`,i = SH −
∑

j<i h`,i,j +
∑

j>i h`,i,j , where SH =
∑

j∈HS xj .
Actually, for a label `, if we denote i` the index of the honest player involved in the last query, the

view of the adversary is exactly the same as if, for every i 6= i`, we have replaced h`,i,i` by h`,i,i` + xi (if
i` > i) or by h`,i,i` − xi (if i` < i). We thus replace uniformly distributed variables by other uniformly
distributed variables: this simulation is perfectly indistinguishable from the previous one.

Game G4: The simulator now ignores the values h`,i,j for honest i, j. But for each label, it knows the
corrupted xj ’s, and can thus compute the values M`,j for the corrupted users, using the corrupted xj ’s
and secret keys. If this is not the last honest query, it returns a random M`,i. For the last honest query,
knowing S =

∑
j xj , it outputs M`,i = S −

∑
j 6=iM`,j .

As in the previous analysis, if one first sets all the h`,i,j , for j 6= i`, this corresponds to define h`,i,i`
from M`,i, for i 6= i`.
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7.5 DSum Protocol in the Standard Model

A variant of this protocol can also be described with a randomness extractor and a PRF. We then provide
the security analysis under the DDH assumption and the PRF indistinguishability. More precisely, for
the randomness extractor, we can use the Left-over-Hash-Lemma [ILL89,HILL99], with a random seed
k in the CRS to extract random keys K for a PRF (FK)K , with a universal hash function (Hk)k:

– DSum.SetUp(λ): Takes as input the security parameter λ and generates a group G of prime order
p, with a generator g. From a family of universal hash functions (Hk)k and a random key k, this
define the randomness extractor E(·) = Hk(·), later used to generate the keys K of a PRF (FK)K .
Each user i, picks ti

$← Zp. The public parameters pp are (G, p, g, E , (FK)K , ([ti])i) and the personal
secret keys ski = ti for i = 1 · · ·n (with the public parameters);

– DSum.Encode(xi, `, ski): Takes the xi value to encode, a label ` and the personal secret key ski = ti
of the user i, it returns M`,i computed as below, where h`,i,j = FKi,j (`) with Ki,j = E(ti · [tj ]):

M`,i = xi −
∑
j<i

h`,i,j +
∑
j>i

h`,i,j .

– DSum.Combine( ~M = (M`,i)i): Takes as input a vector ~M of shares. Computes and return the value∑
iM`,i;

The correctness is the same as above, since it just makes use of h`,i,j . The security however requires the
DDH assumption, in order to guarantee the randomness of all the Diffie-Hellman values [ti · tj ]. The
Left-over-Hash Lemma thereafter ensures the uniform and independent distributions of the Ki,j ’s which
then make the h`,i,j ’s unpredictable for all the honest i, j.

7.6 Security Analysis (in the Standard Model)

In the previous section, we observe that we do not exploit programmability of the random oracle, and
can actually use the Decisional Diffie-Hellman assumption to prove it in the standard model. The key
used Ki,j for F is E([titj ]), where E is a randomness extractor, and the input is `. We still assume that
HS = {1, . . . , n− c}.

Game G0: The simulator runs as in the real game, with known CS (assumed to be {n− c+ 1, . . . , n},
without loss of generality, since we are in the static corruption setting).

Game G1: The simulator does as above, but just uses a random value Yi,j
$← G instead of the key

[titj ], when both i 6= j ∈ HS, to generate the Ki,j ’s to answer the DSum.Encode-queries. After the
hybrid sequence described below, the advantage for the adversary is:

|AdvG0(A)− AdvG1(A)| ≤
(n− c)2

2
· Advddh(B),

for some adversary B running with a similar time as A.
Game G2: The simulator now uses random keys Ki,j ’s in the cases i < j are both honest, and
Kj,i = Ki,j . Because of the entropy on the Yi,j ’s, the Left-over-Hash Lemma guarantees a statistical
indistinguishability with the previous game.

Game G3: The simulator now chooses random h`,i,j for any `, in the cases i < j are both honest, and
h`,j,i = h`,i,j . Under the indistinguishability of the PRF with random keys, this game is indistinguishable
from G2.

