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Abstract. In this paper, we focus on the design of a novel authentication
protocol that preserves the privacy of embedded devices. A Physically
Unclonable Function (PUF) generates challenge-response pairs that form
the source of authenticity between a server and multiple devices. We
rely on Authenticated Encryption (AE) for confidentiality, integrity and
authenticity of the messages. A challenge updating mechanism combined
with an authenticate-before-identify strategy is used to provide privacy.
The major advantage of the proposed method is that no shared secrets
need to be stored into the device’s non-volatile memory. We design a pro-
tocol that supports server authenticity, device authenticity, device privacy,
and memory disclosure. Following, we prove that the protocol is secure,
and forward and backward privacy-preserving via game transformations.
Moreover, a proof of concept is presented that uses a 3-1 Double Arbiter
PUF, a concatenation of repetition and BCH error-correcting codes, and
the AE-scheme Ketje. We show that our device implementation utilizes
8,305 LUTs on a 28 nm Xilinx Zynq XC7Z020 System on Chip (SoC)
and takes only 0.63 ms to perform an authentication operation.

Keywords: Privacy-preserving authentication protocol, Physically Unclonable
Function, Authenticated Encryption, SoC, FPGA.

1 Introduction

Nowadays, RFID-technology and the Internet of Things (IoT) are hot topics due
to the increasing desire to simplify our everyday lives via the use of pervasive
devices. Hence, we see a shift from simple identification of devices towards
complex authentication protocols, in which a challenging feature to implement is
the protection of the entity’s privacy. Because these entities belong to individuals
who may want to preserve their privacy, we notice a shift on focusing more on
privacy-preserving authentication protocols [6]. With the use of state-of-the-art
cryptographic techniques, device-to-server authentication can be implemented
while protecting the privacy with respect to outsiders.

One solution is to use symmetric key cryptography, with a pre-shared key
and a key-updating mechanism in order to randomize device credentials at
each successful authentication. However, storing these keys requires non-volatile
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memory which is easily compromised by an attacker. Another option is to use
PUFs, physical entities that are similar to algorithmic one-way functions. PUFs
act on challenges, returning noisy PUF responses that are close enough between
equal challenges on the same PUF instance, but far enough between different
instances. As a result, one only needs to store a challenge which, similar to the
aforementioned construction, is updated on a successful authentication. The
strength of this construction is that these challenges are not secret and can safely
be stored in non-volatile memory. By using a PUF, one needs to implement
a Fuzzy Extractor (FE) [7] that can produce an unpredictable key from the
noisy PUF responses. On top of that, a FE provides for the recovery of old PUF
responses from fresh PUF responses using error-correcting codes.

This research focusses on integrating a single, compact mode, namely Authen-
ticated Encryption, into a PUF-based privacy-preserving authentication protocol.
In contrast to [2], we construct a secure FE and abstain from using a pre-shared
key between server and devices. With this, we hope to improve overall efficiency
of the protocol.

The remainder of this paper is structured as follows. Section 2 describes
the related work and our contributions. In Section 3 we introduce the protocol,
describing the security considerations and overall design. Following, in Section 4
we theoretically support the protocol by proving the security and privacy of the
protocol. In Section 5 we give a proof of concept of the proposed protocol, showing
that a concrete software/hardware realization is possible. Then, in Section 6 we
present the results, giving an analysis of the implemented PUF as well as giving
the performance and a comparison to relevant previous works, i.e. [2, 15]. Finally,
in Section 7 we conclude the paper.

2 Related Work

Many PUF based protocols have been proposed [2,9, 15]. Herrewegge et al. pro-
pose using a reverse Fuzzy Extractor, putting the computationally less complex
generation procedure in the device, and the more complex reproduction proce-
dure on the server [9]. However, the proof of concept is subjected to a PRNG
exploitation [6]. Moriyama et al. propose a provably secure privacy-preserving au-
thentication protocol that uses a different PUF response at every authentication,
and thus changing the device credential after every successful authentication [15].
Aysu et al. [2] propose a provably secure protocol based on [9, 15]. While the
authors present the first effort to describe an end-to-end design and evaluation
of a provable secure privacy-preserving PUF-based authentication protocol, the
interleaved FE construction is vulnerable to linear equation analysis [2, p. 12].
Moreover, the authors use an additional pre-shared key that does not increase
the entropy of the communication messages.

We summarize the contributions of this research as follows: (i) We intro-
duce a novel PUF-based privacy-preserving authentication protocol using AE.
(ii) Further, we prove that the protocol is mathematically secure, and forward
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and backward privacy-preserving. (iii) Finally, we present a proof of concept of
the device on a development board and the server on a PC.

3 Protocol Design

In this section, we present the novel protocol design. Before doing that, we
describe the notation that is used throughout this paper and we describe the
security considerations for the protocol.

3.1 Notation

We denote the security level as k (in bits). A,A′, A1 ∈ A ⊆ {0, 1}∗ denote three
distinct binary strings. Bi denotes the i’th bit of B. ⟨C,D⟩ denotes a tuple
of strings C and D. HD(Y, Y ′) denotes the Hamming distance between two
vectors Y, Y ′ ← Y of the same length. HW(Y ) denotes the Hamming weight of
vector Y ← Y . H(Y ) denotes the Shannon entropy of a discrete random variable
Y ← Y. H̃∞(Y ) denotes the min-entropy of a random variable Y ∈ Y. The
entropy of a binary variable Y ← {0, 1}l with probabilities Pr(Yi = 1) = p and
Pr(Yi = 0) = 1− p (0 ≤ i < l) is defined in the binary entropy function:

h(p) = −p log2(p)− (1− p) log2(1− p). (1)

