
Faster multiplication in Z2m[x] on Cortex-M4 to
speed up NIST PQC candidates

Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe⋆

Radboud University, Nijmegen, The Netherlands
matthias@kannwischer.eu, joost@joostrijneveld.nl, peter@cryptojedi.org

Abstract. In this paper we optimize multiplication of polynomials in
Z2m[x] on the ARM Cortex-M4 microprocessor. We use these optimized
multiplication routines to speed up the NIST post-quantum candidates
RLizard, NTRU-HRSS, NTRUEncrypt, Saber, and Kindi. For most of those
schemes the only previous implementation that executes on the Cortex-
M4 is the reference implementation submitted to NIST; for some of those
schemes our optimized software is more than factor of 20 faster. One
of the schemes, namely Saber, has been optimized on the Cortex-M4
in a CHES 2018 paper; the multiplication routine for Saber we present
here outperforms the multiplication from that paper by 42%, yielding
speedups of 22% for key generation, 20% for encapsulation and 22%
for decapsulation. Out of the five schemes optimized in this paper, the
best performance for encapsulation and decapsulation is achieved by
NTRU-HRSS. Specifically, encapsulation takes just over 400 000 cycles,
which is more than twice as fast as for any other NIST candidate that
has previously been optimized on the ARM Cortex-M4.

Keywords: ARM Cortex-M4, Karatsuba, Toom, lattice-based KEMs, NTRU

1 Introduction

In November 2017 the NIST post-quantum project [NIS16b] received 69 “complete
and proper” proposals for future standardization of a suite of post-quantum
cryptosystems. By December 2018, five of those 69 have been withdrawn. Out of
the remaining 64 proposals, 22 are lattice-based public-key encryption schemes or
key-encapsulation mechanisms (KEMs). Most of those lattice-based schemes use
structured lattices and, as a consequence, require fast arithmetic in a polynomial
ring Rq = Zq[x]/f for some n-coefficient polynomial f ∈ Zq[x]. Typically the
largest performance bottleneck of these schemes is multiplication in Rq.

Many proposals, for example NewHope [ADPS16,AAB+17], Kyber [ABD+17],
and LIMA [SAL+17], choose q, n, and f such that multiplication in Rq can be
done via very fast number-theoretic transforms. However, six schemes choose
⋆ This work has been supported by the European Commission through the ERC
Starting Grant 805031 (EPOQUE) and by COST (European Cooperation in Science
and Technology) through COST Action IC1403 (CRYPTACUS). Date: April 9, 2019



q = 2k which requires using a different algorithm for multiplication in Rq.
Specifically those six schemes are Round2 [GMZB+17], Saber [DKRV17], NTRU-
HRSS [HRSS17b], NTRUEncrypt [ZCHW17], Kindi [Ban17], and RLizard [CPL+17].
Round2 recently merged with Hila5 [Saa17] into Round5 [BGML+18] and the
Round5 team presented optimized software for the ARM Cortex-M4 processor
in [SBGM+18]; the multiplication in Round5 has more structure, allowing for a
specialized high-speed routine. In this paper we optimize the other five schemes
relying on arithmetic in Rq with a power-of-two q on the same platform. Note that
Saber has previously been optimized on the ARM Cortex-M4 [KMRV18] as well;
our polynomial multiplication implementation outperforms the results by 42%
which improves the overall performance of key generation by 22%, encapsulation
by 20%, and decapsulation by 22%. For the other four schemes the only software
that was readily available for the Cortex-M4 was the reference implementation
and, unsurprisingly, our carefully optimized code significantly outperforms these
implementations. For example, our optimized implementations of RLizard-1024
and Kindi-256-3-4-2 encapsulation and decapsulation are more than a factor of
20 faster. Our implementation of NTRU-HRSS encapsulation and decapsulation
solidly outperform the optimized Round5 software presented in [SBGM+18].

We achieve our results by systematically exploring different combinations of
Toom-3, Toom-4, and Karatsuba decomposition [Too63,Coo66,KO63] of multi-
plication in Rq, and by carefully hand-optimizing multiplication of low-degree
polynomial multiplication at the bottom of the Toom/Karatsuba decomposition.
The exploration of the different approaches is automated through a set of Python
scripts that generate optimized assembly given the parameters q = 2k for k ≤ 16
and n ≤ 1024. These Python scripts may be of independent interest for a similar
design-space exploration on different architectures.

Organization of this paper. In Section 2 we briefly recall the five NIST
candidates that we optimize in this paper and give the necessary background on
the target microarchitecture, i.e., the ARM Cortex-M4. In Section 3 we first detail
our approach to explore different Toom and Karatsuba decomposition strategies
for multiplication in Rq and then explain how we hand-optimized schoolbook
multiplications of low-degree polynomials. Finally, Section 4 presents performance
results for stand-alone multiplication in Rq for the different parameter sets, and
for the five NIST candidates.

Availability of the software. We place all software presented in this paper,
including the Python scripts used for design-space exploration, into the public do-
main. The software is available at https://github.com/mupq/polymul-z2mx-m4
and the implementations have been integrated into the pqm4 framework [KRSS].

Second round of NISTPQC. Since this paper first appeared online NIST
announced the second round candidates of the post-quantum competition. While
Kindi and RLizard are no longer under consideration by NIST, Saber, NTRU-HRSS,
and NTRUEncrypt made it to the second round. NTRU-HRSS and NTRUEncrypt
were merged into the new scheme NTRU. The optimizations presented in this
paper carry over directly to the second round schemes.

https://github.com/mupq/polymul-z2mx-m4


2 Preliminaries

In this section, we briefly review the five NIST candidates that we optimize in
this paper. Readers interested in the multiplication routine outside the context
of NIST submissions are encouraged to skip ahead to Subsection 2.2, where we
introduce the targeted Cortex-M4 platform and give context that is relevant to
interpret the benchmark results.

2.1 Cryptosystems targeted in this paper

Notation. The full specification of each of the five CCA-secure KEMs would
take several pages, so for the sake of brevity we leave out various details. In
this section, we highlight the relevant aspects; see Appendix A for algorithmic
descriptions.

In particular, all five schemes build a CCA-secure KEM from an encryption
scheme; for all but NTRUEncrypt, this encryption scheme is only passively secure.
In our descriptions, we focus only on the encryption schemes underlying the KEM
and highlight the multiplications in Rq—the main target of our optimization
effort—by denoting those multiplications with ⍟. In general, we denote scalar
multiplications with ⋅ and polynomial multiplications with ∗.

Similarly, we do not go into any detail with respect to the sampling of random
bit strings, polynomials, or matrices, and simply denote all of these functions
as SampleR, where R is the set from which the elements are drawn. While we
specify a set to which the sampled elements belong, we leave the distribution
according to which they are sampled unspecified. Where deterministic sampling
from a specific seed is relevant, SampleR is parameterized with this seed.

Finally, many schemes make use of rounding coefficients of polynomials. We
denote any such rounding operation by ⌊. . . ⌉, specify the domain in which the
result lives, but again omit the details of how the rounding operation is defined.