Now, the rest of the proof is similar to the previous one, with a final simulation as in above game
G4.
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Hybrid Sequence: Here we present the hybrid games Hi,j,k between G0 and G1. An iteration of this
sequence describes how to replace the value [ti∗tj∗ ] used in the setup phasis, for honest i∗ < j∗, by
random Yi∗,j∗

$← G. The progression follows the lexicographical order on the pairs (i, j) ∈ HS where
i < j, and Succ(i, j) denotes the next pair. It will be clear that G0 = H1,2,0 and G1 = Hn−c−1,n−c,3.
In addition, for all (1, 2) ≤ (i∗, j∗) < (n− c− 1, n− c), Hi∗,j∗,3 = HSucc(i∗,j∗),0. We indeed insist that
Ki,i is never used, so only Diffie-Hellman values for two different keys are used.

Game Hi∗,j∗,0: The simulator runs the real game, except that it additionally initializes Yi,j in the
DSum.SetUp, used for the extracted keys Ki,j = E(Yi,j) during the DSum.Encode, either correctly as
[titj ] or at random:

– DSum.SetUp: after having generated the group G of prime order p, with a generator g, the
randomness extractor E(·), and the PRF (FK)K , the simulator generates the secret keys ti

$← Zp
and sets Xi ← [ti], for all i. Then it defines:
• for (i, j) < (i∗, j∗), where i < j are both honest, pick a random element Yi,j

$← G
• for (i, j) ≥ (i∗, j∗), where i < j are both honest, set Yi,j ← [titj ]
• for (i, j) where i < j and some of them is corrupted, set Yi,j ← [titj ]
• for (i, j) where i > j, set Yi,j ← Yj,i

It sends the Xi’s as the pp, and the secret keys ti of the corrupted users;

Game Hi∗,j∗,1: for i∗ < j∗, the simulator is given a group G with a generator g and a random
Diffie-Hellman tuple (X = [x], Y = [y], Z = [xy]).

– DSum.SetUp: it uses the above group G and generator g, and generates E and (FK)K . For the
indices i∗, j∗, the simulator defines Xi∗ ← X and Xj∗ ← Y . This sets ti∗ ← x and tj∗ ← y. It
can also set Yi∗,j∗ = CDH(Xi∗ , Xj∗) = Z. It then randomly chooses ti

$← Zp for i 6= i∗, j∗ and sets
Xi ← [ti]. It can also generate Yi,j = CDH(Xi, Xj), using the known ti, for (i, j) > (i∗, j∗) and
i < j. The cases (i, j) < (i∗, j∗) for i < j and the cases i > j remain unchanged. It sends the Xi’s
as the pp, and the secret keys ti of the corrupted users;

The view of the adversary remains the same.

Game Hi∗,j∗,2: for i∗ < j∗, the simulator is given a random tuple (X = [x], Y = [y], Z
$← G),

and does as above. Under the hardness of the Decisional Diffie-Hellman problem, this simulation is
indistinguishable from the previous one.

Game Hi∗,j∗,3: this is quite similar to game Hi∗,j∗,0, but with difference for (i, j) = (i∗, j∗):

– DSum.SetUp: after having generated the group G of prime order p, with a generator g, the
randomness extractor E(·), and the PRF (FK)K , the simulator generates the secret keys ti

$← Zp
and sets Xi ← [ti], for all i. Then it defines:
• for (i, j) ≤ (i∗, j∗), where i < j are both honest, pick a random element Yi,j

$← G
• for (i, j) > (i∗, j∗), where i < j are both honest, set Yi,j ← [titj ]
• for (i, j) where i < j and some of them is corrupted, set Yi,j ← [titj ]
• for (i, j) where i > j, set Yi,j ← Yj,i

The view of the adversary does not change.
Starting from (1, 2) up to (n− c− 1, n− c), there are (n− c)(n− c− 1)/2 cases with i∗ < j∗ which

involve the DDH assumption, hence the conclusion.

7.7 Application to IP-DMCFE

One can generically convert an IP-MCFE into an IP-DMCFE, when dk~y =
(
~y, ~d~y

)
, where ~d~y =

∑
i xi,

with the xi’s computed by each client, as xi ← S>i ~yi in [CDG+17], by letting the clients generating the
DSum secret keys at the setup time, and the label is the vector ~y:
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– DKeyGenShare(ski, ~y): outputs M~y,i ← DSum.Encode(xi, ~y, ski);
– DKeyComb((M~y,i)i, ~y): outputs the functional decryption key dk~y =

(
~y, ~d~y

)
, where ~d~y is publicly

computed as DSum.Combine((M~y,i)i);

Using the last simulation game, we can now show that all the DKeyGenShare(ski, ~y) are first simulated
at random, and only the last query requires making the DKeyGen-query to the IP-MCFE scheme to
get the sum and program the output. Hence, unless all the honest queries are asked, the functional
decryption key is unknown.
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