Besides, Y ← puf i(X) ∈ P denotes a PUF instance puf i ∈ P which takes
challenge X and produces response Y . Here, the P denotes the PUF class that
contains all PUF instances of a PUF construction. A Fuzzy Extractor (FE)
consists of two algorithms: a key generation algorithm Gen and a reconstruction
algorithm Rec. Gen takes as input variable Z and outputs key R and helper data
H, Rec recovers the key R from input variable Z ′ and helper data H. An AE-
scheme with associated data (AEAD-scheme) is a three-tuple Π = (K, E ,D) [16].
Associated to Π are sets of strings N ⊆ {0, 1}∗ indicating the nonce,M⊆ {0, 1}∗

indicating the message and AD ⊆ {0, 1}∗ indicating the associated data. The
key space K is a finite nonempty set of strings. The encryption algorithm E
is a deterministic algorithm that takes strings K ∈ K, N ∈ N , M ∈ M and
A ∈ AD and returns string ⟨C, T ⟩ = EN,A

K (M). The decryption algorithm D is a
deterministic algorithm that takes strings K ∈ K, N ∈ N , A ∈ AD, C ∈ {0, 1}∗

and T ∈ {0, 1}∗ and returns DN,A
K (⟨C, T ⟩), which is either a string in M or the

distinguished symbol Invalid. We require that DN,A
K (EN,A

K (M)) = M for all
K ∈ K, N ∈ N , M ∈M and A ∈ AD.

3.2 Security Considerations

The security considerations we take are based on assumptions made in earlier
work on lightweight authentication protocols [2,9, 15].

Devices are enrolled in a secure environment using a one-time interface.
Following, a trusted server and a number of devices will authenticate each other
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while devices need to remain anonymous. For the communication, we consider
that our channel is ideal, i.e. no errors will occur in the channel. After enrollment,
the server remains trusted but devices are subjected to an attacker. The attacker
may not know the identity of a device such that the device cannot be tracked.

We identified that the attacker may have two goals, i.e. the attacker may want
to: (i) impersonate a device which will result in a violation of the security; (ii) trace
devices in between authentications which will result in a violation of the privacy.
The power of the attacker is that he can change all communication between
the server and devices. Moreover, he may know the result of the authentication
and can access the non-volatile memory of the devices, which he cannot modify
(which is needed for the privacy-preserving proof)1. He can also not perform
implementation attacks on the device and the server or reverse engineer the PUF
such that he can predict PUF responses. Also, he does not have access to the
intermediate registers on the device and cannot physically trace every device
in between authentications. Furthermore, the attacker is not able to use other
(non-cryptographic) mechanisms to identify a device [11].

3.3 Protocol

The setup phase of the proposed protocol is illustrated in Protocol 1, the au-
thentication phase is illustrated in Protocol 2. The protocol is based on a PUF
that produces noisy, but recoverable, responses on equal challenges due to the
unique physical characteristics of the IC [13]. Because of this behavior, the PUF
is identifiable from other PUFs. A FE can extract a key from this noisy data pro-
duced by the PUF using helper data generated from a previous key-extraction [7].
However, the recovery procedure is of a higher complexity than the generation
of the helper data that is used for this reconstruction. A reverse FE reverses
this behavior by placing the helper data generation in the device and the more
complex reconstruction in the server [9]. In order to preserve privacy, the device
credential is updated every successful authentication, which results in fresh PUF
responses, and thus fresh keys.

The setup phase (Protocol 1) works as follows. In a trusted environment,
the server produces a random challenge X1. The device uses this challenge to
produce a PUF response Y 1 which is being sent to the server. The challenge is
being stored in the device non-volatile memory. The server stores the response
in a database on index n, indicating the number of the device. Notice that the
response is stored at Y and Y old in order to prevent desynchronization, which
occurs when there is a loss of communication in the transmission of T 2 in the
authentication phase and only Y is stored.

The authentication phase (Protocol 2) works as follows. First, the server
generates an unpredictable challenge A and sends this to the device. The device

1 A modification of challenge X in non-volatile memory does not break the security
of the protocol, only the theoretical privacy preservation because an attacker can
distinguish a device with modified challenge X (cannot successfully authenticate)
from a device with unmodified challenge X (can successfully authenticate).
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Server S({⟨Y, Y old⟩}n) Device Devi(puf i( · ), X)
X1 ← TRNG

X1
−−−−−−→

Y 1 ← puf i(X1)
X := X1

Y 1
←−−−−−−

⟨Y, Y old⟩n := ⟨Y 1, Y 1⟩
n := n+ 1

Protocol 1. Setup phase.

Server S({⟨Y, Y old⟩}n) Device Devi(puf i( · ), X)
A← TRNG

A−−−−−→
Y 1′
← puf i(X)

⟨R,H⟩ ← FE.Gen(Y 1′
)

X2 ← TRNG

Y 2 ← puf i(X2)
N ← TRNG

⟨C1, T 1⟩ ← EN∥0,A
R (Y 2)

⟨H,N,C1, T 1⟩
←−−−−−−−−−−−

T 2 ← TRNG

for 0 ≤ i < n :
R = FE.Rec(Y,H)
if Y 2 ← DN∥0,A

R (⟨C1, T 1⟩) :
⟨ · , T 2⟩ ← EN∥1,A

R ( · )
⟨Y, Y old⟩num := ⟨Y 2, Y ⟩

“if no device was authenticated” :
“repeat search with old values”

T 2
−−−−−−→

⟨ · , T 2′
⟩ ← EN∥1,A

R ( · )
if T 2′

== T 2 :
X := X2

Protocol 2. Authentication phase. |A|, |H|, |N |, |C1|, |T 1|, |T 2| ≥ k and PUF responses
Y should contain enough entropy w.r.t. H s.t. |R| ≥ k.

uses the challenge X stored in its non-volatile memory to produce a PUF response
Y 1′ . From this PUF response, helper data H and an unpredictable key R is
generated using the FE’s generation procedure FE.Gen. Consecutively, a new
challenge X2 is randomly generated by the device such that it can be updated
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on a successful authentication. This challenge is fed to the device’s PUF in order
to receive a new PUF response Y 2. Following, a nonce N is randomly generated
such that the PUF response can be encrypted using the AEAD-scheme. The
resulting cipher-text C1, its tag T 1 and the nonce N will be sent to the server.
The server performs an exhaustive search over the database, recovering a key for
each index. These keys are used to try to decrypt the cipher-text C1 using the tag
T 1, challenge A and nonce N . If there is a successful authentication, the server
produces another tag T 2 using E , but with nonce N2 ∥ 1 instead of N2 ∥ 0 in
order to create another instance of E . This tag is sent to the device. Moreover, the
server updates the old PUF-response Y with the new PUF response Y 2. If there
were no successful authentications, the server repeats the procedure over the
previous PUF responses in the database. If after this there were still no successful
authentications, the server responds with a random value for T 2. Finally, the
device checks the tag T 2 with its own produced tag in order to reveal whether
the authentication succeeded. If the authentication succeeded, the device updates
the old challenge X with the new challenge X2.