RLizard RLizard is part of the Lizard submission to NIST [CPL+17]. It is a
cryptosystem based on the Ring-Learning-with-Errors (Ring-LWE) and Ring-
Learning-with-Rounding (Ring-LWR) problems. As the names suggest, these
problems are closely related, and efficient reductions exist [BPR12,BGM+16].
The submission motivates the choice for the Learning-with-Rounding problem
by stressing its deterministic encryption routine and reduced ciphertext size
compared to Learning-with-Errors. RLizard.KEM is a CCA-secure KEM that is
constructed by applying Dent’s variant of the FO transform [FO99,Den03] to the
RLizard CPA-secure PKE scheme.

The main structure underlying RLizard is the ring Rq = Zq[x]/(x
n
+ 1),

but coefficients of the ciphertext are ultimately reduced to Rp, where p < q.
We consider the parameter set where n = 1024, q = 2048 and p = 512. In the
submission the derived KEM is referred to as RING_CATEGORY3_N1024 – for
clarity, we denote it as RLizard-1024 from this point onwards. All multiplications
in RLizard fit the structure that we target in this work.



NTRU-HRSS-KEM The NTRU-HRSS scheme [HRSS17a] is based on the
‘classic’ NTRU cryptosystem [HPS98]. It starts from the CPA-secure NTRU
encryption scheme, and, like RLizard, applies Dent’s variant of the FO trans-
form [FO99,Den03] to construct a CCA-secure KEM. By restricting the parameter
space compared to traditional NTRU, the scheme is simplified and avoids imple-
mentation pitfalls such as decryption failures and fixed-weight sampling.

We look at the concrete instance as submitted to NIST [HRSS17b], i.e., fix
the parameters to p = 3, q = 8192 and n = 701. NTRU-HRSS relies on arithmetic
in a number of different rings. Glossing over the technicalities (see Sections 2
and 3 of [HRSS17a]), we reuse the notation to define Φd = 1 + x1 + x2 +⋯ + xd−1,
and then define Rp = Z[x]p/Φn, R′

q = Z[x]q/Φn and Rq = Z[x]q/(x
n
− 1), but

abstract away the transitions between rings.
The scheme requires several multiplications and inversions. For this paper,

we focus on multiplications in R′
q and Rq. However, the same routine can be

used to perform the multiplication in Rp. Furthermore, as the inversion in R′
q

can be performed using multiplications [HRSS17a], this benefits from the same
optimization.

NTRUEncrypt. The NTRUEncrypt scheme [ZCHW17] is also based on the
standard NTRU construction [HPS98], but chooses parameters based on a recent
revisiting [HPS+17]. NTRUEncrypt builds a CCA-secure KEM from a CCA-secure
PKE; this public-key encryption scheme uses the NAEP transform [HGSSW03].

The NIST submission of NTRUEncrypt [ZCHW17] presents several instan-
tiations, but we limit ourselves to the instances where q = 2k. We look at the
parameter set NTRU-KEM-743, where p = 3, q = 2048, and n = 743; the arithmetic
takes place in the ring Rq = Zq[x]/(x

n
− 1), but coefficients are also reduced

modulo p when moving to Rp. The optimizations in this work also carry over to
the smaller NTRU-KEM-443 parameter set, but not to NTRU-KEM-1024 (which
uses a prime q). As before, the relevant multiplication occurs when the noise poly-
nomial r is multiplied with the public key h, but we also utilize our multiplication
routine for the other multiplication in Dec.

Saber Like Lizard and RLizard, Saber [DKRV17] also relies on the Learning-with-
Rounding problem. Rather than directly targeting LWR or the ring variant, it
positions itself in the middle-ground formed by the Module-LWR problem. The
submission conforms to the common pattern of proposing a PKE scheme, and
then applying an FO variant [HHK17] to obtain a CCA-secure KEM.

Like RLizard, Saber operates in the ringRq = Zq[x]/(x
n
+1), and in the smaller

Rp. Because of the Module-LWR structure, however, n is fixed to 256 for all
parameter sets. Instead of varying the dimension of the polynomial, Saber variants
use matrices of varying sizes with entries in the polynomial ring (denoted R`×k).
With the fixed q = 8192, this ensures that an optimized routine for multiplication
in Rq directly applies to the smaller LightSaber and the larger FireSaber instances



Table 1. Relevant dual 16-bit multiplication instructions supported by the ARM
Cortex-M4

instruction semantics
smuad Ra, Rb, Rc Ra← RbL ⋅ RcL + RbH ⋅ RcH
smuadx Ra, Rb, Rc Ra← RbL ⋅ RcH + RbH ⋅ RcL
smlad Ra, Rb, Rc, Rd Ra← RbL ⋅ RcL + RbH ⋅ RcH + Rd
smladx Ra, Rb, Rc, Rd Ra← RbL ⋅ RcH + RbH ⋅ RcL + Rd

as well. Other parameters p and t are powers of 2 smaller than q; for the Saber
instance1, p = 1024 and t = 8. The vector h is a fixed constant in R`

q.
Note that some of the multiplications in Saber are in Rq and some are in Rp;

in our software both use the same routine. As we will explain in Section 3, the
smaller value of p would in principle allow us to explore a larger design space for
multiplications in Rp; however, for the small value of n = 256 there is nothing to
be gained in the additional multiplication approaches.

KINDI In the same vein as Saber, Kindi [Ban17] is based on a matrix of polyno-
mials, relating it to the Module-LWE problem. Somewhat more intricate than the
standard approach, however, it relies on a trapdoor construction, and constructs
a CPA-secure PKE that is already close to a key-encapsulation mechanism.

Kindi operates in the polynomial ring Rq = Zq[x]/(x
n
+ 1) with q = 2k, the

more general Rb = Zb[x]/(x
n
+1) for some integer b, and in the polynomial ring

with integer coefficients R = Z[x]/(xn + 1). The relevant arithmetic primarily
happens in the ring Rq, though, meaning that the performance of Kindi still
considerably improves as a consequence of this work. We consider the parameter
set Kindi-256-3-4-2, where n = 256 and q = 214.

To obtain a CCA-secure KEM, a slightly simplified version of the modular
FO variant [HHK17] is used: as Kindi exhibits a KEM-like structure and already
includes re-encryption in Dec, this results in merely adding hash-function calls.

2.2 ARM Cortex-M4

Our target platform is the ARM Cortex-M4 which implements the ARMv7E-M
architecture. It has 16 general purpose registers of which 14 are freely usable
by the developer. In contrast to smaller architectures like the Cortex-M3, the
Cortex-M4 supports the DSP instructions smuad, smuadx, smlad, and smladx,
which we use to significantly speed up low-degree polynomial multiplication
using the schoolbook method. Those low-degree multiplication routines are used
as a core building block for higher-degree polynomial multiplication. The DSP
instructions perform two half-word multiplications, accumulate the two products
and optionally accumulate another 32-bit word in one clock cycle (as illustrated
1 Note that both the scheme and the category 3 parameter set are called Saber.



in Table 1). There is strong synergy between these DSP instructions and the fact
that loading a 32-bit word using ldr is as expensive as loading a halfword using
ldrh. Related to this, it is important to perform load operations sequentially (i.e.,
uninterrupted by other instructions) when possible, as this has a pipelining benefit.
This shows in the ldm instruction, but also when simply adjoining multiple ldr
instructions. While the same behavior occurs for store instructions, combining
loads and stores only incurs pipelining benefits when stores follow loads, but not
when loads follow stores.

The ARMv7E-M instruction set contains support for 16-bit Thumb instructions,
such as simple arithmetic and memory operations with register parameters. Using
these instructions has an obvious benefit for code size, but comes at the cost of
introducing misalignment: instruction fetching is significantly more expensive
when instruction offsets are not aligned to multiples of four bytes. To combat
this, Thumb instructions can be expanded to full-word width using the .w suffix.