4 Security Analysis

In this section, we describe the security analysis of the proposed protocol. We
first present the security model and the formal security definitions before proving
the security, and forward and backward privacy.

4.1 Security Model

The security model is composed of the communication model, the security
experiment and the privacy experiment.

Communication Model We take one trusted server S({⟨Y, Y old⟩}n) with
n devices Devi(puf i( · ), X). Here, the set of n devices is denoted as ∆ :=
{Dev0,Dev1, . . . ,Devn−1}. We denote the security parameter as k.

Following [2, 15], devices will be enrolled in a trusted environment using
a one-time interface, this happens in a setup phase using a setup algorithm
Setup(1k) which generates public parameter P and shared-secret Y . Here P
denotes all the public parameters available to the environment and Y denotes
the secret PUF response. During the authentication phase, the server S remains
trusted, however, the devices ∆ and the communication channel will be subjected
to the actions of an attacker. At the end of the authentication phase, both the
server and the device will output acceptance (B0 = 1) or rejection (B0 = 0) as
result of the authentication.

We call the sequence of communication between the server and the device
a session, which is distinguished by a session identifier I, the transcript of the
authentication phase. Whenever the communication messages generated by the
server and the device are honestly transferred until they authenticate each other,
we call that a session has a matching session. The correctness of the proposed
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authentication protocol is that the server and the device always accept the session
if the session has the matching session.

Security Following [2, 15], we consider the canonical security level for authen-
tication protocols, namely the resilience to the man-in-the-middle attack. This
means that power of an attacker is modeled by letting the attacker control
all communication between server and devices. Supplementary to the security
requirement of resilience to man-in-the-middle attacks, we permit the attacker to
access the information stored in the non-volatile memory of the device in between
sessions.

Experiment 1 illustrates the security evaluation on a theoretical level. In this
experiment, ExpSec

Ψ,A(k) denotes the security experiment between the proposed
protocol Ψ and an attacker A with security parameter k.

ExpSec
Ψ,A(k)

⟨P, Y ⟩ ← Setup(1k)
⟨Devi, I

′⟩ ← A⟨Launch,SendServer,SendDev,Result,Reveal⟩(P,S,∆)
B0 := Result(Devi, I

′)
Output B0

Experiment 1. Security experiment.

After the setup phase, and thus after receiving ⟨P,S, ∆⟩, the attacker A can
query the server S and the device Devi with the oracle queries
O := ⟨Launch,SendServer,SendDev,Result,Reveal⟩, where

– Launch(1k): launch the server S to start a new session with security param-
eter k;

– SendServer(M): send an arbitrary message M to the server S;
– SendDev(Devi,M): send an arbitrary message M to device Devi ∈ ∆;
– Result(G, I): output whether the session I of G is accepted or not where
G ∈ {S, ∆};

– Reveal(Devi): output all the information stored in the non-volatile memory
of Devi.

The advantage of attacker A against Ψ is defined as:

AdvSec
Ψ,A(k) := Pr(ExpSec

Ψ,A(k)→ 1 | “I of G has no matching session”) (2)

We define security of an authentication protocol as follows:

Definition 1 (Security). An authentication protocol Ψ holds the security

against man-in-the-middle attacks with memory compromise if for any prob-

abilistic polynomial time attacker A, AdvSec
Ψ,A(k) is negligible in k (for large

enough k).
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Privacy Following [2,15], we define the privacy using indistinguishability between
two devices. Here, an attacker selects two devices and tries to distinguish the
communication, and thus the identification, between the two devices.

We use the privacy experiment between an attacker A := ⟨A1,A2,A3⟩ as
illustrated in Experiment 2.

ExpIND∗−b
Ψ,A (k)

⟨P, Y ⟩ ← Setup(1k)
⟨Dev∗

0, I
0′
,Dev∗

1, I
1′
⟩ ← AO

1 (P,S,∆)
b← {0, 1}
∆′ := ∆ \ ⟨Dev∗

0,Dev∗
1⟩

ψ0 ← Execute(S,Dev∗
0)

ψ1 ← Execute(S,Dev∗
1)

⟨I0′′
, I1′′
⟩ ← AO

2 (S,∆′, I(Dev∗
b), ψ0, I

0′
, ψ1, I

1′
)

ψ′
0 ← Execute(S,Dev∗

0)
ψ′

1 ← Execute(S,Dev∗
1)

B0 ← AO
3 (S,∆′, ψ′

0, I
0′′
, ψ′

1, I
1′′

)
Output B0

Experiment 2. Privacy experiment in which it is allowed to communicate with two
devices.