Benchmarking platform. In our experiments we use the STM32F4DISCOVERY
which features 1 MiB of Flash ROM, 192 KiB of RAM (128 KiB of which are
contiguous) running at a maximum frequency of 168 MHz. For benchmarking we
use the reduced clock frequency of 24 MHz to not be impacted by wait states
caused by slow memory [SS17]. We use the GNU ARM Embedded Toolchain2

(arm-none-eabi) with arm-none-eabi-gcc-8.3.0. All source files are compiled
with the optimization flag -O3.

3 Multiplication in Z2m[x]
As discussed in the previous sections, we focus on multiplication in Rq, where q =
2m. In particular, we approach this by looking at the non-reduced multiplication
in Z2m[x], as this is identical across all schemes we investigate. The reduction is
done outside of our optimized polynomial multiplication.

Here, we describe the way we break down such a multiplication for a specific
number of coefficients n, modulo a specific q. This is done using combinations of
Toom-Cook’s and Karatsuba’s multiplication algorithms. For a given n and q,
there are multiple possible approaches; we explore the entire space and select the
optimum for each parameter set. We use Python scripts that generate optimized
assembly functions for all combinations, for arbitrary-degree polynomials (with
degree below 1024). These scripts are parameterized by the degree, the Toom
method (see the next subsection; Toom-3, Toom-4, both Toom-4 and Toom-3 or
no Toom layer at all), and the threshold at which to switch from Karatsuba to
schoolbook multiplication. See Section 4.1 for a detailed analysis of these results.

3.1 Toom/Karatsuba strategies

The naive schoolbook approach to multiply two polynomials with n coefficients
results in n2 multiplications in Zq. Using well-known algorithms by Karat-
suba [KO63] and Toom-Cook [Too63,Coo66], it is possible to trade some of these
2 https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm


multiplications for additions and subtractions. Both algorithms have originally
been introduced for the multiplication of large integers, but straight-forwardly
translate to polynomial multiplication. Karatsuba’s method breaks a multiplica-
tion of n-coefficient polynomials into three (instead of four) multiplications of
polynomials with n

2
coefficients. Toom-Cook is a generalization of this approach.

For this work we concern ourselves with Toom-3, which breaks down a multipli-
cation of n-coefficient polynomials into five (rather than nine) multiplications of
polynomials with n

3
coefficients, and Toom-4, breaking down a multiplication of

n-coefficient polynomials into seven multiplications of n
4
coefficients.

Toom-Cook. It is important to note that there is a loss in precision when
using Toom’s method, as it involves division over the integers. While divisions
by three and five can be replaced by multiplications by their inverses modulo
216, i.e., 43691 and 52429, this is not possible for divisions by powers of two.
Consequently, Toom-3 loses one bit of precision, and Toom-4 loses three bits.
Since our Karatsuba and schoolbook implementations operate in Z216[x], this
imposes constraints on the values of q for which our implementations can be used;
Toom-3 can be used for q ≤ 215, Toom-4 can be used for q ≤ 213. These losses
accumulate, and a combination of both is only possible if q ≤ 212. This also rules
out higher-order Toom methods. While switching to 32-bit arithmetic would
allow using higher order Toom, this slows down Karatsuba and the schoolbooks
significantly by increasing load-store overhead and ruling out DSP instructions.

While asymptotically Toom-4 is more efficient than Toom-3 and Karatsuba,
in practice the additions and subtractions also impact the run-time. The in-
creased and more complex memory-access patterns also significantly influence
performance. Thus, for a given n it is not immediately obvious in general which
approach is the fastest. We first evaluate whether to decompose using a layer
of Toom-4, Toom-3, both Toom-4 and Toom-3, or no Toom at all. We then
repeatedly apply Karatsuba’s method to break down the multiplications, up to
the threshold at which it becomes inefficient and the “naive” schoolbook method
becomes the fastest approach.

Karatsuba. The call to the topmost Karatsuba layer is a function call, but
from that point on, we recursively inline the separate layers. Upon reaching the
threshold at which the schoolbook approach takes precedence, we jump to the
schoolbook multiplication as an explicit subroutine. This provides a trade-off
that keeps code size reasonable and is flexible to implement and experiment with,
but does imply that the register allocation between the final Karatsuba layer and
the underlying schoolbook is disjoint; it may prove worthwhile to look into this
for specific n rather than in a general approach.

Note that we only applied Karatsuba’s method to split polynomials in two
parts (i.e., not more), and did not combine operations across recursive calls.
See [WP06] for details on a more general approach.3

3 The approach by Weimerskirch and Paar provides a middle ground between Karatsuba
and Toom-Cook. While allowing for a wider range of splits than traditional Karatsuba
and a more efficient way of dealing with the newly introduced additions, it does



As we perform several nested layers of Karatsuba multiplication, it is important
to carefully manage memory usage. We do not go for a completely in-place
approach (as is done in [KMRV18]), but instead allocate stack space for the sums
of the high and low limbs, relying on the input and output buffers for all other
terms. This leads to effective memory usage without reducing performance.

Assembly-level optimizations. For both Toom and Karatsuba, the typical
operations require adding and subtracting polynomials of moderate size from
a given address. We stress the importance of careful pipelining, loading and
storing 16-bit coefficients pairwise into full-word registers, and using uadd16 and
usub16 arithmetic operations. We rely on offset-based instructions for memory
operations, in particular for the more intricate memory access patterns in Toom
and Karatsuba. This leads to a slight increase in code size compared to using ldm
and stm, (and some bookkeeping for polynomials exceeding the maximal offset
of 4095 bytes), but ensures that addresses are computed during code generation.

For ease of implementation, our code generator for Toom is restricted to
dimensions that divide without remainder. For Karatsuba, we do not restrict the
dimensions at all: the implementation can work on unbalanced splits, and thus
polynomials of unequal length. In order not to waste any memory or cycles here
(e.g., by applying common refinement approaches), the Python script becomes a
rather complex composition of conditionals; rather than trying to combine pairs
of 16-bit additions into uadd16 operations on the fly, we run a post-processing
step over the scheduled instructions to do so.

Rather than considering alignment to 32-bit word boundaries during code
generation, we use a post-processing step. After compilation, we disassemble the
resulting binary and expand Thumb instructions in the cases where they cause
misalignment. This allows using the smaller Thumb instructions where possible,
but avoids paying the overhead of misalignment. In particular, this is important
when an odd number of Thumb instructions is followed by a large block of 32-bit
instructions. The alignment post-processing is done using a Python script that is
included in our software package, and may be of independent interest.

3.2 Small schoolbook multiplications

We carefully investigate several approaches to perform the small-degree schoolbook
multiplications that underlie Karatsuba and Toom-Cook, varying the approaches
and implementing distinct generation routines for different n.

For each approach, we keep the polynomial in packed representation, loading
all coefficients into the 32-bit registers in pairs. The ARMv7E-M instruction set
provides multiplication instructions that efficiently operate on data in this format:
parallel multiplications, but also instructions that operate on a specific halfwords.
For n ≤ 10, all input coefficients can be kept in registers simultaneously, with

come at the cost of more small-sized multiplications than similarly-sized Toom-Cook
instances. A key advantage, though, is the fact that this approach does not introduce
divisions that lead to a loss of precision. This could be relevant in particular for
multiplications where both n and q are large.



a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

Fig. 1. Pairing coefficients to reduce the number of multiplications, using smladx /
smlad instructions. Dashed boxes represent multiplications involving repacked b.

registers remaining to keep the pointers to the source and destination polynomials
around. We first compute all coefficients of terms with odd exponents, before
using pkh instructions to repack one of the input polynomials and computing the
remaining coefficients. This ensures that the vast majority of the multiplications
can be computed using the two-way parallel multiply-accumulate dual instructions.
See Figure 1 for an illustration of this; here, b is repacked to create the dashed
pairs. This is somewhat similar to the approach used in [KMRV18], but ends up
needing less repacking and memory interaction.

For n ∈ {11,12}, we spill the source pointers to the stack after loading
the complete polynomials. At these dimensions, the registers are used to their
full potential, and by using the DSP instructions we end up needing only 78
multiplications; 66 combined multiplications, 12 single multiplications, and not a
single dedicated addition instruction. This offsets the extra cost of the 6 packing
instructions considerably. For n ∈ {13,14}, not all coefficients fit in registers at
the same time, leading to spills for the middle columns (i.e., the computation of
coefficients around xn, which are affected by all input coefficients). Even when
using the Python abstraction layer, manual register allocation becomes somewhat
tedious in the cases that involve many spills to the stack. To remedy this, we use
bare-bones register allocation functions akin to the scripts in [HRSS17a].

For larger n, the above strategy leads to an excessive amount of register
spills. Instead, we compose the multiplication of a grid of smaller instances. For
15 ≤ n ≤ 24, we compose the multiplication out of four smaller multiplications,
for 25 ≤ n ≤ 36, we use a grid of nine multiplications, etc. Note that we use at
most n = 12 for the building blocks, given the extra overhead of the register spills
for n ∈ {13, 14}. We further remark that it is important to carefully schedule the
(re)loading and repacking of input polynomials. We illustrate this in Figure 2.

The approach described above works trivially when n is divisible by ⌈
n
12

⌉,
but leads to a less symmetric pattern for other dimensions. We plug these holes
by starting from an n that divides even, and either adding a layer ‘around’ the
parallelogram or nullifying the superfluous operations in a post-processing step.



1

23

4

1

2

34

5

67

8

9

Fig. 2. Decomposing larger schoolbook multiplications

Figure 3 shows the performance of these routines; see Table 5 for more details.

4 Results and discussion

In this section we present benchmark results for polynomial multiplication, and for
key generation, encapsulation, and decapsulation of the five NIST post-quantum
candidates Kindi, NTRUEncrypt, NTRU-HRSS, RLizard, and Saber. For each of the
schemes we have tried to select the parameter set which targets NIST security
category 3. However, NTRU-HRSS only provides a category 1 parameter set,
hence we use this. Furthermore, the reference implementations for the category 3
parameter sets of Kindi require more than 128 KiB of RAM and consequently
do not trivially fit our platform (STM32F4DISCOVERY). We use Kindi-256-3-4-2
instead, which targets security category 1. For the definition of NIST security
categories see [NIS16a, Sec. 4.A.5].

All cycle counts presented in this section were obtained by using an adapted
version of the pqm4 benchmarking framework [KRSS], which uses the built-in
24-bit hardware timer. Stack measurements were also also obtained using the
method implemented in pqm4, i.e., by writing a canary to the entire memory
available for the stack, running the scheme under test and subsequently checking
how much of the canary was overwritten.

4.1 Multiplication results

We first present results for polynomial multiplication as a building block. We
report benchmarks for the multiplication for all possible n < 1024, using different
approaches to evaluate which strategy is optimal.

Figure 3 shows the run-time of our hand-optimized schoolbook implementa-
tions and the generated optimized Karatsuba code for small n. For the Karatsuba
benchmarks, we have selected the optimal schoolbook threshold, e.g., for n = 32
one could either apply one layer of Karatsuba and then use the schoolbook
method for n = 16 or, alternatively, use two layers of Karatsuba and use school-
book multiplications for n = 8. The former variant is faster in this scenario, which
leads to a schoolbook threshold of 16. For each n, we simply iterated over all
schoolbook thresholds and selected the fastest variant. The graph shows that
directly applying the schoolbook method is superior for n < 20, and for n > 36



0 5 10 15 20 25 30 35 40
Polynomial degree

0

1000

2000

3000

Cl
oc

k 
cy

cle
s

Schoolbook
Karatsuba

Fig. 3. Runtime of generated optimized polynomial multiplication for small n. For
n < 20 our hand-optimized schoolbook multiplications are clearly superior, for n > 36
first applying at least one layer of Karatsuba is faster.

Karatsuba outperforms schoolbook. However, for values in between, the plot is
inconclusive. A large cause of this is the amount of hand-optimization that went
into some of our schoolbook implementations, but it is also strongly determined
by register pressure: there is a large performance hit in the step from n = 14 to
n = 15, which then propagates to dimensions that break down to these schoolbook
multiplications using Karatsuba. For cryptographically relevant values we found
that the cross-over point is at n = 22, i.e., for values n > 22 one should use an
additional layer of Karatsuba.

Figure 4 shows the performance of the different multiplication approaches for
larger n. While that general trend is visible, one still observes a jagged line. We
speculate that the main cause for this is similar to the irregularities in Figure 3:
the variance in the increasing cost of the schoolbooks is magnified as n grows
larger and specific schoolbook sizes are repeated in the decomposition of large
multiplications. Because of the difference in decomposition between Toom-3 and
Toom-4, this favors each method for different ranges for n, resulting in alternating
optimality. Another factor that is impacted by specific decomposition is the
resulting memory access pattern, and, by extension, data alignment, resulting in
a large performance penalty. In practice, comparing benchmarks for specific n
seems to be the only way to come to conclusive results. In particular, we observe
that the lines are not even monotonically increasing; note that it is trivially
possible to pad a smaller-degree polynomial and use a larger multiplication
routine to benefit of a more efficient decomposition.

As Figure 4 does not allow us to identity which method performs best for clear
bounds on n, we instead focus on individual n as relevant for the five cryptographic
schemes we intend to cover. This restricts n to {256,701,743,1024}. In Table 2,
we report the cycle counts alongside the required additional stack space for each
of the multiplication methods. All cycle counts are for polynomial multiplication
excluding subsequent reduction required to obtain an n-coefficient polynomial;
additional cost for reduction differs depending on the specific choice of ring.



0 200 400 600 800 1000
Polynomial degree

0

50000

100000

150000

200000

250000

300000

350000

400000

Cl
oc

k 
cy

cle
s

Karatsuba
Toom-3
Toom-4 + Toom-3
Toom-4

Fig. 4. Runtime of different decomposition variants for large-degree multiplications.

While there is some performance benefit to performing the reduction inline,
the main gain is in stack usage. For the Toom variants, this allows for in-place
recomposition, reducing stack usage by roughly 2n coefficients. This is not trivial
for Karatsuba, though, introducing some additional complexity. We leave this for
future work.