After the setup-phase, and similar to the security experiment, the attacker
interacts with the server and two randomly chosen devices through the oracle
queries O. These two devices Dev∗

0,Dev∗
1 are being sent to the challenger

who flips a coin to choose with which device the attacker will communicate
anonymously. This anonymous communication is accomplished by adding a
special identity I which honestly transfers the communication messages between
A and Dev∗

b .
It is trivial that the attacker can trace devices in case the Reveal query

is issued when there are no successful authentications. Hence, we provide re-
synchronization before and after the anonymous access by adding the Execute
query. This query does a normal protocol execution between the server S and
the device Dev∗

i . During this execution, the attacker cannot modify the commu-
nication, however the transcript ψi is delivered to the attacker. Once an honest
protocol execution is finished, no one can trace the device even if the information
from the non-volatile memory before and after the session is continuously leaked
to the attacker. The advantage of the attacker is defined as:

AdvIND∗

Ψ,A (k) := |Pr(ExpIND∗−0
Ψ,A (k)→ 1)−Pr(ExpIND∗−1

Ψ,A (k)→ 1)| (3)

We define privacy of an authentication protocol as follows:
Definition 2 (Privacy). An authentication protocol Ψ holds forward and back-

ward privacy if for any probabilistic polynomial time attacker A, AdvIND∗

Ψ,A (k) is

negligible in k (for large enough k).
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4.2 Formal Security Definitions

We define Physically Unclonable Functions, the Fuzzy Extractor and the AEAD-
scheme.

Physical Unclonable Functions We define PUFs using the definition de-
scribed in [2, p. 24].

We denote the set of all possible challenges X which can be applied to an
instance of P as XP . We say that the PUF class P is a ⟨n, l, d, h, ϵ⟩-secure PUF
class P if the following conditions hold:
1. For any PUF instance puf i( · )← P and for any input X ← XP ,

Pr(HW(Y ← puf i(X), Y ′ ← puf ′
i(X)) < d) = 1− ϵ

2. For any two PUF instances puf i( · ),puf j( · )← P , where i ̸= j and for any
input X ← XP ,

Pr(HW(Y ← puf i(X), Y ′ ← puf j(X)) > d) = 1− ϵ

3. For any PUF instance puf i( · )← P and for any two inputs Xa, Xb ← XP ,
where a ̸= b,

Pr(HW(Y ← puf i(Xa), Y ′ ← puf i(Xb)) > d) = 1− ϵ

4. For any PUF instance puf i( · )← P and for any input Xa ← XP ,

Pr(H̃∞(Y ← puf i(Xa) | {Y j ← puf j(Xb)}0≤j<n, 0≤b<l, i̸=j, a̸=b) > h) = 1−ϵ

These conditions provide that the intra-distance Dintra
P is smaller than d, the

inter-distance Dinter
P (from two metrics) is larger than d and the min-entropy of

the PUF class P is always larger than h.
Definition 3 (⟨n, l, d, h, ϵ⟩-secure PUF class P). A PUF class P satisfies

⟨n, l, d, h, ϵ⟩-secure PUF class P if all the above conditions hold.

Fuzzy Extractor We define a Fuzzy Extractor using the definition described
in [2, p. 24].

A ⟨d, h, ϵ⟩-FE consists of two algorithms: a key generation algorithm Gen
and a reconstruction algorithm Rec. Gen takes as input variable Z and outputs
key R and helper data H. For correctness, Rec recovers the key R from input
variable Z ′ and helper data H if the HD between Z and Z ′ is at most d. The
FE provides unpredictable outputs if the min-entropy of input Z is at least h.
In that case, R is statistically ϵ-close to a uniformly random variable in {0, 1}k,
even if the helper data H is disclosed.
Definition 4 (⟨d, h, ϵ⟩-secure FE). A FE satisfies ⟨d, h, ϵ⟩-secure FE if the

following conditions hold:

1. Pr(R := Rec(Z ′, H) | ⟨R,H⟩ = Gen(Z), HD(Z,Z ′) ≤ d) = 1
2. If H̃∞(Z) ≥ h, ⟨R,H⟩ = Gen(Z) is statistically ϵ-close to ⟨R′, H⟩ where

R′ ← {0, 1}k is chosen uniformly at random.
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AEAD-scheme The security of the AEAD-scheme Π is defined by the following
experiment (chosen-plaintext attack) between a challenger and an attacker A:
First, the challenger randomly selects coin b← {0, 1} and secret key K ← {0, 1}k.
The challenger then prepares a truly random function RF. Following, the attacker
A can adaptively issue an oracle query to the challenger to obtain a response of
a function. If b = 1 and the attacker A sends message M ← {0, 1}∗, challenge
N ← {0, 1}k and associated data A ← {0, 1}∗, the challenger responds with
⟨C, T ⟩ = EN,A

K (M). On the other hand, if b = 0, the challenger inputs the
message M ← {0, 1}∗, challenge N ← {0, 1}k and associated data A← {0, 1}∗

to RF and responds with its result ⟨C ′, T ′⟩. Finally, the attacker outputs a guess
b′. If b′ = b, the attacker wins the experiment. Similarly, this construction can be
applied to test the security of the decryption algorithm DN,A

K (⟨C, T ⟩).
The advantage of the attacker to win the experiment is defined by AdvΠ

A(k) =
|2 ·Pr(b′ = b)− 1|.

Definition 5 (ϵ-secure AEAD-scheme). An AEAD-scheme is an ϵ-secure

AEAD-scheme if for any probabilistic polynomial time attacker A, AdvΠ
A(k) ≤ ϵ.

4.3 Security Proofs

In this section, we give the security proof and privacy proof for the proposed
protocol. We follow the proof by game transformations as described in [2, 15].

Theorem 1 (Security). Let PUF instance puf∗ ← P be a ⟨n, l, d, h, ϵ1⟩-secure

PUF, FE be a ⟨d, h, ϵ2⟩-secure FE and the AEAD-scheme be an ϵ3-secure AEAD-

scheme. Then our protocol Ψ is secure against man-in-the-middle attacks with

memory compromise. Especially, we have AdvSec
Ψ,A(k) ≤ l · n · (ϵ1 + ϵ2 + ϵ3).

Proof. The aim of the attacker A is to violate the security experiment which
means that either the server or a device accepts a session without it being the
matching session. We call Si the advantage that the attacker wins the game in
Game i. We consider the following game transformations:

Game 0: This is the original game between the challenger and the attacker.
Game 1: The challenger randomly guesses the device Dev∗ ← ∆. If the attacker

does not impersonate Dev∗ to the server, the challenger aborts the game.
Thus, the attacker needs to participate in session I∗ and cannot tamper with
the communication.