For the rather small n = 256 (Saber, Kindi), we already see that Toom-4
(followed by two layers of Karatsuba) is slightly faster than directly applying
Karatsuba. As the difference is small, however, one might decide to not use a Toom
layer at all, at the benefit of a much simpler implementation and considerably
reduced stack usage. Toom-4 is not suitable for Kindi (n = 256, q = 214), as q
is too large. Again the impact is marginal, though, as Karatsuba is only a few
percent slower at this dimension, also performing just above Toom-3. For larger
n ∈ {701,743,1024} (NTRU-HRSS, NTRUEncrypt,RLizard) applying Toom-4 is
most efficient. The second layer ends up in the same range of small n, where it is
a close competition between applying Toom-3 or directly switching to recursive
Karatsuba.

4.2 Encapsulation and decapsulation results

In this section we present our performance results for RLizard, Saber, Kindi,
NTRUEncrypt, and NTRU-HRSS. All the software presented in this section started
from the reference implementations submitted to NIST but went considerably
further than just replacing the multiplication routines with the optimized rou-
tines described in Section 3. For Saber, we considered starting from the already



Table 2. Benchmarks for polynomial multiplication excluding reduction. Fastest ap-
proach is highlighted in bold. The ‘Toom-4 + Toom-3’ and ‘Toom-4’ approaches are
not applicable to all parameter sets, as q may be too large.

approach schoolbook clock cycles stack usage
[bytes]

Saber
(n = 256, q = 213)

Karatsuba only 16 38 000 2 020
Toom-3 11 39 043 3 480
Toom-4 16 36 274 3 800
Toom-4 + Toom-3 - - -

Kindi-256-3-4-2
(n = 256, q = 214)

Karatsuba only 16 38 000 2 020
Toom-3 11 39 043 3 480
Toom-4 - - -
Toom-4 + Toom-3 - - -

NTRU-HRSS
(n = 701, q = 213)

Karatsuba only 11 202 889 5 676
Toom-3 15 205 947 9 384
Toom-4 11 172 882 10 596
Toom-4 + Toom-3 - - -

NTRU-KEM-743
(n = 743, q = 211)

Karatsuba only 12 217 130 6 012
Toom-3 16 211 588 9 920
Toom-4 12 186 639 11 208
Toom-4 + Toom-3 16 192 503 12 152

RLizard-1024
(n = 1024, q = 211)

Karatsuba only 16 356 046 8 188
Toom-3 11 352 770 13 756
Toom-4 16 302 504 15 344
Toom-4 + Toom-3 11 310 712 16 816

optimized implementation by Karmakar, Bermudo Mera, Sinha Roy, and Ver-
bauwhede [KMRV18], but achieved marginally better performance starting from
the reference code. We start by describing the changes that apply to the reference
implementations; some of these changes might be more generally advisable as
updates to reference software.

Memory allocations. The reference implementations of Kindi, RLizard, and
NTRUEncrypt make use of dynamic memory allocation on the heap. The RLizard
implementation does not free all the allocated memory, which results in memory
leaks; also it misinterprets the NIST API and assumes that the public key is always
stored right behind the secret key. This may result in reads from uninitialized
(or even unallocated) memory. Luckily none of the implementations require
dynamically allocated memory; the size of all allocated memory is reasonably
small and known at compile time. We eliminated all dynamic memory allocations
and our software thus only relies on the stack to store temporary data. Our
benchmarks show that this significantly improves performance.

Hashing. The five NIST candidates we optimize in this paper make use of variants
of SHA-3 and SHAKE [NIS15b] and of SHA-512 [NIS15a]. For SHA-3 and SHAKE



Table 3. Benchmarks for reference implementations and optimized implementations
using fastest multiplication approach. Reporting run time (cycle count) and stack usage
(bytes) for key generation (K), encapsulation (E), and decapsulation (D).

KEMs optimized in this paper
implementation clock cycles stack usage

[bytes]

Saber

Reference
K: 6 530k K: 12 616
E: 8 684k E: 14 896
D: 10 581k D: 15 992

[KMRV18]
K: 1 147k K: 13 883
E: 1 444k E: 16 667
D: 1 543k D: 17 763

This work
K: 895k K: 13 248
E: 1 161k E: 15 528
D: 1 204k D: 16 624

Kindi-256-3-4-2

Reference
K: 21 794k K: 59 864
E: 28 176k E: 71 000
D: 37 129k D: 84 096

This work
K: 969k K: 44 264
E: 1 320k E: 55 392
D: 1 517k D: 64 376

NTRU-HRSS

Reference
K: 205 156k K: 10 020
E: 5 166k E: 8 956
D: 15 067k D: 10 204

This work
K: 145 963k K: 23 396
E: 404k E: 19 492
D: 819k D: 22 140

NTRU-KEM-743

Reference
K: 59 815k K: 14 148
E: 7 540k E: 13 372
D: 14 229k D: 18 036

This work
K: 5 198k K: 25 320
E: 1 601k E: 23 808
D: 1 881k D: 28 472

RLizard-1024

Reference
K: 26 423k K: 4 272
E: 32 156k E: 10 532
D: 53 181k D: 12 636

This work
K: 525k K: 27 720
E: 1 345k E: 33 328
D: 1 716k D: 35 448

Other KEMs submitted to the NIST PQC project
implementation clock cycles stack usage

R5ND_1PKEb [SBGM+18]
K: 658k K: ?
E: 984k E: ?
D: 1 265k D: ?

R5ND_3PKEb [SBGM+18]
K: 1 032k K: ?
E: 1 510k E: ?
D: 1 913k D: ?

NewHopeCCA1024 [KRSS,AJS16]
K: 1 244k K: 11 152
E: 1 963k E: 17 448
D: 1 979k D: 19 648

Kyber768 [KRSS]
K: 1 200k K: 10 544
E: 1 446k E: 13 720
D: 1 477k D: 14 880



we use the optimized assembly implementation from pqm4 [KRSS], which makes
use of the optimized Keccak-permutation from the Keccak Code Package [DHP+].
For SHA-512, we use a C implementation from SUPERCOP [BL].

Comparison to reference code. Table 3 contains the performance benchmarks
for the optimized implementations as well as the reference implementations with
the modifications described above. For all schemes targeted in this paper we
dramatically increase the performance; the improvements go up to a factor of 49
for the key generation of RLizard-1024. Since both Karatsuba and Toom-Cook
require storing additional intermediate polynomials on the stack, we increase stack
usage for all schemes except Kindi-256-3-4-2. The reference implementations of
Kindi-256-3-4-2 already contained optimized polynomial multiplication methods,
which were implemented in a stack-inefficient manner.

Side-channel resistance. While side-channel resistance was not a focus of
this work, we ensured that our polynomial multiplication is protected against
timing attacks. More specifically, in the multiplication routines we avoid all
data flow from secrets into branch conditions and into memory addresses. The
special multiplication routine in [SBGM+18] is less conservative and does use
secret-dependent lookup indices with a reference to [ARM12] saying that the
Cortex-M4 does not have internal data caches. However, it is not clear to us that
really all Cortex-M4 cores do not have any data cache; [ARM12] states that the
“Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, and Cortex-M4 processors do
not have any internal cache memory. However, it is possible for a SoC design to
integrate a system level cache.” Also, it is clear that some ARMv7E-M processors
(for example, the ARM Cortex-M7) have data caches and our multiplication code
is timing-attack protected also on those devices.