Game 2: Assume that l is the upper bound of the number of sessions that the
attacker can establish in the game. For 0 ≤ j < l, we evaluate or change the
variables related to the session between the server and Dev∗ up to the l-th
session as the following games:
Game 2-j-1: The challenger evaluates the output from the PUF instance

puf∗ implemented in Dev∗ at the j-th session. If the intra-distance is
larger than d, the inter-distance is smaller than d or the min-entropy of
the output is smaller than h, the challenger aborts the game.

Game 2-j-2: The output from the FE H is changed to a random variable.
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Game 2-j-3: The output from the encryption algorithm EN∥0,A
R (Y ) of the

AEAD-scheme is derived from a truly random function RF.
Game 2-j-4: The output from the encryption algorithm EN∥1,A

R ( · ) of the
AEAD-scheme is derived from a truly random function RF.

The strategy of the security proof is to change the communication messages
corresponding to the target device Dev∗ to random variables. However, we
must take care of the PUF construction and challenge-update mechanism in
our protocol that updates the PUF response. Hence, we must proceed with the
game transformation starting from the first invocation of device Dev∗. The
communication messages gradually change from Game 2-j-1 to Game 2-j-4,
and when these are finished, we can move to the next session. This strategy is
recursively applied up to the upper bound of l of the sessions that the attacker
can establish.

In short, if the implemented PUF instance creates enough entropy, the FE
can provide variables that are statistically close to random strings. Then, this
output can be applied as a key for the AEAD-scheme which both authenticate
the device as well as encrypt the next PUF response. Finally, the server can be
authenticated using the AEAD-scheme without encrypting a message.

Lemma 1 (Random Guess). S0 = n · S1 (where n is the number of devices).

Subproof. The violation of security means that there is a session which the server
or device accepts while the communication is modified by the attacker. Since
we assume that the number of devices is at most n, the challenger can correctly
guess the related session with a probability of at least 1/n. ⋄

Lemma 2 (PUF Response). |S1 − S2-1-1| ≤ ϵ1 and |S2-(j−1)-4 − S2-j-1| ≤ ϵ1
for any 1 ≤ j < l if the PUF instance puf∗ is a ⟨n, l, d, h, ϵ1⟩-secure PUF.

Subproof. We now assume that the PUF instance puf∗ satisfies a ⟨n, l, d, h, ϵ1⟩-
secure PUF in advance. This means that the intra-distance Dintra

P is smaller than
d, the inter-distance Dinter

P is larger than d and the min-entropy of the PUF
class P is always larger than h except the negligible probability ϵ1. Since S1
and S2-(j−1)-4 assume these conditions except the negligible probability ϵ1 and
S2-1-1 and S2-j-1 require these conditions with probability 1, respectively, the gap
between them is bounded by ϵ1. ⋄

Lemma 3 (FE Output). ∀ 0 ≤ j < l, |S2-j-1 − S2-j-2| ≤ ϵ2 if the FE is a

⟨d, h, ϵ2⟩-secure FE.

Subproof. From the subproof of Lemma 2, we can assume that the PUF instance
puf∗ provides enough min-entropy h. Then the property of the ⟨d, h, ϵ2⟩-secure
FE guarantees that the output for the FE is statistically close to random and no
attacker can distinguish the difference between the two games. ⋄

Lemma 4 (Authenticated Encryption). ∀ 0 ≤ j < l, |S2-j-2 − S2-j-3| ≤
AdvΠ

A(k) for a probabilistic polynomial time algorithm B.
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Subproof. We construct the algorithm B which breaks the security of our AEAD-
scheme Π. B can access the real encryption algorithm EN∥0,A

R (Y ), the real
decryption algorithm DN∥0,A

R (⟨C1, T 1⟩) or the truly random function RF. B sets
up all secret keys and simulates our protocol except the n-th session (the current
session). When the attacker invokes the n-th session B sends the uniformly
random distributed challenge A← {0, 1}k as the output of the server. When the
attacker A sends the challenge A∗ to a device Devi, B randomly selects a nonce
N and issues this to the oracle instead of the real computation of EN∥0,A

R (Y ).
Upon receiving ⟨C, T ⟩, B continues the computation as the protocol specification
and outputs ⟨H,N,C1, T 1⟩ as the device’s response. When the attacker sends
⟨H∗, N∗, C1∗

, T 1∗⟩, B issues challenge A and nonce N∗ to the oracle oracle and
obtains either Y or the distinguished symbol Invalid.

If B accesses the real encryption and decryption algorithms ⟨E ,D⟩, this
simulation is equivalent to Game 2-j-2. Otherwise, the oracle query issued by B
is completely random and this distribution is equivalent to Game 2-j-3. Thus
we have |S2-j-2 − S2-j-3| ≤ AdvΠ

A(k). ⋄

Lemma 5 (Authentication). ∀ 0 ≤ j < l, |S2-j-3 − S2-j-4| ≤ 2 ·AdvΠ
A(k) for

a probabilistic polynomial time algorithm B.