Key-generation performance. The focus of this paper is to improve perfor-
mance of encapsulation and decapsulation. All KEMs considered in this paper are
CCA-secure, so the impact of a poor key-generation performance can in principle
be minimized by caching ephemeral keys for some time. Such caching of ephemeral
keys makes software more complex and in some cases also requires changes to
higher level protocols; we therefore believe that key-generation performance, also
for CCA-secure KEMs, remains an important target of optimization. The key
generation of RLizard, Saber, and Kindi is rather straight-forwardly optimized
by integrating our fast multiplication. The key generation of NTRUEncrypt and
NTRU-HRSS also requires inversions, which we did not optimize in this paper;
we believe that further research into efficient inversions for those two schemes
will significantly improve their key-generation performance.

Comparison to previous results. To the best of our knowledge, Saber is
the only scheme of those considered in this paper that has been optimized for
the ARM Cortex-M family in previous work [KMRV18]. Table 3 contains the
performance result on the same platform as ours. Our optimized implementation
outperforms the CHES 2018 implementation by 22% for key generation, 20% for
encapsulation, and 22% for decapsulation. Karmakar, Bermudo Mera, Sinha Roy,
and Verbauwhede report 65 459 clock cycles for their optimized 256-coefficient



polynomial multiplication, but we note that their polynomial multiplication
includes the reduction. Including the reduction, our multiplication requires 38 215
clock cycles, which is 42% faster. On a more granular level, they claim 587 cycles
for 16-coefficient schoolbook multiplication, while we require only 343 cycles (see
Table 5; this includes approximately 50 cycles of benchmarking overhead).

Several other NIST candidates have been evaluated on the Cortex-M4 family.
We also list the performance results in Table 3 for comparison. Most recently,
record-setting results were published for Round54 on Cortex-M4 [SBGM+18].
The fastest scheme described in our work, targeting NIST security category 1,
NTRU-HRSS, is 59% faster for encapsulation and 35% faster for decapsulation
compared to the corresponding CCA variant of Round5 at the same security level.
The key generation of NTRU-HRSS is considerably slower, but its inversion is not
optimized yet. The fastest scheme implementation described here that targets
NIST security category 3, Saber, is 13% faster for key generation, 23% faster
for encapsulation, and 37% faster for decapsulation There are also optimized
implementations for NewHopeCCA1024 [KRSS,AJS16] and Kyber768 [KRSS].
Both implementations are outperformed by NTRU-HRSS and Saber.

4.3 Profiling of optimized implementations

Table 4. Time spent in polynomial multiplication, hashing, and sampling randomness for
optimized implementations. Still considerable time is spent in polynomial multiplication,
but hashing is more apparent.

scheme total
[cycles]

polymul
[cycles]

hashing
[cycles]

randombytes
[cycles]

Saber
K: 895k 327k (37%) 475k (53%) 2.0k (<1%)
E: 1 161k 435k (38%) 615k (53%) 0.6k (<1%)
D: 1 204k 544k (45%) 500k (42%) 0

Kindi-256-3-4-2
K: 969k 342k (35%) 409k (42%) 1.2k (<1%)
E: 1 320k 456k (35%) 604k (46%) 0.6k (<1%)
D: 1 517k 570k (38%) 603k (40%) 0

NTRU-HRSS
K: 145 963k 1 556k (1%) 80k (<1%) 0.6k (<1%)
E: 404k 173k (43%) 107k (26%) 0.6k (<1%)
D: 819k 519k (63%) 67k (8%) 0

NTRU-KEM-743
K: 5 198k 1 680k (32%) 0 85k (2%)
E: 1 601k 187k (12%) 1 171k (73%) 46k (3%)
D: 1 881k 373k (20%) 1 172k (63%) 0

RLizard-1024
K: 525k 303k (58%) 0 123k (23%)
E: 1 345k 605k (45%) 628k (47%) 2.2k (<1%)
D: 1 716k 908k (53%) 628k (36%) 0

4 R5ND_{1,3,5}PKEb are the CCA-variants of Round5, whereas R5ND_{1,3,5}KEMb
are CPA-secure.



The speed up achieved by optimizing polynomial multiplication clearly shows
that it vastly dominates the runtime of reference implementations. Having re-
placed this core arithmetic operation with highly optimized assembly, we analyze
how much time the optimized implementations still spend in non-optimized
code to capture how much performance could still be gained by hand-optimizing
scheme-specific procedures. We achieve this by measuring the clock cycles spent
in polynomial multiplication, hashing, and random number generation. Table 4
shows that still a considerable proportion of encapsulation and decapsulation is
spent in polynomial multiplication. However, cycles consumed by hashing and ran-
domness generation become more prominent. In the following we briefly discuss
these results and emphasize how one could further speed-up those schemes.

Hashing. For encapsulation, hashing (SHA-3 and SHA-2) dominates the run-
time of Kindi-256-3-4-2, NTRU-KEM-743, and Saber. We have replaced these
primitives with the fastest implementations available. Still, all schemes spend a
substantial number of clock cycles computing hashes. This is partly due to the
Fujisaki-Okamoto transformation required to achieve CCA security. Further hash
function calls are required to sample pseudo-random numbers from a seed, which
most schemes implement using the SHAKE XOF. Having a hardware accelerator
for these hash function would highly benefit all of the examined schemes. While
ARM Cortex-M4 platforms with SHA-2 hardware support exist, there are (at the
time of writing) none available which have SHA-3 hardware support.

Randomness generation. Kindi-256-3-4-2, NTRU-HRSS, and Saber do not make
use of randombytes extensively, but sample a small seed and then expand this
using SHAKE. RLizard-1024 and NTRU-KEM-743 directly sample their randomness
randombytes. As we implement randombytes using the hardware RNG on the
STM32F4Discovery, it is more efficient than using SHAKE to expand a seed.
There are, however, important caveats to consider when only using the hardware
number generator. It is unclear what the cryptographic properties of such an
RNG are, and how this affects the security of the various schemes, in particular
since most reveal randomness as part of the CCA transform.

References

AAB+17. Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra,
Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila. Newhope:
Algorithm specification and supporting documentation. Submission to
the NIST Post-Quantum Cryptography Standardization Project, 2017.
https://cryptojedi.org/papers/#newhopenist. 1

ABD+17. Roberto Avanzi, Joppe Bos, Láo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS–Kyber: Algorithm specification and supporting
documentation. Submission to the NIST Post-Quantum Cryptography
Standardization Project, 2017. https://pq-crystals.org/kyber. 1

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange – a new hope. In Thorsten Holz and Stefan Savage,

https://cryptojedi.org/papers/#newhopenist
https://pq-crystals.org/kyber


editors, Proceedings of the 25th USENIX Security Symposium. USENIX
Association, 2016. https://eprint.iacr.org/2015/1092. 1

AJS16. Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. A new hope on ARM
Cortex-M. In Claude Carlet, Anwar Hasan, and Vishal Saraswat, editors,
Security, Privacy, and Advanced Cryptography Engineering, volume 10076
of LNCS, pages 332–349. Springer, 2016. https://eprint.iacr.org/2016/
758. 14, 16

ARM12. Arm cortex-m programming guide to memory barrier instruc-
tions, 2012. https://static.docs.arm.com/dai0321/a/DAI0321A_
programming_guide_memory_barriers_for_m_profile.pdf. 15

Ban17. Rachid El Bansarkhani. KINDI: Algorithm specification and supporting
documentation. Submission to the NIST Post-Quantum Cryptography
Standardization Project, 2017. http://kindi-kem.de. 2, 5

BGM+16. Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon
Rosen. On the hardness of learning with rounding over small modulus. In
Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography, volume
9562 of LNCS, pages 209–224. Springer, 2016. https://eprint.iacr.org/
2015/769. 3

BGML+18. Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald
Rietman, Markku-Juhani O. Saarinen, Ludo Tolhuizen, and Zhenfei Zhang.
Round5: Compact and fast post-quantum public-key encryption. Cryptology
ePrint Archive, Report 2018/725, 2018. https://eprint.iacr.org/2018/
725. 2

BL. Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of
cryptographic systems. http://bench.cr.yp.to (accessed 2018-10-14). 15

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions
and lattices. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology – EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737.
Springer, 2012. https://eprint.iacr.org/2011/401. 3

Coo66. Stephen Cook. On the Minimum Computation Time of Functions. PhD
thesis, Harvard University, 1966. 2, 6

CPL+17. Jung Hee Cheon, Sangjoon Park, Joohee Lee, Duhyeong Kim, Yongsoo
Song, Seungwan Hong, Dongwoo Kim, Jinsu Kim, Seong-Min Hong, Aaram
Yun, Jeongsu Kim, Haeryong Park, Eunyoung Choi, Kimoon kim, Jun-
Sub Kim, and Jieun Lee. Lizard: Algorithm specification and supporting
documentation. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions. 2, 3

Den03. Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson,
editor, Cryptography and Coding, volume 2898 of LNCS, pages 133–151.
Springer, 2003. http://www.cogentcryptography.com/papers/designer.
pdf. 3, 4

DHP+. Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. eXtended Keccak Code Package. https://github.
com/XKCP/XKCP (accessed 2018-10-14). 15

DKRV17. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Algorithm specification and supporting documenta-
tion. Submission to the NIST Post-Quantum Cryptography Standard-
ization Project, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions. 2, 4

https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2016/758
https://eprint.iacr.org/2016/758
https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
https://static.docs.arm.com/dai0321/a/DAI0321A_programming_guide_memory_barriers_for_m_profile.pdf
http://kindi-kem.de
https://eprint.iacr.org/2015/769
https://eprint.iacr.org/2015/769
https://eprint.iacr.org/2018/725
https://eprint.iacr.org/2018/725
http://bench.cr.yp.to
https://eprint.iacr.org/2011/401
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://www.cogentcryptography.com/papers/designer.pdf
http://www.cogentcryptography.com/papers/designer.pdf
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Michael Wiener, editor, Advances in
Cryptology – CRYPTO ‘99, volume 1666 of LNCS, pages 537–554. Springer,
1999. http://dx.doi.org/10.1007/3-540-48405-1_34. 3, 4

GMZB+17. Oscar Garcia-Morchon, Zhenfei Zhang, Sauvik Bhattacharya, Ronald Ri-
etman, Ludo Tolhuizen, and Jose-Luis Torre-Arce. Round2: Algorithm
specification and supporting documentation. Submission to the NIST
Post-Quantum Cryptography Standardization Project, 2017. https://www.
onboardsecurity.com/nist-post-quantum-crypto-submission. 2

HGSSW03. Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William
Whyte. NAEP: Provable security in the presence of decryption failures.
Cryptology ePrint Archive, Report 2003/172, 2003. https://eprint.iacr.
org/2003/172. 4

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, Theory of Cryptography, volume 10677 of LNCS, pages 341–371.
Springer, 2017. https://eprint.iacr.org/2017/604. 4, 5

HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-
based public key cryptosystem. In Joe P. Buhler, editor, Algorithmic
Number Theory, volume 1423 of LNCS, pages 267–288. Springer, 1998.
http://dx.doi.org/10.1007/BFb0054868. 4

HPS+17. Jeff Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William
Whyte, and Zhenfei Zhang. Choosing parameters for NTRUEncrypt. In
Helena Handschuh, editor, Topics in Cryptology – CT-RSA 2017, volume
10159 of LNCS, pages 3–18. Springer, 2017. https://eprint.iacr.org/
2015/708. 4

HRSS17a. Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe. High-
speed key encapsulation from NTRU. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems – CHES
2017, volume 10529 of LNCS, pages 232–252. Springer, 2017. https:
//eprint.iacr.org/2017/667. 4, 9

HRSS17b. Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe.
Ntru-kem-hrss: Algorithm specification and supporting documentation.
Submission to the NIST Post-Quantum Cryptography Standardization
Project, 2017. https://ntru-hrss.org. 2, 4

KMRV18. Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy, and
Ingrid Verbauwhede. Saber on ARM. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):243–266, 2018. https://eprint.
iacr.org/2018/682. 2, 8, 9, 13, 14, 15

KO63. Anatolii Karatsuba and Yuri Ofman. Multiplication of multidigit numbers
on automata. Soviet Physics Doklady, 7:595–596, 1963. Translated from
Doklady Akademii Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July 1962.
Scanned version on http://cr.yp.to/bib/1963/karatsuba.html. 2, 6

KRSS. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4 (accessed 2018-10-14). 2, 10, 14, 15, 16

NIS15a. FIPS PUB 180-4: Secure hash standard, 2015. http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.180-4.pdf. 13

NIS15b. FIPS PUB 202 – SHA-3 standard: Permutation-based hash and extendable-
output functions, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.202.pdf. 13

http://dx.doi.org/10.1007/3-540-48405-1_34
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://eprint.iacr.org/2003/172
https://eprint.iacr.org/2003/172
https://eprint.iacr.org/2017/604
http://dx.doi.org/10.1007/BFb0054868
https://eprint.iacr.org/2015/708
https://eprint.iacr.org/2015/708
https://eprint.iacr.org/2017/667
https://eprint.iacr.org/2017/667
https://ntru-hrss.org
https://eprint.iacr.org/2018/682
https://eprint.iacr.org/2018/682
http://cr.yp.to/bib/1963/karatsuba.html
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf


NIS16a. Submission requirements and evaluation criteria for the post -
quantum cryptography standardization process, 2016. https:
//csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/
documents/call-for-proposals-final-dec-2016.pdf. 10

NIS16b. NIST Computer Security Division. Post-Quantum Cryptogra-
phy Standardization, 2016. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography. 1

Saa17. Markku-Juhani O. Saarinen. Hila5: Algorithm specification and supporting
documentation. Submission to the NIST Post-Quantum Cryptography
Standardization Project, 2017. https://mjos.fi/hila5. 2

SAL+17. Nigel P. Smart, Martin R. Albrecht, Yehuda Lindell, Emmanuela Orsini,
Valery Osheter, Kenny Paterson, and Guy Peer. Lima: Algorithm specifica-
tion and supporting documentation. Submission to the NIST Post-Quantum
Cryptography Standardization Project, 2017. https://lima-pq.github.
io. 1

SBGM+18. Markku-Juhani O. Saarinen, Sauvik Bhattacharya, Oscar Garcia-Morchon,
Ronald Rietman, Ludo Tolhuizen, and Zhenfei Zhang. Shorter messages
and faster post-quantum encryption with Round5 on Cortex M. Cryptology
ePrint Archive, Report 2018/723, 2018. https://eprint.iacr.org/2018/
723, Version: 13-Oct-2018 08:50:18 UTC. 2, 14, 15, 16

SS17. Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3
and M4. In Roberto Avanzi and Howard Heys, editors, Selected Areas in
Cryptology – SAC 2016, volume 10532 of LNCS, pages 180–194. Springer,
2017. https://eprint.iacr.org/2016/714. 6