Subproof. Consider an algorithm B which interacts with the encryption algorithm
EN∥1,A

R ( · ) and truly random function RF. B runs the setup procedure and
simulates the protocol up to the n-th session. Similarly to the subproof of Lemma
4 when the attacker invokes the n-th session B sends the uniformly random
distributed challenge A← {0, 1}k as the output of the server. B continues the
computation as the protocol specification and outputs ⟨H,N,C1, T 1⟩ as the
device’s response. If the attacker A has sent the challenge A∗ to a device Devi,
B randomly selects nonce N and issues this to the oracle instead of the real
computation EN∥1,A

R ( · ). When the attacker sends ⟨H∗, N∗, C1∗
, T 1∗⟩, B issues

challenge A and nonce N∗ to the oracle and obtains T 2.
If B accesses the real encryption algorithm E , this simulation is equivalent to

Game 2-j-3. Otherwise, the oracle query issued by B is completely random and
this distribution is equivalent to Game 2-j-4. Thus we have |S2-j-3 − S2-j-4| ≤
AdvΠ

A(k). ⋄
When we transform Game 0 to Game 2-l-4, there is no advantage of the

attacker to violate the security. Given the fact that the attacker knows the PUF
challenge X from the device’s non-volatile memory, the attacker cannot produce
a corresponding PUF response. This results in the fact that the attacker cannot
produce a key R which matches any of the recovered keys from the server’s
database. This means that the cryptogram produced by an attacker will never
be accepted by the decryption algorithm of the AEAD-scheme in the server.
Additionally, changing the authenticator T 2 will only prevent the device from
updating its PUF challenge, this is why the server also performs an exhaustive
search over the old (j − 1) PUF responses.

Therefore, no attacker can successfully mount the man-in-the-middle attack
in our proposed protocol. ⊓⊔
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Theorem 2 (Privacy). Let PUF instance puf∗ ← P be a ⟨n, l, d, h, ϵ1⟩-secure

PUF, FE be a ⟨d, h, ϵ2⟩-secure FE and the AEAD-scheme be an ϵ3-secure AEAD-

scheme. Then our protocol Ψ holds forward and backward privacy.

Proof. This proof is similar to the proof of Theorem 1. However, we remark that
it is important to assume that our protocol satisfies security first for privacy to
hold. This is because if security does not hold, a malicious attacker might be able
to desynchronize the PUF response Y of device Dev∗ to a chosen one. In that
case, even if the attacker honestly transfers the communication message between
I(Dev∗) and the server in the challenging phase the authentication result is
always B0 = 0 and the adversary can observe whether device Dev∗ was selected
as the challenge device.

Based on the same game transformation that was describes in the proof
of Theorem 1, we continuously change the communication messages for the
device Dev∗, however, we now call this device Dev∗

1. We do a similar game
transformation for a second target device Dev∗

2. In Game 1, the attacker can
guess which device will be chosen by the challenger in the privacy game with
probability of at least 1/n2. Upon continuing, the game transformation in Game
2 is applied to the sessions related to device Dev∗

1 and device Dev∗
2. Then, all

the message transcripts of the Game transformations are changed to random
variables and no biased information which identifies the challenger’s coin is leaked.
The information stored in the non-volatile memory of devices Dev∗

1 and Dev∗
2

will not disclose any information because these are updated from random sources.
Therefore, no attacker can distinguish any two devices with probability higher

than 1/n2, hence, the proposed protocol satisfies the forward and backward
privacy. ⊓⊔

5 Proof of Concept

In this section we present a proof of concept with security level k = 128 bits.
Figure 1 illustrates the system architecture of the device and server. The

device is implemented on a Zedboard [1] which contains a Xilinx Zynq-7000 All
Programmable System on Chip (SoC) XC7Z020-CLG484-1 [17]. The server is
implemented on a Linux PC. We design the system architecture using Xilinx
Vivado and Xilinx Vivado SDK.

The Zynq SoC is composed of 28 nm programmable logic and a processing
system, which can both be programmed through the USB JTAG. Apart from
other components, the processing system contains two ARM Cortex-A9 cores, of
which only one is used to: (i) control the communication between the device and
the server by reading and writing AXI-addresses from the device and sending and
receiving serial data through the UART; (ii) update the PUF challenge on the
device non-volatile memory by re-writing to a SD-card pugged into the Zedboard.
The central communication travels through a bus, the Central Interconnect
(CI), which is connected with the components on the Zedboard. Communication
between the logic and the ARM-core is supported with a 32-bit AXI.
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Fig. 1. System architecture of the device and server.

5.1 3-1 Double Arbiter PUF

The type of PUF used in the protocol will motivate most of the other design
parameters for the rest of the protocol. For example, depending on the bit-error-
probability pe of a PUF response-bit, the inter- and intra-distances of the PUF
responses, the entropy of the PUF responses ρ and the desired maximum for the
failure rate of the authentications pfail, both the number of PUF responses as
well as the type and size of error-correcting codes is motivated.

Figure 2 illustrates the 3-1 Double Arbiter PUF (DAPUF, P3-1) as proposed by
Machida et al. [12], which we implement because its characteristics are promising
for the parameters of our protocol. As an example, the authors state the prediction
rate is approximately 57%, which approximates a random guess (i.e. 50%). This is
a considerable improvement for arbiter PUF constructions because the prediction
rate of conventional arbiter PUFs is 86% [12, p. 8]. In the figure, a selector chain
composes of 64 switch blocks that, depending on the input challenge bit, can
switch signals from the two paths. The DAPUF is composed of three of these
selector chains all acting on the same challenge X. Using an ‘enable’ signal E
(EL and ER), the competition is started between the left signals EL and the
right signals ER. For each of the combination of left- or right signals an arbiter
is used to measure which path arrived first at the arbiter. After measuring these
race conditions, the results are XORed to collect the 1-bit PUF response Y .
By challenging the DAPUF with n different challenges, we obtain a n-bit PUF
response.

In order to design a FE that produces a key with sufficient entropy, we
analyze the performance parameters of the DAPUF. The authors have based the
performance results on a Xilinx Virtex-7 device. Because the architecture of our
SoC is similar to the Xilinx 7-series Field Programmable Gate Arrays (FPGAs),
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Fig. 2. 3-1 DAPUF as proposed by Machida et al. [12]. denotes a bitwise XOR,
denotes the input of the DAPUF and denotes the output of the DAPUF.

we take their performance as a starting point for our design. According to [12],
the steadiness is approximately 12%, which means that the bit-error-probability
pe is 0.12 [12]. The average uniqueness of P3-1 is approximately 50%, which is
close to ideal. Finally, the authors achieved a randomness of approximately 54%,
meaning that the probability that a response bit is ‘1’ is Pr(Yi = 1) = 0.54.
Using Formula 1 we calculate the entropy of the PUF responses ρ :

ρ = −0.54 log2(0.54)− 0.46 log2(0.46) = 0.9954 (4)

5.2 Reverse Fuzzy Extractor

In order to be able to recover the PUF responses, we use a concatenation of
error-correcting codes as introduced by Bosch et al. [5], which is a technique to
increase the correction rate while minimizing the computational overhead. Our
proposed reverse FE uses a concatenation code of a repetition code and a BCH
code. The aim is to construct a 128-bit key from the DAPUF responses with
quality ⟨pe = 0.12, ρ = 0.9954⟩. Also, we aim for a fail rate of pfail = 10−6, which
is considered an acceptable fail rate for standard performance levels [13].
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The probability that a received codeword of n bits has more than t errors is
given by [5,8]:

Pr(“>t errors”) = 1−
t∑

i=0

(
n

i

)
pi

e(1− pe)n−i, (5)

where pe is the bit-error-probability. When using a CREP(5, 1, 2) repetition
code, we can decrease the bit-error-probability pe = 0.12 to pe,REP = 0.01432 (t =
2, n = 5). Using a CBCH(255, 139, 15) BCH code on top of that further decreases
the bit-error-probability pe,REP = 0.01432 to a fail rate pfail = 1.176·10−6 (t = 15,
n = 255), which we consider sufficient. As a result, we use 1275 PUF responses on
64-bit PUF challenges, of which 40 bits are used for the challenge that is stored
in the device non-volatile memory, 12 bits are used to obtain the 1275 unique
PUF responses and 12 bits are used to produce random numbers, including a seed
that is updated at the beginning of every authentication. In order to obtain these
responses, we diffuse both sets of 12 challenge bits over the challenge space such
that one set is updated every clock cycle using a linear-feedback shift register
(LFSR) and the other is fixed to a constant value. As a consequence, every
unique 40-bit (stored) challenge produces unique 64-bit PUF challenges, and
thus produces unpredictable PUF responses. For the 1275 unique PUF responses
we start the LFSR with a fixed value each authentication, whereas for the random
number responses we start the LFSR with the updated (random) seed.

In order to analyze whether this construction leaves enough entropy in the
key, we calculate the entropy losses in the communicated helper data. When using
a CREP(5, 1, 2) repetition code on 5-bit words of the 1275-bit PUF response, 4
bits per word are disclosed as helper data. As a result, the entropy loss of using
the repetition code is HREP loss = 4 · 255 = 1020 bits. The entropy loss of the
CBCH(255, 139, 15) BCH code is introduced by the random string that is needed
to construct the code. As a result, the entropy loss of using this BCH code is
HBCH loss = n− k = 255− 139 = 116 bits. Hence, the total entropy loss of the
1275-bit PUF response by disclosing the helper data is Hloss = 1020+116 = 1136
bits. This leaves (1275− 1136) · ρ = 139 · 0.9958 = 138 bits of entropy left in the
255 bits of the BCH codeword.

These 255 bits will be compressed in a 128-bit key. This method is similar
to the constructions in [10, 14]. An advantage is that the AEAD-scheme can be
used for this construction, minimizing the number of primitives that need to be
implemented on the device.

5.3 AEAD-scheme

In our implementation of the protocol we use the AEAD-scheme Ketje [4] with
security level k = 128, one of the 56 candidates of the CAESAR competition [3].
We use the AEAD-scheme Ketje for the key construction in the reverse FE, the
encryption and decryption of the second PUF response Y 2 and the computation
of the authenticator T 2. Ketje relies on nonce uniqueness to be secure, which
we have taken into account when designing the implementation.
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6 Results

In this section we present the results of the proposed protocol. First, we analyze
the PUF responses. Second, we present the hardware and software performance
of the proof of concept. Following, we give the benchmark results. Finally, we
present the comparison of this work to other, similar authentication protocols.

6.1 PUF Response Analysis

Although we assumed that all the PUF response bits are independent, we found
out this is not the case. To illustrate this, take two challenges that have a low
Hamming distance. The probability that the responses of both challenges differ
is only small because the majority of the travelled paths will match in both
measurements. A possible reason why this is not reflected in [12] is that the
authors challenge the PUF instances with random challenges. Moreover, the
machine learning algorithm is trained with only 1, 000 training samples, which
means that the probability of having two challenges with low Hamming distance is
small. This characteristic means that the 12 bits that are used to retrieve the PUF
responses, and the 12 bits that are used to retrieve the random variables, need
to be diffused throughout the challenge space such that the highest probability
of having different data paths is achieved.

As an experiment we implemented three PUF instances using this construction.
These three PUFs were implemented on the same SoC at different locations,
which gives us a good approximation of the PUF response quality on distinct
SoCs. The metrics are calculated similarly as [12]. However, these results have
been achieved by challenging three PUF instances with 40-bit challenges multiple
times, obtaining multiple 1275-bit responses. More specifically, steadiness is
calculated by challenging the PUF a number of m = 1275 times with a set
of n = 128 equal challenges, averaging the Hamming distances between two
arbitrary responses. Uniqueness is calculated by challenging two PUF instances
a number of m = 1275 times with a set of n = 500 randomly chosen challenges,
averaging the Hamming distances of each pair. Finally, randomness is calculated
by challenging a PUF instance a number of m = 1275 times with a set of n = 500
randomly chosen challenges, averaging the Hamming weight of the responses. We
find an average steadiness of 5.64%, an average uniqueness of 45.19% and an
average randomness of 66.41%.

From this experiment, we see that for the DAPUF in our SoC the measure
for steadiness is lower (6% versus 12%), which means that the responses in our
implementation have a higher reproducibility. However, the randomness of our
implementation is higher (66% versus 54%), meaning that the probability of a
response bit being ‘1’ is higher. In order to find out whether the output from
our FE still provides enough entropy, we recalculate ρ. Using Formula 1 we find
ρ = 0.9208. Thus, 139 · 0.9248 = 128 bits of entropy is left to accumulate the
255-bit BCH codeword, which is just enough to construct the 128-bit key. As a
result, our implementation can be considered secure and thus privacy-preserving.
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Next, we recalculate the fail rate using Formula 5. We find pfail = 8.438 · 10−15,
which is a considerable improvement.