Too63. Andrei L. Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. Soviet Mathematics Doklady, 3:714–716, 1963.
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF. 2, 6

WP06. André Weimerskirch and Christof Paar. Generalizations of the karatsuba
algorithm for efficient implementations. 2006. https://eprint.iacr.org/
2003/172. 7

ZCHW17. Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, and William Whyte.
NTRUEncrypt: Algorithm specification and supporting documentation.
Submission to the NIST Post-Quantum Cryptography Standardiza-
tion Project, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions. 2, 4

A Algorithmic descriptions

A.1 RLizard

Algorithm 1 RLizard.KeyGen ()

1: a, s, e← SampleRq

2: b← −a⍟ s + e ∈ Rq

3: return (pk = (a, b), sk = s)

https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://mjos.fi/hila5
https://lima-pq.github.io
https://lima-pq.github.io
https://eprint.iacr.org/2018/723
https://eprint.iacr.org/2018/723
https://eprint.iacr.org/2016/714
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
https://eprint.iacr.org/2003/172
https://eprint.iacr.org/2003/172
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


Algorithm 2 RLizard.Enc (m, (a, b))
1: r ← SampleRq

2: c′1 ← a⍟ r ∈ Rq

3: c′2 ← b⍟ r ∈ Rq

4: c1 ← ⌊(p/q) ⋅ c′1⌉ ∈ Rp

5: c2 ← ⌊(p/q) ⋅ ((q/2) ⋅m + c′2)⌉ ∈ Rp

6: return (c1, c2)

Algorithm 3 RLizard.Dec ((c1, c2), s)
1: m′ ← ⌊(2/p) ⋅ (c2 + c1 ⍟ s)⌉ ∈ R2

2: return m′

A.2 NTRU-HRSS-KEM

Algorithm 4 NTRU-HRSS.KeyGen ()

1: f, g ← SampleRp

2: f−1p ← f−1 ∈ Rp

3: f−1q ← f−1 ∈ R′
q ▷ Uses mult. in Rq

4: h← Φ1 ∗ g ⍟ f−1q ∈ Rq

5: return (pk = p ⋅ h, sk = (f, f−1p )

Algorithm 5 NTRU-HRSS.Enc (m, (p ⋅ h))
1: r ← SampleRq

2: c← h′ ⍟ r +m ∈ Rq

3: return c

Algorithm 6 NTRU-HRSS.Dec (c, (f, f−1p ))

1: v ← c⍟ f ∈ Rq

2: m′ ← v ⍟ f−1p ∈ Rp

3: return m

A.3 NTRUEncrypt

Algorithm 7 NTRUEncrypt.KeyGen ()

1: f, g ← SampleRq

2: h← (p ⋅ g)/(p ⋅ f + 1) mod q
3: return (pk = h, sk = (f, h))



Algorithm 8 NTRUEncrypt.Enc (m,h)
1: r ← SampleRq

(m,h)
2: t← r ⍟ h
3: mmask ← SampleRq

(t)
4: m′ ←m −mmask mod p
5: c← t +m′

6: return c

Algorithm 9 NTRUEncrypt.Dec (c, (f, h))
1: m′ ← f ⍟ c mod p
2: t← c −m
3: mmask ← SampleRq

(t)
4: m←m′ +mmask mod p
5: r ← SampleRq

(m,h)
6: if p ⋅ r ⍟ h = t then
7: return m
8: else
9: return �
10: end if

A.4 Saber

Algorithm 10 Saber.KeyGen ()

1: ρ← Sample{0,1}256
2: A← SampleR`×`

q
(ρ)

3: s← SampleR`
q

4: b← ⌊A⍟ s + h⌉ ∈ R`
p

5: return (pk = (ρ, b), sk = s)

Algorithm 11 Saber.Enc (m, (ρ, b))
1: A← SampleRl×l

q
(ρ)

2: s′ ← SampleR`
q

3: b′ ← ⌊A⍟ s′ + h⌉ ∈ R`
p

4: v′ ← b⍟ ⌊s′⌉ ∈ Rp

5: cm ← ⌊v′ + (p/2) ⋅m⌉ ∈ R2t

6: return (cm, b′)

Algorithm 12 Saber.Dec ((cm, b′), s)
1: v ← b′ ⍟ ⌊s⌉ ∈ Rp

2: m′ ← ⌊v − (p/(2t)) ⋅ cm + h⌉ ∈ R2

3: return m′



A.5 KINDI

Algorithm 13 Kindi.KeyGen()
1: µ← Sample{0,1}256
2: A← SampleR`×`

q
(µ)

3: r, r′ ← SampleR`
q

4: b← A⍟ r + r′

5: return (pk = (b, µ), sk = (r,b, µ))

Algorithm 14 Kindi.Enc (m, (b, µ))
1: s1 ← SampleR2

2: A← SampleR`×`
q

(µ)
3: p← b + g
4: s̄1 ← SampleRp

(s1)
5: (s2, . . . , s`) ← SampleR`−1

p
(s1)

6: s← (s1 + 2 ⋅ s̄1 − [p], s2 − [p], . . . , s` − [p]) ∈ R`
q

7: ū← Sample{0,1}n(`+1) log 2p(s1)
8: u← ū⊕m
9: e← (u1 − [p], . . . ,u` − [p]) ∈ R`

q

10: e`+1 ← u`+1 − [p]
11: (c, c`+1) ← (A⍟ s + e,p⍟ s + g ⋅ [p] + e) ∈ R`+1

q

12: return (c, c`+1)

Algorithm 15 Kindi.Dec (r,b, µ, (c, c`+1))
1: A← SampleR`×`

q
(µ)

2: p← b + g
3: v ← c`+1 − c⍟ r
4: s1 ← (⌊v1/2log q−1⌉, . . . , ⌊vn/2log q−1⌉) ∈ R2

5: s̄1 ← SampleRp
(s1)

6: (s2, . . . , s`) ← SampleR`−1
p

(s1)
7: s← (s1 + 2 ⋅ s̄1 − [p], s2 − [p], . . . , s` − [p])
8: ū← Sample{0,1}n(`+1) log 2p(s1)
9: (e, e`+1) ← (c −A⍟ s, c`+1 − p⍟ s) ∈ R`+1

q

10: u← (e1 + [p], . . . e` + [p])
11: u`+1 ← e`+1 + [p]
12: m← u⊕ ū
13: return m



B Schoolbook multiplication benchmarks

Table 5. Benchmarks for small schoolbook multiplication routines. The cycle counts
include an overhead of approximately 50 cycles for benchmarking.

n cycles
1 56
2 59
3 69
4 74
5 85
6 92
7 107
8 114
9 131
10 140
11 168
12 177

n cycles
13 232
14 252
15 341
16 343
17 467
18 466
19 508
20 510
21 626
22 626
23 670
24 672

n cycles
25 926
26 1 057
27 1 057
28 1 168
29 1 167
30 1 170
31 1 264
32 1 266
33 1 431
34 1 547
35 1 546
36 1 549

n cycles
37 1 965
38 1 966
39 1 963
40 1 965
41 2 294
42 2 588
43 2 595
44 2 594
45 2 824
46 2 825
47 2 822
48 2 824


	Faster multiplication in Z2m[x] on Cortex-M4 to speed up NIST PQC candidates