6.2 Hardware Performance

The results have been generated by Vivado without the use of BRAM or DSPs
and without optimization of the DAPUF design. Synthesis settings are set at
Default and optimization settings at Area. Furthermore, we allow race conditions
to occur due to the nature of the DAPUF.

Because of the long paths the signals have to travel through the DAPUF,
the path delay is high. In the worst case scenario, the data path delay is 76.509
ns which means that the maximum frequency of the SoC is 12 MHz. The
authentication phase of the device takes 8, 205 clock cycles, which on the frequency
of 12 MHz takes 0.63 ms. As a result, our proof of concept might be applicable
to devices in the IoT and in RFID systems.

In total, our proof of concept utilizes 8, 305 LUTs. The controller utilizes
5, 464 LUTs, Ketje 2, 630 LUTs, the DAPUF 195 LUTs and the BCH encoder
16 LUTs. Similar to the timing results, these utilization results are suboptimal.
In this case the registers take a lot of area because of the long variables in the
protocol.

6.3 Software Performance

The computation time of the server-side protocol increases linear in the number
of devices in the database due to the exhaustive search. In our naive software
implementation the execution time of the server-side protocol is approximately
0.05 · n seconds. In a real world scenario, the server would be implemented in
hardware which substantially decreases the execution time.

6.4 Benchmark Analysis

We analyze our protocol using the recently proposed benchmark for PUF-based
authentication protocols [6]. Our device uses a PUF, TRNG, FE Gen procedure,
cryptographic primitive (AEAD-scheme) and a one-time interface. Our PUF is
a so-called strong PUF, indicating that the number of challenge-response pairs
(CRPs) is at most 2l, where l is the number of bits in the challenge. The amount
of CRPs for n authentications is n+ 1 because we use a one-time interface for
the setup. The protocol supports server authenticity, device authenticity, device
privacy, and memory disclosure. The protocol can support d-authentications
for a perfect privacy use-case and ∞-authentications without device anonymity.
Our PUF is noise-robust because of the error correction and modeling-robust
because of the entropy accumulator in the FE. Mutual authentication provides
both server and device authenticity. There is no internal synchronization which
means that our implementation is not susceptible to DoS attacks. The execution
time of the server per authentication is linear in the amount of devices.
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6.5 Protocol Comparison

Table 1 summarizes the comparison between the proposed protocol and the
protocols by Moriyama et al. [15] and Aysu et al. [2].

Table 1. Comparison with previous work.

Reference Moriyama [15] Aysu [2] This work

Proofs for security and pri-
vacy

✓ ✓ ✓

Implemented parties ✗ device, server device, server
Security flaws ✗ ✓2 ✗

Reconfiguration method ✗ modify SW,
update microcode

follow generic
approach, modify

HW and SW
Demonstrator ✗ FPGA, PC SoC, PC
Security-level k 64-bit/128-bit 128-bit
Memory PUF challenge &

key
PUF challenge &

key
PUF challenge

Device FE procedure Rec Gen Gen

PUF type ✗ weak PUF strong PUF
PUF instance ✗ SRAM DAPUF
Hardware platform ✗ XC5VLX30 XC7Z020
Execution time (clock cycles) ✗ 18,597 8,205
Logic cost (w/o PUF) ✗ 1,221 LUTs 8,110 LUTs

The characteristic that all these protocols have in common is that they are
all provably secure PUF-based privacy-preserving protocols. However, [15] only
provides a theoretical basis for the proposed protocol, instead of also giving a
proof of concept. As a result, no sensible answer can be given to the question
whether the protocol is practical or not. On the other hand, [2] uses [15] as a
basis, but is vulnerable to linear equation analysis of the FE output [2, p. 12].
As a consequence, this protocol does not provide a secure and privacy-preserving
implementation. The performance results would highly likely be worsened because
the FE needs to be redesigned. Correspondingly, most likely they need more PUF
response bits to meet the failure rate requirements. Moreover, the implementation
stores a key in non-volatile memory that does not increase the unpredictability of
the communication messages. This overhead is eliminated in our protocol. Finally,
with a different PUF (or a weak PUF) our results can be improved substantially,
decreasing the execution time and logic cost.

2 Due to a vulnerability in the implemented FE [2, p. 12].
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7 Conclusion

In this paper we have proposed a new PUF-based privacy-preserving authentica-
tion protocol. In the process, we have presented proofs for security and privacy
preservation, and an implementation serving as a proof of concept. We have seen
that in comparison to other similar authentication protocols our protocol does
not need a key stored in the non-volatile memory of the devices and is simpler in
its design. Although our implementation is slower and consumes more resources
in relation to [2], we claim to have an implementation that is both secure and
privacy-preserving. On top of that, the performance results of [2] would highly
likely be worsened because the FE needs to be redesigned because of the security
flaw [2, p. 12].

Although we have presented a functional implementation, a faster and smaller
proof of concept is possible. This is mainly due to the implemented PUF which
defines the design of the FE and the variable sizes in the protocol. Moreover,
the authentication time of the server is linear in the number of devices in the
database, which could make the protocol impractical with a substantially large
number of devices. A sound design of the server can settle this issue.

The design of our protocol might be optimized further, similar to what this
research has achieved in relation to [2]. Mainly, future research has to be carried
out towards strong PUF implementations, because these form the basis of our
protocol. A strong PUF that has better quality of PUF responses can substantially
reduce the consumption of the device. However, although our protocol is based
on a strong PUF, a weak PUF can be used decreasing the maximum amount of
authentications per device. Also, biometric data and a single PUF fingerprint
can be used at the cost of device anonymity.
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